1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 
19 static int ath9k_hw_AR9287_get_eeprom_ver(struct ath_hw *ah)
20 {
21 	return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
22 }
23 
24 static int ath9k_hw_AR9287_get_eeprom_rev(struct ath_hw *ah)
25 {
26 	return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
27 }
28 
29 static bool ath9k_hw_AR9287_fill_eeprom(struct ath_hw *ah)
30 {
31 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
32 	struct ath_common *common = ath9k_hw_common(ah);
33 	u16 *eep_data;
34 	int addr, eep_start_loc = AR9287_EEP_START_LOC;
35 	eep_data = (u16 *)eep;
36 
37 	if (!ath9k_hw_use_flash(ah)) {
38 		ath_print(common, ATH_DBG_EEPROM,
39 			  "Reading from EEPROM, not flash\n");
40 	}
41 
42 	for (addr = 0; addr < sizeof(struct ar9287_eeprom) / sizeof(u16);
43 			addr++)	{
44 		if (!ath9k_hw_nvram_read(common,
45 					 addr + eep_start_loc, eep_data)) {
46 			ath_print(common, ATH_DBG_EEPROM,
47 				  "Unable to read eeprom region \n");
48 			return false;
49 		}
50 		eep_data++;
51 	}
52 	return true;
53 }
54 
55 static int ath9k_hw_AR9287_check_eeprom(struct ath_hw *ah)
56 {
57 	u32 sum = 0, el, integer;
58 	u16 temp, word, magic, magic2, *eepdata;
59 	int i, addr;
60 	bool need_swap = false;
61 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
62 	struct ath_common *common = ath9k_hw_common(ah);
63 
64 	if (!ath9k_hw_use_flash(ah)) {
65 		if (!ath9k_hw_nvram_read(common,
66 					 AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
67 			ath_print(common, ATH_DBG_FATAL,
68 				  "Reading Magic # failed\n");
69 			return false;
70 		}
71 
72 		ath_print(common, ATH_DBG_EEPROM,
73 			  "Read Magic = 0x%04X\n", magic);
74 		if (magic != AR5416_EEPROM_MAGIC) {
75 			magic2 = swab16(magic);
76 
77 			if (magic2 == AR5416_EEPROM_MAGIC) {
78 				need_swap = true;
79 				eepdata = (u16 *)(&ah->eeprom);
80 
81 				for (addr = 0;
82 				     addr < sizeof(struct ar9287_eeprom) / sizeof(u16);
83 				     addr++) {
84 					temp = swab16(*eepdata);
85 					*eepdata = temp;
86 					eepdata++;
87 				}
88 			} else {
89 				ath_print(common, ATH_DBG_FATAL,
90 					  "Invalid EEPROM Magic. "
91 					  "endianness mismatch.\n");
92 				return -EINVAL;
93 			}
94 		}
95 	}
96 	ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n", need_swap ?
97 		  "True" : "False");
98 
99 	if (need_swap)
100 		el = swab16(ah->eeprom.map9287.baseEepHeader.length);
101 	else
102 		el = ah->eeprom.map9287.baseEepHeader.length;
103 
104 	if (el > sizeof(struct ar9287_eeprom))
105 		el = sizeof(struct ar9287_eeprom) / sizeof(u16);
106 	else
107 		el = el / sizeof(u16);
108 
109 	eepdata = (u16 *)(&ah->eeprom);
110 	for (i = 0; i < el; i++)
111 		sum ^= *eepdata++;
112 
113 	if (need_swap) {
114 		word = swab16(eep->baseEepHeader.length);
115 		eep->baseEepHeader.length = word;
116 
117 		word = swab16(eep->baseEepHeader.checksum);
118 		eep->baseEepHeader.checksum = word;
119 
120 		word = swab16(eep->baseEepHeader.version);
121 		eep->baseEepHeader.version = word;
122 
123 		word = swab16(eep->baseEepHeader.regDmn[0]);
124 		eep->baseEepHeader.regDmn[0] = word;
125 
126 		word = swab16(eep->baseEepHeader.regDmn[1]);
127 		eep->baseEepHeader.regDmn[1] = word;
128 
129 		word = swab16(eep->baseEepHeader.rfSilent);
130 		eep->baseEepHeader.rfSilent = word;
131 
132 		word = swab16(eep->baseEepHeader.blueToothOptions);
133 		eep->baseEepHeader.blueToothOptions = word;
134 
135 		word = swab16(eep->baseEepHeader.deviceCap);
136 		eep->baseEepHeader.deviceCap = word;
137 
138 		integer = swab32(eep->modalHeader.antCtrlCommon);
139 		eep->modalHeader.antCtrlCommon = integer;
140 
141 		for (i = 0; i < AR9287_MAX_CHAINS; i++) {
142 			integer = swab32(eep->modalHeader.antCtrlChain[i]);
143 			eep->modalHeader.antCtrlChain[i] = integer;
144 		}
145 
146 		for (i = 0; i < AR9287_EEPROM_MODAL_SPURS; i++) {
147 			word = swab16(eep->modalHeader.spurChans[i].spurChan);
148 			eep->modalHeader.spurChans[i].spurChan = word;
149 		}
150 	}
151 
152 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
153 	    || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
154 		ath_print(common, ATH_DBG_FATAL,
155 			  "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
156 			   sum, ah->eep_ops->get_eeprom_ver(ah));
157 		return -EINVAL;
158 	}
159 
160 	return 0;
161 }
162 
163 static u32 ath9k_hw_AR9287_get_eeprom(struct ath_hw *ah,
164 				      enum eeprom_param param)
165 {
166 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
167 	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
168 	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
169 	u16 ver_minor;
170 
171 	ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
172 	switch (param) {
173 	case EEP_NFTHRESH_2:
174 		return pModal->noiseFloorThreshCh[0];
175 	case AR_EEPROM_MAC(0):
176 		return pBase->macAddr[0] << 8 | pBase->macAddr[1];
177 	case AR_EEPROM_MAC(1):
178 		return pBase->macAddr[2] << 8 | pBase->macAddr[3];
179 	case AR_EEPROM_MAC(2):
180 		return pBase->macAddr[4] << 8 | pBase->macAddr[5];
181 	case EEP_REG_0:
182 		return pBase->regDmn[0];
183 	case EEP_REG_1:
184 		return pBase->regDmn[1];
185 	case EEP_OP_CAP:
186 		return pBase->deviceCap;
187 	case EEP_OP_MODE:
188 		return pBase->opCapFlags;
189 	case EEP_RF_SILENT:
190 		return pBase->rfSilent;
191 	case EEP_MINOR_REV:
192 		return ver_minor;
193 	case EEP_TX_MASK:
194 		return pBase->txMask;
195 	case EEP_RX_MASK:
196 		return pBase->rxMask;
197 	case EEP_DEV_TYPE:
198 		return pBase->deviceType;
199 	case EEP_OL_PWRCTRL:
200 		return pBase->openLoopPwrCntl;
201 	case EEP_TEMPSENSE_SLOPE:
202 		if (ver_minor >= AR9287_EEP_MINOR_VER_2)
203 			return pBase->tempSensSlope;
204 		else
205 			return 0;
206 	case EEP_TEMPSENSE_SLOPE_PAL_ON:
207 		if (ver_minor >= AR9287_EEP_MINOR_VER_3)
208 			return pBase->tempSensSlopePalOn;
209 		else
210 			return 0;
211 	default:
212 		return 0;
213 	}
214 }
215 
216 
217 static void ath9k_hw_get_AR9287_gain_boundaries_pdadcs(struct ath_hw *ah,
218 				   struct ath9k_channel *chan,
219 				   struct cal_data_per_freq_ar9287 *pRawDataSet,
220 				   u8 *bChans,  u16 availPiers,
221 				   u16 tPdGainOverlap, int16_t *pMinCalPower,
222 				   u16 *pPdGainBoundaries, u8 *pPDADCValues,
223 				   u16 numXpdGains)
224 {
225 #define TMP_VAL_VPD_TABLE \
226 	((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
227 
228 	int       i, j, k;
229 	int16_t   ss;
230 	u16  idxL = 0, idxR = 0, numPiers;
231 	u8   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
232 	u8   minPwrT4[AR9287_NUM_PD_GAINS];
233 	u8   maxPwrT4[AR9287_NUM_PD_GAINS];
234 	int16_t   vpdStep;
235 	int16_t   tmpVal;
236 	u16  sizeCurrVpdTable, maxIndex, tgtIndex;
237 	bool    match;
238 	int16_t  minDelta = 0;
239 	struct chan_centers centers;
240 	static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
241 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
242 	static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
243 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
244 	static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
245 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
246 
247 	ath9k_hw_get_channel_centers(ah, chan, &centers);
248 
249 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
250 		if (bChans[numPiers] == AR9287_BCHAN_UNUSED)
251 			break;
252 	}
253 
254 	match = ath9k_hw_get_lower_upper_index(
255 				   (u8)FREQ2FBIN(centers.synth_center,
256 				    IS_CHAN_2GHZ(chan)), bChans, numPiers,
257 				    &idxL, &idxR);
258 
259 	if (match) {
260 		for (i = 0; i < numXpdGains; i++) {
261 			minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
262 			maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
263 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
264 					pRawDataSet[idxL].pwrPdg[i],
265 					pRawDataSet[idxL].vpdPdg[i],
266 					AR9287_PD_GAIN_ICEPTS, vpdTableI[i]);
267 		}
268 	} else {
269 		for (i = 0; i < numXpdGains; i++) {
270 			pVpdL = pRawDataSet[idxL].vpdPdg[i];
271 			pPwrL = pRawDataSet[idxL].pwrPdg[i];
272 			pVpdR = pRawDataSet[idxR].vpdPdg[i];
273 			pPwrR = pRawDataSet[idxR].pwrPdg[i];
274 
275 			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
276 
277 			maxPwrT4[i] =
278 				min(pPwrL[AR9287_PD_GAIN_ICEPTS - 1],
279 				    pPwrR[AR9287_PD_GAIN_ICEPTS - 1]);
280 
281 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
282 					pPwrL, pVpdL,
283 					AR9287_PD_GAIN_ICEPTS,
284 					vpdTableL[i]);
285 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
286 					pPwrR, pVpdR,
287 					AR9287_PD_GAIN_ICEPTS,
288 					vpdTableR[i]);
289 
290 			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
291 				vpdTableI[i][j] =
292 					(u8)(ath9k_hw_interpolate((u16)
293 					FREQ2FBIN(centers. synth_center,
294 					IS_CHAN_2GHZ(chan)),
295 					bChans[idxL], bChans[idxR],
296 					vpdTableL[i][j], vpdTableR[i][j]));
297 			}
298 		}
299 	}
300 	*pMinCalPower = (int16_t)(minPwrT4[0] / 2);
301 
302 	k = 0;
303 	for (i = 0; i < numXpdGains; i++) {
304 		if (i == (numXpdGains - 1))
305 			pPdGainBoundaries[i] = (u16)(maxPwrT4[i] / 2);
306 		else
307 			pPdGainBoundaries[i] = (u16)((maxPwrT4[i] +
308 						      minPwrT4[i+1]) / 4);
309 
310 		pPdGainBoundaries[i] = min((u16)AR5416_MAX_RATE_POWER,
311 					    pPdGainBoundaries[i]);
312 
313 
314 		if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
315 			minDelta = pPdGainBoundaries[0] - 23;
316 			pPdGainBoundaries[0] = 23;
317 		} else
318 			minDelta = 0;
319 
320 		if (i == 0) {
321 			if (AR_SREV_9280_10_OR_LATER(ah))
322 				ss = (int16_t)(0 - (minPwrT4[i] / 2));
323 			else
324 				ss = 0;
325 		} else
326 			ss = (int16_t)((pPdGainBoundaries[i-1] -
327 				       (minPwrT4[i] / 2)) -
328 				       tPdGainOverlap + 1 + minDelta);
329 
330 		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
331 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
332 		while ((ss < 0) && (k < (AR9287_NUM_PDADC_VALUES - 1)))	{
333 			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
334 			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
335 			ss++;
336 		}
337 
338 		sizeCurrVpdTable = (u8)((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
339 		tgtIndex = (u8)(pPdGainBoundaries[i] +
