1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20 
21 static void ath9k_get_txgain_index(struct ath_hw *ah,
22 		struct ath9k_channel *chan,
23 		struct calDataPerFreqOpLoop *rawDatasetOpLoop,
24 		u8 *calChans,  u16 availPiers, u8 *pwr, u8 *pcdacIdx)
25 {
26 	u8 pcdac, i = 0;
27 	u16 idxL = 0, idxR = 0, numPiers;
28 	bool match;
29 	struct chan_centers centers;
30 
31 	ath9k_hw_get_channel_centers(ah, chan, &centers);
32 
33 	for (numPiers = 0; numPiers < availPiers; numPiers++)
34 		if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
35 			break;
36 
37 	match = ath9k_hw_get_lower_upper_index(
38 			(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
39 			calChans, numPiers, &idxL, &idxR);
40 	if (match) {
41 		pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
42 		*pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
43 	} else {
44 		pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
45 		*pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
46 				rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
47 	}
48 
49 	while (pcdac > ah->originalGain[i] &&
50 			i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
51 		i++;
52 
53 	*pcdacIdx = i;
54 }
55 
56 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
57 				u32 initTxGain,
58 				int txPower,
59 				u8 *pPDADCValues)
60 {
61 	u32 i;
62 	u32 offset;
63 
64 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
65 			AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
66 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
67 			AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
68 
69 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
70 			AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
71 
72 	offset = txPower;
73 	for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
74 		if (i < offset)
75 			pPDADCValues[i] = 0x0;
76 		else
77 			pPDADCValues[i] = 0xFF;
78 }
79 
80 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
81 {
82 	return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
83 }
84 
85 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
86 {
87 	return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
88 }
89 
90 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
91 
92 static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
93 {
94 	u16 *eep_data = (u16 *)&ah->eeprom.def;
95 	int addr, ar5416_eep_start_loc = 0x100;
96 
97 	for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
98 		if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
99 					 eep_data))
100 			return false;
101 		eep_data++;
102 	}
103 	return true;
104 }
105 
106 static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
107 {
108 	u16 *eep_data = (u16 *)&ah->eeprom.def;
109 
110 	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
111 				     0x100, SIZE_EEPROM_DEF);
112 	return true;
113 }
114 
115 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
116 {
117 	struct ath_common *common = ath9k_hw_common(ah);
118 
119 	if (!ath9k_hw_use_flash(ah)) {
120 		ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
121 	}
122 
123 	if (common->bus_ops->ath_bus_type == ATH_USB)
124 		return __ath9k_hw_usb_def_fill_eeprom(ah);
125 	else
126 		return __ath9k_hw_def_fill_eeprom(ah);
127 }
128 
129 #undef SIZE_EEPROM_DEF
130 
131 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
132 static u32 ath9k_def_dump_modal_eeprom(char *buf, u32 len, u32 size,
133 				       struct modal_eep_header *modal_hdr)
134 {
135 	PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
136 	PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
137 	PR_EEP("Chain2 Ant. Control", modal_hdr->antCtrlChain[2]);
138 	PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
139 	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
140 	PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
141 	PR_EEP("Chain2 Ant. Gain", modal_hdr->antennaGainCh[2]);
142 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
143 	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
144 	PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
145 	PR_EEP("Chain2 TxRxAtten", modal_hdr->txRxAttenCh[2]);
146 	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
147 	PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
148 	PR_EEP("Chain2 RxTxMargin", modal_hdr->rxTxMarginCh[2]);
149 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
150 	PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
151 	PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
152 	PR_EEP("Chain1 xlna Gain", modal_hdr->xlnaGainCh[1]);
153 	PR_EEP("Chain2 xlna Gain", modal_hdr->xlnaGainCh[2]);
154 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
155 	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
156 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
157 	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
158 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
159 	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
160 	PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
161 	PR_EEP("xpdGain", modal_hdr->xpdGain);
162 	PR_EEP("External PD", modal_hdr->xpd);
163 	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
164 	PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
165 	PR_EEP("Chain2 I Coefficient", modal_hdr->iqCalICh[2]);
166 	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
167 	PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
168 	PR_EEP("Chain2 Q Coefficient", modal_hdr->iqCalQCh[2]);
169 	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
170 	PR_EEP("Chain0 OutputBias", modal_hdr->ob);
171 	PR_EEP("Chain0 DriverBias", modal_hdr->db);
172 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
173 	PR_EEP("2chain pwr decrease", modal_hdr->pwrDecreaseFor2Chain);
174 	PR_EEP("3chain pwr decrease", modal_hdr->pwrDecreaseFor3Chain);
175 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
176 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
177 	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
