xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/eeprom_9287.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20 
21 #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
22 
23 static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
24 {
25 	u16 version = le16_to_cpu(ah->eeprom.map9287.baseEepHeader.version);
26 
27 	return (version & AR5416_EEP_VER_MAJOR_MASK) >>
28 		AR5416_EEP_VER_MAJOR_SHIFT;
29 }
30 
31 static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
32 {
33 	u16 version = le16_to_cpu(ah->eeprom.map9287.baseEepHeader.version);
34 
35 	return version & AR5416_EEP_VER_MINOR_MASK;
36 }
37 
38 static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
39 {
40 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
41 	u16 *eep_data;
42 	int addr, eep_start_loc = AR9287_EEP_START_LOC;
43 	eep_data = (u16 *)eep;
44 
45 	for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
46 		if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
47 			return false;
48 		eep_data++;
49 	}
50 
51 	return true;
52 }
53 
54 static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
55 {
56 	u16 *eep_data = (u16 *)&ah->eeprom.map9287;
57 
58 	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
59 				     AR9287_HTC_EEP_START_LOC,
60 				     SIZE_EEPROM_AR9287);
61 	return true;
62 }
63 
64 static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
65 {
66 	struct ath_common *common = ath9k_hw_common(ah);
67 
68 	if (!ath9k_hw_use_flash(ah)) {
69 		ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
70 	}
71 
72 	if (common->bus_ops->ath_bus_type == ATH_USB)
73 		return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
74 	else
75 		return __ath9k_hw_ar9287_fill_eeprom(ah);
76 }
77 
78 #ifdef CONFIG_ATH9K_COMMON_DEBUG
79 static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
80 				    struct modal_eep_ar9287_header *modal_hdr)
81 {
82 	PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
83 	PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
84 	PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
85 	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
86 	PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
87 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
88 	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
89 	PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
90 	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
91 	PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
92 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
93 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
94 	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
95 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
96 	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
97 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
98 	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
99 	PR_EEP("xpdGain", modal_hdr->xpdGain);
100 	PR_EEP("External PD", modal_hdr->xpd);
101 	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
102 	PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
103 	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
104 	PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
105 	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
106 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
107 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
108 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
109 	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
110 	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
111 	PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
112 	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
113 	PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
114 	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
115 	PR_EEP("AR92x7 Version", modal_hdr->version);
116 	PR_EEP("DriverBias1", modal_hdr->db1);
117 	PR_EEP("DriverBias2", modal_hdr->db1);
118 	PR_EEP("CCK OutputBias", modal_hdr->ob_cck);
119 	PR_EEP("PSK OutputBias", modal_hdr->ob_psk);
120 	PR_EEP("QAM OutputBias", modal_hdr->ob_qam);
121 	PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off);
122 
123 	return len;
124 }
125 
126 static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
127 				       u8 *buf, u32 len, u32 size)
128 {
129 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
130 	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
131 	u32 binBuildNumber = le32_to_cpu(pBase->binBuildNumber);
