xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/eeprom_9287.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "ar9002_phy.h"
19 
20 #define NUM_EEP_WORDS (sizeof(struct ar9287_eeprom) / sizeof(u16))
21 
22 static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
23 {
24 	return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
25 }
26 
27 static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
28 {
29 	return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
30 }
31 
32 static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
33 {
34 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
35 	struct ath_common *common = ath9k_hw_common(ah);
36 	u16 *eep_data;
37 	int addr, eep_start_loc;
38 	eep_data = (u16 *)eep;
39 
40 	if (common->bus_ops->ath_bus_type == ATH_USB)
41 		eep_start_loc = AR9287_HTC_EEP_START_LOC;
42 	else
43 		eep_start_loc = AR9287_EEP_START_LOC;
44 
45 	if (!ath9k_hw_use_flash(ah)) {
46 		ath_dbg(common, ATH_DBG_EEPROM,
47 			"Reading from EEPROM, not flash\n");
48 	}
49 
50 	for (addr = 0; addr < NUM_EEP_WORDS; addr++) {
51 		if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
52 					 eep_data)) {
53 			ath_dbg(common, ATH_DBG_EEPROM,
54 				"Unable to read eeprom region\n");
55 			return false;
56 		}
57 		eep_data++;
58 	}
59 
60 	return true;
61 }
62 
63 static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
64 {
65 	u32 sum = 0, el, integer;
66 	u16 temp, word, magic, magic2, *eepdata;
67 	int i, addr;
68 	bool need_swap = false;
69 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
70 	struct ath_common *common = ath9k_hw_common(ah);
71 
72 	if (!ath9k_hw_use_flash(ah)) {
73 		if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
74 					 &magic)) {
75 			ath_err(common, "Reading Magic # failed\n");
76 			return false;
77 		}
78 
79 		ath_dbg(common, ATH_DBG_EEPROM,
80 			"Read Magic = 0x%04X\n", magic);
81 
82 		if (magic != AR5416_EEPROM_MAGIC) {
83 			magic2 = swab16(magic);
84 
85 			if (magic2 == AR5416_EEPROM_MAGIC) {
86 				need_swap = true;
87 				eepdata = (u16 *)(&ah->eeprom);
88 
89 				for (addr = 0; addr < NUM_EEP_WORDS; addr++) {
90 					temp = swab16(*eepdata);
91 					*eepdata = temp;
92 					eepdata++;
93 				}
94 			} else {
95 				ath_err(common,
96 					"Invalid EEPROM Magic. Endianness mismatch.\n");
97 				return -EINVAL;
98 			}
99 		}
100 	}
101 
102 	ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
103 		need_swap ? "True" : "False");
104 
105 	if (need_swap)
106 		el = swab16(ah->eeprom.map9287.baseEepHeader.length);
107 	else
108 		el = ah->eeprom.map9287.baseEepHeader.length;
109 
110 	if (el > sizeof(struct ar9287_eeprom))
111 		el = sizeof(struct ar9287_eeprom) / sizeof(u16);
112 	else
113 		el = el / sizeof(u16);
114 
115 	eepdata = (u16 *)(&ah->eeprom);
116 
117 	for (i = 0; i < el; i++)
118 		sum ^= *eepdata++;
119 
120 	if (need_swap) {
121 		word = swab16(eep->baseEepHeader.length);
122 		eep->baseEepHeader.length = word;
123 
124 		word = swab16(eep->baseEepHeader.checksum);
125 		eep->baseEepHeader.checksum = word;
126 
127 		word = swab16(eep->baseEepHeader.version);
128 		eep->baseEepHeader.version = word;
129 
130 		word = swab16(eep->baseEepHeader.regDmn[0]);
131 		eep->baseEepHeader.regDmn[0] = word;
132 
133 		word = swab16(eep->baseEepHeader.regDmn[1]);
134 		eep->baseEepHeader.regDmn[1] = word;
135 
136 		word = swab16(eep->baseEepHeader.rfSilent);
137 		eep->baseEepHeader.rfSilent = word;
138 
139 		word = swab16(eep->baseEepHeader.blueToothOptions);
140 		eep->baseEepHeader.blueToothOptions = word;
141 
142 		word = swab16(eep->baseEepHeader.deviceCap);
143 		eep->baseEepHeader.deviceCap = word;
144 
145 		integer = swab32(eep->modalHeader.antCtrlCommon);
146 		eep->modalHeader.antCtrlCommon = integer;
147 
148 		for (i = 0; i < AR9287_MAX_CHAINS; i++) {
149 			integer = swab32(eep->modalHeader.antCtrlChain[i]);