178 	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
179 	PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
180 	PR_EEP("Chain2 bswAtten", modal_hdr->bswAtten[2]);
181 	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
182 	PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
183 	PR_EEP("Chain2 bswMargin", modal_hdr->bswMargin[2]);
184 	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
185 	PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
186 	PR_EEP("Chain1 xatten2Db", modal_hdr->xatten2Db[1]);
187 	PR_EEP("Chain2 xatten2Db", modal_hdr->xatten2Db[2]);
188 	PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
189 	PR_EEP("Chain1 xatten2Margin", modal_hdr->xatten2Margin[1]);
190 	PR_EEP("Chain2 xatten2Margin", modal_hdr->xatten2Margin[2]);
191 	PR_EEP("Chain1 OutputBias", modal_hdr->ob_ch1);
192 	PR_EEP("Chain1 DriverBias", modal_hdr->db_ch1);
193 	PR_EEP("LNA Control", modal_hdr->lna_ctl);
194 	PR_EEP("XPA Bias Freq0", modal_hdr->xpaBiasLvlFreq[0]);
195 	PR_EEP("XPA Bias Freq1", modal_hdr->xpaBiasLvlFreq[1]);
196 	PR_EEP("XPA Bias Freq2", modal_hdr->xpaBiasLvlFreq[2]);
197 
198 	return len;
199 }
200 
201 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
202 				    u8 *buf, u32 len, u32 size)
203 {
204 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
205 	struct base_eep_header *pBase = &eep->baseEepHeader;
206 
207 	if (!dump_base_hdr) {
208 		len += scnprintf(buf + len, size - len,
209 				 "%20s :\n", "2GHz modal Header");
210 		len = ath9k_def_dump_modal_eeprom(buf, len, size,
211 						   &eep->modalHeader[0]);
212 		len += scnprintf(buf + len, size - len,
213 				 "%20s :\n", "5GHz modal Header");
214 		len = ath9k_def_dump_modal_eeprom(buf, len, size,
215 						   &eep->modalHeader[1]);
216 		goto out;
217 	}
218 
219 	PR_EEP("Major Version", pBase->version >> 12);
220 	PR_EEP("Minor Version", pBase->version & 0xFFF);
221 	PR_EEP("Checksum", pBase->checksum);
222 	PR_EEP("Length", pBase->length);
223 	PR_EEP("RegDomain1", pBase->regDmn[0]);
224 	PR_EEP("RegDomain2", pBase->regDmn[1]);
225 	PR_EEP("TX Mask", pBase->txMask);
226 	PR_EEP("RX Mask", pBase->rxMask);
227 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
228 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
229 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
230 					AR5416_OPFLAGS_N_2G_HT20));
231 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
232 					AR5416_OPFLAGS_N_2G_HT40));
233 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
234 					AR5416_OPFLAGS_N_5G_HT20));
235 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
236 					AR5416_OPFLAGS_N_5G_HT40));
237 	PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
238 	PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
239 	PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
240 	PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
241 	PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
242 
243 	len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
244 			 pBase->macAddr);
245 
246 out:
247 	if (len > size)
248 		len = size;
249 
250 	return len;
251 }
252 #else
253 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
254 				    u8 *buf, u32 len, u32 size)
255 {
256 	return 0;
257 }
258 #endif
259 
260 
261 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
262 {
263 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
264 	struct ath_common *common = ath9k_hw_common(ah);
265 	u16 *eepdata, temp, magic, magic2;
266 	u32 sum = 0, el;
267 	bool need_swap = false;
268 	int i, addr, size;
269 
270 	if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
271 		ath_err(common, "Reading Magic # failed\n");
272 		return false;
273 	}
274 
275 	if (!ath9k_hw_use_flash(ah)) {
276 		ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
277 
278 		if (magic != AR5416_EEPROM_MAGIC) {
279 			magic2 = swab16(magic);
280 
281 			if (magic2 == AR5416_EEPROM_MAGIC) {
282 				size = sizeof(struct ar5416_eeprom_def);
283 				need_swap = true;
284 				eepdata = (u16 *) (&ah->eeprom);
285 
286 				for (addr = 0; addr < size / sizeof(u16); addr++) {
287 					temp = swab16(*eepdata);
288 					*eepdata = temp;
289 					eepdata++;
290 				}
291 			} else {
292 				ath_err(common,
293 					"Invalid EEPROM Magic. Endianness mismatch.\n");
294 				return -EINVAL;
295 			}
296 		}
297 	}
298 
299 	ath_dbg(common, EEPROM, "need_swap = %s\n",
300 		need_swap ? "True" : "False");
301 
302 	if (need_swap)
303 		el = swab16(ah->eeprom.def.baseEepHeader.length);
304 	else
305 		el = ah->eeprom.def.baseEepHeader.length;
306 
307 	if (el > sizeof(struct ar5416_eeprom_def))
308 		el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
309 	else
310 		el = el / sizeof(u16);
311 
312 	eepdata = (u16 *)(&ah->eeprom);
313 
314 	for (i = 0; i < el; i++)
315 		sum ^= *eepdata++;
316 
317 	if (need_swap) {
318 		u32 integer, j;
319 		u16 word;
320 
321 		ath_dbg(common, EEPROM,
322 			"EEPROM Endianness is not native.. Changing.\n");
323 
324 		word = swab16(eep->baseEepHeader.length);
325 		eep->baseEepHeader.length = word;
326 
327 		word = swab16(eep->baseEepHeader.checksum);
328 		eep->baseEepHeader.checksum = word;
329 
330 		word = swab16(eep->baseEepHeader.version);
331 		eep->baseEepHeader.version = word;
332 
333 		word = swab16(eep->baseEepHeader.regDmn[0]);
334 		eep->baseEepHeader.regDmn[0] = word;
335 
336 		word = swab16(eep->baseEepHeader.regDmn[1]);
337 		eep->baseEepHeader.regDmn[1] = word;
338 
339 		word = swab16(eep->baseEepHeader.rfSilent);
340 		eep->baseEepHeader.rfSilent = word;
341 
342 		word = swab16(eep->baseEepHeader.blueToothOptions);
343 		eep->baseEepHeader.blueToothOptions = word;
344 
345 		word = swab16(eep->baseEepHeader.deviceCap);
346 		eep->baseEepHeader.deviceCap = word;
347 
348 		for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
349 			struct modal_eep_header *pModal =
350 				&eep->modalHeader[j];
351 			integer = swab32(pModal->antCtrlCommon);
352 			pModal->antCtrlCommon = integer;
353 
