1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <asm/unaligned.h> 18 #include "hw.h" 19 #include "ar9002_phy.h" 20 21 #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16)) 22 23 static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah) 24 { 25 u16 version = le16_to_cpu(ah->eeprom.map9287.baseEepHeader.version); 26 27 return (version & AR5416_EEP_VER_MAJOR_MASK) >> 28 AR5416_EEP_VER_MAJOR_SHIFT; 29 } 30 31 static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah) 32 { 33 u16 version = le16_to_cpu(ah->eeprom.map9287.baseEepHeader.version); 34 35 return version & AR5416_EEP_VER_MINOR_MASK; 36 } 37 38 static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah) 39 { 40 struct ar9287_eeprom *eep = &ah->eeprom.map9287; 41 u16 *eep_data; 42 int addr, eep_start_loc = AR9287_EEP_START_LOC; 43 eep_data = (u16 *)eep; 44 45 for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) { 46 if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) 47 return false; 48 eep_data++; 49 } 50 51 return true; 52 } 53 54 static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah) 55 { 56 u16 *eep_data = (u16 *)&ah->eeprom.map9287; 57 58 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 59 AR9287_HTC_EEP_START_LOC, 60 SIZE_EEPROM_AR9287); 61 return true; 62 } 63 64 static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah) 65 { 66 struct ath_common *common = ath9k_hw_common(ah); 67 68 if (!ath9k_hw_use_flash(ah)) { 69 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n"); 70 } 71 72 if (common->bus_ops->ath_bus_type == ATH_USB) 73 return __ath9k_hw_usb_ar9287_fill_eeprom(ah); 74 else 75 return __ath9k_hw_ar9287_fill_eeprom(ah); 76 } 77 78 #ifdef CONFIG_ATH9K_COMMON_DEBUG 79 static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size, 80 struct modal_eep_ar9287_header *modal_hdr) 81 { 82 PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0])); 83 PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1])); 84 PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon)); 85 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]); 86 PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]); 87 PR_EEP("Switch Settle", modal_hdr->switchSettling); 88 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]); 89 PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]); 90 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]); 91 PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]); 92 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize); 93 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff); 94 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn); 95 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn); 96 PR_EEP("CCA Threshold)", modal_hdr->thresh62); 97 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]); 98 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]); 99 PR_EEP("xpdGain", modal_hdr->xpdGain); 100 PR_EEP("External PD", modal_hdr->xpd); 101 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]); 102 PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]); 103 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]); 104 PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]); 105 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap); 106 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl); 107 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart); 108 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn); 109 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc); 110 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]); 111 PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]); 112 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]); 113 PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]); 114 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40); 115 PR_EEP("AR92x7 Version", modal_hdr->version); 116 PR_EEP("DriverBias1", modal_hdr->db1); 117 PR_EEP("DriverBias2", modal_hdr->db1); 118 PR_EEP("CCK OutputBias", modal_hdr->ob_cck); 119 PR_EEP("PSK OutputBias", modal_hdr->ob_psk); 120 PR_EEP("QAM