150 			eep->modalHeader.antCtrlChain[i] = integer;
151 		}
152 
153 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
154 			word = swab16(eep->modalHeader.spurChans[i].spurChan);
155 			eep->modalHeader.spurChans[i].spurChan = word;
156 		}
157 	}
158 
159 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
160 	    || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
161 		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
162 			sum, ah->eep_ops->get_eeprom_ver(ah));
163 		return -EINVAL;
164 	}
165 
166 	return 0;
167 }
168 
169 static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
170 				      enum eeprom_param param)
171 {
172 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
173 	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
174 	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
175 	u16 ver_minor;
176 
177 	ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
178 
179 	switch (param) {
180 	case EEP_NFTHRESH_2:
181 		return pModal->noiseFloorThreshCh[0];
182 	case EEP_MAC_LSW:
183 		return pBase->macAddr[0] << 8 | pBase->macAddr[1];
184 	case EEP_MAC_MID:
185 		return pBase->macAddr[2] << 8 | pBase->macAddr[3];
186 	case EEP_MAC_MSW:
187 		return pBase->macAddr[4] << 8 | pBase->macAddr[5];
188 	case EEP_REG_0:
189 		return pBase->regDmn[0];
190 	case EEP_REG_1:
191 		return pBase->regDmn[1];
192 	case EEP_OP_CAP:
193 		return pBase->deviceCap;
194 	case EEP_OP_MODE:
195 		return pBase->opCapFlags;
196 	case EEP_RF_SILENT:
197 		return pBase->rfSilent;
198 	case EEP_MINOR_REV:
199 		return ver_minor;
200 	case EEP_TX_MASK:
201 		return pBase->txMask;
202 	case EEP_RX_MASK:
203 		return pBase->rxMask;
204 	case EEP_DEV_TYPE:
205 		return pBase->deviceType;
206 	case EEP_OL_PWRCTRL:
207 		return pBase->openLoopPwrCntl;
208 	case EEP_TEMPSENSE_SLOPE:
209 		if (ver_minor >= AR9287_EEP_MINOR_VER_2)
210 			return pBase->tempSensSlope;
211 		else
212 			return 0;
213 	case EEP_TEMPSENSE_SLOPE_PAL_ON:
214 		if (ver_minor >= AR9287_EEP_MINOR_VER_3)
215 			return pBase->tempSensSlopePalOn;
216 		else
217 			return 0;
218 	default:
219 		return 0;
220 	}
221 }
222 
223 static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
224 			    struct ath9k_channel *chan,
225 			    struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
226 			    u8 *pCalChans,  u16 availPiers, int8_t *pPwr)
227 {
228 	u16 idxL = 0, idxR = 0, numPiers;
229 	bool match;
230 	struct chan_centers centers;
231 
232 	ath9k_hw_get_channel_centers(ah, chan, &centers);
233 
234 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
235 		if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
236 			break;
237 	}
238 
239 	match = ath9k_hw_get_lower_upper_index(
240 		(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
241 		pCalChans, numPiers, &idxL, &idxR);
242 
243 	if (match) {
244 		*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
245 	} else {
246 		*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
247 			 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
248 	}
249 
250 }
251 
252 static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
253 					  int32_t txPower, u16 chain)
254 {
255 	u32 tmpVal;
256 	u32 a;
257 
258 	/* Enable OLPC for chain 0 */
259 
260 	tmpVal = REG_READ(ah, 0xa270);
261 	tmpVal = tmpVal & 0xFCFFFFFF;
262 	tmpVal = tmpVal | (0x3 << 24);
263 	REG_WRITE(ah, 0xa270, tmpVal);
264 
265 	/* Enable OLPC for chain 1 */
266 
267 	tmpVal = REG_READ(ah, 0xb270);
268 	tmpVal = tmpVal & 0xFCFFFFFF;
269 	tmpVal = tmpVal | (0x3 << 24);
270 	REG_WRITE(ah, 0xb270, tmpVal);
271 
272 	/* Write the OLPC ref power for chain 0 */
273 
274 	if (chain == 0) {
275 		tmpVal = REG_READ(ah, 0xa398);
276 		tmpVal = tmpVal & 0xff00ffff;
277 		a = (txPower)&0xff;
278 		tmpVal = tmpVal | (a << 16);
279 		REG_WRITE(ah, 0xa398, tmpVal);
280 	}
281 
282 	/* Write the OLPC ref power for chain 1 */