132 
133 	if (!dump_base_hdr) {
134 		len += scnprintf(buf + len, size - len,
135 				 "%20s :\n", "2GHz modal Header");
136 		len = ar9287_dump_modal_eeprom(buf, len, size,
137 						&eep->modalHeader);
138 		goto out;
139 	}
140 
141 	PR_EEP("Major Version", ath9k_hw_ar9287_get_eeprom_ver(ah));
142 	PR_EEP("Minor Version", ath9k_hw_ar9287_get_eeprom_rev(ah));
143 	PR_EEP("Checksum", le16_to_cpu(pBase->checksum));
144 	PR_EEP("Length", le16_to_cpu(pBase->length));
145 	PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
146 	PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
147 	PR_EEP("TX Mask", pBase->txMask);
148 	PR_EEP("RX Mask", pBase->rxMask);
149 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
150 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
151 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
152 					AR5416_OPFLAGS_N_2G_HT20));
153 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
154 					AR5416_OPFLAGS_N_2G_HT40));
155 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
156 					AR5416_OPFLAGS_N_5G_HT20));
157 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
158 					AR5416_OPFLAGS_N_5G_HT40));
159 	PR_EEP("Big Endian", !!(pBase->eepMisc & AR5416_EEPMISC_BIG_ENDIAN));
160 	PR_EEP("Cal Bin Major Ver", (binBuildNumber >> 24) & 0xFF);
161 	PR_EEP("Cal Bin Minor Ver", (binBuildNumber >> 16) & 0xFF);
162 	PR_EEP("Cal Bin Build", (binBuildNumber >> 8) & 0xFF);
163 	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
164 	PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
165 
166 	len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
167 			 pBase->macAddr);
168 
169 out:
170 	if (len > size)
171 		len = size;
172 
173 	return len;
174 }
175 #else
176 static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
177 				       u8 *buf, u32 len, u32 size)
178 {
179 	return 0;
180 }
181 #endif
182 
183 
184 static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
185 {
186 	u32 el;
187 	int i, err;
188 	bool need_swap;
189 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
190 
191 	err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_AR9287);
192 	if (err)
193 		return err;
194 
195 	if (need_swap)
196 		el = swab16((__force u16)eep->baseEepHeader.length);
197 	else
198 		el = le16_to_cpu(eep->baseEepHeader.length);
199 
200 	el = min(el / sizeof(u16), SIZE_EEPROM_AR9287);
201 	if (!ath9k_hw_nvram_validate_checksum(ah, el))
202 		return -EINVAL;
203 
204 	if (need_swap) {
205 		EEPROM_FIELD_SWAB16(eep->baseEepHeader.length);
206 		EEPROM_FIELD_SWAB16(eep->baseEepHeader.checksum);
207 		EEPROM_FIELD_SWAB16(eep->baseEepHeader.version);
208 		EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[0]);
209 		EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[1]);
210 		EEPROM_FIELD_SWAB16(eep->baseEepHeader.rfSilent);
211 		EEPROM_FIELD_SWAB16(eep->baseEepHeader.blueToothOptions);
212 		EEPROM_FIELD_SWAB16(eep->baseEepHeader.deviceCap);
213 		EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlCommon);
214 
215 		for (i = 0; i < AR9287_MAX_CHAINS; i++)
216 			EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlChain[i]);
217 
218 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++)
219 			EEPROM_FIELD_SWAB16(
220 				eep->modalHeader.spurChans[i].spurChan);
221 	}
222 
223 	if (!ath9k_hw_nvram_check_version(ah, AR9287_EEP_VER,
224 	    AR5416_EEP_NO_BACK_VER))
225 		return -EINVAL;
226 
227 	return 0;
228 }
229 
230 #undef SIZE_EEPROM_AR9287
231 
232 static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
233 				      enum eeprom_param param)
234 {
235 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
236 	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
237 	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
238 	u16 ver_minor = ath9k_hw_ar9287_get_eeprom_rev(ah);
239 
240 	switch (param) {
241 	case EEP_NFTHRESH_2:
242 		return pModal->noiseFloorThreshCh[0];
243 	case EEP_MAC_LSW:
244 		return get_unaligned_be16(pBase->macAddr);
245 	case EEP_MAC_MID:
246 		return get_unaligned_be16(pBase->macAddr + 2);
247 	case EEP_MAC_MSW:
248 		return get_unaligned_be16(pBase->macAddr + 4);
249 	case EEP_REG_0:
250 		return le16_to_cpu(pBase->regDmn[0]);
251 	case EEP_OP_CAP:
252 		return le16_to_cpu(pBase->deviceCap);
253 	case EEP_OP_MODE:
254 		return pBase->opCapFlags;
255 	case EEP_RF_SILENT:
256 		return le16_to_cpu(pBase->rfSilent);
257 	case EEP_TX_MASK:
258 		return pBase->txMask;
259 	case EEP_RX_MASK:
260 		return pBase->rxMask;
261 	case EEP_DEV_TYPE:
262 		return pBase->deviceType;
263 	case EEP_OL_PWRCTRL:
264 		return pBase->openLoopPwrCntl;
265 	case EEP_TEMPSENSE_SLOPE:
266 		if (ver_minor >= AR9287_EEP_MINOR_VER_2)
267 			return pBase->tempSensSlope;
268 		else
269 			return 0;
270 	case EEP_TEMPSENSE_SLOPE_PAL_ON:
271 		if (ver_minor >= AR9287_EEP_MINOR_VER_3)
272 			return pBase->tempSensSlopePalOn;
273 		else
274 			return 0;
275 	case EEP_ANTENNA_GAIN_2G:
276 		return max_t(u8, pModal->antennaGainCh[0],
277 				 pModal->antennaGainCh[1]);
278 	default:
279 		return 0;
280 	}
281 }
282 
283 static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
284 			    struct ath9k_channel *chan,
285 			    struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
286 			    u8 *pCalChans,  u16 availPiers, int8_t *pPwr)
287 {
288 	u16 idxL = 0, idxR = 0, numPiers;
289 	bool match;
290 	struct chan_centers centers;
291 
292 	ath9k_hw_get_channel_centers(ah, chan, &centers);
293 
294 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
295 		if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
296 			break;
297 	}
298 
299 	match = ath9k_hw_get_lower_upper_index(
300 		(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
301 		pCalChans, numPiers, &idxL, &idxR);
302 
303 	if (match) {
304 		*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
305 	} else {
306 		*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
307 			 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
308 	}
309 
310 }
311 
312 static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
313 					  int32_t txPower, u16 chain)
314 {
315 	u32 tmpVal;
316 	u32 a;
317 
318 	/* Enable OLPC for chain 0 */
319 
320 	tmpVal = REG_READ(ah, 0xa270);
321 	tmpVal = tmpVal & 0xFCFFFFFF;
322 	tmpVal = tmpVal | (0x3 << 24);
323 	REG_WRITE(ah, 0xa270, tmpVal);
324 
325 	/* Enable OLPC for chain 1 */
326 
327 	tmpVal = REG_READ(ah, 0xb270);
328 	tmpVal = tmpVal & 0xFCFFFFFF;
329 	tmpVal = tmpVal | (0x3 << 24);
330 	REG_WRITE(ah, 0xb270, tmpVal);
331 
332 	/* Write the OLPC ref power for chain 0 */
333 
334 	if (chain == 0) {
335 		tmpVal = REG_READ(ah, 0xa398);
336 		tmpVal = tmpVal & 0xff00ffff;
337 		a = (txPower)&0xff;
338 		tmpVal = tmpVal | (a << 16);
339 		REG_WRITE(ah, 0xa398, tmpVal);
340 	}
341 
342 	/* Write the OLPC ref power for chain 1 */
343 
344 	if (chain == 1) {
345 		tmpVal = REG_READ(ah, 0xb398);
346 		tmpVal = tmpVal & 0xff00ffff;
347 		a = (txPower)&0xff;
348 		tmpVal = tmpVal | (a << 16);
349 		REG_WRITE(ah, 0xb398, tmpVal);
350 	}
351 }
352 
353 static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
354 						struct ath9k_channel *chan)
355 {
356 	struct cal_data_per_freq_ar9287 *pRawDataset;
357 	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
358 	u8 *pCalBChans = NULL;
359 	u16 pdGainOverlap_t2;
360 	u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
361 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
362 	u16 numPiers = 0, i, j;
363 	u16 numXpdGain, xpdMask;
364 	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
365 	u32 reg32, regOffset, regChainOffset, regval;
366 	int16_t diff = 0;
367 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
368 
369 	xpdMask = pEepData->modalHeader.xpdGain;
370 
371 	if (ath9k_hw_ar9287_get_eeprom_rev(ah) >= AR9287_EEP_MINOR_VER_2)
372 		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
373 	else
374 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
375 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
376 
377 	if (IS_CHAN_2GHZ(chan)) {
378 		pCalBChans = pEepData->calFreqPier2G;
379 		numPiers = AR9287_NUM_2G_CAL_PIERS;
380 		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
381 			pRawDatasetOpenLoop =
382 			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
383 			ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
384 		}
385 	}
386 
387 	numXpdGain = 0;
388 
389 	/* Calculate the value of xpdgains from the xpdGain Mask */
390 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
391 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
392 			if (numXpdGain >= AR5416_NUM_PD_GAINS)
393 				break;
394 			xpdGainValues[numXpdGain] =
395 				(u16)(AR5416_PD_GAINS_IN_MASK-i);
396 			numXpdGain++;
397 		}
398 	}
399 
400 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
401 		      (numXpdGain - 1) & 0x3);
402 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
