1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "ath9k.h"
18 
19 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
20 {
21 	return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
22 }
23 
24 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
25 {
26 	return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
27 }
28 
29 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
30 {
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32 	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
33 	int addr, eep_start_loc = 0;
34 
35 	eep_start_loc = 64;
36 
37 	if (!ath9k_hw_use_flash(ah)) {
38 		DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
39 			"Reading from EEPROM, not flash\n");
40 	}
41 
42 	for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
43 		if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
44 			DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
45 			       "Unable to read eeprom region \n");
46 			return false;
47 		}
48 		eep_data++;
49 	}
50 
51 	return true;
52 #undef SIZE_EEPROM_4K
53 }
54 
55 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
56 {
57 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
58 	struct ar5416_eeprom_4k *eep =
59 		(struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
60 	u16 *eepdata, temp, magic, magic2;
61 	u32 sum = 0, el;
62 	bool need_swap = false;
63 	int i, addr;
64 
65 
66 	if (!ath9k_hw_use_flash(ah)) {
67 		if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
68 					 &magic)) {
69 			DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
70 				"Reading Magic # failed\n");
71 			return false;
72 		}
73 
74 		DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
75 			"Read Magic = 0x%04X\n", magic);
76 
77 		if (magic != AR5416_EEPROM_MAGIC) {
78 			magic2 = swab16(magic);
79 
80 			if (magic2 == AR5416_EEPROM_MAGIC) {
81 				need_swap = true;
82 				eepdata = (u16 *) (&ah->eeprom);
83 
84 				for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
85 					temp = swab16(*eepdata);
86 					*eepdata = temp;
87 					eepdata++;
88 				}
89 			} else {
90 				DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
91 					"Invalid EEPROM Magic. "
92 					"endianness mismatch.\n");
93 				return -EINVAL;
94 			}
95 		}
96 	}
97 
98 	DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
99 		need_swap ? "True" : "False");
100 
101 	if (need_swap)
102 		el = swab16(ah->eeprom.map4k.baseEepHeader.length);
103 	else
104 		el = ah->eeprom.map4k.baseEepHeader.length;
105 
106 	if (el > sizeof(struct ar5416_eeprom_4k))
107 		el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
108 	else
109 		el = el / sizeof(u16);
110 
111 	eepdata = (u16 *)(&ah->eeprom);
112 
113 	for (i = 0; i < el; i++)
114 		sum ^= *eepdata++;
115 
116 	if (need_swap) {
117 		u32 integer;
118 		u16 word;
119 
120 		DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
121 			"EEPROM Endianness is not native.. Changing\n");
122 
123 		word = swab16(eep->baseEepHeader.length);
124 		eep->baseEepHeader.length = word;
125 
126 		word = swab16(eep->baseEepHeader.checksum);
127 		eep->baseEepHeader.checksum = word;
128 
129 		word = swab16(eep->baseEepHeader.version);
130 		eep->baseEepHeader.version = word;
131 
132 		word = swab16(eep->baseEepHeader.regDmn[0]);
133 		eep->baseEepHeader.regDmn[0] = word;
134 
135 		word = swab16(eep->baseEepHeader.regDmn[1]);
136 		eep->baseEepHeader.regDmn[1] = word;
137 
138 		word = swab16(eep->baseEepHeader.rfSilent);
139 		eep->baseEepHeader.rfSilent = word;
140 
141 		word = swab16(eep->baseEepHeader.blueToothOptions);
142 		eep->baseEepHeader.blueToothOptions = word;
143 
144 		word = swab16(eep->baseEepHeader.deviceCap);
145 		eep->baseEepHeader.deviceCap = word;
146 
147 		integer = swab32(eep->modalHeader.antCtrlCommon);
148 		eep->modalHeader.antCtrlCommon = integer;
149 
150 		for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
151 			integer = swab32(eep->modalHeader.antCtrlChain[i]);
152 			eep->modalHeader.antCtrlChain[i] = integer;
153 		}
154 
155 		for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
156 			word = swab16(eep->modalHeader.spurChans[i].spurChan);
157 			eep->modalHeader.spurChans[i].spurChan = word;
158 		}
159 	}
160 
161 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
162 	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
163 		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