340 				tPdGainOverlap - (minPwrT4[i] / 2));
341 		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
342 			    tgtIndex : sizeCurrVpdTable;
343 
344 		while ((ss < maxIndex) && (k < (AR9287_NUM_PDADC_VALUES - 1)))
345 			pPDADCValues[k++] = vpdTableI[i][ss++];
346 
347 		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
348 				    vpdTableI[i][sizeCurrVpdTable - 2]);
349 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
350 		if (tgtIndex > maxIndex) {
351 			while ((ss <= tgtIndex) &&
352 				(k < (AR9287_NUM_PDADC_VALUES - 1))) {
353 				tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
354 				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
355 							  255 : tmpVal);
356 				ss++;
357 			}
358 		}
359 	}
360 
361 	while (i < AR9287_PD_GAINS_IN_MASK) {
362 		pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
363 		i++;
364 	}
365 
366 	while (k < AR9287_NUM_PDADC_VALUES) {
367 		pPDADCValues[k] = pPDADCValues[k-1];
368 		k++;
369 	}
370 
371 #undef TMP_VAL_VPD_TABLE
372 }
373 
374 static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
375 			    struct ath9k_channel *chan,
376 			    struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
377 			    u8 *pCalChans,  u16 availPiers,
378 			    int8_t *pPwr)
379 {
380 	u16  idxL = 0, idxR = 0, numPiers;
381 	bool match;
382 	struct chan_centers centers;
383 
384 	ath9k_hw_get_channel_centers(ah, chan, &centers);
385 
386 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
387 		if (pCalChans[numPiers] == AR9287_BCHAN_UNUSED)
388 			break;
389 	}
390 
391 	match = ath9k_hw_get_lower_upper_index(
392 			(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
393 			pCalChans, numPiers,
394 			&idxL, &idxR);
395 
396 	if (match) {
397 		*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
398 	} else {
399 		*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
400 			    (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
401 	}
402 
403 }
404 
405 static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
406 					  int32_t txPower, u16 chain)
407 {
408 	u32 tmpVal;
409 	u32 a;
410 
411 	tmpVal = REG_READ(ah, 0xa270);
412 	tmpVal = tmpVal & 0xFCFFFFFF;
413 	tmpVal = tmpVal | (0x3 << 24);
414 	REG_WRITE(ah, 0xa270, tmpVal);
415 
416 	tmpVal = REG_READ(ah, 0xb270);
417 	tmpVal = tmpVal & 0xFCFFFFFF;
418 	tmpVal = tmpVal | (0x3 << 24);
419 	REG_WRITE(ah, 0xb270, tmpVal);
420 
421 	if (chain == 0) {
422 		tmpVal = REG_READ(ah, 0xa398);
423 		tmpVal = tmpVal & 0xff00ffff;
424 		a = (txPower)&0xff;
425 		tmpVal = tmpVal | (a << 16);
426 		REG_WRITE(ah, 0xa398, tmpVal);
427 	}
428 
429 	if (chain == 1) {
430 		tmpVal = REG_READ(ah, 0xb398);
431 		tmpVal = tmpVal & 0xff00ffff;
432 		a = (txPower)&0xff;
433 		tmpVal = tmpVal | (a << 16);
434 		REG_WRITE(ah, 0xb398, tmpVal);
435 	}
436 }
437 
438 static void ath9k_hw_set_AR9287_power_cal_table(struct ath_hw *ah,
439 						struct ath9k_channel *chan,
440 						int16_t *pTxPowerIndexOffset)
441 {
442 	struct ath_common *common = ath9k_hw_common(ah);
443 	struct cal_data_per_freq_ar9287 *pRawDataset;
444 	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
445 	u8  *pCalBChans = NULL;
446 	u16 pdGainOverlap_t2;
447 	u8  pdadcValues[AR9287_NUM_PDADC_VALUES];
448 	u16 gainBoundaries[AR9287_PD_GAINS_IN_MASK];
449 	u16 numPiers = 0, i, j;
450 	int16_t  tMinCalPower;
451 	u16 numXpdGain, xpdMask;
452 	u16 xpdGainValues[AR9287_NUM_PD_GAINS] = {0, 0, 0, 0};
453 	u32 reg32, regOffset, regChainOffset;
454 	int16_t   modalIdx, diff = 0;
455 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
456 	modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
457 	xpdMask = pEepData->modalHeader.xpdGain;
458 	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
459 			AR9287_EEP_MINOR_VER_2)
460 		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
461 	else
462 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
463 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
464 
465 	if (IS_CHAN_2GHZ(chan)) {
466 		pCalBChans = pEepData->calFreqPier2G;
467 		numPiers = AR9287_NUM_2G_CAL_PIERS;
468 		if (ath9k_hw_AR9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
469 			pRawDatasetOpenLoop =
470 				(struct cal_data_op_loop_ar9287 *)
471 				pEepData->calPierData2G[0];
472 			ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
473 		}
474 	}
475 
476 	numXpdGain = 0;
477 	for (i = 1; i <= AR9287_PD_GAINS_IN_MASK; i++) {
478 		if ((xpdMask >> (AR9287_PD_GAINS_IN_MASK - i)) & 1) {
479 			if (numXpdGain >= AR9287_NUM_PD_GAINS)
480 				break;
481 			xpdGainValues[numXpdGain] =
482 				(u16)(AR9287_PD_GAINS_IN_MASK-i);
483 			numXpdGain++;
484 		}
485 	}
486 
487 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
488 		      (numXpdGain - 1) & 0x3);
489 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
490 		      xpdGainValues[0]);
491 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
492 		      xpdGainValues[1]);
493 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
494 		      xpdGainValues[2]);
495 
496 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
497 		regChainOffset = i * 0x1000;
498 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
