1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20 
21 static void ath9k_get_txgain_index(struct ath_hw *ah,
22 		struct ath9k_channel *chan,
23 		struct calDataPerFreqOpLoop *rawDatasetOpLoop,
24 		u8 *calChans,  u16 availPiers, u8 *pwr, u8 *pcdacIdx)
25 {
26 	u8 pcdac, i = 0;
27 	u16 idxL = 0, idxR = 0, numPiers;
28 	bool match;
29 	struct chan_centers centers;
30 
31 	ath9k_hw_get_channel_centers(ah, chan, &centers);
32 
33 	for (numPiers = 0; numPiers < availPiers; numPiers++)
34 		if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
35 			break;
36 
37 	match = ath9k_hw_get_lower_upper_index(
38 			(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
39 			calChans, numPiers, &idxL, &idxR);
40 	if (match) {
41 		pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
42 		*pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
43 	} else {
44 		pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
45 		*pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
46 				rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
47 	}
48 
49 	while (pcdac > ah->originalGain[i] &&
50 			i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
51 		i++;
52 
53 	*pcdacIdx = i;
54 }
55 
56 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
57 				u32 initTxGain,
58 				int txPower,
59 				u8 *pPDADCValues)
60 {
61 	u32 i;
62 	u32 offset;
63 
64 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
65 			AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
66 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
67 			AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
68 
69 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
70 			AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
71 
72 	offset = txPower;
73 	for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
74 		if (i < offset)
75 			pPDADCValues[i] = 0x0;
76 		else
77 			pPDADCValues[i] = 0xFF;
78 }
79 
80 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
81 {
82 	return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
83 }
84 
85 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
86 {
87 	return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
88 }
89 
90 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
91 
92 static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
93 {
94 	struct ath_common *common = ath9k_hw_common(ah);
95 	u16 *eep_data = (u16 *)&ah->eeprom.def;
96 	int addr, ar5416_eep_start_loc = 0x100;
97 
98 	for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
99 		if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
100 					 eep_data)) {
101 			ath_err(ath9k_hw_common(ah),
102 				"Unable to read eeprom region\n");
103 			return false;
104 		}
105 		eep_data++;
106 	}
107 	return true;
108 }
109 
110 static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
111 {
112 	u16 *eep_data = (u16 *)&ah->eeprom.def;
113 
114 	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
115 				     0x100, SIZE_EEPROM_DEF);
116 	return true;
117 }
118 
119 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
120 {
121 	struct ath_common *common = ath9k_hw_common(ah);
122 
123 	if (!ath9k_hw_use_flash(ah)) {
124 		ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
125 	}
126 
127 	if (common->bus_ops->ath_bus_type == ATH_USB)
128 		return __ath9k_hw_usb_def_fill_eeprom(ah);
129 	else
130 		return __ath9k_hw_def_fill_eeprom(ah);
131 }
132 
133 #undef SIZE_EEPROM_DEF
134 
135 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
136 static u32 ath9k_def_dump_modal_eeprom(char *buf, u32 len, u32 size,
137 				       struct modal_eep_header *modal_hdr)
138 {
139 	PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
140 	PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
141 	PR_EEP("Chain2 Ant. Control", modal_hdr->antCtrlChain[2]);
142 	PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
143 	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
144 	PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
145 	PR_EEP("Chain2 Ant. Gain", modal_hdr->antennaGainCh[2]);
146 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
147 	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
148 	PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
149 	PR_EEP("Chain2 TxRxAtten", modal_hdr->txRxAttenCh[2]);
150 	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
151 	PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
152 	PR_EEP("Chain2 RxTxMargin", modal_hdr->rxTxMarginCh[2]);
153 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
154 	PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
155 	PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
156 	PR_EEP("Chain1 xlna Gain", modal_hdr->xlnaGainCh[1]);
157 	PR_EEP("Chain2 xlna Gain", modal_hdr->xlnaGainCh[2]);
158 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
159 	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
160 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
161 	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
162 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
163 	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
164 	PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
165 	PR_EEP("xpdGain", modal_hdr->xpdGain);
166 	PR_EEP("External PD", modal_hdr->xpd);
167 	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
168 	PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
169 	PR_EEP("Chain2 I Coefficient", modal_hdr->iqCalICh[2]);
170 	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
171 	PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
172 	PR_EEP("Chain2 Q Coefficient", modal_hdr->iqCalQCh[2]);
173 	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
174 	PR_EEP("Chain0 OutputBias", modal_hdr->ob);
175 	PR_EEP("Chain0 DriverBias", modal_hdr->db);
176 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
177 	PR_EEP("2chain pwr decrease", modal_hdr->pwrDecreaseFor2Chain);
178 	PR_EEP("3chain pwr decrease", modal_hdr->pwrDecreaseFor3Chain);
179 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
180 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
181 	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