403 		      xpdGainValues[0]);
404 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
405 		      xpdGainValues[1]);
406 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
407 		      xpdGainValues[2]);
408 
409 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
410 		regChainOffset = i * 0x1000;
411 
412 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
413 			pRawDatasetOpenLoop =
414 			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
415 
416 			if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
417 				int8_t txPower;
418 				ar9287_eeprom_get_tx_gain_index(ah, chan,
419 							pRawDatasetOpenLoop,
420 							pCalBChans, numPiers,
421 							&txPower);
422 				ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
423 			} else {
424 				pRawDataset =
425 					(struct cal_data_per_freq_ar9287 *)
426 					pEepData->calPierData2G[i];
427 
428 				ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
429 							   pRawDataset,
430 							   pCalBChans, numPiers,
431 							   pdGainOverlap_t2,
432 							   gainBoundaries,
433 							   pdadcValues,
434 							   numXpdGain);
435 			}
436 
437 			ENABLE_REGWRITE_BUFFER(ah);
438 
439 			if (i == 0) {
440 				if (!ath9k_hw_ar9287_get_eeprom(ah,
441 							EEP_OL_PWRCTRL)) {
442 
443 					regval = SM(pdGainOverlap_t2,
444 						    AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
445 						| SM(gainBoundaries[0],
446 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
447 						| SM(gainBoundaries[1],
448 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
449 						| SM(gainBoundaries[2],
450 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
451 						| SM(gainBoundaries[3],
452 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
453 
454 					REG_WRITE(ah,
455 						  AR_PHY_TPCRG5 + regChainOffset,
456 						  regval);
457 				}
458 			}
459 
460 			if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
461 			    pEepData->baseEepHeader.pwrTableOffset) {
462 				diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
463 					     (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
464 				diff *= 2;
465 
466 				for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
467 					pdadcValues[j] = pdadcValues[j+diff];
468 
469 				for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
470 				     j < AR5416_NUM_PDADC_VALUES; j++)
471 					pdadcValues[j] =
472 					  pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
473 			}
474 
475 			if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
476 				regOffset = AR_PHY_BASE +
477 					(672 << 2) + regChainOffset;
478 
479 				for (j = 0; j < 32; j++) {
480 					reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
481 
482 					REG_WRITE(ah, regOffset, reg32);
483 					regOffset += 4;
484 				}
485 			}
486 			REGWRITE_BUFFER_FLUSH(ah);
487 		}
488 	}
489 }
490 
491 static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
492 						     struct ath9k_channel *chan,
493 						     int16_t *ratesArray,
494 						     u16 cfgCtl,
495 						     u16 antenna_reduction,
496 						     u16 powerLimit)
497 {
498 #define CMP_CTL \
499 	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
500 	 pEepData->ctlIndex[i])
501 
502 #define CMP_NO_CTL \
503 	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
504 	 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
505 
506 	u16 twiceMaxEdgePower;
507 	int i;
508 	struct cal_ctl_data_ar9287 *rep;
509 	struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
510 				    targetPowerCck = {0, {0, 0, 0, 0} };
511 	struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
512 				    targetPowerCckExt = {0, {0, 0, 0, 0} };
513 	struct cal_target_power_ht targetPowerHt20,
514 				    targetPowerHt40 = {0, {0, 0, 0, 0} };
515 	u16 scaledPower = 0, minCtlPower;
516 	static const u16 ctlModesFor11g[] = {
517 		CTL_11B, CTL_11G, CTL_2GHT20,
518 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
519 	};
520 	u16 numCtlModes = 0;
521 	const u16 *pCtlMode = NULL;
522 	u16 ctlMode, freq;
523 	struct chan_centers centers;
524 	int tx_chainmask;
525 	u16 twiceMinEdgePower;
526 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
527 	tx_chainmask = ah->txchainmask;
528 
529 	ath9k_hw_get_channel_centers(ah, chan, &centers);
530 	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
531 						antenna_reduction);
532 
533 	/*
534 	 * Get TX power from EEPROM.
