1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20 
21 #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
22 
23 static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
24 {
25 	return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
26 }
27 
28 static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
29 {
30 	return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
31 }
32 
33 static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
34 {
35 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
36 	struct ath_common *common = ath9k_hw_common(ah);
37 	u16 *eep_data;
38 	int addr, eep_start_loc = AR9287_EEP_START_LOC;
39 	eep_data = (u16 *)eep;
40 
41 	for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
42 		if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
43 					 eep_data)) {
44 			ath_dbg(common, ATH_DBG_EEPROM,
45 				"Unable to read eeprom region\n");
46 			return false;
47 		}
48 		eep_data++;
49 	}
50 
51 	return true;
52 }
53 
54 static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
55 {
56 	u16 *eep_data = (u16 *)&ah->eeprom.map9287;
57 
58 	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
59 				     AR9287_HTC_EEP_START_LOC,
60 				     SIZE_EEPROM_AR9287);
61 	return true;
62 }
63 
64 static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
65 {
66 	struct ath_common *common = ath9k_hw_common(ah);
67 
68 	if (!ath9k_hw_use_flash(ah)) {
69 		ath_dbg(common, ATH_DBG_EEPROM,
70 			"Reading from EEPROM, not flash\n");
71 	}
72 
73 	if (common->bus_ops->ath_bus_type == ATH_USB)
74 		return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
75 	else
76 		return __ath9k_hw_ar9287_fill_eeprom(ah);
77 }
78 
79 static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
80 {
81 	u32 sum = 0, el, integer;
82 	u16 temp, word, magic, magic2, *eepdata;
83 	int i, addr;
84 	bool need_swap = false;
85 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
86 	struct ath_common *common = ath9k_hw_common(ah);
87 
88 	if (!ath9k_hw_use_flash(ah)) {
89 		if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
90 					 &magic)) {
91 			ath_err(common, "Reading Magic # failed\n");
92 			return false;
93 		}
94 
95 		ath_dbg(common, ATH_DBG_EEPROM,
96 			"Read Magic = 0x%04X\n", magic);
97 
98 		if (magic != AR5416_EEPROM_MAGIC) {
99 			magic2 = swab16(magic);
100 
101 			if (magic2 == AR5416_EEPROM_MAGIC) {
102 				need_swap = true;
103 				eepdata = (u16 *)(&ah->eeprom);
104 
105 				for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
106 					temp = swab16(*eepdata);
107 					*eepdata = temp;
108 					eepdata++;
109 				}
110 			} else {
111 				ath_err(common,
112 					"Invalid EEPROM Magic. Endianness mismatch.\n");
113 				return -EINVAL;
114 			}
115 		}
116 	}
117 
118 	ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
119 		need_swap ? "True" : "False");
120 
121 	if (need_swap)
122 		el = swab16(ah->eeprom.map9287.baseEepHeader.length);
123 	else
124 		el = ah->eeprom.map9287.baseEepHeader.length;
125 
126 	if (el > sizeof(struct ar9287_eeprom))
127 		el = sizeof(struct ar9287_eeprom) / sizeof(u16);
128 	else
129 		el = el / sizeof(u16);
130 
131 	eepdata = (u16 *)(&ah->eeprom);
132 
133 	for (i = 0; i < el; i++)
134 		sum ^= *eepdata++;
135 
136 	if (need_swap) {
137 		word = swab16(eep->baseEepHeader.length);
138 		eep->baseEepHeader.length = word;
139 
140 		word = swab16(eep->baseEepHeader.checksum);
141 		eep->baseEepHeader.checksum = word;
142 
143 		word = swab16(eep->baseEepHeader.version);
144 		eep->baseEepHeader.version = word;
145 
146 		word = swab16(eep->baseEepHeader.regDmn[0]);
147 		eep->baseEepHeader.regDmn[0] = word;
148 
149 		word = swab16(eep->baseEepHeader.regDmn[1]);
150 		eep->baseEepHeader.regDmn[1] = word;
151 
152 		word = swab16(eep->baseEepHeader.rfSilent);
153 		eep->baseEepHeader.rfSilent = word;
