xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/eeprom_4k.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20 
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
22 {
23 	return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
24 }
25 
26 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
27 {
28 	return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
29 }
30 
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32 
33 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
34 {
35 	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
36 	int addr, eep_start_loc = 64;
37 
38 	for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
39 		if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
40 			return false;
41 		eep_data++;
42 	}
43 
44 	return true;
45 }
46 
47 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
48 {
49 	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
50 
51 	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
52 
53 	return true;
54 }
55 
56 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
57 {
58 	struct ath_common *common = ath9k_hw_common(ah);
59 
60 	if (!ath9k_hw_use_flash(ah)) {
61 		ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
62 	}
63 
64 	if (common->bus_ops->ath_bus_type == ATH_USB)
65 		return __ath9k_hw_usb_4k_fill_eeprom(ah);
66 	else
67 		return __ath9k_hw_4k_fill_eeprom(ah);
68 }
69 
70 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
71 static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
72 				      struct modal_eep_4k_header *modal_hdr)
73 {
74 	PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
75 	PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
76 	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
77 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
78 	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
79 	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
80 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
81 	PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
82 	PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
83 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
84 	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
85 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
86 	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
87 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
88 	PR_EEP("xpdGain", modal_hdr->xpdGain);
89 	PR_EEP("External PD", modal_hdr->xpd);
90 	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
91 	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
92 	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
93 	PR_EEP("O/D Bias Version", modal_hdr->version);
94 	PR_EEP("CCK OutputBias", modal_hdr->ob_0);
95 	PR_EEP("BPSK OutputBias", modal_hdr->ob_1);
96 	PR_EEP("QPSK OutputBias", modal_hdr->ob_2);
97 	PR_EEP("16QAM OutputBias", modal_hdr->ob_3);
98 	PR_EEP("64QAM OutputBias", modal_hdr->ob_4);
99 	PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0);
100 	PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1);
101 	PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2);
102 	PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3);
103 	PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4);
104 	PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0);
105 	PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1);
106 	PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2);
107 	PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3);
108 	PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4);
109 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
110 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
111 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
112 	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
113 	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
114 	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
115 	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
116 	PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
117 	PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
118 	PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1);
119 	PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2);
120 	PR_EEP("TX Diversity", modal_hdr->tx_diversity);
121 
122 	return len;
123 }
124 
125 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
126 				       u8 *buf, u32 len, u32 size)
127 {
128 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
129 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
130 
131 	if (!dump_base_hdr) {
132 		len += scnprintf(buf + len, size - len,
133 				 "%20s :\n", "2GHz modal Header");
134 		len = ath9k_dump_4k_modal_eeprom(buf, len, size,
135 						 &eep->modalHeader);
136 		goto out;
137 	}
138 
139 	PR_EEP("Major Version", pBase->version >> 12);
140 	PR_EEP("Minor Version", pBase->version & 0xFFF);