OutputBias", modal_hdr->ob_qam); 121 PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off); 122 123 return len; 124 } 125 126 static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr, 127 u8 *buf, u32 len, u32 size) 128 { 129 struct ar9287_eeprom *eep = &ah->eeprom.map9287; 130 struct base_eep_ar9287_header *pBase = &eep->baseEepHeader; 131 u32 binBuildNumber = le32_to_cpu(pBase->binBuildNumber); 132 133 if (!dump_base_hdr) { 134 len += scnprintf(buf + len, size - len, 135 "%20s :\n", "2GHz modal Header"); 136 len = ar9287_dump_modal_eeprom(buf, len, size, 137 &eep->modalHeader); 138 goto out; 139 } 140 141 PR_EEP("Major Version", ath9k_hw_ar9287_get_eeprom_ver(ah)); 142 PR_EEP("Minor Version", ath9k_hw_ar9287_get_eeprom_rev(ah)); 143 PR_EEP("Checksum", le16_to_cpu(pBase->checksum)); 144 PR_EEP("Length", le16_to_cpu(pBase->length)); 145 PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0])); 146 PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1])); 147 PR_EEP("TX Mask", pBase->txMask); 148 PR_EEP("RX Mask", pBase->rxMask); 149 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A)); 150 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G)); 151 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags & 152 AR5416_OPFLAGS_N_2G_HT20)); 153 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags & 154 AR5416_OPFLAGS_N_2G_HT40)); 155 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags & 156 AR5416_OPFLAGS_N_5G_HT20)); 157 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags & 158 AR5416_OPFLAGS_N_5G_HT40)); 159 PR_EEP("Big Endian", !!(pBase->eepMisc & AR5416_EEPMISC_BIG_ENDIAN)); 160 PR_EEP("Cal Bin Major Ver", (binBuildNumber >> 24) & 0xFF); 161 PR_EEP("Cal Bin Minor Ver", (binBuildNumber >> 16) & 0xFF); 162 PR_EEP("Cal Bin Build", (binBuildNumber >> 8) & 0xFF); 163 PR_EEP("Power Table Offset", pBase->pwrTableOffset); 164 PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl); 165 166 len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress", 167 pBase->macAddr); 168 169 out: 170 if (len > size) 171 len = size; 172 173 return len; 174 } 175 #else 176 static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr, 177 u8 *buf, u32 len, u32 size) 178 { 179 return 0; 180 } 181 #endif 182 183 184 static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah) 185 { 186 u32 el; 187 int i, err; 188 bool need_swap; 189 struct ar9287_eeprom *eep = &ah->eeprom.map9287; 190 191 err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_AR9287); 192 if (err) 193 return err; 194 195 if (need_swap) 196 el = swab16((__force u16)eep->baseEepHeader.length); 197 else 198 el = le16_to_cpu(eep->baseEepHeader.length); 199 200 el = min(el / sizeof(u16), SIZE_EEPROM_AR9287); 201 if (!ath9k_hw_nvram_validate_checksum(ah, el)) 202 return -EINVAL; 203 204 if (need_swap) { 205 EEPROM_FIELD_SWAB16(eep->baseEepHeader.length); 206 EEPROM_FIELD_SWAB16(eep->baseEepHeader.checksum); 207 EEPROM_FIELD_SWAB16(eep->baseEepHeader.version); 208 EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[0]); 209 EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[1]); 210 EEPROM_FIELD_SWAB16(eep->baseEepHeader.rfSilent); 211 EEPROM_FIELD_SWAB16(eep->baseEepHeader.blueToothOptions); 212 EEPROM_FIELD_SWAB16(eep->baseEepHeader.deviceCap); 213 EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlCommon); 214 215 for (i = 0; i < AR9287_MAX_CHAINS; i++) 216 EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlChain[i]); 217 218 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) 219 EEPROM_FIELD_SWAB16( 220 eep->modalHeader.spurChans[i].spurChan); 221 } 222 223 if (!ath9k_hw_nvram_check_version(ah, AR9287_EEP_VER, 224 AR5416_EEP_NO_BACK_VER)) 225 return -EINVAL; 226 227 return 0; 228 } 229 230 #undef SIZE_EEPROM_AR9287 231 232 static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah, 233 enum eeprom_param param) 234 { 235 struct ar9287_eeprom *eep = &ah->eeprom.map9287; 236 struct modal_eep_ar9287_header *pModal = &eep->modalHeader; 237 struct base_eep_ar9287_header *pBase = &eep->baseEepHeader; 238 u16 ver_minor = ath9k_hw_ar9287_get_eeprom_rev(ah); 239 240 switch (param) { 241 case EEP_NFTHRESH_2: 242 return pModal->noiseFloorThreshCh[0]; 243 case EEP_MAC_LSW: 244 return get_unaligned_be16(pBase->macAddr); 245 case EEP_MAC_MID: 246 return get_unaligned_be16(pBase->macAddr + 2); 247 case EEP_MAC_MSW: 248 return get_unaligned_be16(pBase->macAddr + 4); 249 case EEP_REG_0: 250 return le16_to_cpu(pBase->regDmn[0]); 251 case EEP_OP_CAP: 252 return le16_to_cpu(pBase->deviceCap); 253 case EEP_OP_MODE: 254 return pBase->opCapFlags; 255 case EEP_RF_SILENT: 256 return le16_to_cpu(pBase->rfSilent); 257 case EEP_TX_MASK: 258 return pBase->txMask; 259 case EEP_RX_MASK: 260 return pBase->rxMask; 261 case EEP_DEV_TYPE: 262 return pBase->deviceType; 263 case EEP_OL_PWRCTRL: 264 return pBase->openLoopPwrCntl; 265 case EEP_TEMPSENSE_SLOPE: 266 if (ver_minor >= AR9287_EEP_MINOR_VER_2) 267 return pBase->tempSensSlope; 268 else 269 return 0; 270 case EEP_TEMPSENSE_SLOPE_PAL_ON: 271 if (ver_minor >= AR9287_EEP_MINOR_VER_3) 272 return pBase->tempSensSlopePalOn; 273 else 274 return 0; 275 case EEP_ANTENNA_GAIN_2G: 276 return max_t(u8, pModal->antennaGainCh[0], 277 pModal->antennaGainCh[1]); 278 default: 279 return 0; 280 } 281 } 282 283 static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah, 284 struct ath9k_channel *chan, 285 struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop, 286 u8 *pCalChans, u16 availPiers, int8_t *pPwr) 287 { 288 u16 idxL = 0, idxR = 0, numPiers; 289 bool match; 290 struct chan_centers centers; 291 292 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 293 294 for (numPiers = 0; numPiers < availPiers; numPiers++) { 295 if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED) 296 break; 297 } 298 299 match = ath9k_hw_get_lower_upper_index( 300 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)), 301 pCalChans, numPiers, &idxL, &idxR); 302 303 if (match) { 304 *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0]; 305 } else { 306 *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] + 307 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2; 308 } 309 310 } 311 312 static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah, 313 int32_t txPower, u16 chain) 314 { 315 u32 tmpVal; 316 u32 a; 317 318 /* Enable OLPC for chain 0 */ 319 320 tmpVal = REG_READ(ah, 0xa270); 321 tmpVal = tmpVal & 0xFCFFFFFF; 322 tmpVal = tmpVal | (0x3 << 24); 323 REG_WRITE(ah, 0xa270, tmpVal); 324 325 /* Enable OLPC for chain 1 */ 326 327 tmpVal = REG_READ(ah, 0xb270); 328 tmpVal = tmpVal & 0xFCFFFFFF; 329 tmpVal = tmpVal | (0x3 << 24); 330 REG_WRITE(ah, 0xb270, tmpVal); 331 332 /* Write the OLPC ref power for chain 0 */ 333 334 if (chain == 0) { 335 tmpVal = REG_READ(ah, 0xa398); 336 tmpVal = tmpVal & 0xff00ffff; 337 a = (txPower)&0xff; 338 tmpVal = tmpVal | (a << 16); 339 REG_WRITE(ah, 0xa398, tmpVal); 340 } 341 342 /* Write the OLPC ref power for chain 1 */ 343 344 if (chain == 1) { 345 tmpVal = REG_READ(ah, 0xb398); 346 tmpVal = tmpVal & 0xff00ffff; 347 a = (txPower)&0xff; 348 tmpVal = tmpVal | (a << 16); 349 REG_WRITE(ah, 0xb398, tmpVal); 350 } 351 } 352 353 static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah, 354 struct ath9k_channel *chan) 355 { 356 struct cal_data_per_freq_ar9287 *pRawDataset; 357 struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop; 358 u8 *pCalBChans = NULL; 359 u16 pdGainOverlap_t2; 360 u8 pdadcValues[AR5416_NUM_PDADC_VALUES]; 361 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK]; 362 u16 numPiers = 0, i, j; 363 u16 numXpdGain, xpdMask; 364 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0}; 365 u32 reg32, regOffset, regChainOffset, regval; 366 int16_t diff = 0; 367 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287; 368 369 xpdMask = pEepData->modalHeader.xpdGain; 370 371 if (ath9k_hw_ar9287_get_eeprom_rev(ah) >= AR9287_EEP_MINOR_VER_2) 372 pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap; 373 else 374 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5), 375 