164 			"Bad EEPROM checksum 0x%x or revision 0x%04x\n",
165 			sum, ah->eep_ops->get_eeprom_ver(ah));
166 		return -EINVAL;
167 	}
168 
169 	return 0;
170 #undef EEPROM_4K_SIZE
171 }
172 
173 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
174 				  enum eeprom_param param)
175 {
176 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
177 	struct modal_eep_4k_header *pModal = &eep->modalHeader;
178 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
179 
180 	switch (param) {
181 	case EEP_NFTHRESH_2:
182 		return pModal->noiseFloorThreshCh[0];
183 	case AR_EEPROM_MAC(0):
184 		return pBase->macAddr[0] << 8 | pBase->macAddr[1];
185 	case AR_EEPROM_MAC(1):
186 		return pBase->macAddr[2] << 8 | pBase->macAddr[3];
187 	case AR_EEPROM_MAC(2):
188 		return pBase->macAddr[4] << 8 | pBase->macAddr[5];
189 	case EEP_REG_0:
190 		return pBase->regDmn[0];
191 	case EEP_REG_1:
192 		return pBase->regDmn[1];
193 	case EEP_OP_CAP:
194 		return pBase->deviceCap;
195 	case EEP_OP_MODE:
196 		return pBase->opCapFlags;
197 	case EEP_RF_SILENT:
198 		return pBase->rfSilent;
199 	case EEP_OB_2:
200 		return pModal->ob_0;
201 	case EEP_DB_2:
202 		return pModal->db1_1;
203 	case EEP_MINOR_REV:
204 		return pBase->version & AR5416_EEP_VER_MINOR_MASK;
205 	case EEP_TX_MASK:
206 		return pBase->txMask;
207 	case EEP_RX_MASK:
208 		return pBase->rxMask;
209 	case EEP_FRAC_N_5G:
210 		return 0;
211 	default:
212 		return 0;
213 	}
214 }
215 
216 static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
217 				struct ath9k_channel *chan,
218 				struct cal_data_per_freq_4k *pRawDataSet,
219 				u8 *bChans, u16 availPiers,
220 				u16 tPdGainOverlap, int16_t *pMinCalPower,
221 				u16 *pPdGainBoundaries, u8 *pPDADCValues,
222 				u16 numXpdGains)
223 {
224 #define TMP_VAL_VPD_TABLE \
225 	((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
226 	int i, j, k;
227 	int16_t ss;
228 	u16 idxL = 0, idxR = 0, numPiers;
229 	static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
230 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
231 	static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
232 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
233 	static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
234 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
235 
236 	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
237 	u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
238 	u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
239 	int16_t vpdStep;
240 	int16_t tmpVal;
241 	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
242 	bool match;
243 	int16_t minDelta = 0;
244 	struct chan_centers centers;
245 #define PD_GAIN_BOUNDARY_DEFAULT 58;
246 
247 	ath9k_hw_get_channel_centers(ah, chan, &centers);
248 
249 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
250 		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
251 			break;
252 	}
253 
254 	match = ath9k_hw_get_lower_upper_index(
255 					(u8)FREQ2FBIN(centers.synth_center,
256 					IS_CHAN_2GHZ(chan)), bChans, numPiers,
257 					&idxL, &idxR);
258 
259 	if (match) {
260 		for (i = 0; i < numXpdGains; i++) {
261 			minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
262 			maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
263 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
264 					pRawDataSet[idxL].pwrPdg[i],
265 					pRawDataSet[idxL].vpdPdg[i],
266 					AR5416_EEP4K_PD_GAIN_ICEPTS,
267 					vpdTableI[i]);
268 		}
269 	} else {
270 		for (i = 0; i < numXpdGains; i++) {
271 			pVpdL = pRawDataSet[idxL].vpdPdg[i];
272 			pPwrL = pRawDataSet[idxL].pwrPdg[i];
273 			pVpdR = pRawDataSet[idxR].vpdPdg[i];
274 			pPwrR = pRawDataSet[idxR].pwrPdg[i];
275 
276 			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
277 
278 			maxPwrT4[i] =
279 				min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
280 				    pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
281 
282 
283 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
284 						pPwrL, pVpdL,
285 						AR5416_EEP4K_PD_GAIN_ICEPTS,
286 						vpdTableL[i]);
287 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
288 						pPwrR, pVpdR,
289 						AR5416_EEP4K_PD_GAIN_ICEPTS,
290 						vpdTableR[i]);
291 
292 			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
293 				vpdTableI[i][j] =
294 					(u8)(ath9k_hw_interpolate((u16)