141 	PR_EEP("Checksum", pBase->checksum);
142 	PR_EEP("Length", pBase->length);
143 	PR_EEP("RegDomain1", pBase->regDmn[0]);
144 	PR_EEP("RegDomain2", pBase->regDmn[1]);
145 	PR_EEP("TX Mask", pBase->txMask);
146 	PR_EEP("RX Mask", pBase->rxMask);
147 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
148 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
149 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
150 					AR5416_OPFLAGS_N_2G_HT20));
151 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
152 					AR5416_OPFLAGS_N_2G_HT40));
153 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
154 					AR5416_OPFLAGS_N_5G_HT20));
155 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
156 					AR5416_OPFLAGS_N_5G_HT40));
157 	PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
158 	PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
159 	PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
160 	PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
161 	PR_EEP("TX Gain type", pBase->txGainType);
162 
163 	len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
164 			 pBase->macAddr);
165 
166 out:
167 	if (len > size)
168 		len = size;
169 
170 	return len;
171 }
172 #else
173 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
174 				       u8 *buf, u32 len, u32 size)
175 {
176 	return 0;
177 }
178 #endif
179 
180 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
181 {
182 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
183 	u32 el;
184 	bool need_swap;
185 	int i, err;
186 
187 	err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_4K);
188 	if (err)
189 		return err;
190 
191 	if (need_swap)
192 		el = swab16(eep->baseEepHeader.length);
193 	else
194 		el = eep->baseEepHeader.length;
195 
196 	el = min(el / sizeof(u16), SIZE_EEPROM_4K);
197 	if (!ath9k_hw_nvram_validate_checksum(ah, el))
198 		return -EINVAL;
199 
200 	if (need_swap) {
201 		u32 integer;
202 		u16 word;
203 
204 		word = swab16(eep->baseEepHeader.length);
205 		eep->baseEepHeader.length = word;
206 
207 		word = swab16(eep->baseEepHeader.checksum);
208 		eep->baseEepHeader.checksum = word;
209 
210 		word = swab16(eep->baseEepHeader.version);
211 		eep->baseEepHeader.version = word;
212 
213 		word = swab16(eep->baseEepHeader.regDmn[0]);
214 		eep->baseEepHeader.regDmn[0] = word;
215 
216 		word = swab16(eep->baseEepHeader.regDmn[1]);
217 		eep->baseEepHeader.regDmn[1] = word;
218 
219 		word = swab16(eep->baseEepHeader.rfSilent);
220 		eep->baseEepHeader.rfSilent = word;
221 
222 		word = swab16(eep->baseEepHeader.blueToothOptions);
223 		eep->baseEepHeader.blueToothOptions = word;
224 
225 		word = swab16(eep->baseEepHeader.deviceCap);
226 		eep->baseEepHeader.deviceCap = word;
227 
228 		integer = swab32(eep->modalHeader.antCtrlCommon);
229 		eep->modalHeader.antCtrlCommon = integer;
230 
231 		for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
232 			integer = swab32(eep->modalHeader.antCtrlChain[i]);
233 			eep->modalHeader.antCtrlChain[i] = integer;
234 		}
235 
236 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
237 			word = swab16(eep->modalHeader.spurChans[i].spurChan);
238 			eep->modalHeader.spurChans[i].spurChan = word;
239 		}
240 	}
241 
242 	if (!ath9k_hw_nvram_check_version(ah, AR5416_EEP_VER,
243 	    AR5416_EEP_NO_BACK_VER))
244 		return -EINVAL;
245 
246 	return 0;
247 }
248 
249 #undef SIZE_EEPROM_4K
250 
251 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
252 				  enum eeprom_param param)
253 {
254 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
255 	struct modal_eep_4k_header *pModal = &eep->modalHeader;
256 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
257 	u16 ver_minor;
258 
259 	ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
260 
261 	switch (param) {
262 	case EEP_NFTHRESH_2:
263 		return pModal->noiseFloorThreshCh[0];
264 	case EEP_MAC_LSW:
265 		return get_unaligned_be16(pBase->macAddr);
266 	case EEP_MAC_MID:
267 		return get_unaligned_be16(pBase->macAddr + 2);
268 	case EEP_MAC_MSW:
269 		return get_unaligned_be16(pBase->macAddr + 4);
270 	case EEP_REG_0:
271 		return pBase->regDmn[0];
272 	case EEP_OP_CAP:
273 		return pBase->deviceCap;
274 	case EEP_OP_MODE:
275 		return pBase->opCapFlags;
276 	case EEP_RF_SILENT:
277 		return pBase->rfSilent;
278 	case EEP_OB_2:
279 		return pModal->ob_0;
280 	case EEP_DB_2:
281 		return pModal->db1_1;
282 	case EEP_MINOR_REV:
283 		return ver_minor;
284 	case EEP_TX_MASK:
285 		return pBase->txMask;
286 	case EEP_RX_MASK:
287 		return pBase->rxMask;
288 	case EEP_FRAC_N_5G:
289 		return 0;
290 	case EEP_PWR_TABLE_OFFSET:
291 		return AR5416_PWR_TABLE_OFFSET_DB;
292 	case EEP_MODAL_VER:
293 		return pModal->version;
294 	case EEP_ANT_DIV_CTL1:
295 		return pModal->antdiv_ctl1;
296 	case EEP_TXGAIN_TYPE:
297 		return pBase->txGainType;