154 
155 		word = swab16(eep->baseEepHeader.blueToothOptions);
156 		eep->baseEepHeader.blueToothOptions = word;
157 
158 		word = swab16(eep->baseEepHeader.deviceCap);
159 		eep->baseEepHeader.deviceCap = word;
160 
161 		integer = swab32(eep->modalHeader.antCtrlCommon);
162 		eep->modalHeader.antCtrlCommon = integer;
163 
164 		for (i = 0; i < AR9287_MAX_CHAINS; i++) {
165 			integer = swab32(eep->modalHeader.antCtrlChain[i]);
166 			eep->modalHeader.antCtrlChain[i] = integer;
167 		}
168 
169 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
170 			word = swab16(eep->modalHeader.spurChans[i].spurChan);
171 			eep->modalHeader.spurChans[i].spurChan = word;
172 		}
173 	}
174 
175 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
176 	    || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
177 		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
178 			sum, ah->eep_ops->get_eeprom_ver(ah));
179 		return -EINVAL;
180 	}
181 
182 	return 0;
183 }
184 
185 static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
186 				      enum eeprom_param param)
187 {
188 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
189 	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
190 	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
191 	u16 ver_minor;
192 
193 	ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
194 
195 	switch (param) {
196 	case EEP_NFTHRESH_2:
197 		return pModal->noiseFloorThreshCh[0];
198 	case EEP_MAC_LSW:
199 		return get_unaligned_be16(pBase->macAddr);
200 	case EEP_MAC_MID:
201 		return get_unaligned_be16(pBase->macAddr + 2);
202 	case EEP_MAC_MSW:
203 		return get_unaligned_be16(pBase->macAddr + 4);
204 	case EEP_REG_0:
205 		return pBase->regDmn[0];
206 	case EEP_REG_1:
207 		return pBase->regDmn[1];
208 	case EEP_OP_CAP:
209 		return pBase->deviceCap;
210 	case EEP_OP_MODE:
211 		return pBase->opCapFlags;
212 	case EEP_RF_SILENT:
213 		return pBase->rfSilent;
214 	case EEP_MINOR_REV:
215 		return ver_minor;
216 	case EEP_TX_MASK:
217 		return pBase->txMask;
218 	case EEP_RX_MASK:
219 		return pBase->rxMask;
220 	case EEP_DEV_TYPE:
221 		return pBase->deviceType;
222 	case EEP_OL_PWRCTRL:
223 		return pBase->openLoopPwrCntl;
224 	case EEP_TEMPSENSE_SLOPE:
225 		if (ver_minor >= AR9287_EEP_MINOR_VER_2)
226 			return pBase->tempSensSlope;
227 		else
228 			return 0;
229 	case EEP_TEMPSENSE_SLOPE_PAL_ON:
230 		if (ver_minor >= AR9287_EEP_MINOR_VER_3)
231 			return pBase->tempSensSlopePalOn;
232 		else
233 			return 0;
234 	default:
235 		return 0;
236 	}
237 }
238 
239 static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
240 			    struct ath9k_channel *chan,
241 			    struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
242 			    u8 *pCalChans,  u16 availPiers, int8_t *pPwr)
243 {
244 	u16 idxL = 0, idxR = 0, numPiers;
245 	bool match;
246 	struct chan_centers centers;
247 
248 	ath9k_hw_get_channel_centers(ah, chan, &centers);
249 
250 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
251 		if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
252 			break;
253 	}
254 
255 	match = ath9k_hw_get_lower_upper_index(
256 		(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
257 		pCalChans, numPiers, &idxL, &idxR);
258 
259 	if (match) {
260 		*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
261 	} else {
262 		*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
263 			 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
264 	}
265 
266 }
267 
268 static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
269 					  int32_t txPower, u16 chain)
270 {
271 	u32 tmpVal;
272 	u32 a;
273 
274 	/* Enable OLPC for chain 0 */
275 
276 	tmpVal = REG_READ(ah, 0xa270);
277 	tmpVal = tmpVal & 0xFCFFFFFF;
278 	tmpVal = tmpVal | (0x3 << 24);
279 	REG_WRITE(ah, 0xa270, tmpVal);
280 
281 	/* Enable OLPC for chain 1 */