182 	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
183 	PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
184 	PR_EEP("Chain2 bswAtten", modal_hdr->bswAtten[2]);
185 	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
186 	PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
187 	PR_EEP("Chain2 bswMargin", modal_hdr->bswMargin[2]);
188 	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
189 	PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
190 	PR_EEP("Chain1 xatten2Db", modal_hdr->xatten2Db[1]);
191 	PR_EEP("Chain2 xatten2Db", modal_hdr->xatten2Db[2]);
192 	PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
193 	PR_EEP("Chain1 xatten2Margin", modal_hdr->xatten2Margin[1]);
194 	PR_EEP("Chain2 xatten2Margin", modal_hdr->xatten2Margin[2]);
195 	PR_EEP("Chain1 OutputBias", modal_hdr->ob_ch1);
196 	PR_EEP("Chain1 DriverBias", modal_hdr->db_ch1);
197 	PR_EEP("LNA Control", modal_hdr->lna_ctl);
198 	PR_EEP("XPA Bias Freq0", modal_hdr->xpaBiasLvlFreq[0]);
199 	PR_EEP("XPA Bias Freq1", modal_hdr->xpaBiasLvlFreq[1]);
200 	PR_EEP("XPA Bias Freq2", modal_hdr->xpaBiasLvlFreq[2]);
201 
202 	return len;
203 }
204 
205 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
206 				    u8 *buf, u32 len, u32 size)
207 {
208 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
209 	struct base_eep_header *pBase = &eep->baseEepHeader;
210 
211 	if (!dump_base_hdr) {
212 		len += snprintf(buf + len, size - len,
213 				"%20s :\n", "2GHz modal Header");
214 		len += ath9k_def_dump_modal_eeprom(buf, len, size,
215 						   &eep->modalHeader[0]);
216 		len += snprintf(buf + len, size - len,
217 				"%20s :\n", "5GHz modal Header");
218 		len += ath9k_def_dump_modal_eeprom(buf, len, size,
219 						   &eep->modalHeader[1]);
220 		goto out;
221 	}
222 
223 	PR_EEP("Major Version", pBase->version >> 12);
224 	PR_EEP("Minor Version", pBase->version & 0xFFF);
225 	PR_EEP("Checksum", pBase->checksum);
226 	PR_EEP("Length", pBase->length);
227 	PR_EEP("RegDomain1", pBase->regDmn[0]);
228 	PR_EEP("RegDomain2", pBase->regDmn[1]);
229 	PR_EEP("TX Mask", pBase->txMask);
230 	PR_EEP("RX Mask", pBase->rxMask);
231 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
232 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
233 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
234 					AR5416_OPFLAGS_N_2G_HT20));
235 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
236 					AR5416_OPFLAGS_N_2G_HT40));
237 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
238 					AR5416_OPFLAGS_N_5G_HT20));
239 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
240 					AR5416_OPFLAGS_N_5G_HT40));
241 	PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
242 	PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
243 	PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
244 	PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
245 	PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
246 
247 	len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
248 			pBase->macAddr);
249 
250 out:
251 	if (len > size)
252 		len = size;
253 
254 	return len;
255 }
256 #else
257 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
258 				    u8 *buf, u32 len, u32 size)
259 {
260 	return 0;
261 }
262 #endif
263 
264 
265 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
266 {
267 	struct ar5416_eeprom_def *eep =
268 		(struct ar5416_eeprom_def *) &ah->eeprom.def;
269 	struct ath_common *common = ath9k_hw_common(ah);
270 	u16 *eepdata, temp, magic, magic2;
271 	u32 sum = 0, el;
272 	bool need_swap = false;
273 	int i, addr, size;
274 
275 	if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
276 		ath_err(common, "Reading Magic # failed\n");
277 		return false;
278 	}
279 
280 	if (!ath9k_hw_use_flash(ah)) {
281 		ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
282 
283 		if (magic != AR5416_EEPROM_MAGIC) {
284 			magic2 = swab16(magic);
285 
286 			if (magic2 == AR5416_EEPROM_MAGIC) {
287 				size = sizeof(struct ar5416_eeprom_def);
288 				need_swap = true;
289 				eepdata = (u16 *) (&ah->eeprom);
290 
291 				for (addr = 0; addr < size / sizeof(u16); addr++) {
292 					temp = swab16(*eepdata);
293 					*eepdata = temp;
294 					eepdata++;
295 				}
296 			} else {
297 				ath_err(common,
298 					"Invalid EEPROM Magic. Endianness mismatch.\n");
299 				return -EINVAL;
300 			}
301 		}
302 	}
303 
304 	ath_dbg(common, EEPROM, "need_swap = %s\n",
305 		need_swap ? "True" : "False");
306 
307 	if (need_swap)
308 		el = swab16(ah->eeprom.def.baseEepHeader.length);
309 	else
310 		el = ah->eeprom.def.baseEepHeader.length;
311 
312 	if (el > sizeof(struct ar5416_eeprom_def))
313 		el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
314 	else
315 		el = el / sizeof(u16);
316 
317 	eepdata = (u16 *)(&ah->eeprom);
318 
319 	for (i = 0; i < el; i++)
320 		sum ^= *eepdata++;
321 
322 	if (need_swap) {
323 		u32 integer, j;
324 		u16 word;
325 
326 		ath_dbg(common, EEPROM,
327 			"EEPROM Endianness is not native.. Changing.\n");
328 
329 		word = swab16(eep->baseEepHeader.length);
330 		eep->baseEepHeader.length = word;
331 
332 		word = swab16(eep->baseEepHeader.checksum);
333 		eep->baseEepHeader.checksum = word;
334 
335 		word = swab16(eep->baseEepHeader.version);
336 		eep->baseEepHeader.version = word;
337 
338 		word = swab16(eep->baseEepHeader.regDmn[0]);
339 		eep->baseEepHeader.regDmn[0] = word;
340 
341 		word = swab16(eep->baseEepHeader.regDmn[1]);
342 		eep->baseEepHeader.regDmn[1] = word;
343 
344 		word = swab16(eep->baseEepHeader.rfSilent);
345 		eep->baseEepHeader.rfSilent = word;
346 
347 		word = swab16(eep->baseEepHeader.blueToothOptions);
348 		eep->baseEepHeader.blueToothOptions = word;
349 
350 		word = swab16(eep->baseEepHeader.deviceCap);
351 		eep->baseEepHeader.deviceCap = word;
352 
353 		for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
354 			struct modal_eep_header *pModal =
355 				&eep->modalHeader[j];
356 			integer = swab32(pModal->antCtrlCommon);
357 			pModal->antCtrlCommon = integer;
358 
359 			for (i = 0; i < AR5416_MAX_CHAINS; i++) {
360 				integer = swab32(pModal->antCtrlChain[i]);