298 	case EEP_ANTENNA_GAIN_2G:
299 		return pModal->antennaGainCh[0];
300 	default:
301 		return 0;
302 	}
303 }
304 
305 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
306 				  struct ath9k_channel *chan)
307 {
308 	struct ath_common *common = ath9k_hw_common(ah);
309 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
310 	struct cal_data_per_freq_4k *pRawDataset;
311 	u8 *pCalBChans = NULL;
312 	u16 pdGainOverlap_t2;
313 	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
314 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
315 	u16 numPiers, i, j;
316 	u16 numXpdGain, xpdMask;
317 	u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
318 	u32 reg32, regOffset, regChainOffset;
319 
320 	xpdMask = pEepData->modalHeader.xpdGain;
321 
322 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
323 	    AR5416_EEP_MINOR_VER_2) {
324 		pdGainOverlap_t2 =
325 			pEepData->modalHeader.pdGainOverlap;
326 	} else {
327 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
328 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
329 	}
330 
331 	pCalBChans = pEepData->calFreqPier2G;
332 	numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
333 
334 	numXpdGain = 0;
335 
336 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
337 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
338 			if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
339 				break;
340 			xpdGainValues[numXpdGain] =
341 				(u16)(AR5416_PD_GAINS_IN_MASK - i);
342 			numXpdGain++;
343 		}
344 	}
345 
346 	ENABLE_REG_RMW_BUFFER(ah);
347 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
348 		      (numXpdGain - 1) & 0x3);
349 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
350 		      xpdGainValues[0]);
351 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
352 		      xpdGainValues[1]);
353 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
354 	REG_RMW_BUFFER_FLUSH(ah);
355 
356 	for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
357 		regChainOffset = i * 0x1000;
358 
359 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
360 			pRawDataset = pEepData->calPierData2G[i];
361 
362 			ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
363 					    pRawDataset, pCalBChans,
364 					    numPiers, pdGainOverlap_t2,
365 					    gainBoundaries,
366 					    pdadcValues, numXpdGain);
367 
368 			ENABLE_REGWRITE_BUFFER(ah);
369 
370 			REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
371 				  SM(pdGainOverlap_t2,
372 				     AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
373 				  | SM(gainBoundaries[0],
374 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
375 				  | SM(gainBoundaries[1],
376 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
377 				  | SM(gainBoundaries[2],
378 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
379 				  | SM(gainBoundaries[3],
380 			       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
381 
382 			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
383 			for (j = 0; j < 32; j++) {
384 				reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
385 				REG_WRITE(ah, regOffset, reg32);
386 
387 				ath_dbg(common, EEPROM,
388 					"PDADC (%d,%4x): %4.4x %8.8x\n",
389 					i, regChainOffset, regOffset,
390 					reg32);
391 				ath_dbg(common, EEPROM,
392 					"PDADC: Chain %d | "
393 					"PDADC %3d Value %3d | "
394 					"PDADC %3d Value %3d | "
395 					"PDADC %3d Value %3d | "
396 					"PDADC %3d Value %3d |\n",
397 					i, 4 * j, pdadcValues[4 * j],
398 					4 * j + 1, pdadcValues[4 * j + 1],
399 					4 * j + 2, pdadcValues[4 * j + 2],
400 					4 * j + 3, pdadcValues[4 * j + 3]);
401 
402 				regOffset += 4;
403 			}
404 
405 			REGWRITE_BUFFER_FLUSH(ah);
406 		}
407 	}
408 }
409 
410 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
411 						 struct ath9k_channel *chan,
412 						 int16_t *ratesArray,
413 						 u16 cfgCtl,
414 						 u16 antenna_reduction,
415 						 u16 powerLimit)
416 {
417 #define CMP_TEST_GRP \
418 	(((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) ==	\
419 	 pEepData->ctlIndex[i])						\
420 	|| (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
421 	    ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
422 
423 	int i;
424 	u16 twiceMinEdgePower;
425 	u16 twiceMaxEdgePower;
426 	u16 scaledPower = 0, minCtlPower;
427 	u16 numCtlModes;
428 	const u16 *pCtlMode;
429 	u16 ctlMode, freq;
430 	struct chan_centers centers;
431 	struct cal_ctl_data_4k *rep;
432 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
433 	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
434 		0, { 0, 0, 0, 0}
435 	};
436 	struct cal_target_power_leg targetPowerOfdmExt = {
437 		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
438 		0, { 0, 0, 0, 0 }
439 	};
440 	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
441 		0, {0, 0, 0, 0}
442 	};