354 			for (i = 0; i < AR5416_MAX_CHAINS; i++) {
355 				integer = swab32(pModal->antCtrlChain[i]);
356 				pModal->antCtrlChain[i] = integer;
357 			}
358 			for (i = 0; i < 3; i++) {
359 				word = swab16(pModal->xpaBiasLvlFreq[i]);
360 				pModal->xpaBiasLvlFreq[i] = word;
361 			}
362 
363 			for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
364 				word = swab16(pModal->spurChans[i].spurChan);
365 				pModal->spurChans[i].spurChan = word;
366 			}
367 		}
368 	}
369 
370 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
371 	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
372 		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
373 			sum, ah->eep_ops->get_eeprom_ver(ah));
374 		return -EINVAL;
375 	}
376 
377 	/* Enable fixup for AR_AN_TOP2 if necessary */
378 	if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
379 	    ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
380 	    (eep->baseEepHeader.pwdclkind == 0))
381 		ah->need_an_top2_fixup = true;
382 
383 	if ((common->bus_ops->ath_bus_type == ATH_USB) &&
384 	    (AR_SREV_9280(ah)))
385 		eep->modalHeader[0].xpaBiasLvl = 0;
386 
387 	return 0;
388 }
389 
390 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
391 				   enum eeprom_param param)
392 {
393 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
394 	struct modal_eep_header *pModal = eep->modalHeader;
395 	struct base_eep_header *pBase = &eep->baseEepHeader;
396 	int band = 0;
397 
398 	switch (param) {
399 	case EEP_NFTHRESH_5:
400 		return pModal[0].noiseFloorThreshCh[0];
401 	case EEP_NFTHRESH_2:
402 		return pModal[1].noiseFloorThreshCh[0];
403 	case EEP_MAC_LSW:
404 		return get_unaligned_be16(pBase->macAddr);
405 	case EEP_MAC_MID:
406 		return get_unaligned_be16(pBase->macAddr + 2);
407 	case EEP_MAC_MSW:
408 		return get_unaligned_be16(pBase->macAddr + 4);
409 	case EEP_REG_0:
410 		return pBase->regDmn[0];
411 	case EEP_OP_CAP:
412 		return pBase->deviceCap;
413 	case EEP_OP_MODE:
414 		return pBase->opCapFlags;
415 	case EEP_RF_SILENT:
416 		return pBase->rfSilent;
417 	case EEP_OB_5:
418 		return pModal[0].ob;
419 	case EEP_DB_5:
420 		return pModal[0].db;
421 	case EEP_OB_2:
422 		return pModal[1].ob;
423 	case EEP_DB_2:
424 		return pModal[1].db;
425 	case EEP_MINOR_REV:
426 		return AR5416_VER_MASK;
427 	case EEP_TX_MASK:
428 		return pBase->txMask;
429 	case EEP_RX_MASK:
430 		return pBase->rxMask;
431 	case EEP_FSTCLK_5G:
432 		return pBase->fastClk5g;
433 	case EEP_RXGAIN_TYPE:
434 		return pBase->rxGainType;
435 	case EEP_TXGAIN_TYPE:
436 		return pBase->txGainType;
437 	case EEP_OL_PWRCTRL:
438 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
439 			return pBase->openLoopPwrCntl ? true : false;
440 		else
441 			return false;
442 	case EEP_RC_CHAIN_MASK:
443 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
444 			return pBase->rcChainMask;
445 		else
446 			return 0;
447 	case EEP_DAC_HPWR_5G:
448 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
449 			return pBase->dacHiPwrMode_5G;
450 		else
451 			return 0;
452 	case EEP_FRAC_N_5G:
453 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
454 			return pBase->frac_n_5g;
455 		else
456 			return 0;
457 	case EEP_PWR_TABLE_OFFSET:
458 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
459 			return pBase->pwr_table_offset;
460 		else
461 			return AR5416_PWR_TABLE_OFFSET_DB;
462 	case EEP_ANTENNA_GAIN_2G:
463 		band = 1;
464 		/* fall through */
465 	case EEP_ANTENNA_GAIN_5G:
466 		return max_t(u8, max_t(u8,
467 			pModal[band].antennaGainCh[0],
468 			pModal[band].antennaGainCh[1]),
469 			pModal[band].antennaGainCh[2]);
470 	default:
471 		return 0;
472 	}
473 }
474 
475 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
476 				  struct modal_eep_header *pModal,
477 				  struct ar5416_eeprom_def *eep,
478 				  u8 txRxAttenLocal, int regChainOffset, int i)
479 {
480 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
481 		txRxAttenLocal = pModal->txRxAttenCh[i];
482 
483 		if (AR_SREV_9280_20_OR_LATER(ah)) {
484 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
485 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
486 			      pModal->bswMargin[i]);
487 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
488 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
489 			      pModal->bswAtten[i]);
490 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
491 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
492 			      pModal->xatten2Margin[i]);
493 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
494 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
495 			      pModal->xatten2Db[i]);
496 		} else {
497 			REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
498 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
499 			   ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
500 			  | SM(pModal-> bswMargin[i],
501 			       AR_PHY_GAIN_2GHZ_BSW_MARGIN));
502 			REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
503 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
504 			   ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
505 			  | SM(pModal->bswAtten[i],
506 			       AR_PHY_GAIN_2GHZ_BSW_ATTEN));
507 		}
508 	}
509 
510 	if (AR_SREV_9280_20_OR_LATER(ah)) {
511 		REG_RMW_FIELD(ah,
512 		      AR_PHY_RXGAIN + regChainOffset,
513 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
514 		REG_RMW_FIELD(ah,
515 		      AR_PHY_RXGAIN + regChainOffset,
516 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
517 	} else {
518 		REG_WRITE(ah,
519 			  AR_PHY_RXGAIN + regChainOffset,
520 			  (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
521 			   ~AR_PHY_RXGAIN_TXRX_ATTEN)
522 			  | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
523 		REG_WRITE(ah,
524 			  AR_PHY_GAIN_2GHZ + regChainOffset,
525 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
526 			   ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
527 			  SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
528 	}
529 }
530 