499 			pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)
500 					       pEepData->calPierData2G[i];
501 			if (ath9k_hw_AR9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
502 				int8_t txPower;
503 				ar9287_eeprom_get_tx_gain_index(ah, chan,
504 							  pRawDatasetOpenLoop,
505 							  pCalBChans, numPiers,
506 							  &txPower);
507 				ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
508 			} else {
509 				pRawDataset =
510 					(struct cal_data_per_freq_ar9287 *)
511 					pEepData->calPierData2G[i];
512 				ath9k_hw_get_AR9287_gain_boundaries_pdadcs(
513 						  ah, chan, pRawDataset,
514 						  pCalBChans, numPiers,
515 						  pdGainOverlap_t2,
516 						  &tMinCalPower, gainBoundaries,
517 						  pdadcValues, numXpdGain);
518 			}
519 
520 			if (i == 0) {
521 				if (!ath9k_hw_AR9287_get_eeprom(
522 					    ah, EEP_OL_PWRCTRL)) {
523 					REG_WRITE(ah, AR_PHY_TPCRG5 +
524 					  regChainOffset,
525 					  SM(pdGainOverlap_t2,
526 					     AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
527 					  SM(gainBoundaries[0],
528 					     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
529 					  | SM(gainBoundaries[1],
530 					       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
531 					  | SM(gainBoundaries[2],
532 					       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
533 					  | SM(gainBoundaries[3],
534 					       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
535 				}
536 			}
537 
538 			if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
539 				     pEepData->baseEepHeader.pwrTableOffset) {
540 				diff = (u16)
541 				       (pEepData->baseEepHeader.pwrTableOffset
542 					- (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
543 				diff *= 2;
544 
545 				for (j = 0;
546 				     j < ((u16)AR9287_NUM_PDADC_VALUES-diff);
547 				     j++)
548 					pdadcValues[j] = pdadcValues[j+diff];
549 
550 				for (j = (u16)(AR9287_NUM_PDADC_VALUES-diff);
551 				     j < AR9287_NUM_PDADC_VALUES; j++)
552 					pdadcValues[j] =
553 					  pdadcValues[
554 					  AR9287_NUM_PDADC_VALUES-diff];
555 			}
556 
557 			if (!ath9k_hw_AR9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
558 				regOffset = AR_PHY_BASE + (672 << 2) +
559 							   regChainOffset;
560 				for (j = 0; j < 32; j++) {
561 					reg32 = ((pdadcValues[4*j + 0]
562 						  & 0xFF) << 0)  |
563 						((pdadcValues[4*j + 1]
564 						  & 0xFF) << 8)  |
565 						((pdadcValues[4*j + 2]
566 						  & 0xFF) << 16) |
567 						((pdadcValues[4*j + 3]
568 						  & 0xFF) << 24) ;
569 					REG_WRITE(ah, regOffset, reg32);
570 
571 					ath_print(common, ATH_DBG_EEPROM,
572 						  "PDADC (%d,%4x): %4.4x "
573 						  "%8.8x\n",
574 						  i, regChainOffset, regOffset,
575 						  reg32);
576 
577 					ath_print(common, ATH_DBG_EEPROM,
578 						  "PDADC: Chain %d | "
579 						  "PDADC %3d Value %3d | "
580 						  "PDADC %3d Value %3d | "
581 						  "PDADC %3d Value %3d | "
582 						  "PDADC %3d Value %3d |\n",
583 						  i, 4 * j, pdadcValues[4 * j],
584 						  4 * j + 1,
585 						  pdadcValues[4 * j + 1],
586 						  4 * j + 2,
587 						  pdadcValues[4 * j + 2],
588 						  4 * j + 3,
589 						  pdadcValues[4 * j + 3]);
590 
591 					regOffset += 4;
592 				}
593 			}
594 		}
595 	}
596 
597 	*pTxPowerIndexOffset = 0;
598 }
599 
600 static void ath9k_hw_set_AR9287_power_per_rate_table(struct ath_hw *ah,
601 		struct ath9k_channel *chan, int16_t *ratesArray, u16 cfgCtl,
602 		u16 AntennaReduction, u16 twiceMaxRegulatoryPower,
603 		u16 powerLimit)
604 {
605 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
606 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   10
607 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
608 	u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
609 	static const u16 tpScaleReductionTable[5] =
610 		{ 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
611 	int i;
612 	int16_t  twiceLargestAntenna;
613 	struct cal_ctl_data_ar9287 *rep;
614 	struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
615 				    targetPowerCck = {0, {0, 0, 0, 0} };
616 	struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
617 				    targetPowerCckExt = {0, {0, 0, 0, 0} };
618 	struct cal_target_power_ht  targetPowerHt20,
619 				    targetPowerHt40 = {0, {0, 0, 0, 0} };
620 	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
621 	u16 ctlModesFor11g[] =
622 		{CTL_11B, CTL_11G, CTL_2GHT20,
623 		 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40};
624 	u16 numCtlModes = 0, *pCtlMode = NULL, ctlMode, freq;
625 	struct chan_centers centers;
626 	int tx_chainmask;
627 	u16 twiceMinEdgePower;
628 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
629 	tx_chainmask = ah->txchainmask;
630 
631 	ath9k_hw_get_channel_centers(ah, chan, &centers);
632 
633 	twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
634 				  pEepData->modalHeader.antennaGainCh[1]);
635 
636 	twiceLargestAntenna =  (int16_t)min((AntennaReduction) -
637 					    twiceLargestAntenna, 0);
638 
639 	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
640 	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