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); 376 377 if (IS_CHAN_2GHZ(chan)) { 378 pCalBChans = pEepData->calFreqPier2G; 379 numPiers = AR9287_NUM_2G_CAL_PIERS; 380 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) { 381 pRawDatasetOpenLoop = 382 (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0]; 383 ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0]; 384 } 385 } 386 387 numXpdGain = 0; 388 389 /* Calculate the value of xpdgains from the xpdGain Mask */ 390 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { 391 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { 392 if (numXpdGain >= AR5416_NUM_PD_GAINS) 393 break; 394 xpdGainValues[numXpdGain] = 395 (u16)(AR5416_PD_GAINS_IN_MASK-i); 396 numXpdGain++; 397 } 398 } 399 400 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 401 (numXpdGain - 1) & 0x3); 402 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1, 403 xpdGainValues[0]); 404 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2, 405 xpdGainValues[1]); 406 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 407 xpdGainValues[2]); 408 409 for (i = 0; i < AR9287_MAX_CHAINS; i++) { 410 regChainOffset = i * 0x1000; 411 412 if (pEepData->baseEepHeader.txMask & (1 << i)) { 413 pRawDatasetOpenLoop = 414 (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i]; 415 416 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) { 417 int8_t txPower; 418 ar9287_eeprom_get_tx_gain_index(ah, chan, 419 pRawDatasetOpenLoop, 420 pCalBChans, numPiers, 421 &txPower); 422 ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i); 423 } else { 424 pRawDataset = 425 (struct cal_data_per_freq_ar9287 *) 426 pEepData->calPierData2G[i]; 427 428 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan, 429 pRawDataset, 430 pCalBChans, numPiers, 431 pdGainOverlap_t2, 432 gainBoundaries, 433 pdadcValues, 434 numXpdGain); 435 } 436 437 ENABLE_REGWRITE_BUFFER(ah); 438 439 if (i == 0) { 440 if (!ath9k_hw_ar9287_get_eeprom(ah, 441 EEP_OL_PWRCTRL)) { 442 443 regval = SM(pdGainOverlap_t2, 444 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) 445 | SM(gainBoundaries[0], 446 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) 447 | SM(gainBoundaries[1], 448 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) 449 | SM(gainBoundaries[2], 450 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) 451 | SM(gainBoundaries[3], 452 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4); 453 454 REG_WRITE(ah, 455 AR_PHY_TPCRG5 + regChainOffset, 456 regval); 457 } 458 } 459 460 if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB != 461 pEepData->baseEepHeader.pwrTableOffset) { 462 diff = (u16)(pEepData->baseEepHeader.pwrTableOffset - 463 (int32_t)AR9287_PWR_TABLE_OFFSET_DB); 464 diff *= 2; 465 466 for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++) 467 pdadcValues[j] = pdadcValues[j+diff]; 468 469 for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff); 470 j < AR5416_NUM_PDADC_VALUES; j++) 471 pdadcValues[j] = 472 pdadcValues[AR5416_NUM_PDADC_VALUES-diff]; 473 } 474 475 if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) { 476 regOffset = AR_PHY_BASE + 477 (672 << 2) + regChainOffset; 478 479 for (j = 0; j < 32; j++) { 480 reg32 = get_unaligned_le32(&pdadcValues[4 * j]); 481 482 REG_WRITE(ah, regOffset, reg32); 483 regOffset += 4; 484 } 485 } 486 REGWRITE_BUFFER_FLUSH(ah); 487 } 488 } 489 } 490 491 static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah, 492 struct ath9k_channel *chan, 493 int16_t *ratesArray, 494 u16 cfgCtl, 495 u16 antenna_reduction, 496 u16 powerLimit) 497 { 498 #define CMP_CTL \ 499 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \ 500 pEepData->ctlIndex[i]) 501 502 #define CMP_NO_CTL \ 503 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \ 504 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL)) 505 506 u16 twiceMaxEdgePower; 507 int i; 508 struct cal_ctl_data_ar9287 *rep; 509 struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} }, 510 targetPowerCck = {0, {0, 0, 0, 0} }; 511 struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} }, 512 targetPowerCckExt = {0, {0, 0, 0, 0} }; 513 struct cal_target_power_ht targetPowerHt20, 514 targetPowerHt40 = {0, {0, 0, 0, 0} }; 515 u16 scaledPower = 0, minCtlPower; 516 static const u16 ctlModesFor11g[] = { 517 CTL_11B, CTL_11G, CTL_2GHT20, 518 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 519 }; 520 u16 numCtlModes = 0; 521 const u16 *pCtlMode = NULL; 522 u16 ctlMode, freq; 523 struct chan_centers centers; 524 int tx_chainmask; 525 u16 twiceMinEdgePower; 526 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287; 527 tx_chainmask = ah->txchainmask; 528 529 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 530 scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit, 531 antenna_reduction); 532 533 /* 534 * Get TX power from EEPROM. 535 */ 536 if (IS_CHAN_2GHZ(chan)) { 537 /* CTL_11B, CTL_11G, CTL_2GHT20 */ 538 numCtlModes = 539 ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; 540 541 pCtlMode = ctlModesFor11g; 542 543 ath9k_hw_get_legacy_target_powers(ah, chan, 544 pEepData->calTargetPowerCck, 545 AR9287_NUM_2G_CCK_TARGET_POWERS, 546 &targetPowerCck, 4, false); 547 ath9k_hw_get_legacy_target_powers(ah, chan, 548 pEepData->calTargetPower2G, 549 AR9287_NUM_2G_20_TARGET_POWERS, 550 &targetPowerOfdm, 4, false); 551 ath9k_hw_get_target_powers(ah, chan, 552 pEepData->calTargetPower2GHT20, 553 AR9287_NUM_2G_20_TARGET_POWERS, 554 &targetPowerHt20, 8, false); 555 556 if (IS_CHAN_HT40(chan)) { 557 /* All 2G CTLs */ 558 numCtlModes = ARRAY_SIZE(ctlModesFor11g); 559 ath9k_hw_get_target_powers(ah, chan, 560 pEepData->calTargetPower2GHT40, 561 AR9287_NUM_2G_40_TARGET_POWERS, 562 &targetPowerHt40, 8, true); 563 ath9k_hw_get_legacy_target_powers(ah, chan, 564 pEepData->calTargetPowerCck, 565 AR9287_NUM_2G_CCK_TARGET_POWERS, 566 &targetPowerCckExt, 4, true); 567 ath9k_hw_get_legacy_target_powers(ah, chan, 568 pEepData->calTargetPower2G, 569 AR9287_NUM_2G_20_TARGET_POWERS, 570 &targetPowerOfdmExt, 4, true); 571 } 572 } 573 574 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { 575 bool isHt40CtlMode = 576 (pCtlMode[ctlMode] == CTL_2GHT40) ? true : false; 577 578 if (isHt40CtlMode) 579 freq = centers.synth_center; 580 else if (pCtlMode[ctlMode] & EXT_ADDITIVE) 581 freq = centers.ext_center; 582 else 583 freq = centers.ctl_center; 584 585 twiceMaxEdgePower = MAX_RATE_POWER; 586 /* Walk through the CTL indices stored in EEPROM */ 587 for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { 588 struct cal_ctl_edges *pRdEdgesPower; 589 590 /* 591 * Compare test group from regulatory channel list 592 * with test mode from pCtlMode list 593 */ 594 if (CMP_CTL || CMP_NO_CTL) { 595 rep = &(pEepData->ctlData[i]); 596 pRdEdgesPower = 597 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1]; 598 599 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq, 600 pRdEdgesPower, 601 IS_CHAN_2GHZ(chan), 602 AR5416_NUM_BAND_EDGES); 603 604 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { 605 twiceMaxEdgePower = min(twiceMaxEdgePower, 606 twiceMinEdgePower); 607 } else { 608 twiceMaxEdgePower = twiceMinEdgePower; 609 break; 610 } 611 } 612 } 613 614 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower); 615 616 /* Apply ctl mode to correct target power set */ 617 switch (pCtlMode[ctlMode]) { 618 case CTL_11B: 619 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) { 620 targetPowerCck.tPow2x[i] = 621 (u8)min((u16)targetPowerCck.tPow2x[i], 622 minCtlPower); 623 } 624 break; 625 case CTL_11A: 626 case CTL_11G: 627 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) { 628 targetPowerOfdm.tPow2x[i] = 629 (u8)min((u16)targetPowerOfdm.tPow2x[i], 630 minCtlPower); 631 } 632 break; 633 case CTL_5GHT20: 634 case CTL_2GHT20: 635 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) { 636 targetPowerHt20.tPow2x[i] = 637 (u8)min((u16)targetPowerHt20.tPow2x[i], 638 minCtlPower); 639 } 640 break; 641 case CTL_11B_EXT: 642 targetPowerCckExt.tPow2x[0] = 643 (u8)min((u16)targetPowerCckExt.tPow2x[0], 644 minCtlPower); 645 break; 646 case