443 	static const u16 ctlModesFor11g[] = {
444 		CTL_11B, CTL_11G, CTL_2GHT20,
445 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
446 	};
447 
448 	ath9k_hw_get_channel_centers(ah, chan, &centers);
449 
450 	scaledPower = powerLimit - antenna_reduction;
451 	numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
452 	pCtlMode = ctlModesFor11g;
453 
454 	ath9k_hw_get_legacy_target_powers(ah, chan,
455 			pEepData->calTargetPowerCck,
456 			AR5416_NUM_2G_CCK_TARGET_POWERS,
457 			&targetPowerCck, 4, false);
458 	ath9k_hw_get_legacy_target_powers(ah, chan,
459 			pEepData->calTargetPower2G,
460 			AR5416_NUM_2G_20_TARGET_POWERS,
461 			&targetPowerOfdm, 4, false);
462 	ath9k_hw_get_target_powers(ah, chan,
463 			pEepData->calTargetPower2GHT20,
464 			AR5416_NUM_2G_20_TARGET_POWERS,
465 			&targetPowerHt20, 8, false);
466 
467 	if (IS_CHAN_HT40(chan)) {
468 		numCtlModes = ARRAY_SIZE(ctlModesFor11g);
469 		ath9k_hw_get_target_powers(ah, chan,
470 				pEepData->calTargetPower2GHT40,
471 				AR5416_NUM_2G_40_TARGET_POWERS,
472 				&targetPowerHt40, 8, true);
473 		ath9k_hw_get_legacy_target_powers(ah, chan,
474 				pEepData->calTargetPowerCck,
475 				AR5416_NUM_2G_CCK_TARGET_POWERS,
476 				&targetPowerCckExt, 4, true);
477 		ath9k_hw_get_legacy_target_powers(ah, chan,
478 				pEepData->calTargetPower2G,
479 				AR5416_NUM_2G_20_TARGET_POWERS,
480 				&targetPowerOfdmExt, 4, true);
481 	}
482 
483 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
484 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
485 			(pCtlMode[ctlMode] == CTL_2GHT40);
486 
487 		if (isHt40CtlMode)
488 			freq = centers.synth_center;
489 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
490 			freq = centers.ext_center;
491 		else
492 			freq = centers.ctl_center;
493 
494 		twiceMaxEdgePower = MAX_RATE_POWER;
495 
496 		for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
497 			     pEepData->ctlIndex[i]; i++) {
498 
499 			if (CMP_TEST_GRP) {
500 				rep = &(pEepData->ctlData[i]);
501 
502 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(
503 					freq,
504 					rep->ctlEdges[
505 					ar5416_get_ntxchains(ah->txchainmask) - 1],
506 					IS_CHAN_2GHZ(chan),
507 					AR5416_EEP4K_NUM_BAND_EDGES);
508 
509 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
510 					twiceMaxEdgePower =
511 						min(twiceMaxEdgePower,
512 						    twiceMinEdgePower);
513 				} else {
514 					twiceMaxEdgePower = twiceMinEdgePower;
515 					break;
516 				}
517 			}
518 		}
519 
520 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
521 
522 		switch (pCtlMode[ctlMode]) {
523 		case CTL_11B:
524 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
525 				targetPowerCck.tPow2x[i] =
526 					min((u16)targetPowerCck.tPow2x[i],
527 					    minCtlPower);
528 			}
529 			break;
530 		case CTL_11G:
531 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
532 				targetPowerOfdm.tPow2x[i] =
533 					min((u16)targetPowerOfdm.tPow2x[i],
534 					    minCtlPower);
535 			}
536 			break;
537 		case CTL_2GHT20:
538 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
539 				targetPowerHt20.tPow2x[i] =
540 					min((u16)targetPowerHt20.tPow2x[i],
541 					    minCtlPower);
542 			}
543 			break;
544 		case CTL_11B_EXT:
545 			targetPowerCckExt.tPow2x[0] =
546 				min((u16)targetPowerCckExt.tPow2x[0],
547 				    minCtlPower);
548 			break;
549 		case CTL_11G_EXT:
550 			targetPowerOfdmExt.tPow2x[0] =
551 				min((u16)targetPowerOfdmExt.tPow2x[0],
552 				    minCtlPower);
553 			break;
554 		case CTL_2GHT40:
555 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
556 				targetPowerHt40.tPow2x[i] =
557 					min((u16)targetPowerHt40.tPow2x[i],
558 					    minCtlPower);
559 			}
560 			break;
561 		default:
562 			break;
563 		}
564 	}
565 
566 	ratesArray[rate6mb] =
567 	ratesArray[rate9mb] =
568 	ratesArray[rate12mb] =
569 	ratesArray[rate18mb] =
570 	ratesArray[rate24mb] =
571 	targetPowerOfdm.tPow2x[0];
572 
573 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
574 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
575 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
576 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
577 
578 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
579 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
580 
581 	ratesArray[rate1l] = targetPowerCck.tPow2x[0];
582 	ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
583 	ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
584 	ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
585 
586 	if (IS_CHAN_HT40(chan)) {
587 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
588 			ratesArray[rateHt40_0 + i] =
589 				targetPowerHt40.tPow2x[i];
590 		}
591 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
592 		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