535 	 */
536 	if (IS_CHAN_2GHZ(chan))	{
537 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
538 		numCtlModes =
539 			ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
540 
541 		pCtlMode = ctlModesFor11g;
542 
543 		ath9k_hw_get_legacy_target_powers(ah, chan,
544 						  pEepData->calTargetPowerCck,
545 						  AR9287_NUM_2G_CCK_TARGET_POWERS,
546 						  &targetPowerCck, 4, false);
547 		ath9k_hw_get_legacy_target_powers(ah, chan,
548 						  pEepData->calTargetPower2G,
549 						  AR9287_NUM_2G_20_TARGET_POWERS,
550 						  &targetPowerOfdm, 4, false);
551 		ath9k_hw_get_target_powers(ah, chan,
552 					   pEepData->calTargetPower2GHT20,
553 					   AR9287_NUM_2G_20_TARGET_POWERS,
554 					   &targetPowerHt20, 8, false);
555 
556 		if (IS_CHAN_HT40(chan))	{
557 			/* All 2G CTLs */
558 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
559 			ath9k_hw_get_target_powers(ah, chan,
560 						   pEepData->calTargetPower2GHT40,
561 						   AR9287_NUM_2G_40_TARGET_POWERS,
562 						   &targetPowerHt40, 8, true);
563 			ath9k_hw_get_legacy_target_powers(ah, chan,
564 						  pEepData->calTargetPowerCck,
565 						  AR9287_NUM_2G_CCK_TARGET_POWERS,
566 						  &targetPowerCckExt, 4, true);
567 			ath9k_hw_get_legacy_target_powers(ah, chan,
568 						  pEepData->calTargetPower2G,
569 						  AR9287_NUM_2G_20_TARGET_POWERS,
570 						  &targetPowerOfdmExt, 4, true);
571 		}
572 	}
573 
574 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
575 		bool isHt40CtlMode =
576 			(pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
577 
578 		if (isHt40CtlMode)
579 			freq = centers.synth_center;
580 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
581 			freq = centers.ext_center;
582 		else
583 			freq = centers.ctl_center;
584 
585 		twiceMaxEdgePower = MAX_RATE_POWER;
586 		/* Walk through the CTL indices stored in EEPROM */
587 		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
588 			struct cal_ctl_edges *pRdEdgesPower;
589 
590 			/*
591 			 * Compare test group from regulatory channel list
592 			 * with test mode from pCtlMode list
593 			 */
594 			if (CMP_CTL || CMP_NO_CTL) {
595 				rep = &(pEepData->ctlData[i]);
596 				pRdEdgesPower =
597 				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
598 
599 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
600 								pRdEdgesPower,
601 								IS_CHAN_2GHZ(chan),
602 								AR5416_NUM_BAND_EDGES);
603 
604 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
605 					twiceMaxEdgePower = min(twiceMaxEdgePower,
606 								twiceMinEdgePower);
607 				} else {
608 					twiceMaxEdgePower = twiceMinEdgePower;
609 					break;
610 				}
611 			}
612 		}
613 
614 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
615 
616 		/* Apply ctl mode to correct target power set */
617 		switch (pCtlMode[ctlMode]) {
618 		case CTL_11B:
619 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
620 				targetPowerCck.tPow2x[i] =
621 					(u8)min((u16)targetPowerCck.tPow2x[i],
622 						minCtlPower);
623 			}
624 			break;
625 		case CTL_11A:
626 		case CTL_11G:
627 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
628 				targetPowerOfdm.tPow2x[i] =
629 					(u8)min((u16)targetPowerOfdm.tPow2x[i],
630 						minCtlPower);
631 			}
632 			break;
633 		case CTL_5GHT20:
634 		case CTL_2GHT20:
635 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
636 				targetPowerHt20.tPow2x[i] =
637 					(u8)min((u16)targetPowerHt20.tPow2x[i],
638 						minCtlPower);
639 			}
640 			break;
641 		case CTL_11B_EXT:
642 			targetPowerCckExt.tPow2x[0] =
643 				(u8)min((u16)targetPowerCckExt.tPow2x[0],
644 					minCtlPower);
645 			break;
646 		case CTL_11A_EXT:
647 		case CTL_11G_EXT:
648 			targetPowerOfdmExt.tPow2x[0] =
649 				(u8)min((u16)targetPowerOfdmExt.tPow2x[0],
650 					minCtlPower);
651 			break;
652 		case CTL_5GHT40:
653 		case CTL_2GHT40:
654 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
655 				targetPowerHt40.tPow2x[i] =
656 					(u8)min((u16)targetPowerHt40.tPow2x[i],
657 						minCtlPower);
658 			}
659 			break;
660 		default:
661 			break;
662 		}
663 	}
664 
665 	/* Now set the rates array */
666 
667 	ratesArray[rate6mb] =
668 	ratesArray[rate9mb] =
669 	ratesArray[rate12mb] =
670 	ratesArray[rate18mb] =
671 	ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
672 
673 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
674 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
675 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
676 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
677 
678 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
679 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
680 
681 	if (IS_CHAN_2GHZ(chan))	{
682 		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
683 		ratesArray[rate2s] =
684 		ratesArray[rate2l] = targetPowerCck.tPow2x[1];
685 		ratesArray[rate5_5s] =
686 		ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
687 		ratesArray[rate11s] =
688 		ratesArray[rate11l] = targetPowerCck.tPow2x[3];
689 	}
690 	if (IS_CHAN_HT40(chan))	{
691 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
692 			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
693 
694 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
695 		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
696 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
697 
698 		if (IS_CHAN_2GHZ(chan))
699 			ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
700 	}
701 
702 #undef CMP_CTL
703 #undef CMP_NO_CTL
704 }
705 
706 static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