361 				pModal->antCtrlChain[i] = integer;
362 			}
363 			for (i = 0; i < 3; i++) {
364 				word = swab16(pModal->xpaBiasLvlFreq[i]);
365 				pModal->xpaBiasLvlFreq[i] = word;
366 			}
367 
368 			for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
369 				word = swab16(pModal->spurChans[i].spurChan);
370 				pModal->spurChans[i].spurChan = word;
371 			}
372 		}
373 	}
374 
375 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
376 	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
377 		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
378 			sum, ah->eep_ops->get_eeprom_ver(ah));
379 		return -EINVAL;
380 	}
381 
382 	/* Enable fixup for AR_AN_TOP2 if necessary */
383 	if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
384 	    ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
385 	    (eep->baseEepHeader.pwdclkind == 0))
386 		ah->need_an_top2_fixup = true;
387 
388 	if ((common->bus_ops->ath_bus_type == ATH_USB) &&
389 	    (AR_SREV_9280(ah)))
390 		eep->modalHeader[0].xpaBiasLvl = 0;
391 
392 	return 0;
393 }
394 
395 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
396 				   enum eeprom_param param)
397 {
398 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
399 	struct modal_eep_header *pModal = eep->modalHeader;
400 	struct base_eep_header *pBase = &eep->baseEepHeader;
401 	int band = 0;
402 
403 	switch (param) {
404 	case EEP_NFTHRESH_5:
405 		return pModal[0].noiseFloorThreshCh[0];
406 	case EEP_NFTHRESH_2:
407 		return pModal[1].noiseFloorThreshCh[0];
408 	case EEP_MAC_LSW:
409 		return get_unaligned_be16(pBase->macAddr);
410 	case EEP_MAC_MID:
411 		return get_unaligned_be16(pBase->macAddr + 2);
412 	case EEP_MAC_MSW:
413 		return get_unaligned_be16(pBase->macAddr + 4);
414 	case EEP_REG_0:
415 		return pBase->regDmn[0];
416 	case EEP_OP_CAP:
417 		return pBase->deviceCap;
418 	case EEP_OP_MODE:
419 		return pBase->opCapFlags;
420 	case EEP_RF_SILENT:
421 		return pBase->rfSilent;
422 	case EEP_OB_5:
423 		return pModal[0].ob;
424 	case EEP_DB_5:
425 		return pModal[0].db;
426 	case EEP_OB_2:
427 		return pModal[1].ob;
428 	case EEP_DB_2:
429 		return pModal[1].db;
430 	case EEP_MINOR_REV:
431 		return AR5416_VER_MASK;
432 	case EEP_TX_MASK:
433 		return pBase->txMask;
434 	case EEP_RX_MASK:
435 		return pBase->rxMask;
436 	case EEP_FSTCLK_5G:
437 		return pBase->fastClk5g;
438 	case EEP_RXGAIN_TYPE:
439 		return pBase->rxGainType;
440 	case EEP_TXGAIN_TYPE:
441 		return pBase->txGainType;
442 	case EEP_OL_PWRCTRL:
443 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
444 			return pBase->openLoopPwrCntl ? true : false;
445 		else
446 			return false;
447 	case EEP_RC_CHAIN_MASK:
448 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
449 			return pBase->rcChainMask;
450 		else
451 			return 0;
452 	case EEP_DAC_HPWR_5G:
453 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
454 			return pBase->dacHiPwrMode_5G;
455 		else
456 			return 0;
457 	case EEP_FRAC_N_5G:
458 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
459 			return pBase->frac_n_5g;
460 		else
461 			return 0;
462 	case EEP_PWR_TABLE_OFFSET:
463 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
464 			return pBase->pwr_table_offset;
465 		else
466 			return AR5416_PWR_TABLE_OFFSET_DB;
467 	case EEP_ANTENNA_GAIN_2G:
468 		band = 1;
469 		/* fall through */
470 	case EEP_ANTENNA_GAIN_5G:
471 		return max_t(u8, max_t(u8,
472 			pModal[band].antennaGainCh[0],
473 			pModal[band].antennaGainCh[1]),
474 			pModal[band].antennaGainCh[2]);
475 	default:
476 		return 0;
477 	}
478 }
479 
480 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
481 				  struct modal_eep_header *pModal,
482 				  struct ar5416_eeprom_def *eep,
483 				  u8 txRxAttenLocal, int regChainOffset, int i)
484 {
485 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
486 		txRxAttenLocal = pModal->txRxAttenCh[i];
487 
488 		if (AR_SREV_9280_20_OR_LATER(ah)) {
489 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
490 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
491 			      pModal->bswMargin[i]);
492 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
493 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
494 			      pModal->bswAtten[i]);
495 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
496 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
497 			      pModal->xatten2Margin[i]);
498 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
499 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
500 			      pModal->xatten2Db[i]);
501 		} else {
502 			REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
503 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
504 			   ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
505 			  | SM(pModal-> bswMargin[i],
506 			       AR_PHY_GAIN_2GHZ_BSW_MARGIN));
507 			REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
508 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
509 			   ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
510 			  | SM(pModal->bswAtten[i],
511 			       AR_PHY_GAIN_2GHZ_BSW_ATTEN));
512 		}
513 	}
514 
515 	if (AR_SREV_9280_20_OR_LATER(ah)) {
516 		REG_RMW_FIELD(ah,
517 		      AR_PHY_RXGAIN + regChainOffset,
518 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
519 		REG_RMW_FIELD(ah,
520 		      AR_PHY_RXGAIN + regChainOffset,
521 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
522 	} else {
523 		REG_WRITE(ah,
524 			  AR_PHY_RXGAIN + regChainOffset,
525 			  (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
526 			   ~AR_PHY_RXGAIN_TXRX_ATTEN)
527 			  | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
528 		REG_WRITE(ah,
529 			  AR_PHY_GAIN_2GHZ + regChainOffset,
530 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
531 			   ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
532 			  SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
533 	}
534 }
535 
536 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
537 					  struct ath9k_channel *chan)
538 {
539 	struct modal_eep_header *pModal;
540 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
541 	int i, regChainOffset;
542 	u8 txRxAttenLocal;
543 