295 					     FREQ2FBIN(centers.
296 						       synth_center,
297 						       IS_CHAN_2GHZ
298 						       (chan)),
299 					     bChans[idxL], bChans[idxR],
300 					     vpdTableL[i][j], vpdTableR[i][j]));
301 			}
302 		}
303 	}
304 
305 	*pMinCalPower = (int16_t)(minPwrT4[0] / 2);
306 
307 	k = 0;
308 
309 	for (i = 0; i < numXpdGains; i++) {
310 		if (i == (numXpdGains - 1))
311 			pPdGainBoundaries[i] =
312 				(u16)(maxPwrT4[i] / 2);
313 		else
314 			pPdGainBoundaries[i] =
315 				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
316 
317 		pPdGainBoundaries[i] =
318 			min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
319 
320 		if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
321 			minDelta = pPdGainBoundaries[0] - 23;
322 			pPdGainBoundaries[0] = 23;
323 		} else {
324 			minDelta = 0;
325 		}
326 
327 		if (i == 0) {
328 			if (AR_SREV_9280_10_OR_LATER(ah))
329 				ss = (int16_t)(0 - (minPwrT4[i] / 2));
330 			else
331 				ss = 0;
332 		} else {
333 			ss = (int16_t)((pPdGainBoundaries[i - 1] -
334 					(minPwrT4[i] / 2)) -
335 				       tPdGainOverlap + 1 + minDelta);
336 		}
337 		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
338 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
339 
340 		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
341 			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
342 			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
343 			ss++;
344 		}
345 
346 		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
347 		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
348 				(minPwrT4[i] / 2));
349 		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
350 			tgtIndex : sizeCurrVpdTable;
351 
352 		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
353 			pPDADCValues[k++] = vpdTableI[i][ss++];
354 
355 		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
356 				    vpdTableI[i][sizeCurrVpdTable - 2]);
357 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
358 
359 		if (tgtIndex >= maxIndex) {
360 			while ((ss <= tgtIndex) &&
361 			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
362 				tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
363 				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
364 							 255 : tmpVal);
365 				ss++;
366 			}
367 		}
368 	}
369 
370 	while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
371 		pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
372 		i++;
373 	}
374 
375 	while (k < AR5416_NUM_PDADC_VALUES) {
376 		pPDADCValues[k] = pPDADCValues[k - 1];
377 		k++;
378 	}
379 
380 	return;
381 #undef TMP_VAL_VPD_TABLE
382 }
383 
384 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
385 				  struct ath9k_channel *chan,
386 				  int16_t *pTxPowerIndexOffset)
387 {
388 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
389 	struct cal_data_per_freq_4k *pRawDataset;
390 	u8 *pCalBChans = NULL;
391 	u16 pdGainOverlap_t2;
392 	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
393 	u16 gainBoundaries[AR5416_EEP4K_PD_GAINS_IN_MASK];
394 	u16 numPiers, i, j;
395 	int16_t tMinCalPower;
396 	u16 numXpdGain, xpdMask;
397 	u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
398 	u32 reg32, regOffset, regChainOffset;
399 
400 	xpdMask = pEepData->modalHeader.xpdGain;
401 
402 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
403 	    AR5416_EEP_MINOR_VER_2) {
404 		pdGainOverlap_t2 =
405 			pEepData->modalHeader.pdGainOverlap;
406 	} else {
407 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
408 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
409 	}
410 
411 	pCalBChans = pEepData->calFreqPier2G;
412 	numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
413 
414 	numXpdGain = 0;
415 
416 	for (i = 1; i <= AR5416_EEP4K_PD_GAINS_IN_MASK; i++) {
417 		if ((xpdMask >> (AR5416_EEP4K_PD_GAINS_IN_MASK - i)) & 1) {
418 			if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
419 				break;
420 			xpdGainValues[numXpdGain] =
421 				(u16)(AR5416_EEP4K_PD_GAINS_IN_MASK - i);
422 			numXpdGain++;
423 		}
424 	}
425 
426 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
427 		      (numXpdGain - 1) & 0x3);
428 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
429 		      xpdGainValues[0]);
430 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
431 		      xpdGainValues[1]);
432 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
433 
434 	for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
435 		if (AR_SREV_5416_20_OR_LATER(ah) &&
436 		    (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
437 		    (i != 0)) {
438 			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
439 		} else
440 			regChainOffset = i * 0x1000;
441 
442 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
443 			pRawDataset = pEepData->calPierData2G[i];
444 
445 			ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
446 					    pRawDataset, pCalBChans,
447 					    numPiers, pdGainOverlap_t2,
448 					    &tMinCalPower, gainBoundaries,
449 					    pdadcValues, numXpdGain);
450 
451 			if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
452 				REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