531 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
532 					  struct ath9k_channel *chan)
533 {
534 	struct modal_eep_header *pModal;
535 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
536 	int i, regChainOffset;
537 	u8 txRxAttenLocal;
538 
539 	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
540 	txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
541 
542 	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
543 
544 	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
545 		if (AR_SREV_9280(ah)) {
546 			if (i >= 2)
547 				break;
548 		}
549 
550 		if ((ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
551 			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
552 		else
553 			regChainOffset = i * 0x1000;
554 
555 		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
556 			  pModal->antCtrlChain[i]);
557 
558 		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
559 			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
560 			   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
561 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
562 			  SM(pModal->iqCalICh[i],
563 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
564 			  SM(pModal->iqCalQCh[i],
565 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
566 
567 		ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
568 				      regChainOffset, i);
569 	}
570 
571 	if (AR_SREV_9280_20_OR_LATER(ah)) {
572 		if (IS_CHAN_2GHZ(chan)) {
573 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
574 						  AR_AN_RF2G1_CH0_OB,
575 						  AR_AN_RF2G1_CH0_OB_S,
576 						  pModal->ob);
577 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
578 						  AR_AN_RF2G1_CH0_DB,
579 						  AR_AN_RF2G1_CH0_DB_S,
580 						  pModal->db);
581 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
582 						  AR_AN_RF2G1_CH1_OB,
583 						  AR_AN_RF2G1_CH1_OB_S,
584 						  pModal->ob_ch1);
585 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
586 						  AR_AN_RF2G1_CH1_DB,
587 						  AR_AN_RF2G1_CH1_DB_S,
588 						  pModal->db_ch1);
589 		} else {
590 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
591 						  AR_AN_RF5G1_CH0_OB5,
592 						  AR_AN_RF5G1_CH0_OB5_S,
593 						  pModal->ob);
594 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
595 						  AR_AN_RF5G1_CH0_DB5,
596 						  AR_AN_RF5G1_CH0_DB5_S,
597 						  pModal->db);
598 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
599 						  AR_AN_RF5G1_CH1_OB5,
600 						  AR_AN_RF5G1_CH1_OB5_S,
601 						  pModal->ob_ch1);
602 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
603 						  AR_AN_RF5G1_CH1_DB5,
604 						  AR_AN_RF5G1_CH1_DB5_S,
605 						  pModal->db_ch1);
606 		}
607 		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
608 					  AR_AN_TOP2_XPABIAS_LVL,
609 					  AR_AN_TOP2_XPABIAS_LVL_S,
610 					  pModal->xpaBiasLvl);
611 		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
612 					  AR_AN_TOP2_LOCALBIAS,
613 					  AR_AN_TOP2_LOCALBIAS_S,
614 					  !!(pModal->lna_ctl &
615 					     LNA_CTL_LOCAL_BIAS));
616 		REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
617 			      !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
618 	}
619 
620 	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
621 		      pModal->switchSettling);
622 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
623 		      pModal->adcDesiredSize);
624 
625 	if (!AR_SREV_9280_20_OR_LATER(ah))
626 		REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
627 			      AR_PHY_DESIRED_SZ_PGA,
628 			      pModal->pgaDesiredSize);
629 
630 	REG_WRITE(ah, AR_PHY_RF_CTL4,
631 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
632 		  | SM(pModal->txEndToXpaOff,
633 		       AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
634 		  | SM(pModal->txFrameToXpaOn,
635 		       AR_PHY_RF_CTL4_FRAME_XPAA_ON)
636 		  | SM(pModal->txFrameToXpaOn,
637 		       AR_PHY_RF_CTL4_FRAME_XPAB_ON));
638 
639 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
640 		      pModal->txEndToRxOn);
641 
642 	if (AR_SREV_9280_20_OR_LATER(ah)) {
643 		REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
644 			      pModal->thresh62);
645 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
646 			      AR_PHY_EXT_CCA0_THRESH62,
647 			      pModal->thresh62);
648 	} else {
649 		REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
650 			      pModal->thresh62);
651 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
652 			      AR_PHY_EXT_CCA_THRESH62,
653 			      pModal->thresh62);
654 	}
655 
656 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
657 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
658 			      AR_PHY_TX_END_DATA_START,
659 			      pModal->txFrameToDataStart);
660 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
661 			      pModal->txFrameToPaOn);
662 	}
663 
664 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
665 		if (IS_CHAN_HT40(chan))
666 			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
667 				      AR_PHY_SETTLING_SWITCH,
668 				      pModal->swSettleHt40);
669 	}
670 
671 	if (AR_SREV_9280_20_OR_LATER(ah) &&
672 	    AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
673 		REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
674 			      AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
675 			      pModal->miscBits);
676 
677 
678 	if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
679 		if (IS_CHAN_2GHZ(chan))
680 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
681 					eep->baseEepHeader.dacLpMode);
682 		else if (eep->baseEepHeader.dacHiPwrMode_5G)
683 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
684 		else
685 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
686 				      eep->baseEepHeader.dacLpMode);
687 
688 		udelay(100);
689 
690 		REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
691 			      pModal->miscBits >> 2);
692 
693 		REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
694 			      AR_PHY_TX_DESIRED_SCALE_CCK,