544 	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
545 	txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
546 
547 	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
548 
549 	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
550 		if (AR_SREV_9280(ah)) {
551 			if (i >= 2)
552 				break;
553 		}
554 
555 		if ((ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
556 			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
557 		else
558 			regChainOffset = i * 0x1000;
559 
560 		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
561 			  pModal->antCtrlChain[i]);
562 
563 		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
564 			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
565 			   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
566 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
567 			  SM(pModal->iqCalICh[i],
568 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
569 			  SM(pModal->iqCalQCh[i],
570 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
571 
572 		ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
573 				      regChainOffset, i);
574 	}
575 
576 	if (AR_SREV_9280_20_OR_LATER(ah)) {
577 		if (IS_CHAN_2GHZ(chan)) {
578 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
579 						  AR_AN_RF2G1_CH0_OB,
580 						  AR_AN_RF2G1_CH0_OB_S,
581 						  pModal->ob);
582 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
583 						  AR_AN_RF2G1_CH0_DB,
584 						  AR_AN_RF2G1_CH0_DB_S,
585 						  pModal->db);
586 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
587 						  AR_AN_RF2G1_CH1_OB,
588 						  AR_AN_RF2G1_CH1_OB_S,
589 						  pModal->ob_ch1);
590 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
591 						  AR_AN_RF2G1_CH1_DB,
592 						  AR_AN_RF2G1_CH1_DB_S,
593 						  pModal->db_ch1);
594 		} else {
595 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
596 						  AR_AN_RF5G1_CH0_OB5,
597 						  AR_AN_RF5G1_CH0_OB5_S,
598 						  pModal->ob);
599 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
600 						  AR_AN_RF5G1_CH0_DB5,
601 						  AR_AN_RF5G1_CH0_DB5_S,
602 						  pModal->db);
603 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
604 						  AR_AN_RF5G1_CH1_OB5,
605 						  AR_AN_RF5G1_CH1_OB5_S,
606 						  pModal->ob_ch1);
607 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
608 						  AR_AN_RF5G1_CH1_DB5,
609 						  AR_AN_RF5G1_CH1_DB5_S,
610 						  pModal->db_ch1);
611 		}
612 		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
613 					  AR_AN_TOP2_XPABIAS_LVL,
614 					  AR_AN_TOP2_XPABIAS_LVL_S,
615 					  pModal->xpaBiasLvl);
616 		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
617 					  AR_AN_TOP2_LOCALBIAS,
618 					  AR_AN_TOP2_LOCALBIAS_S,
619 					  !!(pModal->lna_ctl &
620 					     LNA_CTL_LOCAL_BIAS));
621 		REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
622 			      !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
623 	}
624 
625 	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
626 		      pModal->switchSettling);
627 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
628 		      pModal->adcDesiredSize);
629 
630 	if (!AR_SREV_9280_20_OR_LATER(ah))
631 		REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
632 			      AR_PHY_DESIRED_SZ_PGA,
633 			      pModal->pgaDesiredSize);
634 
635 	REG_WRITE(ah, AR_PHY_RF_CTL4,
636 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
637 		  | SM(pModal->txEndToXpaOff,
638 		       AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
639 		  | SM(pModal->txFrameToXpaOn,
640 		       AR_PHY_RF_CTL4_FRAME_XPAA_ON)
641 		  | SM(pModal->txFrameToXpaOn,
642 		       AR_PHY_RF_CTL4_FRAME_XPAB_ON));
643 
644 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
645 		      pModal->txEndToRxOn);
646 
647 	if (AR_SREV_9280_20_OR_LATER(ah)) {
648 		REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
649 			      pModal->thresh62);
650 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
651 			      AR_PHY_EXT_CCA0_THRESH62,
652 			      pModal->thresh62);
653 	} else {
654 		REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
655 			      pModal->thresh62);
656 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
657 			      AR_PHY_EXT_CCA_THRESH62,
658 			      pModal->thresh62);
659 	}
660 
661 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
662 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
663 			      AR_PHY_TX_END_DATA_START,
664 			      pModal->txFrameToDataStart);
665 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
666 			      pModal->txFrameToPaOn);
667 	}
668 
669 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
670 		if (IS_CHAN_HT40(chan))
671 			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
672 				      AR_PHY_SETTLING_SWITCH,
673 				      pModal->swSettleHt40);
674 	}
675 
676 	if (AR_SREV_9280_20_OR_LATER(ah) &&
677 	    AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
678 		REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
679 			      AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
680 			      pModal->miscBits);
681 
682 
683 	if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
684 		if (IS_CHAN_2GHZ(chan))
685 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
686 					eep->baseEepHeader.dacLpMode);
687 		else if (eep->baseEepHeader.dacHiPwrMode_5G)
688 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
689 		else
690 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
691 				      eep->baseEepHeader.dacLpMode);
692 
693 		udelay(100);
694 
695 		REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
696 			      pModal->miscBits >> 2);
697 
698 		REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
699 			      AR_PHY_TX_DESIRED_SCALE_CCK,
700 			      eep->baseEepHeader.desiredScaleCCK);
701 	}
702 }
703 
704 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
705 				   struct ath9k_channel *chan)
706 {
707 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
708 	struct modal_eep_header *pModal;
709 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
710 	u8 biaslevel;
711 
712 	if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