283 
284 	if (chain == 1) {
285 		tmpVal = REG_READ(ah, 0xb398);
286 		tmpVal = tmpVal & 0xff00ffff;
287 		a = (txPower)&0xff;
288 		tmpVal = tmpVal | (a << 16);
289 		REG_WRITE(ah, 0xb398, tmpVal);
290 	}
291 }
292 
293 static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
294 						struct ath9k_channel *chan,
295 						int16_t *pTxPowerIndexOffset)
296 {
297 	struct cal_data_per_freq_ar9287 *pRawDataset;
298 	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
299 	u8 *pCalBChans = NULL;
300 	u16 pdGainOverlap_t2;
301 	u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
302 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
303 	u16 numPiers = 0, i, j;
304 	u16 numXpdGain, xpdMask;
305 	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
306 	u32 reg32, regOffset, regChainOffset, regval;
307 	int16_t modalIdx, diff = 0;
308 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
309 
310 	modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
311 	xpdMask = pEepData->modalHeader.xpdGain;
312 
313 	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
314 	    AR9287_EEP_MINOR_VER_2)
315 		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
316 	else
317 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
318 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
319 
320 	if (IS_CHAN_2GHZ(chan)) {
321 		pCalBChans = pEepData->calFreqPier2G;
322 		numPiers = AR9287_NUM_2G_CAL_PIERS;
323 		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
324 			pRawDatasetOpenLoop =
325 			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
326 			ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
327 		}
328 	}
329 
330 	numXpdGain = 0;
331 
332 	/* Calculate the value of xpdgains from the xpdGain Mask */
333 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
334 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
335 			if (numXpdGain >= AR5416_NUM_PD_GAINS)
336 				break;
337 			xpdGainValues[numXpdGain] =
338 				(u16)(AR5416_PD_GAINS_IN_MASK-i);
339 			numXpdGain++;
340 		}
341 	}
342 
343 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
344 		      (numXpdGain - 1) & 0x3);
345 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
346 		      xpdGainValues[0]);
347 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
348 		      xpdGainValues[1]);
349 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
350 		      xpdGainValues[2]);
351 
352 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
353 		regChainOffset = i * 0x1000;
354 
355 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
356 			pRawDatasetOpenLoop =
357 			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
358 
359 			if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
360 				int8_t txPower;
361 				ar9287_eeprom_get_tx_gain_index(ah, chan,
362 							pRawDatasetOpenLoop,
363 							pCalBChans, numPiers,
364 							&txPower);
365 				ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
366 			} else {
367 				pRawDataset =
368 					(struct cal_data_per_freq_ar9287 *)
369 					pEepData->calPierData2G[i];
370 
371 				ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
372 							   pRawDataset,
373 							   pCalBChans, numPiers,
374 							   pdGainOverlap_t2,
375 							   gainBoundaries,
376 							   pdadcValues,
377 							   numXpdGain);
378 			}
379 
380 			if (i == 0) {
381 				if (!ath9k_hw_ar9287_get_eeprom(ah,
382 							EEP_OL_PWRCTRL)) {
383 
384 					regval = SM(pdGainOverlap_t2,
385 						    AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
386 						| SM(gainBoundaries[0],
387 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
388 						| SM(gainBoundaries[1],
389 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
390 						| SM(gainBoundaries[2],
391 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
392 						| SM(gainBoundaries[3],
393 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
