1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <asm/unaligned.h> 18 #include "hw.h" 19 #include "ar9002_phy.h" 20 21 static void ath9k_get_txgain_index(struct ath_hw *ah, 22 struct ath9k_channel *chan, 23 struct calDataPerFreqOpLoop *rawDatasetOpLoop, 24 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx) 25 { 26 u8 pcdac, i = 0; 27 u16 idxL = 0, idxR = 0, numPiers; 28 bool match; 29 struct chan_centers centers; 30 31 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 32 33 for (numPiers = 0; numPiers < availPiers; numPiers++) 34 if (calChans[numPiers] == AR5416_BCHAN_UNUSED) 35 break; 36 37 match = ath9k_hw_get_lower_upper_index( 38 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)), 39 calChans, numPiers, &idxL, &idxR); 40 if (match) { 41 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0]; 42 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0]; 43 } else { 44 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0]; 45 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] + 46 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2; 47 } 48 49 while (pcdac > ah->originalGain[i] && 50 i < (AR9280_TX_GAIN_TABLE_SIZE - 1)) 51 i++; 52 53 *pcdacIdx = i; 54 } 55 56 static void ath9k_olc_get_pdadcs(struct ath_hw *ah, 57 u32 initTxGain, 58 int txPower, 59 u8 *pPDADCValues) 60 { 61 u32 i; 62 u32 offset; 63 64 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0, 65 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3); 66 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1, 67 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3); 68 69 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7, 70 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain); 71 72 offset = txPower; 73 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++) 74 if (i < offset) 75 pPDADCValues[i] = 0x0; 76 else 77 pPDADCValues[i] = 0xFF; 78 } 79 80 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah) 81 { 82 return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF); 83 } 84 85 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah) 86 { 87 return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF); 88 } 89 90 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16)) 91 92 static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah) 93 { 94 u16 *eep_data = (u16 *)&ah->eeprom.def; 95 int addr, ar5416_eep_start_loc = 0x100; 96 97 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) { 98 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc, 99 eep_data)) 100 return false; 101 eep_data++; 102 } 103 return true; 104 } 105 106 static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah) 107 { 108 u16 *eep_data = (u16 *)&ah->eeprom.def; 109 110 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 111 0x100, SIZE_EEPROM_DEF); 112 return true; 113 } 114 115 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah) 116 { 117 struct ath_common *common = ath9k_hw_common(ah); 118 119 if (!ath9k_hw_use_flash(ah)) { 120 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n"); 121 } 122 123 if (common->bus_ops->ath_bus_type == ATH_USB) 124 return __ath9k_hw_usb_def_fill_eeprom(ah); 125 else 126 return __ath9k_hw_def_fill_eeprom(ah); 127 } 128 129 #undef SIZE_EEPROM_DEF 130 131 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS) 132 static u32 ath9k_def_dump_modal_eeprom(char *buf, u32 len, u32 size, 133 struct modal_eep_header *modal_hdr) 134 { 135 PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]); 136 PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]); 137 PR_EEP("Chain2 Ant. Control", modal_hdr->antCtrlChain[2]); 138 PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon); 139 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]); 140 PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]); 141 PR_EEP("Chain2 Ant. Gain", modal_hdr->antennaGainCh[2]); 142 PR_EEP("Switch Settle", modal_hdr->switchSettling); 143 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]); 144 PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]); 145 PR_EEP("Chain2 TxRxAtten", modal_hdr->txRxAttenCh[2]); 146 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]); 147 PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]); 148 PR_EEP("Chain2 RxTxMargin", modal_hdr->rxTxMarginCh[2]); 149 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize); 150 PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize); 151 PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]); 152 PR_EEP("Chain1 xlna Gain", modal_hdr->xlnaGainCh[1]); 153 PR_EEP("Chain2 xlna Gain", modal_hdr->xlnaGainCh[2]); 154 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff); 155 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn); 156 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn); 157 PR_EEP("CCA Threshold)", modal_hdr->thresh62); 158 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]); 159 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]); 160 PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]); 161 PR_EEP("xpdGain", modal_hdr->xpdGain); 162 PR_EEP("External PD", modal_hdr->xpd); 163 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]); 164 PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]); 165 PR_EEP("Chain2 I Coefficient", modal_hdr->iqCalICh[2]); 166 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]); 167 PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]); 168 PR_EEP("Chain2 Q Coefficient", modal_hdr->iqCalQCh[2]); 169 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap); 170 PR_EEP("Chain0 OutputBias", modal_hdr->ob); 171 PR_EEP("Chain0 DriverBias", modal_hdr->db); 172 