282 
283 	tmpVal = REG_READ(ah, 0xb270);
284 	tmpVal = tmpVal & 0xFCFFFFFF;
285 	tmpVal = tmpVal | (0x3 << 24);
286 	REG_WRITE(ah, 0xb270, tmpVal);
287 
288 	/* Write the OLPC ref power for chain 0 */
289 
290 	if (chain == 0) {
291 		tmpVal = REG_READ(ah, 0xa398);
292 		tmpVal = tmpVal & 0xff00ffff;
293 		a = (txPower)&0xff;
294 		tmpVal = tmpVal | (a << 16);
295 		REG_WRITE(ah, 0xa398, tmpVal);
296 	}
297 
298 	/* Write the OLPC ref power for chain 1 */
299 
300 	if (chain == 1) {
301 		tmpVal = REG_READ(ah, 0xb398);
302 		tmpVal = tmpVal & 0xff00ffff;
303 		a = (txPower)&0xff;
304 		tmpVal = tmpVal | (a << 16);
305 		REG_WRITE(ah, 0xb398, tmpVal);
306 	}
307 }
308 
309 static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
310 						struct ath9k_channel *chan,
311 						int16_t *pTxPowerIndexOffset)
312 {
313 	struct cal_data_per_freq_ar9287 *pRawDataset;
314 	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
315 	u8 *pCalBChans = NULL;
316 	u16 pdGainOverlap_t2;
317 	u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
318 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
319 	u16 numPiers = 0, i, j;
320 	u16 numXpdGain, xpdMask;
321 	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
322 	u32 reg32, regOffset, regChainOffset, regval;
323 	int16_t diff = 0;
324 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
325 
326 	xpdMask = pEepData->modalHeader.xpdGain;
327 
328 	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
329 	    AR9287_EEP_MINOR_VER_2)
330 		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
331 	else
332 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
333 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
334 
335 	if (IS_CHAN_2GHZ(chan)) {
336 		pCalBChans = pEepData->calFreqPier2G;
337 		numPiers = AR9287_NUM_2G_CAL_PIERS;
338 		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
339 			pRawDatasetOpenLoop =
340 			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
341 			ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
342 		}
343 	}
344 
345 	numXpdGain = 0;
346 
347 	/* Calculate the value of xpdgains from the xpdGain Mask */
348 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
349 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
350 			if (numXpdGain >= AR5416_NUM_PD_GAINS)
351 				break;
352 			xpdGainValues[numXpdGain] =
353 				(u16)(AR5416_PD_GAINS_IN_MASK-i);
354 			numXpdGain++;
355 		}
356 	}
357 
358 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
359 		      (numXpdGain - 1) & 0x3);
360 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
361 		      xpdGainValues[0]);
362 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
363 		      xpdGainValues[1]);
364 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
365 		      xpdGainValues[2]);
366 
367 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
368 		regChainOffset = i * 0x1000;
369 
370 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
371 			pRawDatasetOpenLoop =
372 			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
373 
374 			if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
375 				int8_t txPower;
376 				ar9287_eeprom_get_tx_gain_index(ah, chan,
377 							pRawDatasetOpenLoop,
378 							pCalBChans, numPiers,
379 							&txPower);
380 				ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
381 			} else {
382 				pRawDataset =
383 					(struct cal_data_per_freq_ar9287 *)
384 					pEepData->calPierData2G[i];
385 
386 				ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
387 							   pRawDataset,
388 							   pCalBChans, numPiers,
389 							   pdGainOverlap_t2,
390 							   gainBoundaries,
391 							   pdadcValues,
392 							   numXpdGain);
393 			}
394 
395 			ENABLE_REGWRITE_BUFFER(ah);
396 
397 			if (i == 0) {
398 				if (!ath9k_hw_ar9287_get_eeprom(ah,
399 							EEP_OL_PWRCTRL)) {