695 			      eep->baseEepHeader.desiredScaleCCK);
696 	}
697 }
698 
699 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
700 				   struct ath9k_channel *chan)
701 {
702 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
703 	struct modal_eep_header *pModal;
704 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
705 	u8 biaslevel;
706 
707 	if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
708 		return;
709 
710 	if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
711 		return;
712 
713 	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
714 
715 	if (pModal->xpaBiasLvl != 0xff) {
716 		biaslevel = pModal->xpaBiasLvl;
717 	} else {
718 		u16 resetFreqBin, freqBin, freqCount = 0;
719 		struct chan_centers centers;
720 
721 		ath9k_hw_get_channel_centers(ah, chan, &centers);
722 
723 		resetFreqBin = FREQ2FBIN(centers.synth_center,
724 					 IS_CHAN_2GHZ(chan));
725 		freqBin = XPA_LVL_FREQ(0) & 0xff;
726 		biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
727 
728 		freqCount++;
729 
730 		while (freqCount < 3) {
731 			if (XPA_LVL_FREQ(freqCount) == 0x0)
732 				break;
733 
734 			freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
735 			if (resetFreqBin >= freqBin)
736 				biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
737 			else
738 				break;
739 			freqCount++;
740 		}
741 	}
742 
743 	if (IS_CHAN_2GHZ(chan)) {
744 		INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
745 					7, 1) & (~0x18)) | biaslevel << 3;
746 	} else {
747 		INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
748 					6, 1) & (~0xc0)) | biaslevel << 6;
749 	}
750 #undef XPA_LVL_FREQ
751 }
752 
753 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
754 				u16 *gb,
755 				u16 numXpdGain,
756 				u16 pdGainOverlap_t2,
757 				int8_t pwr_table_offset,
758 				int16_t *diff)
759 
760 {
761 	u16 k;
762 
763 	/* Prior to writing the boundaries or the pdadc vs. power table
764 	 * into the chip registers the default starting point on the pdadc
765 	 * vs. power table needs to be checked and the curve boundaries
766 	 * adjusted accordingly
767 	 */
768 	if (AR_SREV_9280_20_OR_LATER(ah)) {
769 		u16 gb_limit;
770 
771 		if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
772 			/* get the difference in dB */
773 			*diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
774 			/* get the number of half dB steps */
775 			*diff *= 2;
776 			/* change the original gain boundary settings
777 			 * by the number of half dB steps
778 			 */
779 			for (k = 0; k < numXpdGain; k++)
780 				gb[k] = (u16)(gb[k] - *diff);
781 		}
782 		/* Because of a hardware limitation, ensure the gain boundary
783 		 * is not larger than (63 - overlap)
784 		 */
785 		gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
786 
787 		for (k = 0; k < numXpdGain; k++)
788 			gb[k] = (u16)min(gb_limit, gb[k]);
789 	}
790 
791 	return *diff;
792 }
793 
794 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
795 				      int8_t pwr_table_offset,
796 				      int16_t diff,
797 				      u8 *pdadcValues)
798 {
799 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
800 	u16 k;
801 
802 	/* If this is a board that has a pwrTableOffset that differs from
803 	 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
804 	 * pdadc vs pwr table needs to be adjusted prior to writing to the
805 	 * chip.
806 	 */
807 	if (AR_SREV_9280_20_OR_LATER(ah)) {
808 		if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
809 			/* shift the table to start at the new offset */
810 			for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
811 				pdadcValues[k] = pdadcValues[k + diff];
812 			}
813 
814 			/* fill the back of the table */
815 			for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
816 				pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
817 			}
818 		}
819 	}
820 #undef NUM_PDADC
821 }
822 
823 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
824 				  struct ath9k_channel *chan)
825 {
826 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
827 #define SM_PDGAIN_B(x, y) \
828 		SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
829 	struct ath_common *common = ath9k_hw_common(ah);
830 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
831 	struct cal_data_per_freq *pRawDataset;
832 	u8 *pCalBChans = NULL;
833 	u16 pdGainOverlap_t2;
834 	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
835 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
836 	u16 numPiers, i, j;
837 	int16_t diff = 0;
838 	u16 numXpdGain, xpdMask;
839 	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
840 	u32 reg32, regOffset, regChainOffset;
841 	int16_t modalIdx;
842 	int8_t pwr_table_offset;
843 
844 	modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
845 	xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
846 
847 	pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
848 
849 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
850 	    AR5416_EEP_MINOR_VER_2) {
851 		pdGainOverlap_t2 =
852 			pEepData->modalHeader[modalIdx].pdGainOverlap;
853 	} else {
854 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
855 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
856 	}
857 
858 	if (IS_CHAN_2GHZ(chan)) {
859 		pCalBChans = pEepData->calFreqPier2G;
860 		numPiers = AR5416_NUM_2G_CAL_PIERS;
861 	} else {
862 		pCalBChans = pEepData->calFreqPier5G;
863 		numPiers = AR5416_NUM_5G_CAL_PIERS;
864 	}
865 
866 	if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
867 		pRawDataset = pEepData->calPierData2G[0];
868 		ah->initPDADC = ((struct calDataPerFreqOpLoop *)
869 				 pRawDataset)->vpdPdg[0][0];
870 	}
871 
872 	numXpdGain = 0;
873 
874 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
875 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
876 			if (numXpdGain >= AR5416_NUM_PD_GAINS)
877 				break;
878 			xpdGainValues[numXpdGain] =
879 				(u16)(AR5416_PD_GAINS_IN_MASK - i);
880 			numXpdGain++;
881 		}
882 	}
883 
884 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