394 
395 					REG_WRITE(ah,
396 						  AR_PHY_TPCRG5 + regChainOffset,
397 						  regval);
398 				}
399 			}
400 
401 			if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
402 			    pEepData->baseEepHeader.pwrTableOffset) {
403 				diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
404 					     (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
405 				diff *= 2;
406 
407 				for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
408 					pdadcValues[j] = pdadcValues[j+diff];
409 
410 				for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
411 				     j < AR5416_NUM_PDADC_VALUES; j++)
412 					pdadcValues[j] =
413 					  pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
414 			}
415 
416 			if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
417 				regOffset = AR_PHY_BASE +
418 					(672 << 2) + regChainOffset;
419 
420 				for (j = 0; j < 32; j++) {
421 					reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)
422 						| ((pdadcValues[4*j + 1] & 0xFF) << 8)
423 						| ((pdadcValues[4*j + 2] & 0xFF) << 16)
424 						| ((pdadcValues[4*j + 3] & 0xFF) << 24);
425 
426 					REG_WRITE(ah, regOffset, reg32);
427 					regOffset += 4;
428 				}
429 			}
430 		}
431 	}
432 
433 	*pTxPowerIndexOffset = 0;
434 }
435 
436 static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
437 						     struct ath9k_channel *chan,
438 						     int16_t *ratesArray,
439 						     u16 cfgCtl,
440 						     u16 AntennaReduction,
441 						     u16 twiceMaxRegulatoryPower,
442 						     u16 powerLimit)
443 {
444 #define CMP_CTL \
445 	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
446 	 pEepData->ctlIndex[i])
447 
448 #define CMP_NO_CTL \
449 	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
450 	 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
451 
452 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
453 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   10
454 
455 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
456 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
457 	static const u16 tpScaleReductionTable[5] =
458 		{ 0, 3, 6, 9, MAX_RATE_POWER };
459 	int i;
460 	int16_t twiceLargestAntenna;
461 	struct cal_ctl_data_ar9287 *rep;
462 	struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
463 				    targetPowerCck = {0, {0, 0, 0, 0} };
464 	struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
465 				    targetPowerCckExt = {0, {0, 0, 0, 0} };
466 	struct cal_target_power_ht targetPowerHt20,
467 				    targetPowerHt40 = {0, {0, 0, 0, 0} };
468 	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
469 	static const u16 ctlModesFor11g[] = {
470 		CTL_11B, CTL_11G, CTL_2GHT20,
471 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
472 	};
473 	u16 numCtlModes = 0;
474 	const u16 *pCtlMode = NULL;
475 	u16 ctlMode, freq;
476 	struct chan_centers centers;
477 	int tx_chainmask;
478 	u16 twiceMinEdgePower;
479 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
480 	tx_chainmask = ah->txchainmask;
481 
482 	ath9k_hw_get_channel_centers(ah, chan, &centers);
483 
484 	/* Compute TxPower reduction due to Antenna Gain */
485 	twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
486 				  pEepData->modalHeader.antennaGainCh[1]);
487 	twiceLargestAntenna = (int16_t)min((AntennaReduction) -
488 					   twiceLargestAntenna, 0);
489 
490 	/*
491 	 * scaledPower is the minimum of the user input power level
492 	 * and the regulatory allowed power level.
493 	 */
494 	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
495 
496 	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
497 		maxRegAllowedPower -=
498 			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
499 
500 	scaledPower = min(powerLimit, maxRegAllowedPower);
501 
502 	/*
503 	 * Reduce scaled Power by number of chains active
504 	 * to get the per chain tx power level.