400 
401 					regval = SM(pdGainOverlap_t2,
402 						    AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
403 						| SM(gainBoundaries[0],
404 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
405 						| SM(gainBoundaries[1],
406 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
407 						| SM(gainBoundaries[2],
408 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
409 						| SM(gainBoundaries[3],
410 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
411 
412 					REG_WRITE(ah,
413 						  AR_PHY_TPCRG5 + regChainOffset,
414 						  regval);
415 				}
416 			}
417 
418 			if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
419 			    pEepData->baseEepHeader.pwrTableOffset) {
420 				diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
421 					     (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
422 				diff *= 2;
423 
424 				for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
425 					pdadcValues[j] = pdadcValues[j+diff];
426 
427 				for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
428 				     j < AR5416_NUM_PDADC_VALUES; j++)
429 					pdadcValues[j] =
430 					  pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
431 			}
432 
433 			if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
434 				regOffset = AR_PHY_BASE +
435 					(672 << 2) + regChainOffset;
436 
437 				for (j = 0; j < 32; j++) {
438 					reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
439 
440 					REG_WRITE(ah, regOffset, reg32);
441 					regOffset += 4;
442 				}
443 			}
444 			REGWRITE_BUFFER_FLUSH(ah);
445 		}
446 	}
447 
448 	*pTxPowerIndexOffset = 0;
449 }
450 
451 static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
452 						     struct ath9k_channel *chan,
453 						     int16_t *ratesArray,
454 						     u16 cfgCtl,
455 						     u16 AntennaReduction,
456 						     u16 twiceMaxRegulatoryPower,
457 						     u16 powerLimit)
458 {
459 #define CMP_CTL \
460 	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
461 	 pEepData->ctlIndex[i])
462 
463 #define CMP_NO_CTL \
464 	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
465 	 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
466 
467 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
468 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   10
469 
470 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
471 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
472 	static const u16 tpScaleReductionTable[5] =
473 		{ 0, 3, 6, 9, MAX_RATE_POWER };
474 	int i;
475 	int16_t twiceLargestAntenna;
476 	struct cal_ctl_data_ar9287 *rep;
477 	struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
478 				    targetPowerCck = {0, {0, 0, 0, 0} };
479 	struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
480 				    targetPowerCckExt = {0, {0, 0, 0, 0} };
481 	struct cal_target_power_ht targetPowerHt20,
482 				    targetPowerHt40 = {0, {0, 0, 0, 0} };
483 	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
484 	static const u16 ctlModesFor11g[] = {
485 		CTL_11B, CTL_11G, CTL_2GHT20,
486 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
487 	};
488 	u16 numCtlModes = 0;
489 	const u16 *pCtlMode = NULL;
490 	u16 ctlMode, freq;
491 	struct chan_centers centers;
492 	int tx_chainmask;
493 	u16 twiceMinEdgePower;
494 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
495 	tx_chainmask = ah->txchainmask;
496 
497 	ath9k_hw_get_channel_centers(ah, chan, &centers);
498 
499 	/* Compute TxPower reduction due to Antenna Gain */
500 	twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
501 				  pEepData->modalHeader.antennaGainCh[1]);
502 	twiceLargestAntenna = (int16_t)min((AntennaReduction) -
503 					   twiceLargestAntenna, 0);
504 
505 	/*
506 	 * scaledPower is the minimum of the user input power level
507 	 * and the regulatory allowed power level.