CTL_11A_EXT: 647 case CTL_11G_EXT: 648 targetPowerOfdmExt.tPow2x[0] = 649 (u8)min((u16)targetPowerOfdmExt.tPow2x[0], 650 minCtlPower); 651 break; 652 case CTL_5GHT40: 653 case CTL_2GHT40: 654 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { 655 targetPowerHt40.tPow2x[i] = 656 (u8)min((u16)targetPowerHt40.tPow2x[i], 657 minCtlPower); 658 } 659 break; 660 default: 661 break; 662 } 663 } 664 665 /* Now set the rates array */ 666 667 ratesArray[rate6mb] = 668 ratesArray[rate9mb] = 669 ratesArray[rate12mb] = 670 ratesArray[rate18mb] = 671 ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0]; 672 673 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1]; 674 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2]; 675 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3]; 676 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0]; 677 678 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) 679 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i]; 680 681 if (IS_CHAN_2GHZ(chan)) { 682 ratesArray[rate1l] = targetPowerCck.tPow2x[0]; 683 ratesArray[rate2s] = 684 ratesArray[rate2l] = targetPowerCck.tPow2x[1]; 685 ratesArray[rate5_5s] = 686 ratesArray[rate5_5l] = targetPowerCck.tPow2x[2]; 687 ratesArray[rate11s] = 688 ratesArray[rate11l] = targetPowerCck.tPow2x[3]; 689 } 690 if (IS_CHAN_HT40(chan)) { 691 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) 692 ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i]; 693 694 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0]; 695 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0]; 696 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0]; 697 698 if (IS_CHAN_2GHZ(chan)) 699 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0]; 700 } 701 702 #undef CMP_CTL 703 #undef CMP_NO_CTL 704 } 705 706 static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah, 707 struct ath9k_channel *chan, u16 cfgCtl, 708 u8 twiceAntennaReduction, 709 u8 powerLimit, bool test) 710 { 711 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 712 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287; 713 struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader; 714 int16_t ratesArray[Ar5416RateSize]; 715 u8 ht40PowerIncForPdadc = 2; 716 int i; 717 718 memset(ratesArray, 0, sizeof(ratesArray)); 719 720 if (ath9k_hw_ar9287_get_eeprom_rev(ah) >= AR9287_EEP_MINOR_VER_2) 721 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; 722 723 ath9k_hw_set_ar9287_power_per_rate_table(ah, chan, 724 &ratesArray[0], cfgCtl, 725 twiceAntennaReduction, 726 powerLimit); 727 728 ath9k_hw_set_ar9287_power_cal_table(ah, chan); 729 730 regulatory->max_power_level = 0; 731 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) { 732 if (ratesArray[i] > MAX_RATE_POWER) 733 ratesArray[i] = MAX_RATE_POWER; 734 735 if (ratesArray[i] > regulatory->max_power_level) 736 regulatory->max_power_level = ratesArray[i]; 737 } 738 739 ath9k_hw_update_regulatory_maxpower(ah); 740 741 if (test) 742 return; 743 744 for (i = 0; i < Ar5416RateSize; i++) 745 ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2; 746 747 ENABLE_REGWRITE_BUFFER(ah); 748 749 /* OFDM power per rate */ 750 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, 751 ATH9K_POW_SM(ratesArray[rate18mb], 24) 752 | ATH9K_POW_SM(ratesArray[rate12mb], 16) 753 | ATH9K_POW_SM(ratesArray[rate9mb], 8) 754 | ATH9K_POW_SM(ratesArray[rate6mb], 0)); 755 756 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, 757 ATH9K_POW_SM(ratesArray[rate54mb], 24) 758 | ATH9K_POW_SM(ratesArray[rate48mb], 16) 759 | ATH9K_POW_SM(ratesArray[rate36mb], 8) 760 | ATH9K_POW_SM(ratesArray[rate24mb], 0)); 761 762 /* CCK power per rate */ 763 if (IS_CHAN_2GHZ(chan)) { 764 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, 765 ATH9K_POW_SM(ratesArray[rate2s], 24) 766 | ATH9K_POW_SM(ratesArray[rate2l], 16) 767 | ATH9K_POW_SM(ratesArray[rateXr], 8) 768 | ATH9K_POW_SM(ratesArray[rate1l], 0)); 769 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, 770 ATH9K_POW_SM(ratesArray[rate11s], 24) 771 | ATH9K_POW_SM(ratesArray[rate11l], 