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl); 173 PR_EEP("2chain pwr decrease", modal_hdr->pwrDecreaseFor2Chain); 174 PR_EEP("3chain pwr decrease", modal_hdr->pwrDecreaseFor3Chain); 175 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart); 176 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn); 177 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc); 178 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]); 179 PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]); 180 PR_EEP("Chain2 bswAtten", modal_hdr->bswAtten[2]); 181 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]); 182 PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]); 183 PR_EEP("Chain2 bswMargin", modal_hdr->bswMargin[2]); 184 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40); 185 PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]); 186 PR_EEP("Chain1 xatten2Db", modal_hdr->xatten2Db[1]); 187 PR_EEP("Chain2 xatten2Db", modal_hdr->xatten2Db[2]); 188 PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]); 189 PR_EEP("Chain1 xatten2Margin", modal_hdr->xatten2Margin[1]); 190 PR_EEP("Chain2 xatten2Margin", modal_hdr->xatten2Margin[2]); 191 PR_EEP("Chain1 OutputBias", modal_hdr->ob_ch1); 192 PR_EEP("Chain1 DriverBias", modal_hdr->db_ch1); 193 PR_EEP("LNA Control", modal_hdr->lna_ctl); 194 PR_EEP("XPA Bias Freq0", modal_hdr->xpaBiasLvlFreq[0]); 195 PR_EEP("XPA Bias Freq1", modal_hdr->xpaBiasLvlFreq[1]); 196 PR_EEP("XPA Bias Freq2", modal_hdr->xpaBiasLvlFreq[2]); 197 198 return len; 199 } 200 201 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr, 202 u8 *buf, u32 len, u32 size) 203 { 204 struct ar5416_eeprom_def *eep = &ah->eeprom.def; 205 struct base_eep_header *pBase = &eep->baseEepHeader; 206 207 if (!dump_base_hdr) { 208 len += scnprintf(buf + len, size - len, 209 "%20s :\n", "2GHz modal Header"); 210 len = ath9k_def_dump_modal_eeprom(buf, len, size, 211 &eep->modalHeader[0]); 212 len += scnprintf(buf + len, size - len, 213 "%20s :\n", "5GHz modal Header"); 214 len = ath9k_def_dump_modal_eeprom(buf, len, size, 215 &eep->modalHeader[1]); 216 goto out; 217 } 218 219 PR_EEP("Major Version", pBase->version >> 12); 220 PR_EEP("Minor Version", pBase->version & 0xFFF); 221 PR_EEP("Checksum", pBase->checksum); 222 PR_EEP("Length", pBase->length); 223 PR_EEP("RegDomain1", pBase->regDmn[0]); 224 PR_EEP("RegDomain2", pBase->regDmn[1]); 225 PR_EEP("TX Mask", pBase->txMask); 226 PR_EEP("RX Mask", pBase->rxMask); 227 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A)); 228 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G)); 229 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags & 230 AR5416_OPFLAGS_N_2G_HT20)); 231 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags & 232 AR5416_OPFLAGS_N_2G_HT40)); 233 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags & 234 AR5416_OPFLAGS_N_5G_HT20)); 235 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags & 236 AR5416_OPFLAGS_N_5G_HT40)); 237 PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01)); 238 PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF); 239 PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF); 240 PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF); 241 PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl); 242 243 len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress", 244 pBase->macAddr); 245 246 out: 247 if (len > size) 248 len = size; 249 250 return len; 251 } 252 #else 253 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr, 254 u8 *buf, u32 len, u32 size) 255 { 256 return 0; 257 } 258 #endif 259 260 261 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah) 262 { 263 struct ar5416_eeprom_def *eep = &ah->eeprom.def; 264 struct ath_common *common = ath9k_hw_common(ah); 265 u16 *eepdata, temp, magic, magic2; 266 u32 sum = 0, el; 267 bool need_swap = false; 268 int i, addr, size; 269 270 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) { 271 ath_err(common, "Reading Magic # failed\n"); 272 return false; 273 } 274 275 if (!ath9k_hw_use_flash(ah)) { 276 ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic); 277 278 if (magic != AR5416_EEPROM_MAGIC) { 279 magic2 = swab16(magic); 280 281 if (magic2 == AR5416_EEPROM_MAGIC) { 282 size = sizeof(struct ar5416_eeprom_def); 283 need_swap = true; 284 eepdata = (u16 *) (&ah->eeprom); 285 286 for (addr = 0; addr < size / sizeof(u16); addr++) { 287 temp = swab16(*eepdata); 288 *eepdata = temp; 289 eepdata++; 290 } 291 } else { 292 ath_err(common, 293 "Invalid EEPROM Magic. Endianness mismatch.\n"); 294 return -EINVAL; 295 } 296 } 297 } 298 299 ath_dbg(common, EEPROM, "need_swap = %s\n", 300 need_swap ? "True" : "False"); 301 302 if (need_swap) 303 el = swab16(ah->eeprom.def.baseEepHeader.length); 304 else 305 el = ah->eeprom.def.baseEepHeader.length; 306 307 if (el > sizeof(struct ar5416_eeprom_def)) 308 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16); 309 else 310 el = el / sizeof(u16); 311 312 eepdata = (u16 *)(&ah->eeprom); 313 314 for (i = 0; i < el; i++) 315 sum ^= *eepdata++; 316 317 if (need_swap) { 318 u32 integer, j; 319 u16 word; 320 321 ath_dbg(common, EEPROM, 322 "EEPROM Endianness is not native.. Changing.