641 		maxRegAllowedPower -=
642 			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
643 
644 	scaledPower = min(powerLimit, maxRegAllowedPower);
645 
646 	switch (ar5416_get_ntxchains(tx_chainmask)) {
647 	case 1:
648 		break;
649 	case 2:
650 		scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
651 		break;
652 	case 3:
653 		scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
654 		break;
655 	}
656 	scaledPower = max((u16)0, scaledPower);
657 
658 	if (IS_CHAN_2GHZ(chan))	{
659 		numCtlModes =
660 			ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
661 		pCtlMode = ctlModesFor11g;
662 
663 		ath9k_hw_get_legacy_target_powers(ah, chan,
664 						  pEepData->calTargetPowerCck,
665 						  AR9287_NUM_2G_CCK_TARGET_POWERS,
666 						  &targetPowerCck, 4, false);
667 		ath9k_hw_get_legacy_target_powers(ah, chan,
668 						  pEepData->calTargetPower2G,
669 						  AR9287_NUM_2G_20_TARGET_POWERS,
670 						  &targetPowerOfdm, 4, false);
671 		ath9k_hw_get_target_powers(ah, chan,
672 					   pEepData->calTargetPower2GHT20,
673 					   AR9287_NUM_2G_20_TARGET_POWERS,
674 					   &targetPowerHt20, 8, false);
675 
676 		if (IS_CHAN_HT40(chan))	{
677 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
678 			ath9k_hw_get_target_powers(ah, chan,
679 						   pEepData->calTargetPower2GHT40,
680 						   AR9287_NUM_2G_40_TARGET_POWERS,
681 						   &targetPowerHt40, 8, true);
682 			ath9k_hw_get_legacy_target_powers(ah, chan,
683 						  pEepData->calTargetPowerCck,
684 						  AR9287_NUM_2G_CCK_TARGET_POWERS,
685 						  &targetPowerCckExt, 4, true);
686 			ath9k_hw_get_legacy_target_powers(ah, chan,
687 						  pEepData->calTargetPower2G,
688 						  AR9287_NUM_2G_20_TARGET_POWERS,
689 						  &targetPowerOfdmExt, 4, true);
690 		}
691 	}
692 
693 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
694 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
695 				     (pCtlMode[ctlMode] == CTL_2GHT40);
696 		if (isHt40CtlMode)
697 			freq = centers.synth_center;
698 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
699 			freq = centers.ext_center;
700 		else
701 			freq = centers.ctl_center;
702 
703 		if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
704 		    ah->eep_ops->get_eeprom_rev(ah) <= 2)
705 			twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
706 
707 		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
708 			if ((((cfgCtl & ~CTL_MODE_M) |
709 			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
710 			     pEepData->ctlIndex[i]) ||
711 			    (((cfgCtl & ~CTL_MODE_M) |
712 			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
713 			     ((pEepData->ctlIndex[i] &
714 			       CTL_MODE_M) | SD_NO_CTL))) {
715 
716 				rep = &(pEepData->ctlData[i]);
717 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(
718 				    freq,
719 				    rep->ctlEdges[ar5416_get_ntxchains(
720 				    tx_chainmask) - 1],
721 				    IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
722 
723 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
724 					twiceMaxEdgePower = min(
725 							    twiceMaxEdgePower,
726 							    twiceMinEdgePower);
727 				else {
728 					twiceMaxEdgePower = twiceMinEdgePower;
729 					break;
730 				}
731 			}
732 		}
733 
734 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
735 
736 		switch (pCtlMode[ctlMode]) {
737 		case CTL_11B:
738 			for (i = 0;
739 			     i < ARRAY_SIZE(targetPowerCck.tPow2x);
740 			     i++) {
741 				targetPowerCck.tPow2x[i] = (u8)min(
742 					(u16)targetPowerCck.tPow2x[i],
743 					minCtlPower);
744 			}
745 			break;
746 		case CTL_11A:
747 		case CTL_11G:
748 			for (i = 0;
749 			     i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
750 			     i++) {
751 				targetPowerOfdm.tPow2x[i] = (u8)min(
752 					(u16)targetPowerOfdm.tPow2x[i],
753 					minCtlPower);
754 			}
755 			break;
756 		case CTL_5GHT20:
757 		case CTL_2GHT20:
758 			for (i = 0;
759 			     i < ARRAY_SIZE(targetPowerHt20.tPow2x);
760 			     i++) {
761 				targetPowerHt20.tPow2x[i] = (u8)min(
762 					(u16)targetPowerHt20.tPow2x[i],
763 					minCtlPower);
764 			}
765 			break;
766 		case CTL_11B_EXT:
767 			targetPowerCckExt.tPow2x[0] = (u8)min(
768 				    (u16)targetPowerCckExt.tPow2x[0],
769 				    minCtlPower);
770 			break;
771 		case CTL_11A_EXT:
772 		case CTL_11G_EXT:
773 			targetPowerOfdmExt.tPow2x[0] = (u8)min(
774 				    (u16)targetPowerOfdmExt.tPow2x[0],
775 				    minCtlPower);
776 			break;
777 		case CTL_5GHT40:
778 		case CTL_2GHT40:
779 			for (i = 0;
780 			     i < ARRAY_SIZE(targetPowerHt40.tPow2x);
781 			     i++) {
782 				targetPowerHt40.tPow2x[i] = (u8)min(
783 					(u16)targetPowerHt40.tPow2x[i],
784 					minCtlPower);
785 			}
786 			break;
787 		default:
788 			break;
789 		}
790 	}
791 
792 	ratesArray[rate6mb] =
793 	ratesArray[rate9mb] =
794 	ratesArray[rate12mb] =
795 	ratesArray[rate18mb] =
796 	ratesArray[rate24mb] =
797 	targetPowerOfdm.tPow2x[0];
798 
799 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
800 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
801 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