707 					struct ath9k_channel *chan, u16 cfgCtl,
708 					u8 twiceAntennaReduction,
709 					u8 powerLimit, bool test)
710 {
711 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
712 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
713 	struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
714 	int16_t ratesArray[Ar5416RateSize];
715 	u8 ht40PowerIncForPdadc = 2;
716 	int i;
717 
718 	memset(ratesArray, 0, sizeof(ratesArray));
719 
720 	if (ath9k_hw_ar9287_get_eeprom_rev(ah) >= AR9287_EEP_MINOR_VER_2)
721 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
722 
723 	ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
724 						 &ratesArray[0], cfgCtl,
725 						 twiceAntennaReduction,
726 						 powerLimit);
727 
728 	ath9k_hw_set_ar9287_power_cal_table(ah, chan);
729 
730 	regulatory->max_power_level = 0;
731 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
732 		if (ratesArray[i] > MAX_RATE_POWER)
733 			ratesArray[i] = MAX_RATE_POWER;
734 
735 		if (ratesArray[i] > regulatory->max_power_level)
736 			regulatory->max_power_level = ratesArray[i];
737 	}
738 
739 	ath9k_hw_update_regulatory_maxpower(ah);
740 
741 	if (test)
742 		return;
743 
744 	for (i = 0; i < Ar5416RateSize; i++)
745 		ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
746 
747 	ENABLE_REGWRITE_BUFFER(ah);
748 
749 	/* OFDM power per rate */
750 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
751 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
752 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
753 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
754 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
755 
756 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
757 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
758 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
759 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
760 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
761 
762 	/* CCK power per rate */
763 	if (IS_CHAN_2GHZ(chan))	{
764 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
765 			  ATH9K_POW_SM(ratesArray[rate2s], 24)
766 			  | ATH9K_POW_SM(ratesArray[rate2l], 16)
767 			  | ATH9K_POW_SM(ratesArray[rateXr], 8)
768 			  | ATH9K_POW_SM(ratesArray[rate1l], 0));
769 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
770 			  ATH9K_POW_SM(ratesArray[rate11s], 24)
771 			  | ATH9K_POW_SM(ratesArray[rate11l], 16)
772 			  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
773 			  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
774 	}
775 
776 	/* HT20 power per rate */
777 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
778 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
779 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
780 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
781 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
782 
783 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
784 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
785 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
786 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
787 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
788 
789 	/* HT40 power per rate */
790 	if (IS_CHAN_HT40(chan))	{
791 		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
792 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
793 				  ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
794 				  | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
795 				  | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
796 				  | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
797 
798 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
799 				  ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
800 				  | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
801 				  | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
802 				  | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
803 		} else {
804 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
805 				  ATH9K_POW_SM(ratesArray[rateHt40_3] +
806 					       ht40PowerIncForPdadc, 24)
807 				  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
808 						 ht40PowerIncForPdadc, 16)
809 				  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
810 						 ht40PowerIncForPdadc, 8)
811 				  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
812 						 ht40PowerIncForPdadc, 0));
813 
814 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
815 				  ATH9K_POW_SM(ratesArray[rateHt40_7] +
816 					       ht40PowerIncForPdadc, 24)
817 				  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
818 						 ht40PowerIncForPdadc, 16)
819 				  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
820 						 ht40PowerIncForPdadc, 8)
821 				  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
822 						 ht40PowerIncForPdadc, 0));
823 		}
824 
825 		/* Dup/Ext power per rate */
826 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
827 			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
828 			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
829 			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
830 			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
831 	}
832 
833 	/* TPC initializations */
834 	if (ah->tpc_enabled) {
835 		int ht40_delta;
836 
837 		ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
838 		ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
839 		/* Enable TPC */
840 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
841 			MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
842 	} else {
843 		/* Disable TPC */
844 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