713 		return;
714 
715 	if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
716 		return;
717 
718 	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
719 
720 	if (pModal->xpaBiasLvl != 0xff) {
721 		biaslevel = pModal->xpaBiasLvl;
722 	} else {
723 		u16 resetFreqBin, freqBin, freqCount = 0;
724 		struct chan_centers centers;
725 
726 		ath9k_hw_get_channel_centers(ah, chan, &centers);
727 
728 		resetFreqBin = FREQ2FBIN(centers.synth_center,
729 					 IS_CHAN_2GHZ(chan));
730 		freqBin = XPA_LVL_FREQ(0) & 0xff;
731 		biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
732 
733 		freqCount++;
734 
735 		while (freqCount < 3) {
736 			if (XPA_LVL_FREQ(freqCount) == 0x0)
737 				break;
738 
739 			freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
740 			if (resetFreqBin >= freqBin)
741 				biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
742 			else
743 				break;
744 			freqCount++;
745 		}
746 	}
747 
748 	if (IS_CHAN_2GHZ(chan)) {
749 		INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
750 					7, 1) & (~0x18)) | biaslevel << 3;
751 	} else {
752 		INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
753 					6, 1) & (~0xc0)) | biaslevel << 6;
754 	}
755 #undef XPA_LVL_FREQ
756 }
757 
758 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
759 				u16 *gb,
760 				u16 numXpdGain,
761 				u16 pdGainOverlap_t2,
762 				int8_t pwr_table_offset,
763 				int16_t *diff)
764 
765 {
766 	u16 k;
767 
768 	/* Prior to writing the boundaries or the pdadc vs. power table
769 	 * into the chip registers the default starting point on the pdadc
770 	 * vs. power table needs to be checked and the curve boundaries
771 	 * adjusted accordingly
772 	 */
773 	if (AR_SREV_9280_20_OR_LATER(ah)) {
774 		u16 gb_limit;
775 
776 		if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
777 			/* get the difference in dB */
778 			*diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
779 			/* get the number of half dB steps */
780 			*diff *= 2;
781 			/* change the original gain boundary settings
782 			 * by the number of half dB steps
783 			 */
784 			for (k = 0; k < numXpdGain; k++)
785 				gb[k] = (u16)(gb[k] - *diff);
786 		}
787 		/* Because of a hardware limitation, ensure the gain boundary
788 		 * is not larger than (63 - overlap)
789 		 */
790 		gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
791 
792 		for (k = 0; k < numXpdGain; k++)
793 			gb[k] = (u16)min(gb_limit, gb[k]);
794 	}
795 
796 	return *diff;
797 }
798 
799 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
800 				      int8_t pwr_table_offset,
801 				      int16_t diff,
802 				      u8 *pdadcValues)
803 {
804 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
805 	u16 k;
806 
807 	/* If this is a board that has a pwrTableOffset that differs from
808 	 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
809 	 * pdadc vs pwr table needs to be adjusted prior to writing to the
810 	 * chip.
811 	 */
812 	if (AR_SREV_9280_20_OR_LATER(ah)) {
813 		if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
814 			/* shift the table to start at the new offset */
815 			for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
816 				pdadcValues[k] = pdadcValues[k + diff];
817 			}
818 
819 			/* fill the back of the table */
820 			for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
821 				pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
822 			}
823 		}
824 	}
825 #undef NUM_PDADC
826 }
827 
828 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
829 				  struct ath9k_channel *chan)
830 {
831 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
832 #define SM_PDGAIN_B(x, y) \
833 		SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
834 	struct ath_common *common = ath9k_hw_common(ah);
835 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
836 	struct cal_data_per_freq *pRawDataset;
837 	u8 *pCalBChans = NULL;
838 	u16 pdGainOverlap_t2;
839 	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
840 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
841 	u16 numPiers, i, j;
842 	int16_t diff = 0;
843 	u16 numXpdGain, xpdMask;
844 	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
845 	u32 reg32, regOffset, regChainOffset;
846 	int16_t modalIdx;
847 	int8_t pwr_table_offset;
848 
849 	modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
850 	xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
851 
852 	pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
853 
854 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
855 	    AR5416_EEP_MINOR_VER_2) {
856 		pdGainOverlap_t2 =
857 			pEepData->modalHeader[modalIdx].pdGainOverlap;
858 	} else {
859 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
860 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
861 	}
862 
863 	if (IS_CHAN_2GHZ(chan)) {
864 		pCalBChans = pEepData->calFreqPier2G;
865 		numPiers = AR5416_NUM_2G_CAL_PIERS;
866 	} else {
867 		pCalBChans = pEepData->calFreqPier5G;
868 		numPiers = AR5416_NUM_5G_CAL_PIERS;
869 	}
870 
871 	if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
872 		pRawDataset = pEepData->calPierData2G[0];
873 		ah->initPDADC = ((struct calDataPerFreqOpLoop *)
874 				 pRawDataset)->vpdPdg[0][0];
875 	}
876 
877 	numXpdGain = 0;
878 
879 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
880 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
881 			if (numXpdGain >= AR5416_NUM_PD_GAINS)
882 				break;
883 			xpdGainValues[numXpdGain] =
884 				(u16)(AR5416_PD_GAINS_IN_MASK - i);
885 			numXpdGain++;
886 		}
887 	}
888 
889 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
890 		      (numXpdGain - 1) & 0x3);
891 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
892 		      xpdGainValues[0]);
893 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
894 		      xpdGainValues[1]);
895 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
896 		      xpdGainValues[2]);
897 
898 	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
899 		if ((ah->rxchainmask == 5 || ah->txchainmask == 5) &&
900 		    (i != 0)) {
901 			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
902 		} else