505 	 */
506 	switch (ar5416_get_ntxchains(tx_chainmask)) {
507 	case 1:
508 		break;
509 	case 2:
510 		scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
511 		break;
512 	case 3:
513 		scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
514 		break;
515 	}
516 	scaledPower = max((u16)0, scaledPower);
517 
518 	/*
519 	 * Get TX power from EEPROM.
520 	 */
521 	if (IS_CHAN_2GHZ(chan))	{
522 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
523 		numCtlModes =
524 			ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
525 
526 		pCtlMode = ctlModesFor11g;
527 
528 		ath9k_hw_get_legacy_target_powers(ah, chan,
529 						  pEepData->calTargetPowerCck,
530 						  AR9287_NUM_2G_CCK_TARGET_POWERS,
531 						  &targetPowerCck, 4, false);
532 		ath9k_hw_get_legacy_target_powers(ah, chan,
533 						  pEepData->calTargetPower2G,
534 						  AR9287_NUM_2G_20_TARGET_POWERS,
535 						  &targetPowerOfdm, 4, false);
536 		ath9k_hw_get_target_powers(ah, chan,
537 					   pEepData->calTargetPower2GHT20,
538 					   AR9287_NUM_2G_20_TARGET_POWERS,
539 					   &targetPowerHt20, 8, false);
540 
541 		if (IS_CHAN_HT40(chan))	{
542 			/* All 2G CTLs */
543 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
544 			ath9k_hw_get_target_powers(ah, chan,
545 						   pEepData->calTargetPower2GHT40,
546 						   AR9287_NUM_2G_40_TARGET_POWERS,
547 						   &targetPowerHt40, 8, true);
548 			ath9k_hw_get_legacy_target_powers(ah, chan,
549 						  pEepData->calTargetPowerCck,
550 						  AR9287_NUM_2G_CCK_TARGET_POWERS,
551 						  &targetPowerCckExt, 4, true);
552 			ath9k_hw_get_legacy_target_powers(ah, chan,
553 						  pEepData->calTargetPower2G,
554 						  AR9287_NUM_2G_20_TARGET_POWERS,
555 						  &targetPowerOfdmExt, 4, true);
556 		}
557 	}
558 
559 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
560 		bool isHt40CtlMode =
561 			(pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
562 
563 		if (isHt40CtlMode)
564 			freq = centers.synth_center;
565 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
566 			freq = centers.ext_center;
567 		else
568 			freq = centers.ctl_center;
569 
570 		/* Walk through the CTL indices stored in EEPROM */
571 		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
572 			struct cal_ctl_edges *pRdEdgesPower;
573 
574 			/*
575 			 * Compare test group from regulatory channel list
576 			 * with test mode from pCtlMode list
577 			 */
578 			if (CMP_CTL || CMP_NO_CTL) {
579 				rep = &(pEepData->ctlData[i]);
580 				pRdEdgesPower =
581 				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
582 
583 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
584 								pRdEdgesPower,
585 								IS_CHAN_2GHZ(chan),
586 								AR5416_NUM_BAND_EDGES);
587 
588 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
589 					twiceMaxEdgePower = min(twiceMaxEdgePower,
590 								twiceMinEdgePower);
591 				} else {
592 					twiceMaxEdgePower = twiceMinEdgePower;
593 					break;
594 				}
595 			}
596 		}
597 
598 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
599 
600 		/* Apply ctl mode to correct target power set */
601 		switch (pCtlMode[ctlMode]) {
602 		case CTL_11B:
603 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
604 				targetPowerCck.tPow2x[i] =
605 					(u8)min((u16)targetPowerCck.tPow2x[i],
606 						minCtlPower);
607 			}
608 			break;
609 		case CTL_11A:
610 		case CTL_11G:
611 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
612 				targetPowerOfdm.tPow2x[i] =
613 					(u8)min((u16)targetPowerOfdm.tPow2x[i],
614 						minCtlPower);
615 			}
616 			break;
617 		case CTL_5GHT20:
618 		case CTL_2GHT20:
619 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
620 				targetPowerHt20.tPow2x[i] =
621 					(u8)min((u16)targetPowerHt20.tPow2x[i],
622 						minCtlPower);
623 			}
624 			break;
625 		case CTL_11B_EXT:
626 			targetPowerCckExt.tPow2x[0] =
627 				(u8)min((u16)targetPowerCckExt.tPow2x[0],
628 					minCtlPower);
629 			break;
630 		case CTL_11A_EXT:
631 		case CTL_11G_EXT:
632 			targetPowerOfdmExt.tPow2x[0] =
633 				(u8)min((u16)targetPowerOfdmExt.tPow2x[0],
634 					minCtlPower);
635 			break;
636 		case CTL_5GHT40:
637 		case CTL_2GHT40:
638 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
639 				targetPowerHt40.tPow2x[i] =
640 					(u8)min((u16)targetPowerHt40.tPow2x[i],
641 						minCtlPower);
642 			}
643 			break;
644 		default:
645 			break;
646 		}
647 	}
648 
649 	/* Now set the rates array */
650 
651 	ratesArray[rate6mb] =
652 	ratesArray[rate9mb] =
653 	ratesArray[rate12mb] =
654 	ratesArray[rate18mb] =
655 	ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
656 
657 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