453 					  SM(pdGainOverlap_t2,
454 					     AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
455 					  | SM(gainBoundaries[0],
456 					       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
457 					  | SM(gainBoundaries[1],
458 					       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
459 					  | SM(gainBoundaries[2],
460 					       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
461 					  | SM(gainBoundaries[3],
462 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
463 			}
464 
465 			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
466 			for (j = 0; j < 32; j++) {
467 				reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
468 					((pdadcValues[4 * j + 1] & 0xFF) << 8) |
469 					((pdadcValues[4 * j + 2] & 0xFF) << 16)|
470 					((pdadcValues[4 * j + 3] & 0xFF) << 24);
471 				REG_WRITE(ah, regOffset, reg32);
472 
473 				DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
474 					"PDADC (%d,%4x): %4.4x %8.8x\n",
475 					i, regChainOffset, regOffset,
476 					reg32);
477 				DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
478 					"PDADC: Chain %d | "
479 					"PDADC %3d Value %3d | "
480 					"PDADC %3d Value %3d | "
481 					"PDADC %3d Value %3d | "
482 					"PDADC %3d Value %3d |\n",
483 					i, 4 * j, pdadcValues[4 * j],
484 					4 * j + 1, pdadcValues[4 * j + 1],
485 					4 * j + 2, pdadcValues[4 * j + 2],
486 					4 * j + 3,
487 					pdadcValues[4 * j + 3]);
488 
489 				regOffset += 4;
490 			}
491 		}
492 	}
493 
494 	*pTxPowerIndexOffset = 0;
495 }
496 
497 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
498 						 struct ath9k_channel *chan,
499 						 int16_t *ratesArray,
500 						 u16 cfgCtl,
501 						 u16 AntennaReduction,
502 						 u16 twiceMaxRegulatoryPower,
503 						 u16 powerLimit)
504 {
505 #define CMP_TEST_GRP \
506 	(((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) ==	\
507 	 pEepData->ctlIndex[i])						\
508 	|| (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
509 	    ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
510 
511 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
512 	int i;
513 	int16_t twiceLargestAntenna;
514 	u16 twiceMinEdgePower;
515 	u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
516 	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
517 	u16 numCtlModes, *pCtlMode, ctlMode, freq;
518 	struct chan_centers centers;
519 	struct cal_ctl_data_4k *rep;
520 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
521 	static const u16 tpScaleReductionTable[5] =
522 		{ 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
523 	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
524 		0, { 0, 0, 0, 0}
525 	};
526 	struct cal_target_power_leg targetPowerOfdmExt = {
527 		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
528 		0, { 0, 0, 0, 0 }
529 	};
530 	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
531 		0, {0, 0, 0, 0}
532 	};
533 	u16 ctlModesFor11g[] =
534 		{ CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
535 		  CTL_2GHT40
536 		};
537 
538 	ath9k_hw_get_channel_centers(ah, chan, &centers);
539 
540 	twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
541 	twiceLargestAntenna = (int16_t)min(AntennaReduction -
542 					   twiceLargestAntenna, 0);
543 
544 	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
545 	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
546 		maxRegAllowedPower -=
547 			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
548 	}
549 
550 	scaledPower = min(powerLimit, maxRegAllowedPower);
551 	scaledPower = max((u16)0, scaledPower);
552 
553 	numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
554 	pCtlMode = ctlModesFor11g;
555 
556 	ath9k_hw_get_legacy_target_powers(ah, chan,
557 			pEepData->calTargetPowerCck,
558 			AR5416_NUM_2G_CCK_TARGET_POWERS,
559 			&targetPowerCck, 4, false);
560 	ath9k_hw_get_legacy_target_powers(ah, chan,
561 			pEepData->calTargetPower2G,
562 			AR5416_NUM_2G_20_TARGET_POWERS,
563 			&targetPowerOfdm, 4, false);
564 	ath9k_hw_get_target_powers(ah, chan,
565 			pEepData->calTargetPower2GHT20,
566 			AR5416_NUM_2G_20_TARGET_POWERS,
567 			&targetPowerHt20, 8, false);
568 
569 	if (IS_CHAN_HT40(chan)) {
570 		numCtlModes = ARRAY_SIZE(ctlModesFor11g);
571 		ath9k_hw_get_target_powers(ah, chan,
572 				pEepData->calTargetPower2GHT40,
573 				AR5416_NUM_2G_40_TARGET_POWERS,
574 				&targetPowerHt40, 8, true);
575 		ath9k_hw_get_legacy_target_powers(ah, chan,
576 				pEepData->calTargetPowerCck,
577 				AR5416_NUM_2G_CCK_TARGET_POWERS,
578 				&targetPowerCckExt, 4, true);
579 		ath9k_hw_get_legacy_target_powers(ah, chan,
580 				pEepData->calTargetPower2G,
581 				AR5416_NUM_2G_20_TARGET_POWERS,
582 				&targetPowerOfdmExt, 4, true);
583 	}
584 
585 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
586 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
587 			(pCtlMode[ctlMode] == CTL_2GHT40);
588 
589 		if (isHt40CtlMode)
590 			freq = centers.synth_center;
591 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
592 			freq = centers.ext_center;
593 		else
594 			freq = centers.ctl_center;
595 
596 		if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