903 			regChainOffset = i * 0x1000;
904 
905 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
906 			if (IS_CHAN_2GHZ(chan))
907 				pRawDataset = pEepData->calPierData2G[i];
908 			else
909 				pRawDataset = pEepData->calPierData5G[i];
910 
911 
912 			if (OLC_FOR_AR9280_20_LATER) {
913 				u8 pcdacIdx;
914 				u8 txPower;
915 
916 				ath9k_get_txgain_index(ah, chan,
917 				(struct calDataPerFreqOpLoop *)pRawDataset,
918 				pCalBChans, numPiers, &txPower, &pcdacIdx);
919 				ath9k_olc_get_pdadcs(ah, pcdacIdx,
920 						     txPower/2, pdadcValues);
921 			} else {
922 				ath9k_hw_get_gain_boundaries_pdadcs(ah,
923 							chan, pRawDataset,
924 							pCalBChans, numPiers,
925 							pdGainOverlap_t2,
926 							gainBoundaries,
927 							pdadcValues,
928 							numXpdGain);
929 			}
930 
931 			diff = ath9k_change_gain_boundary_setting(ah,
932 							   gainBoundaries,
933 							   numXpdGain,
934 							   pdGainOverlap_t2,
935 							   pwr_table_offset,
936 							   &diff);
937 
938 			ENABLE_REGWRITE_BUFFER(ah);
939 
940 			if (OLC_FOR_AR9280_20_LATER) {
941 				REG_WRITE(ah,
942 					AR_PHY_TPCRG5 + regChainOffset,
943 					SM(0x6,
944 					AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
945 					SM_PD_GAIN(1) | SM_PD_GAIN(2) |
946 					SM_PD_GAIN(3) | SM_PD_GAIN(4));
947 			} else {
948 				REG_WRITE(ah,
949 					AR_PHY_TPCRG5 + regChainOffset,
950 					SM(pdGainOverlap_t2,
951 					AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
952 					SM_PDGAIN_B(0, 1) |
953 					SM_PDGAIN_B(1, 2) |
954 					SM_PDGAIN_B(2, 3) |
955 					SM_PDGAIN_B(3, 4));
956 			}
957 
958 			ath9k_adjust_pdadc_values(ah, pwr_table_offset,
959 						  diff, pdadcValues);
960 
961 			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
962 			for (j = 0; j < 32; j++) {
963 				reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
964 				REG_WRITE(ah, regOffset, reg32);
965 
966 				ath_dbg(common, EEPROM,
967 					"PDADC (%d,%4x): %4.4x %8.8x\n",
968 					i, regChainOffset, regOffset,
969 					reg32);
970 				ath_dbg(common, EEPROM,
971 					"PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
972 					i, 4 * j, pdadcValues[4 * j],
973 					4 * j + 1, pdadcValues[4 * j + 1],
974 					4 * j + 2, pdadcValues[4 * j + 2],
975 					4 * j + 3, pdadcValues[4 * j + 3]);
976 
977 				regOffset += 4;
978 			}
979 			REGWRITE_BUFFER_FLUSH(ah);
980 		}
981 	}
982 
983 #undef SM_PD_GAIN
984 #undef SM_PDGAIN_B
985 }
986 
987 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
988 						  struct ath9k_channel *chan,
989 						  int16_t *ratesArray,
990 						  u16 cfgCtl,
991 						  u16 antenna_reduction,
992 						  u16 powerLimit)
993 {
994 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
995 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   9 /* 10*log10(3)*2 */
996 
997 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
998 	u16 twiceMaxEdgePower;
999 	int i;
1000 	struct cal_ctl_data *rep;
1001 	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
1002 		0, { 0, 0, 0, 0}
1003 	};
1004 	struct cal_target_power_leg targetPowerOfdmExt = {
1005 		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
1006 		0, { 0, 0, 0, 0 }
1007 	};
1008 	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1009 		0, {0, 0, 0, 0}
1010 	};
1011 	u16 scaledPower = 0, minCtlPower;
1012 	static const u16 ctlModesFor11a[] = {
1013 		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1014 	};
1015 	static const u16 ctlModesFor11g[] = {
1016 		CTL_11B, CTL_11G, CTL_2GHT20,
1017 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1018 	};
1019 	u16 numCtlModes;
1020 	const u16 *pCtlMode;
1021 	u16 ctlMode, freq;
1022 	struct chan_centers centers;
1023 	int tx_chainmask;
1024 	u16 twiceMinEdgePower;
1025 
1026 	tx_chainmask = ah->txchainmask;
1027 
1028 	ath9k_hw_get_channel_centers(ah, chan, &centers);
1029 
1030 	scaledPower = powerLimit - antenna_reduction;
1031 
1032 	switch (ar5416_get_ntxchains(tx_chainmask)) {
1033 	case 1:
1034 		break;
1035 	case 2:
1036 		if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
1037 			scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
1038 		else
1039 			scaledPower = 0;
1040 		break;
1041 	case 3:
1042 		if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
1043 			scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
1044 		else
1045 			scaledPower = 0;
1046 		break;
1047 	}
1048 
1049 	if (IS_CHAN_2GHZ(chan)) {
1050 		numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
1051 			SUB_NUM_CTL_MODES_AT_2G_40;
1052 		pCtlMode = ctlModesFor11g;
1053 
1054 		ath9k_hw_get_legacy_target_powers(ah, chan,
1055 			pEepData->calTargetPowerCck,
1056 			AR5416_NUM_2G_CCK_TARGET_POWERS,
1057 			&targetPowerCck, 4, false);
1058 		ath9k_hw_get_legacy_target_powers(ah, chan,
1059 			pEepData->calTargetPower2G,
1060 			AR5416_NUM_2G_20_TARGET_POWERS,
1061 			&targetPowerOfdm, 4, false);
1062 		ath9k_hw_get_target_powers(ah, chan,
1063 			pEepData->calTargetPower2GHT20,
1064 			AR5416_NUM_2G_20_TARGET_POWERS,
1065 			&targetPowerHt20, 8, false);
1066 
1067 		if (IS_CHAN_HT40(chan)) {
1068 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1069 			ath9k_hw_get_target_powers(ah, chan,
1070 				pEepData->calTargetPower2GHT40,
1071 				AR5416_NUM_2G_40_TARGET_POWERS,
1072 				&targetPowerHt40, 8, true);
1073 			ath9k_hw_get_legacy_target_powers(ah, chan,
1074 				pEepData->calTargetPowerCck,
1075 				AR5416_NUM_2G_CCK_TARGET_POWERS,
1076 				&targetPowerCckExt, 4, true);
1077 			ath9k_hw_get_legacy_target_powers(ah, chan,
1078 				pEepData->calTargetPower2G,
1079 				AR5416_NUM_2G_20_TARGET_POWERS,
1080 				&targetPowerOfdmExt, 4, true);
1081 		}
1082 	} else {
1083 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1084 			SUB_NUM_CTL_MODES_AT_5G_40;
1085 		pCtlMode = ctlModesFor11a;
1086 
1087 		ath9k_hw_get_legacy_target_powers(ah, chan,
1088 			pEepData->calTargetPower5G,
1089 			AR5416_NUM_5G_20_TARGET_POWERS,
1090 			&targetPowerOfdm, 4, false);
1091 		ath9k_hw_get_target_powers(ah, chan,
1092 			pEepData->calTargetPower5GHT20,
1093 			AR5416_NUM_5G_20_TARGET_POWERS,
1094 			&targetPowerHt20, 8, false);
1095 