658 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
659 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
660 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
661 
662 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
663 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
664 
665 	if (IS_CHAN_2GHZ(chan))	{
666 		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
667 		ratesArray[rate2s] =
668 		ratesArray[rate2l] = targetPowerCck.tPow2x[1];
669 		ratesArray[rate5_5s] =
670 		ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
671 		ratesArray[rate11s] =
672 		ratesArray[rate11l] = targetPowerCck.tPow2x[3];
673 	}
674 	if (IS_CHAN_HT40(chan))	{
675 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
676 			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
677 
678 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
679 		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
680 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
681 
682 		if (IS_CHAN_2GHZ(chan))
683 			ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
684 	}
685 
686 #undef CMP_CTL
687 #undef CMP_NO_CTL
688 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
689 #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
690 }
691 
692 static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
693 					struct ath9k_channel *chan, u16 cfgCtl,
694 					u8 twiceAntennaReduction,
695 					u8 twiceMaxRegulatoryPower,
696 					u8 powerLimit, bool test)
697 {
698 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
699 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
700 	struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
701 	int16_t ratesArray[Ar5416RateSize];
702 	int16_t txPowerIndexOffset = 0;
703 	u8 ht40PowerIncForPdadc = 2;
704 	int i;
705 
706 	memset(ratesArray, 0, sizeof(ratesArray));
707 
708 	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
709 	    AR9287_EEP_MINOR_VER_2)
710 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
711 
712 	ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
713 						 &ratesArray[0], cfgCtl,
714 						 twiceAntennaReduction,
715 						 twiceMaxRegulatoryPower,
716 						 powerLimit);
717 
718 	ath9k_hw_set_ar9287_power_cal_table(ah, chan, &txPowerIndexOffset);
719 
720 	regulatory->max_power_level = 0;
721 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
722 		ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
723 		if (ratesArray[i] > MAX_RATE_POWER)
724 			ratesArray[i] = MAX_RATE_POWER;
725 
726 		if (ratesArray[i] > regulatory->max_power_level)
727 			regulatory->max_power_level = ratesArray[i];
728 	}
729 
730 	if (test)
731 		return;
732 
733 	if (IS_CHAN_2GHZ(chan))
734 		i = rate1l;
735 	else
736 		i = rate6mb;
737 
738 	regulatory->max_power_level = ratesArray[i];
739 
740 	if (AR_SREV_9280_20_OR_LATER(ah)) {
741 		for (i = 0; i < Ar5416RateSize; i++)
742 			ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
743 	}
744 
745 	/* OFDM power per rate */
746 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
747 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
748 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
749 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
750 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
751 
752 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
753 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
754 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
755 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
756 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
757 
758 	/* CCK power per rate */
759 	if (IS_CHAN_2GHZ(chan))	{
760 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
761 			  ATH9K_POW_SM(ratesArray[rate2s], 24)
762 			  | ATH9K_POW_SM(ratesArray[rate2l], 16)
763 			  | ATH9K_POW_SM(ratesArray[rateXr], 8)
764 			  | ATH9K_POW_SM(ratesArray[rate1l], 0));
765 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
766 			  ATH9K_POW_SM(ratesArray[rate11s], 24)
767 			  | ATH9K_POW_SM(ratesArray[rate11l], 16)
768 			  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
769 			  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
770 	}
771 
772 	/* HT20 power per rate */
773 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
774 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
775 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
776 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
777 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
778 
779 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
780 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
781 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