593 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
594 		ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
595 	}
596 
597 #undef CMP_TEST_GRP
598 }
599 
600 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
601 				    struct ath9k_channel *chan,
602 				    u16 cfgCtl,
603 				    u8 twiceAntennaReduction,
604 				    u8 powerLimit, bool test)
605 {
606 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
607 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
608 	struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
609 	int16_t ratesArray[Ar5416RateSize];
610 	u8 ht40PowerIncForPdadc = 2;
611 	int i;
612 
613 	memset(ratesArray, 0, sizeof(ratesArray));
614 
615 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
616 	    AR5416_EEP_MINOR_VER_2) {
617 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
618 	}
619 
620 	ath9k_hw_set_4k_power_per_rate_table(ah, chan,
621 					     &ratesArray[0], cfgCtl,
622 					     twiceAntennaReduction,
623 					     powerLimit);
624 
625 	ath9k_hw_set_4k_power_cal_table(ah, chan);
626 
627 	regulatory->max_power_level = 0;
628 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
629 		if (ratesArray[i] > MAX_RATE_POWER)
630 			ratesArray[i] = MAX_RATE_POWER;
631 
632 		if (ratesArray[i] > regulatory->max_power_level)
633 			regulatory->max_power_level = ratesArray[i];
634 	}
635 
636 	if (test)
637 	    return;
638 
639 	for (i = 0; i < Ar5416RateSize; i++)
640 		ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
641 
642 	ENABLE_REGWRITE_BUFFER(ah);
643 
644 	/* OFDM power per rate */
645 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
646 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
647 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
648 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
649 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
650 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
651 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
652 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
653 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
654 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
655 
656 	/* CCK power per rate */
657 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
658 		  ATH9K_POW_SM(ratesArray[rate2s], 24)
659 		  | ATH9K_POW_SM(ratesArray[rate2l], 16)
660 		  | ATH9K_POW_SM(ratesArray[rateXr], 8)
661 		  | ATH9K_POW_SM(ratesArray[rate1l], 0));
662 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
663 		  ATH9K_POW_SM(ratesArray[rate11s], 24)
664 		  | ATH9K_POW_SM(ratesArray[rate11l], 16)
665 		  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
666 		  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
667 
668 	/* HT20 power per rate */
669 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
670 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
671 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
672 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
673 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
674 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
675 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
676 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
677 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
678 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
679 
680 	/* HT40 power per rate */
681 	if (IS_CHAN_HT40(chan)) {
682 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
683 			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
684 				       ht40PowerIncForPdadc, 24)
685 			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
686 					 ht40PowerIncForPdadc, 16)
687 			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
688 					 ht40PowerIncForPdadc, 8)
689 			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
690 					 ht40PowerIncForPdadc, 0));
691 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
692 			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
693 				       ht40PowerIncForPdadc, 24)
694 			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
695 					 ht40PowerIncForPdadc, 16)
696 			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
697 					 ht40PowerIncForPdadc, 8)
698 			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
699 					 ht40PowerIncForPdadc, 0));
700 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
701 			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
702 			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
703 			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
704 			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
705 	}
706 
707 	/* TPC initializations */
708 	if (ah->tpc_enabled) {
709 		int ht40_delta;
710 
711 		ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
712 		ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
713 		/* Enable TPC */