\n"); 323 324 word = swab16(eep->baseEepHeader.length); 325 eep->baseEepHeader.length = word; 326 327 word = swab16(eep->baseEepHeader.checksum); 328 eep->baseEepHeader.checksum = word; 329 330 word = swab16(eep->baseEepHeader.version); 331 eep->baseEepHeader.version = word; 332 333 word = swab16(eep->baseEepHeader.regDmn[0]); 334 eep->baseEepHeader.regDmn[0] = word; 335 336 word = swab16(eep->baseEepHeader.regDmn[1]); 337 eep->baseEepHeader.regDmn[1] = word; 338 339 word = swab16(eep->baseEepHeader.rfSilent); 340 eep->baseEepHeader.rfSilent = word; 341 342 word = swab16(eep->baseEepHeader.blueToothOptions); 343 eep->baseEepHeader.blueToothOptions = word; 344 345 word = swab16(eep->baseEepHeader.deviceCap); 346 eep->baseEepHeader.deviceCap = word; 347 348 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) { 349 struct modal_eep_header *pModal = 350 &eep->modalHeader[j]; 351 integer = swab32(pModal->antCtrlCommon); 352 pModal->antCtrlCommon = integer; 353 354 for (i = 0; i < AR5416_MAX_CHAINS; i++) { 355 integer = swab32(pModal->antCtrlChain[i]); 356 pModal->antCtrlChain[i] = integer; 357 } 358 for (i = 0; i < 3; i++) { 359 word = swab16(pModal->xpaBiasLvlFreq[i]); 360 pModal->xpaBiasLvlFreq[i] = word; 361 } 362 363 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 364 word = swab16(pModal->spurChans[i].spurChan); 365 pModal->spurChans[i].spurChan = word; 366 } 367 } 368 } 369 370 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER || 371 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) { 372 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n", 373 sum, ah->eep_ops->get_eeprom_ver(ah)); 374 return -EINVAL; 375 } 376 377 /* Enable fixup for AR_AN_TOP2 if necessary */ 378 if ((ah->hw_version.devid == AR9280_DEVID_PCI) && 379 ((eep->baseEepHeader.version & 0xff) > 0x0a) && 380 (eep->baseEepHeader.pwdclkind == 0)) 381 ah->need_an_top2_fixup = true; 382 383 if ((common->bus_ops->ath_bus_type == ATH_USB) && 384 (AR_SREV_9280(ah))) 385 eep->modalHeader[0].xpaBiasLvl = 0; 386 387 return 0; 388 } 389 390 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah, 391 enum eeprom_param param) 392 { 393 struct ar5416_eeprom_def *eep = &ah->eeprom.def; 394 struct modal_eep_header *pModal = eep->modalHeader; 395 struct base_eep_header *pBase = &eep->baseEepHeader; 396 int band = 0; 397 398 switch (param) { 399 case EEP_NFTHRESH_5: 400 return pModal[0].noiseFloorThreshCh[0]; 401 case EEP_NFTHRESH_2: 402 return pModal[1].noiseFloorThreshCh[0]; 403 case EEP_MAC_LSW: 404 return get_unaligned_be16(pBase->macAddr); 405 case EEP_MAC_MID: 406 return get_unaligned_be16(pBase->macAddr + 2); 407 case EEP_MAC_MSW: 408 return get_unaligned_be16(pBase->macAddr + 4); 409 case EEP_REG_0: 410 return pBase->regDmn[0]; 411 case EEP_OP_CAP: 412 return pBase->deviceCap; 413 case EEP_OP_MODE: 414 return pBase->opCapFlags; 415 case EEP_RF_SILENT: 416 return pBase->rfSilent; 417 case EEP_OB_5: 418 return pModal[0].ob; 419 case EEP_DB_5: 420 return pModal[0].db; 421 case EEP_OB_2: 422 return pModal[1].ob; 423 case EEP_DB_2: 424 return pModal[1].db; 425 case EEP_MINOR_REV: 426 return AR5416_VER_MASK; 427 case EEP_TX_MASK: 428 return pBase->txMask; 429 case EEP_RX_MASK: 430 return pBase->rxMask; 431 case EEP_FSTCLK_5G: 432 return pBase->fastClk5g; 433 case EEP_RXGAIN_TYPE: 434 return pBase->rxGainType; 435 case EEP_TXGAIN_TYPE: 436 return pBase->txGainType; 437 case EEP_OL_PWRCTRL: 438 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19) 439 return pBase->openLoopPwrCntl ? true : false; 440 else 441 return false; 442 case EEP_RC_CHAIN_MASK: 443 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19) 444 return pBase->rcChainMask; 445 else 446 return 0; 447 case EEP_DAC_HPWR_5G: 448 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) 449 return pBase->dacHiPwrMode_5G; 450 else 451 return 0; 452 case EEP_FRAC_N_5G: 453 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22) 454 return pBase->frac_n_5g; 455 else 456 return 0; 457 case EEP_PWR_TABLE_OFFSET: 458 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21) 459 return pBase->pwr_table_offset; 460 else 461 return AR5416_PWR_TABLE_OFFSET_DB; 462 case EEP_ANTENNA_GAIN_2G: 463 band = 1; 464 /* fall through */ 465 case EEP_ANTENNA_GAIN_5G: 466 return max_t(u8, max_t(u8, 467 pModal[band].antennaGainCh[0], 468 pModal[band].antennaGainCh[1]), 469 pModal[band].antennaGainCh[2]); 470 default: 471 return 0; 472 } 473 } 474 475 static void ath9k_hw_def_set_gain(struct ath_hw *ah, 476 struct modal_eep_header *pModal, 477 struct ar5416_eeprom_def *eep, 478 u8 txRxAttenLocal, int regChainOffset, int i) 479 { 480 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) { 481 txRxAttenLocal = pModal->txRxAttenCh[i]; 482 483 if (AR_SREV_9280_20_OR_LATER(ah)) { 484 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 485 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, 486 pModal->bswMargin[i]); 487 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 488 AR_PHY_GAIN_2GHZ_XATTEN1_DB, 489 pModal->bswAtten[i]); 490 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 491 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, 492 pModal->xatten2Margin[i]); 493 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 494 AR_PHY_GAIN_2GHZ_XATTEN2_DB, 495 pModal->xatten2Db[i]); 496 } else { 497 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 498 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & 499 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) 500 | SM(pModal-> bswMargin[i], 501 AR_PHY_GAIN_2GHZ_BSW_MARGIN)); 502 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 503 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & 504 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) 505 | SM(pModal->bswAtten[i], 506 AR_PHY_GAIN_2GHZ_BSW_ATTEN)); 507 } 508 } 509 510 if (AR_SREV_9280_20_OR_LATER(ah)) { 511 REG_RMW_FIELD(ah, 512 AR_PHY_RXGAIN + regChainOffset, 513 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); 514 REG_RMW_FIELD(ah, 515 AR_PHY_RXGAIN + regChainOffset, 516 