782 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
783 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
784 
785 	/* HT40 power per rate */
786 	if (IS_CHAN_HT40(chan))	{
787 		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
788 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
789 				  ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
790 				  | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
791 				  | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
792 				  | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
793 
794 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
795 				  ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
796 				  | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
797 				  | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
798 				  | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
799 		} else {
800 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
801 				  ATH9K_POW_SM(ratesArray[rateHt40_3] +
802 					       ht40PowerIncForPdadc, 24)
803 				  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
804 						 ht40PowerIncForPdadc, 16)
805 				  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
806 						 ht40PowerIncForPdadc, 8)
807 				  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
808 						 ht40PowerIncForPdadc, 0));
809 
810 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
811 				  ATH9K_POW_SM(ratesArray[rateHt40_7] +
812 					       ht40PowerIncForPdadc, 24)
813 				  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
814 						 ht40PowerIncForPdadc, 16)
815 				  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
816 						 ht40PowerIncForPdadc, 8)
817 				  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
818 						 ht40PowerIncForPdadc, 0));
819 		}
820 
821 		/* Dup/Ext power per rate */
822 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
823 			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
824 			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
825 			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
826 			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
827 	}
828 }
829 
830 static void ath9k_hw_ar9287_set_addac(struct ath_hw *ah,
831 				      struct ath9k_channel *chan)
832 {
833 }
834 
835 static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
836 					     struct ath9k_channel *chan)
837 {
838 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
839 	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
840 	u16 antWrites[AR9287_ANT_16S];
841 	u32 regChainOffset, regval;
842 	u8 txRxAttenLocal;
843 	int i, j, offset_num;
844 
845 	pModal = &eep->modalHeader;
846 
847 	antWrites[0] = (u16)((pModal->antCtrlCommon >> 28) & 0xF);
848 	antWrites[1] = (u16)((pModal->antCtrlCommon >> 24) & 0xF);
849 	antWrites[2] = (u16)((pModal->antCtrlCommon >> 20) & 0xF);
850 	antWrites[3] = (u16)((pModal->antCtrlCommon >> 16) & 0xF);
851 	antWrites[4] = (u16)((pModal->antCtrlCommon >> 12) & 0xF);
852 	antWrites[5] = (u16)((pModal->antCtrlCommon >> 8) & 0xF);
853 	antWrites[6] = (u16)((pModal->antCtrlCommon >> 4)  & 0xF);
854 	antWrites[7] = (u16)(pModal->antCtrlCommon & 0xF);
855 
856 	offset_num = 8;
857 
858 	for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
859 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 28) & 0xf);
860 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 10) & 0x3);
861 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 8) & 0x3);
862 		antWrites[j++] = 0;
863 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 6) & 0x3);
864 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 4) & 0x3);
865 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 2) & 0x3);
866 		antWrites[j++] = (u16)(pModal->antCtrlChain[i] & 0x3);
867 	}
868 
869 	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
870 
871 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
872 		regChainOffset = i * 0x1000;
873 
874 		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
875 			  pModal->antCtrlChain[i]);
876 
877 		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
878 			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
879 			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
880 			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
881 			  SM(pModal->iqCalICh[i],
882 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
883 			  SM(pModal->iqCalQCh[i],
884 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
885 
886 		txRxAttenLocal = pModal->txRxAttenCh[i];
887 
888 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
889 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
890 			      pModal->bswMargin[i]);