508 	 */
509 	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
510 
511 	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
512 		maxRegAllowedPower -=
513 			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
514 
515 	scaledPower = min(powerLimit, maxRegAllowedPower);
516 
517 	/*
518 	 * Reduce scaled Power by number of chains active
519 	 * to get the per chain tx power level.
520 	 */
521 	switch (ar5416_get_ntxchains(tx_chainmask)) {
522 	case 1:
523 		break;
524 	case 2:
525 		if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
526 			scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
527 		else
528 			scaledPower = 0;
529 		break;
530 	case 3:
531 		if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
532 			scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
533 		else
534 			scaledPower = 0;
535 		break;
536 	}
537 	scaledPower = max((u16)0, scaledPower);
538 
539 	/*
540 	 * Get TX power from EEPROM.
541 	 */
542 	if (IS_CHAN_2GHZ(chan))	{
543 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
544 		numCtlModes =
545 			ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
546 
547 		pCtlMode = ctlModesFor11g;
548 
549 		ath9k_hw_get_legacy_target_powers(ah, chan,
550 						  pEepData->calTargetPowerCck,
551 						  AR9287_NUM_2G_CCK_TARGET_POWERS,
552 						  &targetPowerCck, 4, false);
553 		ath9k_hw_get_legacy_target_powers(ah, chan,
554 						  pEepData->calTargetPower2G,
555 						  AR9287_NUM_2G_20_TARGET_POWERS,
556 						  &targetPowerOfdm, 4, false);
557 		ath9k_hw_get_target_powers(ah, chan,
558 					   pEepData->calTargetPower2GHT20,
559 					   AR9287_NUM_2G_20_TARGET_POWERS,
560 					   &targetPowerHt20, 8, false);
561 
562 		if (IS_CHAN_HT40(chan))	{
563 			/* All 2G CTLs */
564 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
565 			ath9k_hw_get_target_powers(ah, chan,
566 						   pEepData->calTargetPower2GHT40,
567 						   AR9287_NUM_2G_40_TARGET_POWERS,
568 						   &targetPowerHt40, 8, true);
569 			ath9k_hw_get_legacy_target_powers(ah, chan,
570 						  pEepData->calTargetPowerCck,
571 						  AR9287_NUM_2G_CCK_TARGET_POWERS,
572 						  &targetPowerCckExt, 4, true);
573 			ath9k_hw_get_legacy_target_powers(ah, chan,
574 						  pEepData->calTargetPower2G,
575 						  AR9287_NUM_2G_20_TARGET_POWERS,
576 						  &targetPowerOfdmExt, 4, true);
577 		}
578 	}
579 
580 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
581 		bool isHt40CtlMode =
582 			(pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
583 
584 		if (isHt40CtlMode)
585 			freq = centers.synth_center;
586 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
587 			freq = centers.ext_center;
588 		else
589 			freq = centers.ctl_center;
590 
591 		/* Walk through the CTL indices stored in EEPROM */
592 		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
593 			struct cal_ctl_edges *pRdEdgesPower;
594 
595 			/*
596 			 * Compare test group from regulatory channel list
597 			 * with test mode from pCtlMode list
598 			 */
599 			if (CMP_CTL || CMP_NO_CTL) {
600 				rep = &(pEepData->ctlData[i]);
601 				pRdEdgesPower =
602 				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
603 
604 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
605 								pRdEdgesPower,
606 								IS_CHAN_2GHZ(chan),
607 								AR5416_NUM_BAND_EDGES);
608 
609 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
610 					twiceMaxEdgePower = min(twiceMaxEdgePower,
611 								twiceMinEdgePower);
612 				} else {
613 					twiceMaxEdgePower = twiceMinEdgePower;
614 					break;
615 				}
616 			}
617 		}
618 
619 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
620 
621 		/* Apply ctl mode to correct target power set */
622 		switch (pCtlMode[ctlMode]) {
623 		case CTL_11B:
624 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
625 				targetPowerCck.tPow2x[i] =
626 					(u8)min((u16)targetPowerCck.tPow2x[i],
627 						minCtlPower);
628 			}
629 			break;
630 		case CTL_11A:
631 		case CTL_11G:
632 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
633 				targetPowerOfdm.tPow2x[i] =
634 					(u8)min((u16)targetPowerOfdm.tPow2x[i],
635 						minCtlPower);
636 			}
637 			break;
638 		case CTL_5GHT20:
639 		case CTL_2GHT20:
640 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
641 				targetPowerHt20.tPow2x[i] =
642 					(u8)min((u16)targetPowerHt20.tPow2x[i],
643 						minCtlPower);
644 			}
645 			break;
646 		case CTL_11B_EXT:
647 			targetPowerCckExt.tPow2x[0] =
648 				(u8)min((u16)targetPowerCckExt.tPow2x[0],
649 					minCtlPower);
650 			break;