802 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
803 
804 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
805 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
806 
807 	if (IS_CHAN_2GHZ(chan))	{
808 		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
809 		ratesArray[rate2s] = ratesArray[rate2l] =
810 			targetPowerCck.tPow2x[1];
811 		ratesArray[rate5_5s] = ratesArray[rate5_5l] =
812 			targetPowerCck.tPow2x[2];
813 		ratesArray[rate11s] = ratesArray[rate11l] =
814 			targetPowerCck.tPow2x[3];
815 	}
816 	if (IS_CHAN_HT40(chan))	{
817 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
818 			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
819 
820 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
821 		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
822 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
823 		if (IS_CHAN_2GHZ(chan))
824 			ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
825 	}
826 
827 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
828 #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
829 }
830 
831 static void ath9k_hw_AR9287_set_txpower(struct ath_hw *ah,
832 					struct ath9k_channel *chan, u16 cfgCtl,
833 					u8 twiceAntennaReduction,
834 					u8 twiceMaxRegulatoryPower,
835 					u8 powerLimit)
836 {
837 #define INCREASE_MAXPOW_BY_TWO_CHAIN     6
838 #define INCREASE_MAXPOW_BY_THREE_CHAIN   10
839 	struct ath_common *common = ath9k_hw_common(ah);
840 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
841 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
842 	struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
843 	int16_t ratesArray[Ar5416RateSize];
844 	int16_t  txPowerIndexOffset = 0;
845 	u8 ht40PowerIncForPdadc = 2;
846 	int i;
847 
848 	memset(ratesArray, 0, sizeof(ratesArray));
849 
850 	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
851 	    AR9287_EEP_MINOR_VER_2)
852 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
853 
854 	ath9k_hw_set_AR9287_power_per_rate_table(ah, chan,
855 						 &ratesArray[0], cfgCtl,
856 						 twiceAntennaReduction,
857 						 twiceMaxRegulatoryPower,
858 						 powerLimit);
859 
860 	ath9k_hw_set_AR9287_power_cal_table(ah, chan, &txPowerIndexOffset);
861 
862 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
863 		ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
864 		if (ratesArray[i] > AR9287_MAX_RATE_POWER)
865 			ratesArray[i] = AR9287_MAX_RATE_POWER;
866 	}
867 
868 	if (AR_SREV_9280_10_OR_LATER(ah)) {
869 		for (i = 0; i < Ar5416RateSize; i++)
870 			ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
871 	}
872 
873 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
874 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
875 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
876 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
877 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
878 
879 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
880 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
881 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
882 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
883 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
884 
885 	if (IS_CHAN_2GHZ(chan))	{
886 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
887 			  ATH9K_POW_SM(ratesArray[rate2s], 24)
888 			  | ATH9K_POW_SM(ratesArray[rate2l], 16)
889 			  | ATH9K_POW_SM(ratesArray[rateXr], 8)
890 			  | ATH9K_POW_SM(ratesArray[rate1l], 0));
891 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
892 			  ATH9K_POW_SM(ratesArray[rate11s], 24)
893 			  | ATH9K_POW_SM(ratesArray[rate11l], 16)
894 			  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
895 			  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
896 	}
897 
898 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
899 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
900 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
901 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
902 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
903 
904 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
905 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
906 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
907 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
908 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
909 
910 	if (IS_CHAN_HT40(chan))	{
911 		if (ath9k_hw_AR9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
912 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
913 				  ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
914 				  | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
915 				  | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
916 				  | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
917 
918 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
919 				  ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
920 				  | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
921 				  | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
922 				  | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
923 		} else {