1096 		if (IS_CHAN_HT40(chan)) {
1097 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1098 			ath9k_hw_get_target_powers(ah, chan,
1099 				pEepData->calTargetPower5GHT40,
1100 				AR5416_NUM_5G_40_TARGET_POWERS,
1101 				&targetPowerHt40, 8, true);
1102 			ath9k_hw_get_legacy_target_powers(ah, chan,
1103 				pEepData->calTargetPower5G,
1104 				AR5416_NUM_5G_20_TARGET_POWERS,
1105 				&targetPowerOfdmExt, 4, true);
1106 		}
1107 	}
1108 
1109 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1110 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1111 			(pCtlMode[ctlMode] == CTL_2GHT40);
1112 		if (isHt40CtlMode)
1113 			freq = centers.synth_center;
1114 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1115 			freq = centers.ext_center;
1116 		else
1117 			freq = centers.ctl_center;
1118 
1119 		twiceMaxEdgePower = MAX_RATE_POWER;
1120 
1121 		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1122 			if ((((cfgCtl & ~CTL_MODE_M) |
1123 			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1124 			     pEepData->ctlIndex[i]) ||
1125 			    (((cfgCtl & ~CTL_MODE_M) |
1126 			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1127 			     ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1128 				rep = &(pEepData->ctlData[i]);
1129 
1130 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1131 				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1132 				IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1133 
1134 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1135 					twiceMaxEdgePower = min(twiceMaxEdgePower,
1136 								twiceMinEdgePower);
1137 				} else {
1138 					twiceMaxEdgePower = twiceMinEdgePower;
1139 					break;
1140 				}
1141 			}
1142 		}
1143 
1144 		minCtlPower = min(twiceMaxEdgePower, scaledPower);
1145 
1146 		switch (pCtlMode[ctlMode]) {
1147 		case CTL_11B:
1148 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1149 				targetPowerCck.tPow2x[i] =
1150 					min((u16)targetPowerCck.tPow2x[i],
1151 					    minCtlPower);
1152 			}
1153 			break;
1154 		case CTL_11A:
1155 		case CTL_11G:
1156 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1157 				targetPowerOfdm.tPow2x[i] =
1158 					min((u16)targetPowerOfdm.tPow2x[i],
1159 					    minCtlPower);
1160 			}
1161 			break;
1162 		case CTL_5GHT20:
1163 		case CTL_2GHT20:
1164 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1165 				targetPowerHt20.tPow2x[i] =
1166 					min((u16)targetPowerHt20.tPow2x[i],
1167 					    minCtlPower);
1168 			}
1169 			break;
1170 		case CTL_11B_EXT:
1171 			targetPowerCckExt.tPow2x[0] = min((u16)
1172 					targetPowerCckExt.tPow2x[0],
1173 					minCtlPower);
1174 			break;
1175 		case CTL_11A_EXT:
1176 		case CTL_11G_EXT:
1177 			targetPowerOfdmExt.tPow2x[0] = min((u16)
1178 					targetPowerOfdmExt.tPow2x[0],
1179 					minCtlPower);
1180 			break;
1181 		case CTL_5GHT40:
1182 		case CTL_2GHT40:
1183 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1184 				targetPowerHt40.tPow2x[i] =
1185 					min((u16)targetPowerHt40.tPow2x[i],
1186 					    minCtlPower);
1187 			}
1188 			break;
1189 		default:
1190 			break;
1191 		}
1192 	}
1193 
1194 	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1195 		ratesArray[rate18mb] = ratesArray[rate24mb] =
1196 		targetPowerOfdm.tPow2x[0];
1197 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1198 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1199 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1200 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1201 
1202 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1203 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1204 
1205 	if (IS_CHAN_2GHZ(chan)) {
1206 		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1207 		ratesArray[rate2s] = ratesArray[rate2l] =
1208 			targetPowerCck.tPow2x[1];
1209 		ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1210 			targetPowerCck.tPow2x[2];
1211 		ratesArray[rate11s] = ratesArray[rate11l] =
1212 			targetPowerCck.tPow2x[3];
1213 	}
1214 	if (IS_CHAN_HT40(chan)) {
1215 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1216 			ratesArray[rateHt40_0 + i] =
1217 				targetPowerHt40.tPow2x[i];
1218 		}
1219 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1220 		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1221 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1222 		if (IS_CHAN_2GHZ(chan)) {
1223 			ratesArray[rateExtCck] =
1224 				targetPowerCckExt.tPow2x[0];
1225 		}
1226 	}
1227 }
1228 
1229 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1230 				    struct ath9k_channel *chan,
1231 				    u16 cfgCtl,
1232 				    u8 twiceAntennaReduction,
1233 				    u8 powerLimit, bool test)
1234 {
1235 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1236 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1237 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1238 	struct modal_eep_header *pModal =
1239 		&(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1240 	int16_t ratesArray[Ar5416RateSize];
1241 	u8 ht40PowerIncForPdadc = 2;
1242 	int i, cck_ofdm_delta = 0;
1243 
1244 	memset(ratesArray, 0, sizeof(ratesArray));
1245 
1246 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1247 	    AR5416_EEP_MINOR_VER_2) {
1248 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1249 	}
1250 
1251 	ath9k_hw_set_def_power_per_rate_table(ah, chan,
1252 					       &ratesArray[0], cfgCtl,
1253 					       twiceAntennaReduction,
1254 					       powerLimit);
1255 
1256 	ath9k_hw_set_def_power_cal_table(ah, chan);
1257 
1258 	regulatory->max_power_level = 0;
1259 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1260 		if (ratesArray[i] > MAX_RATE_POWER)
1261 			ratesArray[i] = MAX_RATE_POWER;
1262 		if (ratesArray[i] > regulatory->max_power_level)
1263 			regulatory->max_power_level = ratesArray[i];
1264 	}
1265 
1266 	switch(ar5416_get_ntxchains(ah->txchainmask)) {
1267 	case 1:
1268 		break;
1269 	case 2:
1270 		regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
1271 		break;
1272 	case 3:
1273 		regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
1274 		break;
1275 	default:
1276 		ath_dbg(ath9k_hw_common(ah), EEPROM,