651 		case CTL_11A_EXT:
652 		case CTL_11G_EXT:
653 			targetPowerOfdmExt.tPow2x[0] =
654 				(u8)min((u16)targetPowerOfdmExt.tPow2x[0],
655 					minCtlPower);
656 			break;
657 		case CTL_5GHT40:
658 		case CTL_2GHT40:
659 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
660 				targetPowerHt40.tPow2x[i] =
661 					(u8)min((u16)targetPowerHt40.tPow2x[i],
662 						minCtlPower);
663 			}
664 			break;
665 		default:
666 			break;
667 		}
668 	}
669 
670 	/* Now set the rates array */
671 
672 	ratesArray[rate6mb] =
673 	ratesArray[rate9mb] =
674 	ratesArray[rate12mb] =
675 	ratesArray[rate18mb] =
676 	ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
677 
678 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
679 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
680 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
681 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
682 
683 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
684 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
685 
686 	if (IS_CHAN_2GHZ(chan))	{
687 		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
688 		ratesArray[rate2s] =
689 		ratesArray[rate2l] = targetPowerCck.tPow2x[1];
690 		ratesArray[rate5_5s] =
691 		ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
692 		ratesArray[rate11s] =
693 		ratesArray[rate11l] = targetPowerCck.tPow2x[3];
694 	}
695 	if (IS_CHAN_HT40(chan))	{
696 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
697 			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
698 
699 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
700 		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
701 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
702 
703 		if (IS_CHAN_2GHZ(chan))
704 			ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
705 	}
706 
707 #undef CMP_CTL
708 #undef CMP_NO_CTL
709 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
710 #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
711 }
712 
713 static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
714 					struct ath9k_channel *chan, u16 cfgCtl,
715 					u8 twiceAntennaReduction,
716 					u8 twiceMaxRegulatoryPower,
717 					u8 powerLimit, bool test)
718 {
719 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
720 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
721 	struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
722 	int16_t ratesArray[Ar5416RateSize];
723 	int16_t txPowerIndexOffset = 0;
724 	u8 ht40PowerIncForPdadc = 2;
725 	int i;
726 
727 	memset(ratesArray, 0, sizeof(ratesArray));
728 
729 	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
730 	    AR9287_EEP_MINOR_VER_2)
731 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
732 
733 	ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
734 						 &ratesArray[0], cfgCtl,
735 						 twiceAntennaReduction,
736 						 twiceMaxRegulatoryPower,
737 						 powerLimit);
738 
739 	ath9k_hw_set_ar9287_power_cal_table(ah, chan, &txPowerIndexOffset);
740 
741 	regulatory->max_power_level = 0;
742 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
743 		ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
744 		if (ratesArray[i] > MAX_RATE_POWER)
745 			ratesArray[i] = MAX_RATE_POWER;
746 
747 		if (ratesArray[i] > regulatory->max_power_level)
748 			regulatory->max_power_level = ratesArray[i];
749 	}
750 
751 	if (test)
752 		return;
753 
754 	if (IS_CHAN_2GHZ(chan))
755 		i = rate1l;
756 	else
757 		i = rate6mb;
758 
759 	regulatory->max_power_level = ratesArray[i];
760 
761 	if (AR_SREV_9280_20_OR_LATER(ah)) {
762 		for (i = 0; i < Ar5416RateSize; i++)
763 			ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
764 	}
765 
766 	ENABLE_REGWRITE_BUFFER(ah);
767 
768 	/* OFDM power per rate */
769 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
770 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
771 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
772 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
773 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
774 
775 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
776 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
777 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
778 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
779 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
780 
781 	/* CCK power per rate */
782 	if (IS_CHAN_2GHZ(chan))	{
783 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
784 			  ATH9K_POW_SM(ratesArray[rate2s], 24)
785 			  | ATH9K_POW_SM(ratesArray[rate2l], 16)