845 	}
846 
847 	REGWRITE_BUFFER_FLUSH(ah);
848 }
849 
850 static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
851 					     struct ath9k_channel *chan)
852 {
853 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
854 	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
855 	u32 regChainOffset, regval;
856 	u8 txRxAttenLocal;
857 	int i;
858 
859 	pModal = &eep->modalHeader;
860 
861 	REG_WRITE(ah, AR_PHY_SWITCH_COM, le32_to_cpu(pModal->antCtrlCommon));
862 
863 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
864 		regChainOffset = i * 0x1000;
865 
866 		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
867 			  le32_to_cpu(pModal->antCtrlChain[i]));
868 
869 		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
870 			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
871 			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
872 			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
873 			  SM(pModal->iqCalICh[i],
874 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
875 			  SM(pModal->iqCalQCh[i],
876 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
877 
878 		txRxAttenLocal = pModal->txRxAttenCh[i];
879 
880 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
881 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
882 			      pModal->bswMargin[i]);
883 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
884 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
885 			      pModal->bswAtten[i]);
886 		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
887 			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
888 			      txRxAttenLocal);
889 		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
890 			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
891 			      pModal->rxTxMarginCh[i]);
892 	}
893 
894 
895 	if (IS_CHAN_HT40(chan))
896 		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
897 			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
898 	else
899 		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
900 			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
901 
902 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
903 		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
904 
905 	REG_WRITE(ah, AR_PHY_RF_CTL4,
906 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
907 		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
908 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
909 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
910 
911 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
912 		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
913 
914 	REG_RMW_FIELD(ah, AR_PHY_CCA,
915 		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
916 	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
917 		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
918 
919 	regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
920 	regval &= ~(AR9287_AN_RF2G3_DB1 |
921 		    AR9287_AN_RF2G3_DB2 |
922 		    AR9287_AN_RF2G3_OB_CCK |
923 		    AR9287_AN_RF2G3_OB_PSK |
924 		    AR9287_AN_RF2G3_OB_QAM |
925 		    AR9287_AN_RF2G3_OB_PAL_OFF);
926 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
927 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
928 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
929 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
930 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
931 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
932 
933 	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
934 
935 	regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
936 	regval &= ~(AR9287_AN_RF2G3_DB1 |
937 		    AR9287_AN_RF2G3_DB2 |
938 		    AR9287_AN_RF2G3_OB_CCK |
939 		    AR9287_AN_RF2G3_OB_PSK |
940 		    AR9287_AN_RF2G3_OB_QAM |
941 		    AR9287_AN_RF2G3_OB_PAL_OFF);
942 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
943 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
944 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
945 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
946 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
947 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
948 
949 	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
950 
951 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
952 		      AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
953 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
954 		      AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
955 
956 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
957 				  AR9287_AN_TOP2_XPABIAS_LVL,
958 				  AR9287_AN_TOP2_XPABIAS_LVL_S,
959 				  pModal->xpaBiasLvl);
960 }
961 
962 static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
963 					    u16 i, bool is2GHz)
964 {
965 	__le16 spur_ch = ah->eeprom.map9287.modalHeader.spurChans[i].spurChan;
966 
967 	return le16_to_cpu(spur_ch);
968 }
969 
970 static u8 ath9k_hw_ar9287_get_eepmisc(struct ath_hw *ah)
971 {
972 	return ah->eeprom.map9287.baseEepHeader.eepMisc;
973 }
974 
975 const struct eeprom_ops eep_ar9287_ops = {
976 	.check_eeprom		= ath9k_hw_ar9287_check_eeprom,
977 	.get_eeprom		= ath9k_hw_ar9287_get_eeprom,
978 	.fill_eeprom		= ath9k_hw_ar9287_fill_eeprom,
979 	.dump_eeprom		= ath9k_hw_ar9287_dump_eeprom,
980 	.get_eeprom_ver		= ath9k_hw_ar9287_get_eeprom_ver,
981 	.get_eeprom_rev		= ath9k_hw_ar9287_get_eeprom_rev,
982 	.set_board_values	= ath9k_hw_ar9287_set_board_values,
983 	.set_txpower		= ath9k_hw_ar9287_set_txpower,
984 	.get_spur_channel	= ath9k_hw_ar9287_get_spur_channel,
985 	.get_eepmisc		= ath9k_hw_ar9287_get_eepmisc
986 };
987