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]); 517 } else { 518 REG_WRITE(ah, 519 AR_PHY_RXGAIN + regChainOffset, 520 (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) & 521 ~AR_PHY_RXGAIN_TXRX_ATTEN) 522 | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN)); 523 REG_WRITE(ah, 524 AR_PHY_GAIN_2GHZ + regChainOffset, 525 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & 526 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) | 527 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN)); 528 } 529 } 530 531 static void ath9k_hw_def_set_board_values(struct ath_hw *ah, 532 struct ath9k_channel *chan) 533 { 534 struct modal_eep_header *pModal; 535 struct ar5416_eeprom_def *eep = &ah->eeprom.def; 536 int i, regChainOffset; 537 u8 txRxAttenLocal; 538 539 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); 540 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44; 541 542 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff); 543 544 for (i = 0; i < AR5416_MAX_CHAINS; i++) { 545 if (AR_SREV_9280(ah)) { 546 if (i >= 2) 547 break; 548 } 549 550 if ((ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0)) 551 regChainOffset = (i == 1) ? 0x2000 : 0x1000; 552 else 553 regChainOffset = i * 0x1000; 554 555 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, 556 pModal->antCtrlChain[i]); 557 558 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset, 559 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) & 560 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | 561 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | 562 SM(pModal->iqCalICh[i], 563 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | 564 SM(pModal->iqCalQCh[i], 565 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); 566 567 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal, 568 regChainOffset, i); 569 } 570 571 if (AR_SREV_9280_20_OR_LATER(ah)) { 572 if (IS_CHAN_2GHZ(chan)) { 573 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0, 574 AR_AN_RF2G1_CH0_OB, 575 AR_AN_RF2G1_CH0_OB_S, 576 pModal->ob); 577 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0, 578 AR_AN_RF2G1_CH0_DB, 579 AR_AN_RF2G1_CH0_DB_S, 580 pModal->db); 581 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1, 582 AR_AN_RF2G1_CH1_OB, 583 AR_AN_RF2G1_CH1_OB_S, 584 pModal->ob_ch1); 585 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1, 586 AR_AN_RF2G1_CH1_DB, 587 AR_AN_RF2G1_CH1_DB_S, 588 pModal->db_ch1); 589 } else { 590 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0, 591 AR_AN_RF5G1_CH0_OB5, 592 AR_AN_RF5G1_CH0_OB5_S, 593 pModal->ob); 594 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0, 595 AR_AN_RF5G1_CH0_DB5, 596 AR_AN_RF5G1_CH0_DB5_S, 597 pModal->db); 598 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1, 599 AR_AN_RF5G1_CH1_OB5, 600 AR_AN_RF5G1_CH1_OB5_S, 601 pModal->ob_ch1); 602 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1, 603 AR_AN_RF5G1_CH1_DB5, 604 AR_AN_RF5G1_CH1_DB5_S, 605 pModal->db_ch1); 606 } 607 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2, 608 AR_AN_TOP2_XPABIAS_LVL, 609 AR_AN_TOP2_XPABIAS_LVL_S, 610 pModal->xpaBiasLvl); 611 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2, 612 AR_AN_TOP2_LOCALBIAS, 613 AR_AN_TOP2_LOCALBIAS_S, 614 !!(pModal->lna_ctl & 615 LNA_CTL_LOCAL_BIAS)); 616 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG, 617 !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA)); 618 } 619 620 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, 621 pModal->switchSettling); 622 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, 623 pModal->adcDesiredSize); 624 625 if (!AR_SREV_9280_20_OR_LATER(ah)) 626 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, 627 AR_PHY_DESIRED_SZ_PGA, 628 pModal->pgaDesiredSize); 629 630 REG_WRITE(ah, AR_PHY_RF_CTL4, 631 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) 632 | SM(pModal->txEndToXpaOff, 633 AR_PHY_RF_CTL4_TX_END_XPAB_OFF) 634 | SM(pModal->txFrameToXpaOn, 635 AR_PHY_RF_CTL4_FRAME_XPAA_ON) 636 | SM(pModal->txFrameToXpaOn, 637 AR_PHY_RF_CTL4_FRAME_XPAB_ON)); 638 639 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, 640 pModal->txEndToRxOn); 641 642 if (AR_SREV_9280_20_OR_LATER(ah)) { 643 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, 644 pModal->thresh62); 645 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, 646 AR_PHY_EXT_CCA0_THRESH62, 647 pModal->thresh62); 648 } else { 649 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62, 650 pModal->thresh62); 651 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, 652 AR_PHY_EXT_CCA_THRESH62, 653 pModal->thresh62); 654 } 655 656 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) { 657 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, 658 AR_PHY_TX_END_DATA_START, 659 pModal->txFrameToDataStart); 660 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON, 661 pModal->txFrameToPaOn); 662 } 663 664 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) { 665 if (IS_CHAN_HT40(chan)) 666 REG_RMW_FIELD(ah, AR_PHY_SETTLING, 667 AR_PHY_SETTLING_SWITCH, 668 pModal->swSettleHt40); 669 } 670 671 if (AR_SREV_9280_20_OR_LATER(ah) && 672 AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19) 673 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, 674 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, 675 pModal->miscBits); 676 677 678 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) { 679 if (IS_CHAN_2GHZ(chan)) 680 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 681 eep->baseEepHeader.dacLpMode); 682 else if (eep->baseEepHeader.dacHiPwrMode_5G) 683 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0); 684 else 685 