786 			  | ATH9K_POW_SM(ratesArray[rateXr], 8)
787 			  | ATH9K_POW_SM(ratesArray[rate1l], 0));
788 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
789 			  ATH9K_POW_SM(ratesArray[rate11s], 24)
790 			  | ATH9K_POW_SM(ratesArray[rate11l], 16)
791 			  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
792 			  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
793 	}
794 
795 	/* HT20 power per rate */
796 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
797 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
798 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
799 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
800 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
801 
802 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
803 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
804 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
805 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
806 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
807 
808 	/* HT40 power per rate */
809 	if (IS_CHAN_HT40(chan))	{
810 		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
811 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
812 				  ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
813 				  | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
814 				  | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
815 				  | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
816 
817 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
818 				  ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
819 				  | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
820 				  | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
821 				  | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
822 		} else {
823 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
824 				  ATH9K_POW_SM(ratesArray[rateHt40_3] +
825 					       ht40PowerIncForPdadc, 24)
826 				  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
827 						 ht40PowerIncForPdadc, 16)
828 				  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
829 						 ht40PowerIncForPdadc, 8)
830 				  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
831 						 ht40PowerIncForPdadc, 0));
832 
833 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
834 				  ATH9K_POW_SM(ratesArray[rateHt40_7] +
835 					       ht40PowerIncForPdadc, 24)
836 				  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
837 						 ht40PowerIncForPdadc, 16)
838 				  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
839 						 ht40PowerIncForPdadc, 8)
840 				  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
841 						 ht40PowerIncForPdadc, 0));
842 		}
843 
844 		/* Dup/Ext power per rate */
845 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
846 			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
847 			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
848 			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
849 			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
850 	}
851 	REGWRITE_BUFFER_FLUSH(ah);
852 }
853 
854 static void ath9k_hw_ar9287_set_addac(struct ath_hw *ah,
855 				      struct ath9k_channel *chan)
856 {
857 }
858 
859 static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
860 					     struct ath9k_channel *chan)
861 {
862 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
863 	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
864 	u32 regChainOffset, regval;
865 	u8 txRxAttenLocal;
866 	int i;
867 
868 	pModal = &eep->modalHeader;
869 
870 	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
871 
872 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
873 		regChainOffset = i * 0x1000;
874 
875 		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
876 			  pModal->antCtrlChain[i]);
877 
878 		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
879 			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
880 			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
881 			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
882 			  SM(pModal->iqCalICh[i],
883 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
884 			  SM(pModal->iqCalQCh[i],
885 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
886 
887 		txRxAttenLocal = pModal->txRxAttenCh[i];
888 
889 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
890 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
891 			      pModal->bswMargin[i]);
892 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
893 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
894 			      pModal->bswAtten[i]);