597 		    ah->eep_ops->get_eeprom_rev(ah) <= 2)
598 			twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
599 
600 		for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
601 			     pEepData->ctlIndex[i]; i++) {
602 
603 			if (CMP_TEST_GRP) {
604 				rep = &(pEepData->ctlData[i]);
605 
606 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(
607 					freq,
608 					rep->ctlEdges[
609 					ar5416_get_ntxchains(ah->txchainmask) - 1],
610 					IS_CHAN_2GHZ(chan),
611 					AR5416_EEP4K_NUM_BAND_EDGES);
612 
613 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
614 					twiceMaxEdgePower =
615 						min(twiceMaxEdgePower,
616 						    twiceMinEdgePower);
617 				} else {
618 					twiceMaxEdgePower = twiceMinEdgePower;
619 					break;
620 				}
621 			}
622 		}
623 
624 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
625 
626 		switch (pCtlMode[ctlMode]) {
627 		case CTL_11B:
628 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
629 				targetPowerCck.tPow2x[i] =
630 					min((u16)targetPowerCck.tPow2x[i],
631 					    minCtlPower);
632 			}
633 			break;
634 		case CTL_11G:
635 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
636 				targetPowerOfdm.tPow2x[i] =
637 					min((u16)targetPowerOfdm.tPow2x[i],
638 					    minCtlPower);
639 			}
640 			break;
641 		case CTL_2GHT20:
642 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
643 				targetPowerHt20.tPow2x[i] =
644 					min((u16)targetPowerHt20.tPow2x[i],
645 					    minCtlPower);
646 			}
647 			break;
648 		case CTL_11B_EXT:
649 			targetPowerCckExt.tPow2x[0] =
650 				min((u16)targetPowerCckExt.tPow2x[0],
651 				    minCtlPower);
652 			break;
653 		case CTL_11G_EXT:
654 			targetPowerOfdmExt.tPow2x[0] =
655 				min((u16)targetPowerOfdmExt.tPow2x[0],
656 				    minCtlPower);
657 			break;
658 		case CTL_2GHT40:
659 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
660 				targetPowerHt40.tPow2x[i] =
661 					min((u16)targetPowerHt40.tPow2x[i],
662 					    minCtlPower);
663 			}
664 			break;
665 		default:
666 			break;
667 		}
668 	}
669 
670 	ratesArray[rate6mb] =
671 	ratesArray[rate9mb] =
672 	ratesArray[rate12mb] =
673 	ratesArray[rate18mb] =
674 	ratesArray[rate24mb] =
675 	targetPowerOfdm.tPow2x[0];
676 
677 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
678 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
679 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
680 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
681 
682 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
683 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
684 
685 	ratesArray[rate1l] = targetPowerCck.tPow2x[0];
686 	ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
687 	ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
688 	ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
689 
690 	if (IS_CHAN_HT40(chan)) {
691 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
692 			ratesArray[rateHt40_0 + i] =
693 				targetPowerHt40.tPow2x[i];
694 		}
695 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
696 		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
697 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
698 		ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
699 	}
700 
701 #undef CMP_TEST_GRP
702 }
703 
704 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
705 				    struct ath9k_channel *chan,
706 				    u16 cfgCtl,
707 				    u8 twiceAntennaReduction,
708 				    u8 twiceMaxRegulatoryPower,
709 				    u8 powerLimit)
710 {
711 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
712 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
713 	struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
714 	int16_t ratesArray[Ar5416RateSize];
715 	int16_t txPowerIndexOffset = 0;
716 	u8 ht40PowerIncForPdadc = 2;
717 	int i;
718 
719 	memset(ratesArray, 0, sizeof(ratesArray));
720 
721 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
722 	    AR5416_EEP_MINOR_VER_2) {
723 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
724 	}
725 
726 	ath9k_hw_set_4k_power_per_rate_table(ah, chan,
727 					     &ratesArray[0], cfgCtl,
728 					     twiceAntennaReduction,
729 					     twiceMaxRegulatoryPower,
730 					     powerLimit);
731 
732 	ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
733 
734 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
735 		ratesArray[i] =	(int16_t)(txPowerIndexOffset + ratesArray[i]);
736 		if (ratesArray[i] > AR5416_MAX_RATE_POWER)
737 			ratesArray[i] = AR5416_MAX_RATE_POWER;
738 	}
739 
740 
741 	/* Update regulatory */
742 
743 	i = rate6mb;
744 	if (IS_CHAN_HT40(chan))
745 		i = rateHt40_0;
746 	else if (IS_CHAN_HT20(chan))
747 		i = rateHt20_0;
748 
749 	regulatory->max_power_level = ratesArray[i];
750 
751 	if (AR_SREV_9280_10_OR_LATER(ah)) {
752 		for (i = 0; i < Ar5416RateSize; i++)
753 			ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
754 	}
755 
756 	/* OFDM power per rate */
757 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
758 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
759 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
760 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