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 686 eep->baseEepHeader.dacLpMode); 687 688 udelay(100); 689 690 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP, 691 pModal->miscBits >> 2); 692 693 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, 694 AR_PHY_TX_DESIRED_SCALE_CCK, 695 eep->baseEepHeader.desiredScaleCCK); 696 } 697 } 698 699 static void ath9k_hw_def_set_addac(struct ath_hw *ah, 700 struct ath9k_channel *chan) 701 { 702 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt]) 703 struct modal_eep_header *pModal; 704 struct ar5416_eeprom_def *eep = &ah->eeprom.def; 705 u8 biaslevel; 706 707 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160) 708 return; 709 710 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7) 711 return; 712 713 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); 714 715 if (pModal->xpaBiasLvl != 0xff) { 716 biaslevel = pModal->xpaBiasLvl; 717 } else { 718 u16 resetFreqBin, freqBin, freqCount = 0; 719 struct chan_centers centers; 720 721 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 722 723 resetFreqBin = FREQ2FBIN(centers.synth_center, 724 IS_CHAN_2GHZ(chan)); 725 freqBin = XPA_LVL_FREQ(0) & 0xff; 726 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14); 727 728 freqCount++; 729 730 while (freqCount < 3) { 731 if (XPA_LVL_FREQ(freqCount) == 0x0) 732 break; 733 734 freqBin = XPA_LVL_FREQ(freqCount) & 0xff; 735 if (resetFreqBin >= freqBin) 736 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14); 737 else 738 break; 739 freqCount++; 740 } 741 } 742 743 if (IS_CHAN_2GHZ(chan)) { 744 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac, 745 7, 1) & (~0x18)) | biaslevel << 3; 746 } else { 747 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac, 748 6, 1) & (~0xc0)) | biaslevel << 6; 749 } 750 #undef XPA_LVL_FREQ 751 } 752 753 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah, 754 u16 *gb, 755 u16 numXpdGain, 756 u16 pdGainOverlap_t2, 757 int8_t pwr_table_offset, 758 int16_t *diff) 759 760 { 761 u16 k; 762 763 /* Prior to writing the boundaries or the pdadc vs. power table 764 * into the chip registers the default starting point on the pdadc 765 * vs. power table needs to be checked and the curve boundaries 766 * adjusted accordingly 767 */ 768 if (AR_SREV_9280_20_OR_LATER(ah)) { 769 u16 gb_limit; 770 771 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) { 772 /* get the difference in dB */ 773 *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB); 774 /* get the number of half dB steps */ 775 *diff *= 2; 776 /* change the original gain boundary settings 777 * by the number of half dB steps 778 */ 779 for (k = 0; k < numXpdGain; k++) 780 gb[k] = (u16)(gb[k] - *diff); 781 } 782 /* Because of a hardware limitation, ensure the gain boundary 783 * is not larger than (63 - overlap) 784 */ 785 gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2); 786 787 for (k = 0; k < numXpdGain; k++) 788 gb[k] = (u16)min(gb_limit, gb[k]); 789 } 790 791 return *diff; 792 } 793 794 static void ath9k_adjust_pdadc_values(struct ath_hw *ah, 795 int8_t pwr_table_offset, 796 int16_t diff, 797 u8 *pdadcValues) 798 { 799 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff) 800 u16 k; 801 802 /* If this is a board that has a pwrTableOffset that differs from 803 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the 804 * pdadc vs pwr table needs to be adjusted prior to writing to the 805 * chip. 806 */ 807 if (AR_SREV_9280_20_OR_LATER(ah)) { 808 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) { 809 /* shift the table to start at the new offset */ 810 for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) { 811 pdadcValues[k] = pdadcValues[k + diff]; 812 } 813 814 /* fill the back of the table */ 815 for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) { 816 pdadcValues[k] = pdadcValues[NUM_PDADC(diff)]; 817 } 818 } 819 } 820 #undef NUM_PDADC 821 } 822 823 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah, 824 struct ath9k_channel *chan) 825 { 826 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x) 827 #define SM_PDGAIN_B(x, y) \ 828 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y) 829 struct ath_common *common = ath9k_hw_common(ah); 830 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def; 831 struct cal_data_per_freq *pRawDataset; 832 u8 *pCalBChans = NULL; 833 u16 pdGainOverlap_t2; 834 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES]; 835 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK]; 836 u16 numPiers, i, j; 837 int16_t diff = 0; 838 u16 numXpdGain, xpdMask; 839 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 }; 840 u32 reg32, regOffset, regChainOffset; 841 int16_t modalIdx; 842 int8_t pwr_table_offset; 843 844 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0; 845 xpdMask = pEepData->modalHeader[modalIdx].xpdGain; 846 847 pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET); 848 849 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= 850 AR5416_EEP_MINOR_VER_2) { 851 pdGainOverlap_t2 = 852 pEepData->modalHeader[modalIdx].pdGainOverlap; 853 } else { 854 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5), 855 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); 856 } 857 858 if (IS_CHAN_2GHZ(chan)) { 859 pCalBChans = pEepData->calFreqPier2G; 860 numPiers = AR5416_NUM_2G_CAL_PIERS; 861 } else { 862 pCalBChans = pEepData->calFreqPier5G; 863 numPiers = AR5416_NUM_5G_CAL_PIERS; 864 } 865 866 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) { 867 pRawDataset = pEepData->calPierData2G[0]; 868 ah->initPDADC = ((struct calDataPerFreqOpLoop *) 869 pRawDataset)->vpdPdg[0][0]; 870 } 871 872 numXpdGain = 0; 873 874 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { 875 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { 876 if (numXpdGain >= AR5416_NUM_PD_GAINS) 877 break; 878 xpdGainValues[numXpdGain] = 879 (u16)(AR5416_PD_GAINS_IN_MASK - i); 880 numXpdGain++; 881 } 882 } 883 884 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 885 (numXpdGain - 1) & 0x3); 886 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1, 887 xpdGainValues[0]); 888 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2, 889 xpdGainValues[1]); 890 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 891 xpdGainValues[2]); 892 893 for (i = 0; i < AR5416_MAX_CHAINS; i++) { 894 if ((ah->rxchainmask == 5 || ah->txchainmask == 5) && 895 (i != 0)) { 896 regChainOffset = (i == 1) ? 