924 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
925 				  ATH9K_POW_SM(ratesArray[rateHt40_3] +
926 					       ht40PowerIncForPdadc, 24)
927 				  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
928 						 ht40PowerIncForPdadc, 16)
929 				  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
930 						 ht40PowerIncForPdadc, 8)
931 				  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
932 						 ht40PowerIncForPdadc, 0));
933 
934 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
935 				  ATH9K_POW_SM(ratesArray[rateHt40_7] +
936 					       ht40PowerIncForPdadc, 24)
937 				  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
938 						 ht40PowerIncForPdadc, 16)
939 				  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
940 						 ht40PowerIncForPdadc, 8)
941 				  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
942 						 ht40PowerIncForPdadc, 0));
943 		}
944 
945 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
946 			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
947 			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
948 			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
949 			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
950 	}
951 
952 	if (IS_CHAN_2GHZ(chan))
953 		i = rate1l;
954 	else
955 		i = rate6mb;
956 
957 	if (AR_SREV_9280_10_OR_LATER(ah))
958 		regulatory->max_power_level =
959 			ratesArray[i] + AR9287_PWR_TABLE_OFFSET_DB * 2;
960 	else
961 		regulatory->max_power_level = ratesArray[i];
962 
963 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
964 	case 1:
965 		break;
966 	case 2:
967 		regulatory->max_power_level +=
968 			INCREASE_MAXPOW_BY_TWO_CHAIN;
969 		break;
970 	case 3:
971 		regulatory->max_power_level +=
972 			INCREASE_MAXPOW_BY_THREE_CHAIN;
973 		break;
974 	default:
975 		ath_print(common, ATH_DBG_EEPROM,
976 			  "Invalid chainmask configuration\n");
977 		break;
978 	}
979 }
980 
981 static void ath9k_hw_AR9287_set_addac(struct ath_hw *ah,
982 				      struct ath9k_channel *chan)
983 {
984 }
985 
986 static void ath9k_hw_AR9287_set_board_values(struct ath_hw *ah,
987 					     struct ath9k_channel *chan)
988 {
989 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
990 	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
991 	u16 antWrites[AR9287_ANT_16S];
992 	u32 regChainOffset;
993 	u8 txRxAttenLocal;
994 	int i, j, offset_num;
995 
996 	pModal = &eep->modalHeader;
997 
998 	antWrites[0] = (u16)((pModal->antCtrlCommon >> 28) & 0xF);
999 	antWrites[1] = (u16)((pModal->antCtrlCommon >> 24) & 0xF);
1000 	antWrites[2] = (u16)((pModal->antCtrlCommon >> 20) & 0xF);
1001 	antWrites[3] = (u16)((pModal->antCtrlCommon >> 16) & 0xF);
1002 	antWrites[4] = (u16)((pModal->antCtrlCommon >> 12) & 0xF);
1003 	antWrites[5] = (u16)((pModal->antCtrlCommon >> 8) & 0xF);
1004 	antWrites[6] = (u16)((pModal->antCtrlCommon >> 4)  & 0xF);
1005 	antWrites[7] = (u16)(pModal->antCtrlCommon & 0xF);
1006 
1007 	offset_num = 8;
1008 
1009 	for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
1010 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 28) & 0xf);
1011 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 10) & 0x3);
1012 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 8) & 0x3);
1013 		antWrites[j++] = 0;
1014 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 6) & 0x3);
1015 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 4) & 0x3);
1016 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 2) & 0x3);
1017 		antWrites[j++] = (u16)(pModal->antCtrlChain[i] & 0x3);
1018 	}
1019 
1020 	REG_WRITE(ah, AR_PHY_SWITCH_COM,
1021 		  ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
1022 
1023 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
1024 		regChainOffset = i * 0x1000;
1025 
1026 		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
1027 			  pModal->antCtrlChain[i]);
1028 
1029 		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
1030 			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
1031 			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
1032 			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1033 			  SM(pModal->iqCalICh[i],
1034 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1035 			  SM(pModal->iqCalQCh[i],
1036 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1037 
1038 		txRxAttenLocal = pModal->txRxAttenCh[i];
1039 
1040 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1041 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
1042 			      pModal->bswMargin[i]);
1043 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1044 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
1045 			      pModal->bswAtten[i]);
1046 		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
1047 			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
1048 			      txRxAttenLocal);
1049 		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
1050 			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
1051 			      pModal->rxTxMarginCh[i]);
1052 	}
1053 
1054 
1055 	if (IS_CHAN_HT40(chan))
1056 		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1057 			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