761 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
762 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
763 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
764 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
765 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
766 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
767 
768 	/* CCK power per rate */
769 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
770 		  ATH9K_POW_SM(ratesArray[rate2s], 24)
771 		  | ATH9K_POW_SM(ratesArray[rate2l], 16)
772 		  | ATH9K_POW_SM(ratesArray[rateXr], 8)
773 		  | ATH9K_POW_SM(ratesArray[rate1l], 0));
774 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
775 		  ATH9K_POW_SM(ratesArray[rate11s], 24)
776 		  | ATH9K_POW_SM(ratesArray[rate11l], 16)
777 		  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
778 		  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
779 
780 	/* HT20 power per rate */
781 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
782 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
783 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
784 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
785 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
786 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
787 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
788 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
789 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
790 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
791 
792 	/* HT40 power per rate */
793 	if (IS_CHAN_HT40(chan)) {
794 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
795 			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
796 				       ht40PowerIncForPdadc, 24)
797 			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
798 					 ht40PowerIncForPdadc, 16)
799 			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
800 					 ht40PowerIncForPdadc, 8)
801 			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
802 					 ht40PowerIncForPdadc, 0));
803 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
804 			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
805 				       ht40PowerIncForPdadc, 24)
806 			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
807 					 ht40PowerIncForPdadc, 16)
808 			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
809 					 ht40PowerIncForPdadc, 8)
810 			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
811 					 ht40PowerIncForPdadc, 0));
812 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
813 			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
814 			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
815 			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
816 			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
817 	}
818 }
819 
820 static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
821 				  struct ath9k_channel *chan)
822 {
823 	struct modal_eep_4k_header *pModal;
824 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
825 	u8 biaslevel;
826 
827 	if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
828 		return;
829 
830 	if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
831 		return;
832 
833 	pModal = &eep->modalHeader;
834 
835 	if (pModal->xpaBiasLvl != 0xff) {
836 		biaslevel = pModal->xpaBiasLvl;
837 		INI_RA(&ah->iniAddac, 7, 1) =
838 		  (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
839 	}
840 }
841 
842 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
843 				 struct modal_eep_4k_header *pModal,
844 				 struct ar5416_eeprom_4k *eep,
845 				 u8 txRxAttenLocal)
846 {
847 	REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
848 		  pModal->antCtrlChain[0]);
849 
850 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
851 		  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
852 		   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
853 		     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
854 		  SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
855 		  SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
856 
857 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
858 	    AR5416_EEP_MINOR_VER_3) {
859 		txRxAttenLocal = pModal->txRxAttenCh[0];
860 
861 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
862 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
863 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
864 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
865 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
866 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
867 			      pModal->xatten2Margin[0]);
868 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
869 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
870 
871 		/* Set the block 1 value to block 0 value */
872 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
873 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
874 			      pModal->bswMargin[0]);
875 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
876 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
877 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
878 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