714 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
715 			MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
716 	} else {
717 		/* Disable TPC */
718 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
719 	}
720 
721 	REGWRITE_BUFFER_FLUSH(ah);
722 }
723 
724 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
725 				 struct modal_eep_4k_header *pModal,
726 				 struct ar5416_eeprom_4k *eep,
727 				 u8 txRxAttenLocal)
728 {
729 	ENABLE_REG_RMW_BUFFER(ah);
730 	REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0,
731 		pModal->antCtrlChain[0], 0);
732 
733 	REG_RMW(ah, AR_PHY_TIMING_CTRL4(0),
734 		SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
735 		SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF),
736 		AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF);
737 
738 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
739 	    AR5416_EEP_MINOR_VER_3) {
740 		txRxAttenLocal = pModal->txRxAttenCh[0];
741 
742 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
743 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
744 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
745 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
746 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
747 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
748 			      pModal->xatten2Margin[0]);
749 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
750 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
751 
752 		/* Set the block 1 value to block 0 value */
753 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
754 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
755 			      pModal->bswMargin[0]);
756 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
757 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
758 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
759 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
760 			      pModal->xatten2Margin[0]);
761 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
762 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
763 			      pModal->xatten2Db[0]);
764 	}
765 
766 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
767 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
768 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
769 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
770 
771 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
772 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
773 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
774 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
775 	REG_RMW_BUFFER_FLUSH(ah);
776 }
777 
778 /*
779  * Read EEPROM header info and program the device for correct operation
780  * given the channel value.
781  */
782 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
783 					 struct ath9k_channel *chan)
784 {
785 	struct ath9k_hw_capabilities *pCap = &ah->caps;
786 	struct modal_eep_4k_header *pModal;
787 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
788 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
789 	u8 txRxAttenLocal;
790 	u8 ob[5], db1[5], db2[5];
791 	u8 ant_div_control1, ant_div_control2;
792 	u8 bb_desired_scale;
793 	u32 regVal;
794 
795 	pModal = &eep->modalHeader;
796 	txRxAttenLocal = 23;
797 
798 	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
799 
800 	/* Single chain for 4K EEPROM*/
801 	ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
802 
803 	/* Initialize Ant Diversity settings from EEPROM */
804 	if (pModal->version >= 3) {
805 		ant_div_control1 = pModal->antdiv_ctl1;
806 		ant_div_control2 = pModal->antdiv_ctl2;
807 
808 		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
809 		regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
810 
811 		regVal |= SM(ant_div_control1,
812 			     AR_PHY_9285_ANT_DIV_CTL);
813 		regVal |= SM(ant_div_control2,
814 			     AR_PHY_9285_ANT_DIV_ALT_LNACONF);
815 		regVal |= SM((ant_div_control2 >> 2),
816 			     AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
817 		regVal |= SM((ant_div_control1 >> 1),
818 			     AR_PHY_9285_ANT_DIV_ALT_GAINTB);
819 		regVal |= SM((ant_div_control1 >> 2),
820 			     AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
821 
822 
823 		REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
824 		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
825 		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
826 		regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
827 		regVal |= SM((ant_div_control1 >> 3),
828 			     AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
829 
830 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
831 		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
832 
833 		if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
834 			/*
835 			 * If diversity combining is enabled,
836 			 * set MAIN to LNA1 and ALT to LNA2 initially.