0x2000 : 0x1000; 897 } else 898 regChainOffset = i * 0x1000; 899 900 if (pEepData->baseEepHeader.txMask & (1 << i)) { 901 if (IS_CHAN_2GHZ(chan)) 902 pRawDataset = pEepData->calPierData2G[i]; 903 else 904 pRawDataset = pEepData->calPierData5G[i]; 905 906 907 if (OLC_FOR_AR9280_20_LATER) { 908 u8 pcdacIdx; 909 u8 txPower; 910 911 ath9k_get_txgain_index(ah, chan, 912 (struct calDataPerFreqOpLoop *)pRawDataset, 913 pCalBChans, numPiers, &txPower, &pcdacIdx); 914 ath9k_olc_get_pdadcs(ah, pcdacIdx, 915 txPower/2, pdadcValues); 916 } else { 917 ath9k_hw_get_gain_boundaries_pdadcs(ah, 918 chan, pRawDataset, 919 pCalBChans, numPiers, 920 pdGainOverlap_t2, 921 gainBoundaries, 922 pdadcValues, 923 numXpdGain); 924 } 925 926 diff = ath9k_change_gain_boundary_setting(ah, 927 gainBoundaries, 928 numXpdGain, 929 pdGainOverlap_t2, 930 pwr_table_offset, 931 &diff); 932 933 ENABLE_REGWRITE_BUFFER(ah); 934 935 if (OLC_FOR_AR9280_20_LATER) { 936 REG_WRITE(ah, 937 AR_PHY_TPCRG5 + regChainOffset, 938 SM(0x6, 939 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 940 SM_PD_GAIN(1) | SM_PD_GAIN(2) | 941 SM_PD_GAIN(3) | SM_PD_GAIN(4)); 942 } else { 943 REG_WRITE(ah, 944 AR_PHY_TPCRG5 + regChainOffset, 945 SM(pdGainOverlap_t2, 946 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)| 947 SM_PDGAIN_B(0, 1) | 948 SM_PDGAIN_B(1, 2) | 949 SM_PDGAIN_B(2, 3) | 950 SM_PDGAIN_B(3, 4)); 951 } 952 953 ath9k_adjust_pdadc_values(ah, pwr_table_offset, 954 diff, pdadcValues); 955 956 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; 957 for (j = 0; j < 32; j++) { 958 reg32 = get_unaligned_le32(&pdadcValues[4 * j]); 959 REG_WRITE(ah, regOffset, reg32); 960 961 ath_dbg(common, EEPROM, 962 "PDADC (%d,%4x): %4.4x %8.8x\n", 963 i, regChainOffset, regOffset, 964 reg32); 965 ath_dbg(common, EEPROM, 966 "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n", 967 i, 4 * j, pdadcValues[4 * j], 968 4 * j + 1, pdadcValues[4 * j + 1], 969 4 * j + 2, pdadcValues[4 * j + 2], 970 4 * j + 3, pdadcValues[4 * j + 3]); 971 972 regOffset += 4; 973 } 974 REGWRITE_BUFFER_FLUSH(ah); 975 } 976 } 977 978 #undef SM_PD_GAIN 979 #undef SM_PDGAIN_B 980 } 981 982 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah, 983 struct ath9k_channel *chan, 984 int16_t *ratesArray, 985 u16 cfgCtl, 986 u16 antenna_reduction, 987 u16 powerLimit) 988 { 989 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def; 990 u16 twiceMaxEdgePower; 991 int i; 992 struct cal_ctl_data *rep; 993 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = { 994 0, { 0, 0, 0, 0} 995 }; 996 struct cal_target_power_leg targetPowerOfdmExt = { 997 0, { 0, 0, 0, 0} }, targetPowerCckExt = { 998 0, { 0, 0, 0, 0 } 999 }; 1000 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = { 1001 0, {0, 0, 0, 0} 1002 }; 1003 u16 scaledPower = 0, minCtlPower; 1004 static const u16 ctlModesFor11a[] = { 1005 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 1006 }; 1007 static const u16 ctlModesFor11g[] = { 1008 CTL_11B, CTL_11G, CTL_2GHT20, 1009 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 1010 }; 1011 u16 numCtlModes; 1012 const u16 *pCtlMode; 1013 u16 ctlMode, freq; 1014 struct chan_centers centers; 1015 int tx_chainmask; 1016 u16 twiceMinEdgePower; 1017 1018 tx_chainmask = ah->txchainmask; 1019 1020 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 1021 1022 scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit, 1023 antenna_reduction); 1024 1025 if (IS_CHAN_2GHZ(chan)) { 1026 numCtlModes = ARRAY_SIZE(ctlModesFor11g) - 1027 SUB_NUM_CTL_MODES_AT_2G_40; 1028 pCtlMode = ctlModesFor11g; 1029 1030 ath9k_hw_get_legacy_target_powers(ah, chan, 1031 pEepData->calTargetPowerCck, 1032 AR5416_NUM_2G_CCK_TARGET_POWERS, 1033 &targetPowerCck, 4, false); 1034 ath9k_hw_get_legacy_target_powers(ah, chan, 1035 pEepData->calTargetPower2G, 1036 AR5416_NUM_2G_20_TARGET_POWERS, 1037 &targetPowerOfdm, 4, false); 1038 ath9k_hw_get_target_powers(ah, chan, 1039 pEepData->calTargetPower2GHT20, 1040 AR5416_NUM_2G_20_TARGET_POWERS, 1041 &targetPowerHt20, 8, false); 1042 1043 if (IS_CHAN_HT40(chan)) { 1044 numCtlModes = ARRAY_SIZE(ctlModesFor11g); 1045 ath9k_hw_get_target_powers(ah, chan, 1046 pEepData->calTargetPower2GHT40, 1047 AR5416_NUM_2G_40_TARGET_POWERS, 1048 &targetPowerHt40, 8, true); 1049 ath9k_hw_get_legacy_target_powers(ah, chan, 1050 pEepData->calTargetPowerCck, 1051 AR5416_NUM_2G_CCK_TARGET_POWERS, 1052 &targetPowerCckExt, 4, true); 1053 ath9k_hw_get_legacy_target_powers(ah, chan, 1054 pEepData->calTargetPower2G, 1055 AR5416_NUM_2G_20_TARGET_POWERS, 1056 &targetPowerOfdmExt, 4, true); 1057 } 1058 } else { 1059 numCtlModes = ARRAY_SIZE(ctlModesFor11a) - 1060 SUB_NUM_CTL_MODES_AT_5G_40; 1061 pCtlMode = ctlModesFor11a; 1062 1063 ath9k_hw_get_legacy_target_powers(ah, chan, 1064 pEepData->calTargetPower5G, 1065 AR5416_NUM_5G_20_TARGET_POWERS, 