879 			      pModal->xatten2Margin[0]);
880 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
881 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
882 			      pModal->xatten2Db[0]);
883 	}
884 
885 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
886 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
887 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
888 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
889 
890 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
891 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
892 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
893 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
894 
895 	if (AR_SREV_9285_11(ah))
896 		REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
897 }
898 
899 /*
900  * Read EEPROM header info and program the device for correct operation
901  * given the channel value.
902  */
903 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
904 					 struct ath9k_channel *chan)
905 {
906 	struct modal_eep_4k_header *pModal;
907 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
908 	u8 txRxAttenLocal;
909 	u8 ob[5], db1[5], db2[5];
910 	u8 ant_div_control1, ant_div_control2;
911 	u32 regVal;
912 
913 	pModal = &eep->modalHeader;
914 	txRxAttenLocal = 23;
915 
916 	REG_WRITE(ah, AR_PHY_SWITCH_COM,
917 		  ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
918 
919 	/* Single chain for 4K EEPROM*/
920 	ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
921 
922 	/* Initialize Ant Diversity settings from EEPROM */
923 	if (pModal->version >= 3) {
924 		ant_div_control1 = pModal->antdiv_ctl1;
925 		ant_div_control2 = pModal->antdiv_ctl2;
926 
927 		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
928 		regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
929 
930 		regVal |= SM(ant_div_control1,
931 			     AR_PHY_9285_ANT_DIV_CTL);
932 		regVal |= SM(ant_div_control2,
933 			     AR_PHY_9285_ANT_DIV_ALT_LNACONF);
934 		regVal |= SM((ant_div_control2 >> 2),
935 			     AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
936 		regVal |= SM((ant_div_control1 >> 1),
937 			     AR_PHY_9285_ANT_DIV_ALT_GAINTB);
938 		regVal |= SM((ant_div_control1 >> 2),
939 			     AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
940 
941 
942 		REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
943 		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
944 		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
945 		regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
946 		regVal |= SM((ant_div_control1 >> 3),
947 			     AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
948 
949 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
950 		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
951 	}
952 
953 	if (pModal->version >= 2) {
954 		ob[0] = pModal->ob_0;
955 		ob[1] = pModal->ob_1;
956 		ob[2] = pModal->ob_2;
957 		ob[3] = pModal->ob_3;
958 		ob[4] = pModal->ob_4;
959 
960 		db1[0] = pModal->db1_0;
961 		db1[1] = pModal->db1_1;
962 		db1[2] = pModal->db1_2;
963 		db1[3] = pModal->db1_3;
964 		db1[4] = pModal->db1_4;
965 
966 		db2[0] = pModal->db2_0;
967 		db2[1] = pModal->db2_1;
968 		db2[2] = pModal->db2_2;
969 		db2[3] = pModal->db2_3;
970 		db2[4] = pModal->db2_4;
971 	} else if (pModal->version == 1) {
972 		ob[0] = pModal->ob_0;
973 		ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
974 		db1[0] = pModal->db1_0;
975 		db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
976 		db2[0] = pModal->db2_0;
977 		db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
978 	} else {
979 		int i;
980 
981 		for (i = 0; i < 5; i++) {
982 			ob[i] = pModal->ob_0;
983 			db1[i] = pModal->db1_0;
984 			db2[i] = pModal->db1_0;
985 		}
986 	}
987 
988 	if (AR_SREV_9271(ah)) {
989 		ath9k_hw_analog_shift_rmw(ah,
990 					  AR9285_AN_RF2G3,
991 					  AR9271_AN_RF2G3_OB_cck,
992 					  AR9271_AN_RF2G3_OB_cck_S,
993 					  ob[0]);
994 		ath9k_hw_analog_shift_rmw(ah,
995 					  AR9285_AN_RF2G3,
996 					  AR9271_AN_RF2G3_OB_psk,
997 					  AR9271_AN_RF2G3_OB_psk_S,
998 					  ob[1]);
999 		ath9k_hw_analog_shift_rmw(ah,
1000 					  AR9285_AN_RF2G3,
1001 					  AR9271_AN_RF2G3_OB_qam,
1002 					  AR9271_AN_RF2G3_OB_qam_S,
1003 					  ob[2]);
1004 		ath9k_hw_analog_shift_rmw(ah,
1005 					  AR9285_AN_RF2G3,
1006 					  AR9271_AN_RF2G3_DB_1,
1007 					  AR9271_AN_RF2G3_DB_1_S,
1008 					  db1[0]);
1009 		ath9k_hw_analog_shift_rmw(ah,
1010 					  AR9285_AN_RF2G4,
1011 					  AR9271_AN_RF2G4_DB_2,
1012 					  AR9271_AN_RF2G4_DB_2_S,
1013 					  db2[0]);
1014 	} else {
1015 		ath9k_hw_analog_shift_rmw(ah,
1016 					  AR9285_AN_RF2G3,
1017 					  AR9285_AN_RF2G3_OB_0,
1018 					  AR9285_AN_RF2G3_OB_0_S,
1019 					  ob[0]);
1020 		ath9k_hw_analog_shift_rmw(ah,
1021 					  AR9285_AN_RF2G3,
1022 					  AR9285_AN_RF2G3_OB_1,
1023 					  AR9285_AN_RF2G3_OB_1_S,
1024 					  ob[1]);
1025 		ath9k_hw_analog_shift_rmw(ah,
1026 					  AR9285_AN_RF2G3,
1027 					  AR9285_AN_RF2G3_OB_2,
1028 					  AR9285_AN_RF2G3_OB_2_S,
1029 					  ob[2]);
1030 		ath9k_hw_analog_shift_rmw(ah,
1031 					  AR9285_AN_RF2G3,
1032 					  AR9285_AN_RF2G3_OB_3,