885 		      (numXpdGain - 1) & 0x3);
886 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
887 		      xpdGainValues[0]);
888 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
889 		      xpdGainValues[1]);
890 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
891 		      xpdGainValues[2]);
892 
893 	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
894 		if ((ah->rxchainmask == 5 || ah->txchainmask == 5) &&
895 		    (i != 0)) {
896 			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
897 		} else
898 			regChainOffset = i * 0x1000;
899 
900 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
901 			if (IS_CHAN_2GHZ(chan))
902 				pRawDataset = pEepData->calPierData2G[i];
903 			else
904 				pRawDataset = pEepData->calPierData5G[i];
905 
906 
907 			if (OLC_FOR_AR9280_20_LATER) {
908 				u8 pcdacIdx;
909 				u8 txPower;
910 
911 				ath9k_get_txgain_index(ah, chan,
912 				(struct calDataPerFreqOpLoop *)pRawDataset,
913 				pCalBChans, numPiers, &txPower, &pcdacIdx);
914 				ath9k_olc_get_pdadcs(ah, pcdacIdx,
915 						     txPower/2, pdadcValues);
916 			} else {
917 				ath9k_hw_get_gain_boundaries_pdadcs(ah,
918 							chan, pRawDataset,
919 							pCalBChans, numPiers,
920 							pdGainOverlap_t2,
921 							gainBoundaries,
922 							pdadcValues,
923 							numXpdGain);
924 			}
925 
926 			diff = ath9k_change_gain_boundary_setting(ah,
927 							   gainBoundaries,
928 							   numXpdGain,
929 							   pdGainOverlap_t2,
930 							   pwr_table_offset,
931 							   &diff);
932 
933 			ENABLE_REGWRITE_BUFFER(ah);
934 
935 			if (OLC_FOR_AR9280_20_LATER) {
936 				REG_WRITE(ah,
937 					AR_PHY_TPCRG5 + regChainOffset,
938 					SM(0x6,
939 					AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
940 					SM_PD_GAIN(1) | SM_PD_GAIN(2) |
941 					SM_PD_GAIN(3) | SM_PD_GAIN(4));
942 			} else {
943 				REG_WRITE(ah,
944 					AR_PHY_TPCRG5 + regChainOffset,
945 					SM(pdGainOverlap_t2,
946 					AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
947 					SM_PDGAIN_B(0, 1) |
948 					SM_PDGAIN_B(1, 2) |
949 					SM_PDGAIN_B(2, 3) |
950 					SM_PDGAIN_B(3, 4));
951 			}
952 
953 			ath9k_adjust_pdadc_values(ah, pwr_table_offset,
954 						  diff, pdadcValues);
955 
956 			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
957 			for (j = 0; j < 32; j++) {
958 				reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
959 				REG_WRITE(ah, regOffset, reg32);
960 
961 				ath_dbg(common, EEPROM,
962 					"PDADC (%d,%4x): %4.4x %8.8x\n",
963 					i, regChainOffset, regOffset,
964 					reg32);
965 				ath_dbg(common, EEPROM,
966 					"PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
967 					i, 4 * j, pdadcValues[4 * j],
968 					4 * j + 1, pdadcValues[4 * j + 1],
969 					4 * j + 2, pdadcValues[4 * j + 2],
970 					4 * j + 3, pdadcValues[4 * j + 3]);
971 
972 				regOffset += 4;
973 			}
974 			REGWRITE_BUFFER_FLUSH(ah);
975 		}
976 	}
977 
978 #undef SM_PD_GAIN
979 #undef SM_PDGAIN_B
980 }
981 
982 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
983 						  struct ath9k_channel *chan,
984 						  int16_t *ratesArray,
985 						  u16 cfgCtl,
986 						  u16 antenna_reduction,
987 						  u16 powerLimit)
988 {
989 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
990 	u16 twiceMaxEdgePower;
991 	int i;
992 	struct cal_ctl_data *rep;
993 	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
994 		0, { 0, 0, 0, 0}
995 	};
996 	struct cal_target_power_leg targetPowerOfdmExt = {
997 		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
998 		0, { 0, 0, 0, 0 }
999 	};
1000 	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1001 		0, {0, 0, 0, 0}
1002 	};
1003 	u16 scaledPower = 0, minCtlPower;
1004 	static const u16 ctlModesFor11a[] = {
1005 		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1006 	};
1007 	static const u16 ctlModesFor11g[] = {
1008 		CTL_11B, CTL_11G, CTL_2GHT20,
1009 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1010 	};
1011 	u16 numCtlModes;
1012 	const u16 *pCtlMode;
1013 	u16 ctlMode, freq;
1014 	struct chan_centers centers;
1015 	int tx_chainmask;
1016 	u16 twiceMinEdgePower;
1017 
1018 	tx_chainmask = ah->txchainmask;
1019 
1020 	ath9k_hw_get_channel_centers(ah, chan, &centers);
1021 
1022 	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
1023 						antenna_reduction);
1024 
1025 	if (IS_CHAN_2GHZ(chan)) {
1026 		numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
1027 			SUB_NUM_CTL_MODES_AT_2G_40;
1028 		pCtlMode = ctlModesFor11g;
1029 
1030 		ath9k_hw_get_legacy_target_powers(ah, chan,
1031 			pEepData->calTargetPowerCck,
1032 			AR5416_NUM_2G_CCK_TARGET_POWERS,
1033 			&targetPowerCck, 4, false);
1034 		ath9k_hw_get_legacy_target_powers(ah, chan,
1035 			pEepData->calTargetPower2G,
1036 			AR5416_NUM_2G_20_TARGET_POWERS,
1037 			&targetPowerOfdm, 4, false);
1038 		ath9k_hw_get_target_powers(ah, chan,
1039 			pEepData->calTargetPower2GHT20,
1040 			AR5416_NUM_2G_20_TARGET_POWERS,
1041 			&targetPowerHt20, 8, false);
1042 
1043 		if (IS_CHAN_HT40(chan)) {
1044 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1045 			ath9k_hw_get_target_powers(ah, chan,
1046 				pEepData->calTargetPower2GHT40,
1047 				AR5416_NUM_2G_40_TARGET_POWERS,
1048 				&targetPowerHt40, 8, true);
1049 			ath9k_hw_get_legacy_target_powers(ah, chan,
1050 				pEepData->calTargetPowerCck,
1051 				AR5416_NUM_2G_CCK_TARGET_POWERS,
1052 				&targetPowerCckExt, 4, true);
1053 			ath9k_hw_get_legacy_target_powers(ah, chan,
1054 				pEepData->calTargetPower2G,
1055 				AR5416_NUM_2G_20_TARGET_POWERS,
1056 				&targetPowerOfdmExt, 4, true);
1057 		}
1058 	} else {
1059 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1060 			SUB_NUM_CTL_MODES_AT_5G_40;
1061 		pCtlMode = ctlModesFor11a;
1062 
1063 		ath9k_hw_get_legacy_target_powers(ah, chan,
1064 			pEepData->calTargetPower5G,
1065 			AR5416_NUM_5G_20_TARGET_POWERS,
1066 			&targetPowerOfdm, 4, false);
1067 		ath9k_hw_get_target_powers(ah, chan,
1068 			pEepData->calTargetPower5GHT20,