891 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
892 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
893 			      pModal->bswAtten[i]);
894 		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
895 			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
896 			      txRxAttenLocal);
897 		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
898 			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
899 			      pModal->rxTxMarginCh[i]);
900 	}
901 
902 
903 	if (IS_CHAN_HT40(chan))
904 		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
905 			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
906 	else
907 		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
908 			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
909 
910 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
911 		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
912 
913 	REG_WRITE(ah, AR_PHY_RF_CTL4,
914 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
915 		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
916 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
917 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
918 
919 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
920 		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
921 
922 	REG_RMW_FIELD(ah, AR_PHY_CCA,
923 		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
924 	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
925 		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
926 
927 	regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
928 	regval &= ~(AR9287_AN_RF2G3_DB1 |
929 		    AR9287_AN_RF2G3_DB2 |
930 		    AR9287_AN_RF2G3_OB_CCK |
931 		    AR9287_AN_RF2G3_OB_PSK |
932 		    AR9287_AN_RF2G3_OB_QAM |
933 		    AR9287_AN_RF2G3_OB_PAL_OFF);
934 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
935 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
936 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
937 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
938 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
939 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
940 
941 	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
942 
943 	regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
944 	regval &= ~(AR9287_AN_RF2G3_DB1 |
945 		    AR9287_AN_RF2G3_DB2 |
946 		    AR9287_AN_RF2G3_OB_CCK |
947 		    AR9287_AN_RF2G3_OB_PSK |
948 		    AR9287_AN_RF2G3_OB_QAM |
949 		    AR9287_AN_RF2G3_OB_PAL_OFF);
950 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
951 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
952 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
953 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
954 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
955 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
956 
957 	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
958 
959 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
960 		      AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
961 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
962 		      AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
963 
964 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
965 				  AR9287_AN_TOP2_XPABIAS_LVL,
966 				  AR9287_AN_TOP2_XPABIAS_LVL_S,
967 				  pModal->xpaBiasLvl);
968 }
969 
970 static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
971 					    u16 i, bool is2GHz)
972 {
973 #define EEP_MAP9287_SPURCHAN \
974 	(ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
975 
976 	struct ath_common *common = ath9k_hw_common(ah);
977 	u16 spur_val = AR_NO_SPUR;
978 
979 	ath_dbg(common, ATH_DBG_ANI,
980 		"Getting spur idx:%d is2Ghz:%d val:%x\n",
981 		i, is2GHz, ah->config.spurchans[i][is2GHz]);
982 
983 	switch (ah->config.spurmode) {
984 	case SPUR_DISABLE:
985 		break;
986 	case SPUR_ENABLE_IOCTL:
987 		spur_val = ah->config.spurchans[i][is2GHz];
988 		ath_dbg(common, ATH_DBG_ANI,
989 			"Getting spur val from new loc. %d\n", spur_val);
990 		break;
991 	case SPUR_ENABLE_EEPROM:
992 		spur_val = EEP_MAP9287_SPURCHAN;
993 		break;
994 	}
995 
996 	return spur_val;
997 
998 #undef EEP_MAP9287_SPURCHAN
999 }
1000 
1001 const struct eeprom_ops eep_ar9287_ops = {
1002 	.check_eeprom		= ath9k_hw_ar9287_check_eeprom,
1003 	.get_eeprom		= ath9k_hw_ar9287_get_eeprom,
1004 	.fill_eeprom		= ath9k_hw_ar9287_fill_eeprom,
1005 	.get_eeprom_ver		= ath9k_hw_ar9287_get_eeprom_ver,
1006 	.get_eeprom_rev		= ath9k_hw_ar9287_get_eeprom_rev,
1007 	.set_board_values	= ath9k_hw_ar9287_set_board_values,
1008 	.set_addac		= ath9k_hw_ar9287_set_addac,
1009 	.set_txpower		= ath9k_hw_ar9287_set_txpower,
1010 	.get_spur_channel	= ath9k_hw_ar9287_get_spur_channel
1011 };
1012