1058 	else
1059 		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1060 			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1061 
1062 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1063 		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1064 
1065 	REG_WRITE(ah, AR_PHY_RF_CTL4,
1066 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1067 		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1068 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1069 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1070 
1071 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
1072 		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
1073 
1074 	REG_RMW_FIELD(ah, AR_PHY_CCA,
1075 		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
1076 	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
1077 		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
1078 
1079 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0, AR9287_AN_RF2G3_DB1,
1080 				  AR9287_AN_RF2G3_DB1_S, pModal->db1);
1081 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0, AR9287_AN_RF2G3_DB2,
1082 				  AR9287_AN_RF2G3_DB2_S, pModal->db2);
1083 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0,
1084 				  AR9287_AN_RF2G3_OB_CCK,
1085 				  AR9287_AN_RF2G3_OB_CCK_S, pModal->ob_cck);
1086 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0,
1087 				  AR9287_AN_RF2G3_OB_PSK,
1088 				  AR9287_AN_RF2G3_OB_PSK_S, pModal->ob_psk);
1089 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0,
1090 				  AR9287_AN_RF2G3_OB_QAM,
1091 				  AR9287_AN_RF2G3_OB_QAM_S, pModal->ob_qam);
1092 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0,
1093 				  AR9287_AN_RF2G3_OB_PAL_OFF,
1094 				  AR9287_AN_RF2G3_OB_PAL_OFF_S,
1095 				  pModal->ob_pal_off);
1096 
1097 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
1098 				  AR9287_AN_RF2G3_DB1, AR9287_AN_RF2G3_DB1_S,
1099 				  pModal->db1);
1100 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1, AR9287_AN_RF2G3_DB2,
1101 				  AR9287_AN_RF2G3_DB2_S, pModal->db2);
1102 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
1103 				  AR9287_AN_RF2G3_OB_CCK,
1104 				  AR9287_AN_RF2G3_OB_CCK_S, pModal->ob_cck);
1105 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
1106 				  AR9287_AN_RF2G3_OB_PSK,
1107 				  AR9287_AN_RF2G3_OB_PSK_S, pModal->ob_psk);
1108 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
1109 				  AR9287_AN_RF2G3_OB_QAM,
1110 				  AR9287_AN_RF2G3_OB_QAM_S, pModal->ob_qam);
1111 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
1112 				  AR9287_AN_RF2G3_OB_PAL_OFF,
1113 				  AR9287_AN_RF2G3_OB_PAL_OFF_S,
1114 				  pModal->ob_pal_off);
1115 
1116 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1117 		      AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
1118 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1119 		      AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
1120 
1121 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
1122 				  AR9287_AN_TOP2_XPABIAS_LVL,
1123 				  AR9287_AN_TOP2_XPABIAS_LVL_S,
1124 				  pModal->xpaBiasLvl);
1125 }
1126 
1127 static u8 ath9k_hw_AR9287_get_num_ant_config(struct ath_hw *ah,
1128 					     enum ieee80211_band freq_band)
1129 {
1130 	return 1;
1131 }
1132 
1133 static u16 ath9k_hw_AR9287_get_eeprom_antenna_cfg(struct ath_hw *ah,
1134 						  struct ath9k_channel *chan)
1135 {
1136 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
1137 	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
1138 
1139 	return pModal->antCtrlCommon & 0xFFFF;
1140 }
1141 
1142 static u16 ath9k_hw_AR9287_get_spur_channel(struct ath_hw *ah,
1143 					    u16 i, bool is2GHz)
1144 {
1145 #define EEP_MAP9287_SPURCHAN \
1146 	(ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
1147 	struct ath_common *common = ath9k_hw_common(ah);
1148 	u16 spur_val = AR_NO_SPUR;
1149 
1150 	ath_print(common, ATH_DBG_ANI,
1151 		  "Getting spur idx %d is2Ghz. %d val %x\n",
1152 		  i, is2GHz, ah->config.spurchans[i][is2GHz]);
1153 
1154 	switch (ah->config.spurmode) {
1155 	case SPUR_DISABLE:
1156 		break;
1157 	case SPUR_ENABLE_IOCTL:
1158 		spur_val = ah->config.spurchans[i][is2GHz];
1159 		ath_print(common, ATH_DBG_ANI,
1160 			  "Getting spur val from new loc. %d\n", spur_val);
1161 		break;
1162 	case SPUR_ENABLE_EEPROM:
1163 		spur_val = EEP_MAP9287_SPURCHAN;
1164 		break;
1165 	}
1166 
1167 	return spur_val;
1168 
1169 #undef EEP_MAP9287_SPURCHAN
1170 }
1171 
1172 const struct eeprom_ops eep_AR9287_ops = {
1173 	.check_eeprom		= ath9k_hw_AR9287_check_eeprom,
1174 	.get_eeprom		= ath9k_hw_AR9287_get_eeprom,
1175 	.fill_eeprom		= ath9k_hw_AR9287_fill_eeprom,
1176 	.get_eeprom_ver		= ath9k_hw_AR9287_get_eeprom_ver,
1177 	.get_eeprom_rev		= ath9k_hw_AR9287_get_eeprom_rev,
1178 	.get_num_ant_config	= ath9k_hw_AR9287_get_num_ant_config,
1179 	.get_eeprom_antenna_cfg	= ath9k_hw_AR9287_get_eeprom_antenna_cfg,
1180 	.set_board_values	= ath9k_hw_AR9287_set_board_values,
1181 	.set_addac		= ath9k_hw_AR9287_set_addac,
1182 	.set_txpower		= ath9k_hw_AR9287_set_txpower,
1183 	.get_spur_channel	= ath9k_hw_AR9287_get_spur_channel
1184 };
1185