1069 			AR5416_NUM_5G_20_TARGET_POWERS,
1070 			&targetPowerHt20, 8, false);
1071 
1072 		if (IS_CHAN_HT40(chan)) {
1073 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1074 			ath9k_hw_get_target_powers(ah, chan,
1075 				pEepData->calTargetPower5GHT40,
1076 				AR5416_NUM_5G_40_TARGET_POWERS,
1077 				&targetPowerHt40, 8, true);
1078 			ath9k_hw_get_legacy_target_powers(ah, chan,
1079 				pEepData->calTargetPower5G,
1080 				AR5416_NUM_5G_20_TARGET_POWERS,
1081 				&targetPowerOfdmExt, 4, true);
1082 		}
1083 	}
1084 
1085 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1086 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1087 			(pCtlMode[ctlMode] == CTL_2GHT40);
1088 		if (isHt40CtlMode)
1089 			freq = centers.synth_center;
1090 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1091 			freq = centers.ext_center;
1092 		else
1093 			freq = centers.ctl_center;
1094 
1095 		twiceMaxEdgePower = MAX_RATE_POWER;
1096 
1097 		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1098 			if ((((cfgCtl & ~CTL_MODE_M) |
1099 			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1100 			     pEepData->ctlIndex[i]) ||
1101 			    (((cfgCtl & ~CTL_MODE_M) |
1102 			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1103 			     ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1104 				rep = &(pEepData->ctlData[i]);
1105 
1106 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1107 				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1108 				IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1109 
1110 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1111 					twiceMaxEdgePower = min(twiceMaxEdgePower,
1112 								twiceMinEdgePower);
1113 				} else {
1114 					twiceMaxEdgePower = twiceMinEdgePower;
1115 					break;
1116 				}
1117 			}
1118 		}
1119 
1120 		minCtlPower = min(twiceMaxEdgePower, scaledPower);
1121 
1122 		switch (pCtlMode[ctlMode]) {
1123 		case CTL_11B:
1124 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1125 				targetPowerCck.tPow2x[i] =
1126 					min((u16)targetPowerCck.tPow2x[i],
1127 					    minCtlPower);
1128 			}
1129 			break;
1130 		case CTL_11A:
1131 		case CTL_11G:
1132 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1133 				targetPowerOfdm.tPow2x[i] =
1134 					min((u16)targetPowerOfdm.tPow2x[i],
1135 					    minCtlPower);
1136 			}
1137 			break;
1138 		case CTL_5GHT20:
1139 		case CTL_2GHT20:
1140 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1141 				targetPowerHt20.tPow2x[i] =
1142 					min((u16)targetPowerHt20.tPow2x[i],
1143 					    minCtlPower);
1144 			}
1145 			break;
1146 		case CTL_11B_EXT:
1147 			targetPowerCckExt.tPow2x[0] = min((u16)
1148 					targetPowerCckExt.tPow2x[0],
1149 					minCtlPower);
1150 			break;
1151 		case CTL_11A_EXT:
1152 		case CTL_11G_EXT:
1153 			targetPowerOfdmExt.tPow2x[0] = min((u16)
1154 					targetPowerOfdmExt.tPow2x[0],
1155 					minCtlPower);
1156 			break;
1157 		case CTL_5GHT40:
1158 		case CTL_2GHT40:
1159 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1160 				targetPowerHt40.tPow2x[i] =
1161 					min((u16)targetPowerHt40.tPow2x[i],
1162 					    minCtlPower);
1163 			}
1164 			break;
1165 		default:
1166 			break;
1167 		}
1168 	}
1169 
1170 	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1171 		ratesArray[rate18mb] = ratesArray[rate24mb] =
1172 		targetPowerOfdm.tPow2x[0];
1173 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1174 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1175 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1176 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1177 
1178 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1179 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1180 
1181 	if (IS_CHAN_2GHZ(chan)) {
1182 		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1183 		ratesArray[rate2s] = ratesArray[rate2l] =
1184 			targetPowerCck.tPow2x[1];
1185 		ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1186 			targetPowerCck.tPow2x[2];
1187 		ratesArray[rate11s] = ratesArray[rate11l] =
1188 			targetPowerCck.tPow2x[3];
1189 	}
1190 	if (IS_CHAN_HT40(chan)) {
1191 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1192 			ratesArray[rateHt40_0 + i] =
1193 				targetPowerHt40.tPow2x[i];
1194 		}
1195 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1196 		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1197 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1198 		if (IS_CHAN_2GHZ(chan)) {
1199 			ratesArray[rateExtCck] =
1200 				targetPowerCckExt.tPow2x[0];
1201 		}
1202 	}
1203 }
1204 
1205 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1206 				    struct ath9k_channel *chan,
1207 				    u16 cfgCtl,
1208 				    u8 twiceAntennaReduction,
1209 				    u8 powerLimit, bool test)
1210 {
1211 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1212 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1213 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1214 	struct modal_eep_header *pModal =
1215 		&(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1216 	int16_t ratesArray[Ar5416RateSize];
1217 	u8 ht40PowerIncForPdadc = 2;
1218 	int i, cck_ofdm_delta = 0;
1219 
1220 	memset(ratesArray, 0, sizeof(ratesArray));
1221 
1222 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1223 	    AR5416_EEP_MINOR_VER_2) {
1224 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1225 	}
1226 
1227 	ath9k_hw_set_def_power_per_rate_table(ah, chan,
1228 					       &ratesArray[0], cfgCtl,
1229 					       twiceAntennaReduction,
1230 					       powerLimit);
1231 
1232 	ath9k_hw_set_def_power_cal_table(ah, chan);
1233 
1234 	regulatory->max_power_level = 0;
1235 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1236 		if (ratesArray[i] > MAX_RATE_POWER)
1237 			ratesArray[i] = MAX_RATE_POWER;
1238 		if (ratesArray[i] > regulatory->max_power_level)
1239 			regulatory->max_power_level = ratesArray[i];
1240 	}
1241 
1242 	ath9k_hw_update_regulatory_maxpower(ah);
1243 
1244 	if (test)
1245 		return;
1246 