16) 772 | ATH9K_POW_SM(ratesArray[rate5_5s], 8) 773 | ATH9K_POW_SM(ratesArray[rate5_5l], 0)); 774 } 775 776 /* HT20 power per rate */ 777 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, 778 ATH9K_POW_SM(ratesArray[rateHt20_3], 24) 779 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16) 780 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8) 781 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0)); 782 783 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, 784 ATH9K_POW_SM(ratesArray[rateHt20_7], 24) 785 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16) 786 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8) 787 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0)); 788 789 /* HT40 power per rate */ 790 if (IS_CHAN_HT40(chan)) { 791 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) { 792 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, 793 ATH9K_POW_SM(ratesArray[rateHt40_3], 24) 794 | ATH9K_POW_SM(ratesArray[rateHt40_2], 16) 795 | ATH9K_POW_SM(ratesArray[rateHt40_1], 8) 796 | ATH9K_POW_SM(ratesArray[rateHt40_0], 0)); 797 798 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, 799 ATH9K_POW_SM(ratesArray[rateHt40_7], 24) 800 | ATH9K_POW_SM(ratesArray[rateHt40_6], 16) 801 | ATH9K_POW_SM(ratesArray[rateHt40_5], 8) 802 | ATH9K_POW_SM(ratesArray[rateHt40_4], 0)); 803 } else { 804 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, 805 ATH9K_POW_SM(ratesArray[rateHt40_3] + 806 ht40PowerIncForPdadc, 24) 807 | ATH9K_POW_SM(ratesArray[rateHt40_2] + 808 ht40PowerIncForPdadc, 16) 809 | ATH9K_POW_SM(ratesArray[rateHt40_1] + 810 ht40PowerIncForPdadc, 8) 811 | ATH9K_POW_SM(ratesArray[rateHt40_0] + 812 ht40PowerIncForPdadc, 0)); 813 814 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, 815 ATH9K_POW_SM(ratesArray[rateHt40_7] + 816 ht40PowerIncForPdadc, 24) 817 | ATH9K_POW_SM(ratesArray[rateHt40_6] + 818 ht40PowerIncForPdadc, 16) 819 | ATH9K_POW_SM(ratesArray[rateHt40_5] + 820 ht40PowerIncForPdadc, 8) 821 | ATH9K_POW_SM(ratesArray[rateHt40_4] + 822 ht40PowerIncForPdadc, 0)); 823 } 824 825 /* Dup/Ext power per rate */ 826 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, 827 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) 828 | ATH9K_POW_SM(ratesArray[rateExtCck], 16) 829 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) 830 | ATH9K_POW_SM(ratesArray[rateDupCck], 0)); 831 } 832 833 /* TPC initializations */ 834 if (ah->tpc_enabled) { 835 int ht40_delta; 836 837 ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0; 838 ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta); 839 /* Enable TPC */ 840 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, 841 MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE); 842 } else { 843 /* Disable TPC */ 844 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER); 845 } 846 847 REGWRITE_BUFFER_FLUSH(ah); 848 } 849 850 static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah, 851 struct ath9k_channel *chan) 852 { 853 struct ar9287_eeprom *eep = &ah->eeprom.map9287; 854 struct modal_eep_ar9287_header *pModal = &eep->modalHeader; 855 u32 regChainOffset, regval; 856 u8 txRxAttenLocal; 857 int i; 858 859 pModal = &eep->modalHeader; 860 861 REG_WRITE(ah, AR_PHY_SWITCH_COM, le32_to_cpu(pModal->antCtrlCommon)); 862 863 for (i = 0; i < AR9287_MAX_CHAINS; i++) { 864 regChainOffset = i * 0x1000; 865 866 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, 867 le32_to_cpu(pModal->antCtrlChain[i])); 868 869 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset, 870 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) 871 & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | 872 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | 873 SM(pModal->iqCalICh[i], 874 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | 875 SM(pModal->iqCalQCh[i], 876 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); 877 878 txRxAttenLocal = pModal->txRxAttenCh[i]; 879 880 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 881 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, 