895 		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
896 			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
897 			      txRxAttenLocal);
898 		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
899 			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
900 			      pModal->rxTxMarginCh[i]);
901 	}
902 
903 
904 	if (IS_CHAN_HT40(chan))
905 		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
906 			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
907 	else
908 		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
909 			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
910 
911 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
912 		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
913 
914 	REG_WRITE(ah, AR_PHY_RF_CTL4,
915 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
916 		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
917 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
918 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
919 
920 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
921 		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
922 
923 	REG_RMW_FIELD(ah, AR_PHY_CCA,
924 		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
925 	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
926 		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
927 
928 	regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
929 	regval &= ~(AR9287_AN_RF2G3_DB1 |
930 		    AR9287_AN_RF2G3_DB2 |
931 		    AR9287_AN_RF2G3_OB_CCK |
932 		    AR9287_AN_RF2G3_OB_PSK |
933 		    AR9287_AN_RF2G3_OB_QAM |
934 		    AR9287_AN_RF2G3_OB_PAL_OFF);
935 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
936 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
937 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
938 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
939 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
940 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
941 
942 	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
943 
944 	regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
945 	regval &= ~(AR9287_AN_RF2G3_DB1 |
946 		    AR9287_AN_RF2G3_DB2 |
947 		    AR9287_AN_RF2G3_OB_CCK |
948 		    AR9287_AN_RF2G3_OB_PSK |
949 		    AR9287_AN_RF2G3_OB_QAM |
950 		    AR9287_AN_RF2G3_OB_PAL_OFF);
951 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
952 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
953 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
954 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
955 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
956 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
957 
958 	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
959 
960 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
961 		      AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
962 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
963 		      AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
964 
965 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
966 				  AR9287_AN_TOP2_XPABIAS_LVL,
967 				  AR9287_AN_TOP2_XPABIAS_LVL_S,
968 				  pModal->xpaBiasLvl);
969 }
970 
971 static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
972 					    u16 i, bool is2GHz)
973 {
974 #define EEP_MAP9287_SPURCHAN \
975 	(ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
976 
977 	struct ath_common *common = ath9k_hw_common(ah);
978 	u16 spur_val = AR_NO_SPUR;
979 
980 	ath_dbg(common, ATH_DBG_ANI,
981 		"Getting spur idx:%d is2Ghz:%d val:%x\n",
982 		i, is2GHz, ah->config.spurchans[i][is2GHz]);
983 
984 	switch (ah->config.spurmode) {
985 	case SPUR_DISABLE:
986 		break;
987 	case SPUR_ENABLE_IOCTL:
988 		spur_val = ah->config.spurchans[i][is2GHz];
989 		ath_dbg(common, ATH_DBG_ANI,
990 			"Getting spur val from new loc. %d\n", spur_val);
991 		break;
992 	case SPUR_ENABLE_EEPROM:
993 		spur_val = EEP_MAP9287_SPURCHAN;
994 		break;
995 	}
996 
997 	return spur_val;
998 
999 #undef EEP_MAP9287_SPURCHAN
1000 }
1001 
1002 const struct eeprom_ops eep_ar9287_ops = {
1003 	.check_eeprom		= ath9k_hw_ar9287_check_eeprom,
1004 	.get_eeprom		= ath9k_hw_ar9287_get_eeprom,
1005 	.fill_eeprom		= ath9k_hw_ar9287_fill_eeprom,
1006 	.get_eeprom_ver		= ath9k_hw_ar9287_get_eeprom_ver,
1007 	.get_eeprom_rev		= ath9k_hw_ar9287_get_eeprom_rev,
1008 	.set_board_values	= ath9k_hw_ar9287_set_board_values,
1009 	.set_addac		= ath9k_hw_ar9287_set_addac,
1010 	.set_txpower		= ath9k_hw_ar9287_set_txpower,
1011 	.get_spur_channel	= ath9k_hw_ar9287_get_spur_channel
1012 };
1013