1033 					  AR9285_AN_RF2G3_OB_3_S,
1034 					  ob[3]);
1035 		ath9k_hw_analog_shift_rmw(ah,
1036 					  AR9285_AN_RF2G3,
1037 					  AR9285_AN_RF2G3_OB_4,
1038 					  AR9285_AN_RF2G3_OB_4_S,
1039 					  ob[4]);
1040 
1041 		ath9k_hw_analog_shift_rmw(ah,
1042 					  AR9285_AN_RF2G3,
1043 					  AR9285_AN_RF2G3_DB1_0,
1044 					  AR9285_AN_RF2G3_DB1_0_S,
1045 					  db1[0]);
1046 		ath9k_hw_analog_shift_rmw(ah,
1047 					  AR9285_AN_RF2G3,
1048 					  AR9285_AN_RF2G3_DB1_1,
1049 					  AR9285_AN_RF2G3_DB1_1_S,
1050 					  db1[1]);
1051 		ath9k_hw_analog_shift_rmw(ah,
1052 					  AR9285_AN_RF2G3,
1053 					  AR9285_AN_RF2G3_DB1_2,
1054 					  AR9285_AN_RF2G3_DB1_2_S,
1055 					  db1[2]);
1056 		ath9k_hw_analog_shift_rmw(ah,
1057 					  AR9285_AN_RF2G4,
1058 					  AR9285_AN_RF2G4_DB1_3,
1059 					  AR9285_AN_RF2G4_DB1_3_S,
1060 					  db1[3]);
1061 		ath9k_hw_analog_shift_rmw(ah,
1062 					  AR9285_AN_RF2G4,
1063 					  AR9285_AN_RF2G4_DB1_4,
1064 					  AR9285_AN_RF2G4_DB1_4_S, db1[4]);
1065 
1066 		ath9k_hw_analog_shift_rmw(ah,
1067 					  AR9285_AN_RF2G4,
1068 					  AR9285_AN_RF2G4_DB2_0,
1069 					  AR9285_AN_RF2G4_DB2_0_S,
1070 					  db2[0]);
1071 		ath9k_hw_analog_shift_rmw(ah,
1072 					  AR9285_AN_RF2G4,
1073 					  AR9285_AN_RF2G4_DB2_1,
1074 					  AR9285_AN_RF2G4_DB2_1_S,
1075 					  db2[1]);
1076 		ath9k_hw_analog_shift_rmw(ah,
1077 					  AR9285_AN_RF2G4,
1078 					  AR9285_AN_RF2G4_DB2_2,
1079 					  AR9285_AN_RF2G4_DB2_2_S,
1080 					  db2[2]);
1081 		ath9k_hw_analog_shift_rmw(ah,
1082 					  AR9285_AN_RF2G4,
1083 					  AR9285_AN_RF2G4_DB2_3,
1084 					  AR9285_AN_RF2G4_DB2_3_S,
1085 					  db2[3]);
1086 		ath9k_hw_analog_shift_rmw(ah,
1087 					  AR9285_AN_RF2G4,
1088 					  AR9285_AN_RF2G4_DB2_4,
1089 					  AR9285_AN_RF2G4_DB2_4_S,
1090 					  db2[4]);
1091 	}
1092 
1093 
1094 	if (AR_SREV_9285_11(ah))
1095 		REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
1096 
1097 	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1098 		      pModal->switchSettling);
1099 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1100 		      pModal->adcDesiredSize);
1101 
1102 	REG_WRITE(ah, AR_PHY_RF_CTL4,
1103 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1104 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1105 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
1106 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1107 
1108 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1109 		      pModal->txEndToRxOn);
1110 	REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1111 		      pModal->thresh62);
1112 	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1113 		      pModal->thresh62);
1114 
1115 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1116 						AR5416_EEP_MINOR_VER_2) {
1117 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1118 			      pModal->txFrameToDataStart);
1119 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1120 			      pModal->txFrameToPaOn);
1121 	}
1122 
1123 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1124 						AR5416_EEP_MINOR_VER_3) {
1125 		if (IS_CHAN_HT40(chan))
1126 			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1127 				      AR_PHY_SETTLING_SWITCH,
1128 				      pModal->swSettleHt40);
1129 	}
1130 }
1131 
1132 static u16 ath9k_hw_4k_get_eeprom_antenna_cfg(struct ath_hw *ah,
1133 					      struct ath9k_channel *chan)
1134 {
1135 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
1136 	struct modal_eep_4k_header *pModal = &eep->modalHeader;
1137 
1138 	return pModal->antCtrlCommon & 0xFFFF;
1139 }
1140 
1141 static u8 ath9k_hw_4k_get_num_ant_config(struct ath_hw *ah,
1142 					 enum ieee80211_band freq_band)
1143 {
1144 	return 1;
1145 }
1146 
1147 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1148 {
1149 #define EEP_MAP4K_SPURCHAN \
1150 	(ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1151 
1152 	u16 spur_val = AR_NO_SPUR;
1153 
1154 	DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1155 		"Getting spur idx %d is2Ghz. %d val %x\n",
1156 		i, is2GHz, ah->config.spurchans[i][is2GHz]);
1157 
1158 	switch (ah->config.spurmode) {
1159 	case SPUR_DISABLE:
1160 		break;
1161 	case SPUR_ENABLE_IOCTL:
1162 		spur_val = ah->config.spurchans[i][is2GHz];
1163 		DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1164 			"Getting spur val from new loc. %d\n", spur_val);
1165 		break;
1166 	case SPUR_ENABLE_EEPROM:
1167 		spur_val = EEP_MAP4K_SPURCHAN;
1168 		break;
1169 	}
1170 
1171 	return spur_val;
1172 
1173 #undef EEP_MAP4K_SPURCHAN
1174 }
1175 
1176 const struct eeprom_ops eep_4k_ops = {
1177 	.check_eeprom		= ath9k_hw_4k_check_eeprom,
1178 	.get_eeprom		= ath9k_hw_4k_get_eeprom,
1179 	.fill_eeprom		= ath9k_hw_4k_fill_eeprom,
1180 	.get_eeprom_ver		= ath9k_hw_4k_get_eeprom_ver,
1181 	.get_eeprom_rev		= ath9k_hw_4k_get_eeprom_rev,
1182 	.get_num_ant_config	= ath9k_hw_4k_get_num_ant_config,
1183 	.get_eeprom_antenna_cfg	= ath9k_hw_4k_get_eeprom_antenna_cfg,
1184 	.set_board_values	= ath9k_hw_4k_set_board_values,
1185 	.set_addac		= ath9k_hw_4k_set_addac,
1186 	.set_txpower		= ath9k_hw_4k_set_txpower,
1187 	.get_spur_channel	= ath9k_hw_4k_get_spur_channel
1188 };
1189