882 pModal->bswMargin[i]); 883 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 884 AR_PHY_GAIN_2GHZ_XATTEN1_DB, 885 pModal->bswAtten[i]); 886 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, 887 AR9280_PHY_RXGAIN_TXRX_ATTEN, 888 txRxAttenLocal); 889 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, 890 AR9280_PHY_RXGAIN_TXRX_MARGIN, 891 pModal->rxTxMarginCh[i]); 892 } 893 894 895 if (IS_CHAN_HT40(chan)) 896 REG_RMW_FIELD(ah, AR_PHY_SETTLING, 897 AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40); 898 else 899 REG_RMW_FIELD(ah, AR_PHY_SETTLING, 900 AR_PHY_SETTLING_SWITCH, pModal->switchSettling); 901 902 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, 903 AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize); 904 905 REG_WRITE(ah, AR_PHY_RF_CTL4, 906 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) 907 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) 908 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) 909 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); 910 911 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, 912 AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn); 913 914 REG_RMW_FIELD(ah, AR_PHY_CCA, 915 AR9280_PHY_CCA_THRESH62, pModal->thresh62); 916 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, 917 AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62); 918 919 regval = REG_READ(ah, AR9287_AN_RF2G3_CH0); 920 regval &= ~(AR9287_AN_RF2G3_DB1 | 921 AR9287_AN_RF2G3_DB2 | 922 AR9287_AN_RF2G3_OB_CCK | 923 AR9287_AN_RF2G3_OB_PSK | 924 AR9287_AN_RF2G3_OB_QAM | 925 AR9287_AN_RF2G3_OB_PAL_OFF); 926 regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) | 927 SM(pModal->db2, AR9287_AN_RF2G3_DB2) | 928 SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) | 929 SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) | 930 SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) | 931 SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF)); 932 933 ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval); 934 935 regval = REG_READ(ah, AR9287_AN_RF2G3_CH1); 936 regval &= ~(AR9287_AN_RF2G3_DB1 | 937 AR9287_AN_RF2G3_DB2 | 938 AR9287_AN_RF2G3_OB_CCK | 939 AR9287_AN_RF2G3_OB_PSK | 940 AR9287_AN_RF2G3_OB_QAM | 941 AR9287_AN_RF2G3_OB_PAL_OFF); 942 regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) | 943 SM(pModal->db2, AR9287_AN_RF2G3_DB2) | 944 SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) | 945 SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) | 946 SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) | 947 SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF)); 948 949 ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval); 950 951 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, 952 AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart); 953 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, 954 AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn); 955 956 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2, 957 AR9287_AN_TOP2_XPABIAS_LVL, 958 AR9287_AN_TOP2_XPABIAS_LVL_S, 959 pModal->xpaBiasLvl); 960 } 961 962 static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah, 963 u16 i, bool is2GHz) 964 { 965 __le16 spur_ch = ah->eeprom.map9287.modalHeader.spurChans[i].spurChan; 966 967 return le16_to_cpu(spur_ch); 968 } 969 970 static u8 ath9k_hw_ar9287_get_eepmisc(struct ath_hw *ah) 971 { 972 return ah->eeprom.map9287.baseEepHeader.eepMisc; 973 } 974 975 const struct eeprom_ops eep_ar9287_ops = { 976 .check_eeprom = ath9k_hw_ar9287_check_eeprom, 977 .get_eeprom = ath9k_hw_ar9287_get_eeprom, 978 .fill_eeprom = ath9k_hw_ar9287_fill_eeprom, 979 .dump_eeprom = ath9k_hw_ar9287_dump_eeprom, 980 .get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver, 981 .get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev, 982 .set_board_values = ath9k_hw_ar9287_set_board_values, 983 .set_txpower = ath9k_hw_ar9287_set_txpower, 984 .get_spur_channel = ath9k_hw_ar9287_get_spur_channel, 985 .get_eepmisc = ath9k_hw_ar9287_get_eepmisc 986 }; 987