1277 			"Invalid chainmask configuration\n");
1278 		break;
1279 	}
1280 
1281 	if (test)
1282 		return;
1283 
1284 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1285 		for (i = 0; i < Ar5416RateSize; i++) {
1286 			int8_t pwr_table_offset;
1287 
1288 			pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1289 							EEP_PWR_TABLE_OFFSET);
1290 			ratesArray[i] -= pwr_table_offset * 2;
1291 		}
1292 	}
1293 
1294 	ENABLE_REGWRITE_BUFFER(ah);
1295 
1296 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1297 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
1298 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1299 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1300 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1301 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1302 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
1303 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1304 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1305 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1306 
1307 	if (IS_CHAN_2GHZ(chan)) {
1308 		if (OLC_FOR_AR9280_20_LATER) {
1309 			cck_ofdm_delta = 2;
1310 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1311 				ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1312 				| ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1313 				| ATH9K_POW_SM(ratesArray[rateXr], 8)
1314 				| ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1315 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1316 				ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1317 				| ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1318 				| ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1319 				| ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1320 		} else {
1321 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1322 				ATH9K_POW_SM(ratesArray[rate2s], 24)
1323 				| ATH9K_POW_SM(ratesArray[rate2l], 16)
1324 				| ATH9K_POW_SM(ratesArray[rateXr], 8)
1325 				| ATH9K_POW_SM(ratesArray[rate1l], 0));
1326 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1327 				ATH9K_POW_SM(ratesArray[rate11s], 24)
1328 				| ATH9K_POW_SM(ratesArray[rate11l], 16)
1329 				| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1330 				| ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1331 		}
1332 	}
1333 
1334 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1335 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1336 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1337 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1338 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1339 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1340 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1341 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1342 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1343 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1344 
1345 	if (IS_CHAN_HT40(chan)) {
1346 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1347 			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
1348 				       ht40PowerIncForPdadc, 24)
1349 			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1350 					 ht40PowerIncForPdadc, 16)
1351 			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1352 					 ht40PowerIncForPdadc, 8)
1353 			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1354 					 ht40PowerIncForPdadc, 0));
1355 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1356 			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
1357 				       ht40PowerIncForPdadc, 24)
1358 			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1359 					 ht40PowerIncForPdadc, 16)
1360 			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1361 					 ht40PowerIncForPdadc, 8)
1362 			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1363 					 ht40PowerIncForPdadc, 0));
1364 		if (OLC_FOR_AR9280_20_LATER) {
1365 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1366 				ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1367 				| ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1368 				| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1369 				| ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1370 		} else {
1371 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1372 				ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1373 				| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1374 				| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1375 				| ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1376 		}
1377 	}
1378 
1379 	REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1380 		  ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1381 		  | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1382 
1383 	REGWRITE_BUFFER_FLUSH(ah);
1384 }
1385 
1386 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1387 {
1388 #define EEP_DEF_SPURCHAN \
1389 	(ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1390 	struct ath_common *common = ath9k_hw_common(ah);
1391 
1392 	u16 spur_val = AR_NO_SPUR;
1393 
1394 	ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1395 		i, is2GHz, ah->config.spurchans[i][is2GHz]);
1396 
1397 	switch (ah->config.spurmode) {
1398 	case SPUR_DISABLE:
1399 		break;
1400 	case SPUR_ENABLE_IOCTL:
1401 		spur_val = ah->config.spurchans[i][is2GHz];
1402 		ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1403 			spur_val);
1404 		break;
1405 	case SPUR_ENABLE_EEPROM:
1406 		spur_val = EEP_DEF_SPURCHAN;
1407 		break;
1408 	}
1409 
1410 	return spur_val;
1411 
1412 #undef EEP_DEF_SPURCHAN
1413 }
1414 
1415 const struct eeprom_ops eep_def_ops = {
1416 	.check_eeprom		= ath9k_hw_def_check_eeprom,
1417 	.get_eeprom		= ath9k_hw_def_get_eeprom,
1418 	.fill_eeprom		= ath9k_hw_def_fill_eeprom,
1419 	.dump_eeprom		= ath9k_hw_def_dump_eeprom,
1420 	.get_eeprom_ver		= ath9k_hw_def_get_eeprom_ver,
1421 	.get_eeprom_rev		= ath9k_hw_def_get_eeprom_rev,
1422 	.set_board_values	= ath9k_hw_def_set_board_values,
1423 	.set_addac		= ath9k_hw_def_set_addac,
1424 	.set_txpower		= ath9k_hw_def_set_txpower,
1425 	.get_spur_channel	= ath9k_hw_def_get_spur_channel
1426 };
1427