1247 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1248 		for (i = 0; i < Ar5416RateSize; i++) {
1249 			int8_t pwr_table_offset;
1250 
1251 			pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1252 							EEP_PWR_TABLE_OFFSET);
1253 			ratesArray[i] -= pwr_table_offset * 2;
1254 		}
1255 	}
1256 
1257 	ENABLE_REGWRITE_BUFFER(ah);
1258 
1259 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1260 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
1261 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1262 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1263 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1264 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1265 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
1266 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1267 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1268 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1269 
1270 	if (IS_CHAN_2GHZ(chan)) {
1271 		if (OLC_FOR_AR9280_20_LATER) {
1272 			cck_ofdm_delta = 2;
1273 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1274 				ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1275 				| ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1276 				| ATH9K_POW_SM(ratesArray[rateXr], 8)
1277 				| ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1278 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1279 				ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1280 				| ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1281 				| ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1282 				| ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1283 		} else {
1284 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1285 				ATH9K_POW_SM(ratesArray[rate2s], 24)
1286 				| ATH9K_POW_SM(ratesArray[rate2l], 16)
1287 				| ATH9K_POW_SM(ratesArray[rateXr], 8)
1288 				| ATH9K_POW_SM(ratesArray[rate1l], 0));
1289 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1290 				ATH9K_POW_SM(ratesArray[rate11s], 24)
1291 				| ATH9K_POW_SM(ratesArray[rate11l], 16)
1292 				| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1293 				| ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1294 		}
1295 	}
1296 
1297 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1298 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1299 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1300 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1301 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1302 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1303 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1304 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1305 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1306 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1307 
1308 	if (IS_CHAN_HT40(chan)) {
1309 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1310 			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
1311 				       ht40PowerIncForPdadc, 24)
1312 			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1313 					 ht40PowerIncForPdadc, 16)
1314 			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1315 					 ht40PowerIncForPdadc, 8)
1316 			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1317 					 ht40PowerIncForPdadc, 0));
1318 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1319 			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
1320 				       ht40PowerIncForPdadc, 24)
1321 			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1322 					 ht40PowerIncForPdadc, 16)
1323 			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1324 					 ht40PowerIncForPdadc, 8)
1325 			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1326 					 ht40PowerIncForPdadc, 0));
1327 		if (OLC_FOR_AR9280_20_LATER) {
1328 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1329 				ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1330 				| ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1331 				| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1332 				| ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1333 		} else {
1334 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1335 				ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1336 				| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1337 				| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1338 				| ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1339 		}
1340 	}
1341 
1342 	REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1343 		  ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1344 		  | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1345 
1346 	REGWRITE_BUFFER_FLUSH(ah);
1347 }
1348 
1349 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1350 {
1351 #define EEP_DEF_SPURCHAN \
1352 	(ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1353 	struct ath_common *common = ath9k_hw_common(ah);
1354 
1355 	u16 spur_val = AR_NO_SPUR;
1356 
1357 	ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1358 		i, is2GHz, ah->config.spurchans[i][is2GHz]);
1359 
1360 	switch (ah->config.spurmode) {
1361 	case SPUR_DISABLE:
1362 		break;
1363 	case SPUR_ENABLE_IOCTL:
1364 		spur_val = ah->config.spurchans[i][is2GHz];
1365 		ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1366 			spur_val);
1367 		break;
1368 	case SPUR_ENABLE_EEPROM:
1369 		spur_val = EEP_DEF_SPURCHAN;
1370 		break;
1371 	}
1372 
1373 	return spur_val;
1374 
1375 #undef EEP_DEF_SPURCHAN
1376 }
1377 
1378 const struct eeprom_ops eep_def_ops = {
1379 	.check_eeprom		= ath9k_hw_def_check_eeprom,
1380 	.get_eeprom		= ath9k_hw_def_get_eeprom,
1381 	.fill_eeprom		= ath9k_hw_def_fill_eeprom,
1382 	.dump_eeprom		= ath9k_hw_def_dump_eeprom,
1383 	.get_eeprom_ver		= ath9k_hw_def_get_eeprom_ver,
1384 	.get_eeprom_rev		= ath9k_hw_def_get_eeprom_rev,
1385 	.set_board_values	= ath9k_hw_def_set_board_values,
1386 	.set_addac		= ath9k_hw_def_set_addac,
1387 	.set_txpower		= ath9k_hw_def_set_txpower,
1388 	.get_spur_channel	= ath9k_hw_def_get_spur_channel
1389 };
1390