1066 &targetPowerOfdm, 4, false); 1067 ath9k_hw_get_target_powers(ah, chan, 1068 pEepData->calTargetPower5GHT20, 1069 AR5416_NUM_5G_20_TARGET_POWERS, 1070 &targetPowerHt20, 8, false); 1071 1072 if (IS_CHAN_HT40(chan)) { 1073 numCtlModes = ARRAY_SIZE(ctlModesFor11a); 1074 ath9k_hw_get_target_powers(ah, chan, 1075 pEepData->calTargetPower5GHT40, 1076 AR5416_NUM_5G_40_TARGET_POWERS, 1077 &targetPowerHt40, 8, true); 1078 ath9k_hw_get_legacy_target_powers(ah, chan, 1079 pEepData->calTargetPower5G, 1080 AR5416_NUM_5G_20_TARGET_POWERS, 1081 &targetPowerOfdmExt, 4, true); 1082 } 1083 } 1084 1085 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { 1086 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || 1087 (pCtlMode[ctlMode] == CTL_2GHT40); 1088 if (isHt40CtlMode) 1089 freq = centers.synth_center; 1090 else if (pCtlMode[ctlMode] & EXT_ADDITIVE) 1091 freq = centers.ext_center; 1092 else 1093 freq = centers.ctl_center; 1094 1095 twiceMaxEdgePower = MAX_RATE_POWER; 1096 1097 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { 1098 if ((((cfgCtl & ~CTL_MODE_M) | 1099 (pCtlMode[ctlMode] & CTL_MODE_M)) == 1100 pEepData->ctlIndex[i]) || 1101 (((cfgCtl & ~CTL_MODE_M) | 1102 (pCtlMode[ctlMode] & CTL_MODE_M)) == 1103 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) { 1104 rep = &(pEepData->ctlData[i]); 1105 1106 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq, 1107 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1], 1108 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES); 1109 1110 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { 1111 twiceMaxEdgePower = min(twiceMaxEdgePower, 1112 twiceMinEdgePower); 1113 } else { 1114 twiceMaxEdgePower = twiceMinEdgePower; 1115 break; 1116 } 1117 } 1118 } 1119 1120 minCtlPower = min(twiceMaxEdgePower, scaledPower); 1121 1122 switch (pCtlMode[ctlMode]) { 1123 case CTL_11B: 1124 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) { 1125 targetPowerCck.tPow2x[i] = 1126 min((u16)targetPowerCck.tPow2x[i], 1127 minCtlPower); 1128 } 1129 break; 1130 case CTL_11A: 1131 case CTL_11G: 1132 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) { 1133 targetPowerOfdm.tPow2x[i] = 1134 min((u16)targetPowerOfdm.tPow2x[i], 1135 minCtlPower); 1136 } 1137 break; 1138 case CTL_5GHT20: 1139 case CTL_2GHT20: 1140 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) { 1141 targetPowerHt20.tPow2x[i] = 1142 min((u16)targetPowerHt20.tPow2x[i], 1143 minCtlPower); 1144 } 1145 break; 1146 case CTL_11B_EXT: 1147 targetPowerCckExt.tPow2x[0] = min((u16) 1148 targetPowerCckExt.tPow2x[0], 1149 minCtlPower); 1150 break; 1151 case CTL_11A_EXT: 1152 case CTL_11G_EXT: 1153 targetPowerOfdmExt.tPow2x[0] = min((u16) 1154 targetPowerOfdmExt.tPow2x[0], 1155 minCtlPower); 1156 break; 1157 case CTL_5GHT40: 1158 case CTL_2GHT40: 1159 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { 1160 targetPowerHt40.tPow2x[i] = 1161 min((u16)targetPowerHt40.tPow2x[i], 1162 minCtlPower); 1163 } 1164 break; 1165 default: 1166 break; 1167 } 1168 } 1169 1170 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = 1171 ratesArray[rate18mb] = ratesArray[rate24mb] = 1172 targetPowerOfdm.tPow2x[0]; 1173 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1]; 1174 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2]; 1175 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3]; 1176 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0]; 1177 1178 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) 1179 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i]; 1180 1181 if (IS_CHAN_2GHZ(chan)) { 1182 ratesArray[rate1l] = targetPowerCck.tPow2x[0]; 1183 ratesArray[rate2s] = ratesArray[rate2l] = 1184 targetPowerCck.tPow2x[1]; 1185 ratesArray[rate5_5s] = ratesArray[rate5_5l] = 1186 targetPowerCck.tPow2x[2]; 1187 ratesArray[rate11s] = ratesArray[rate11l] = 1188 targetPowerCck.tPow2x[3]; 1189 } 1190 if (IS_CHAN_HT40(chan)) { 1191 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { 1192 ratesArray[rateHt40_0 + i] = 1193 targetPowerHt40.tPow2x[i]; 1194 } 1195 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0]; 1196 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0]; 1197 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0]; 1198 if (IS_CHAN_2GHZ(chan)) { 1199 ratesArray[rateExtCck] = 1200 targetPowerCckExt.tPow2x[0]; 1201 } 1202 } 1203 } 1204 1205 static void ath9k_hw_def_set_txpower(struct ath_hw *ah, 1206 struct ath9k_channel *chan, 1207 u16 cfgCtl, 1208 u8 twiceAntennaReduction, 1209 u8 powerLimit, bool test) 1210 { 1211 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta) 1212 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 1213 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def; 1214 struct modal_eep_header *pModal = 1215 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]); 1216 int16_t ratesArray[Ar5416RateSize]; 1217 u8 ht40PowerIncForPdadc = 2; 1218 int i, cck_ofdm_delta = 0; 1219 1220 memset(ratesArray, 0, sizeof(ratesArray)); 1221 1222 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= 1223 AR5416_EEP_MINOR_VER_2) { 1224 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; 1225 } 1226 1227 ath9k_hw_set_def_power_per_rate_table(ah, chan, 1228 &ratesArray[0], cfgCtl, 1229 twiceAntennaReduction, 1230 powerLimit); 1231 1232 ath9k_hw_set_def_power_cal_table(ah, chan); 1233 1234 regulatory->max_power_level = 0; 1235 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) { 1236 if (ratesArray[i] > MAX_RATE_POWER) 1237 ratesArray[i] = MAX_RATE_POWER; 1238 if (ratesArray[i] > regulatory->max_power_level) 1239 regulatory->max_power_level = ratesArray[i]; 1240 } 1241 1242 ath9k_hw_update_regulatory_maxpower(ah); 1243 1244 if (test) 1245 return; 1246 1247 if (AR_SREV_9280_20_OR_LATER(ah)) { 1248 for (i = 0; i < Ar5416RateSize; i++) { 1249 int8_t pwr_table_offset; 1250 1251 pwr_table_offset = ah->eep_ops->get_eeprom(ah, 1252 EEP_PWR_TABLE_OFFSET); 1253 ratesArray[i] -= pwr_table_offset * 2; 1254 } 1255 } 1256 1257 ENABLE_REGWRITE_BUFFER(ah); 1258 1259 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, 1260 ATH9K_POW_SM(ratesArray[rate18mb], 24) 1261 | ATH9K_POW_SM(ratesArray[rate12mb], 16) 1262 | ATH9K_POW_SM(ratesArray[rate9mb], 8) 1263 | ATH9K_POW_SM(ratesArray[rate6mb], 0)); 1264 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, 1265 ATH9K_POW_SM(ratesArray[rate54mb], 24) 1266 | ATH9K_POW_SM(ratesArray[rate48mb], 16) 1267 | ATH9K_POW_SM(ratesArray[rate36mb], 8) 1268 | ATH9K_POW_SM(ratesArray[rate24mb], 0)); 1269 1270 if (IS_CHAN_2GHZ(chan)) { 1271 if (OLC_FOR_AR9280_20_LATER) { 1272 cck_ofdm_delta = 2; 1273 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, 1274 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24) 1275 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16) 1276 | ATH9K_POW_SM(ratesArray[rateXr], 8) 1277 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0)); 1278 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, 1279 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24) 1280 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16) 1281 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8) 1282 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0)); 1283 } else { 1284 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, 1285 ATH9K_POW_SM(ratesArray[rate2s], 24) 1286 | ATH9K_POW_SM(ratesArray[rate2l], 16) 1287 | ATH9K_POW_SM(ratesArray[rateXr], 8) 1288 | ATH9K_POW_SM(ratesArray[rate1l], 0)); 1289 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, 1290 ATH9K_POW_SM(ratesArray[rate11s], 24) 1291 | ATH9K_POW_SM(ratesArray[rate11l], 16) 1292 | ATH9K_POW_SM(ratesArray[rate5_5s], 8) 1293 | ATH9K_POW_SM(ratesArray[rate5_5l], 0)); 1294 } 1295 } 1296 1297 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, 1298 ATH9K_POW_SM(ratesArray[rateHt20_3], 24) 1299 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16) 1300 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8) 1301 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0)); 1302 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, 1303 ATH9K_POW_SM(ratesArray[rateHt20_7], 24) 1304 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16) 1305 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8) 1306 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0)); 1307 1308 if (IS_CHAN_HT40(chan)) { 1309 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, 1310 ATH9K_POW_SM(ratesArray[rateHt40_3] + 1311 ht40PowerIncForPdadc, 24) 1312 | ATH9K_POW_SM(ratesArray[rateHt40_2] + 1313 ht40PowerIncForPdadc, 16) 1314 | ATH9K_POW_SM(ratesArray[rateHt40_1] + 1315 ht40PowerIncForPdadc, 8) 1316 | ATH9K_POW_SM(ratesArray[rateHt40_0] + 1317 ht40PowerIncForPdadc, 0)); 1318 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, 1319 ATH9K_POW_SM(ratesArray[rateHt40_7] + 1320 ht40PowerIncForPdadc, 24) 1321 | ATH9K_POW_SM(ratesArray[rateHt40_6] + 1322 ht40PowerIncForPdadc, 16) 1323 | ATH9K_POW_SM(ratesArray[rateHt40_5] + 1324 ht40PowerIncForPdadc, 8) 1325 | ATH9K_POW_SM(ratesArray[rateHt40_4] + 1326 ht40PowerIncForPdadc, 0)); 1327 if (OLC_FOR_AR9280_20_LATER) { 1328 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, 1329 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) 1330 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16) 1331 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) 1332 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0)); 1333 } else { 1334 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, 1335 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) 1336 | ATH9K_POW_SM(ratesArray[rateExtCck], 16) 1337 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) 1338 | ATH9K_POW_SM(ratesArray[rateDupCck], 0)); 1339 } 1340 } 1341 1342 REG_WRITE(ah, AR_PHY_POWER_TX_SUB, 1343 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6) 1344 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0)); 1345 1346 REGWRITE_BUFFER_FLUSH(ah); 1347 } 1348 1349 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz) 1350 { 1351 #define EEP_DEF_SPURCHAN \ 1352 (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan) 1353 struct ath_common *common = ath9k_hw_common(ah); 1354 1355 u16 spur_val = AR_NO_SPUR; 1356 1357 ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n", 1358 i, is2GHz, ah->config.spurchans[i][is2GHz]); 1359 1360 switch (ah->config.spurmode) { 1361 case SPUR_DISABLE: 1362 break; 1363 case SPUR_ENABLE_IOCTL: 1364 spur_val = ah->config.spurchans[i][is2GHz]; 1365 ath_dbg(common, ANI, "Getting spur val from new loc. %d\n", 1366 spur_val); 1367 break; 1368 case SPUR_ENABLE_EEPROM: 1369 spur_val = EEP_DEF_SPURCHAN; 1370 break; 1371 } 1372 1373 return spur_val; 1374 1375 #undef EEP_DEF_SPURCHAN 1376 } 1377 1378 const struct eeprom_ops eep_def_ops = { 1379 .check_eeprom = ath9k_hw_def_check_eeprom, 1380 .get_eeprom = ath9k_hw_def_get_eeprom, 1381 .fill_eeprom = ath9k_hw_def_fill_eeprom, 1382 .dump_eeprom = ath9k_hw_def_dump_eeprom, 1383 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver, 1384 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev, 1385 .set_board_values = ath9k_hw_def_set_board_values, 1386 .set_addac = ath9k_hw_def_set_addac, 1387 .set_txpower = ath9k_hw_def_set_txpower, 1388 .get_spur_channel = ath9k_hw_def_get_spur_channel 1389 }; 1390