837 			 */
838 			regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
839 			regVal &= (~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
840 				     AR_PHY_9285_ANT_DIV_ALT_LNACONF));
841 
842 			regVal |= (ATH_ANT_DIV_COMB_LNA1 <<
843 				   AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S);
844 			regVal |= (ATH_ANT_DIV_COMB_LNA2 <<
845 				   AR_PHY_9285_ANT_DIV_ALT_LNACONF_S);
846 			regVal &= (~(AR_PHY_9285_FAST_DIV_BIAS));
847 			regVal |= (0 << AR_PHY_9285_FAST_DIV_BIAS_S);
848 			REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
849 		}
850 	}
851 
852 	if (pModal->version >= 2) {
853 		ob[0] = pModal->ob_0;
854 		ob[1] = pModal->ob_1;
855 		ob[2] = pModal->ob_2;
856 		ob[3] = pModal->ob_3;
857 		ob[4] = pModal->ob_4;
858 
859 		db1[0] = pModal->db1_0;
860 		db1[1] = pModal->db1_1;
861 		db1[2] = pModal->db1_2;
862 		db1[3] = pModal->db1_3;
863 		db1[4] = pModal->db1_4;
864 
865 		db2[0] = pModal->db2_0;
866 		db2[1] = pModal->db2_1;
867 		db2[2] = pModal->db2_2;
868 		db2[3] = pModal->db2_3;
869 		db2[4] = pModal->db2_4;
870 	} else if (pModal->version == 1) {
871 		ob[0] = pModal->ob_0;
872 		ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
873 		db1[0] = pModal->db1_0;
874 		db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
875 		db2[0] = pModal->db2_0;
876 		db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
877 	} else {
878 		int i;
879 
880 		for (i = 0; i < 5; i++) {
881 			ob[i] = pModal->ob_0;
882 			db1[i] = pModal->db1_0;
883 			db2[i] = pModal->db1_0;
884 		}
885 	}
886 
887 	ENABLE_REG_RMW_BUFFER(ah);
888 	if (AR_SREV_9271(ah)) {
889 		ath9k_hw_analog_shift_rmw(ah,
890 					  AR9285_AN_RF2G3,
891 					  AR9271_AN_RF2G3_OB_cck,
892 					  AR9271_AN_RF2G3_OB_cck_S,
893 					  ob[0]);
894 		ath9k_hw_analog_shift_rmw(ah,
895 					  AR9285_AN_RF2G3,
896 					  AR9271_AN_RF2G3_OB_psk,
897 					  AR9271_AN_RF2G3_OB_psk_S,
898 					  ob[1]);
899 		ath9k_hw_analog_shift_rmw(ah,
900 					  AR9285_AN_RF2G3,
901 					  AR9271_AN_RF2G3_OB_qam,
902 					  AR9271_AN_RF2G3_OB_qam_S,
903 					  ob[2]);
904 		ath9k_hw_analog_shift_rmw(ah,
905 					  AR9285_AN_RF2G3,
906 					  AR9271_AN_RF2G3_DB_1,
907 					  AR9271_AN_RF2G3_DB_1_S,
908 					  db1[0]);
909 		ath9k_hw_analog_shift_rmw(ah,
910 					  AR9285_AN_RF2G4,
911 					  AR9271_AN_RF2G4_DB_2,
912 					  AR9271_AN_RF2G4_DB_2_S,
913 					  db2[0]);
914 	} else {
915 		ath9k_hw_analog_shift_rmw(ah,
916 					  AR9285_AN_RF2G3,
917 					  AR9285_AN_RF2G3_OB_0,
918 					  AR9285_AN_RF2G3_OB_0_S,
919 					  ob[0]);
920 		ath9k_hw_analog_shift_rmw(ah,
921 					  AR9285_AN_RF2G3,
922 					  AR9285_AN_RF2G3_OB_1,
923 					  AR9285_AN_RF2G3_OB_1_S,
924 					  ob[1]);
925 		ath9k_hw_analog_shift_rmw(ah,
926 					  AR9285_AN_RF2G3,
927 					  AR9285_AN_RF2G3_OB_2,
928 					  AR9285_AN_RF2G3_OB_2_S,
929 					  ob[2]);
930 		ath9k_hw_analog_shift_rmw(ah,
931 					  AR9285_AN_RF2G3,
932 					  AR9285_AN_RF2G3_OB_3,
933 					  AR9285_AN_RF2G3_OB_3_S,
934 					  ob[3]);
935 		ath9k_hw_analog_shift_rmw(ah,
936 					  AR9285_AN_RF2G3,
937 					  AR9285_AN_RF2G3_OB_4,
938 					  AR9285_AN_RF2G3_OB_4_S,
939 					  ob[4]);
940 
941 		ath9k_hw_analog_shift_rmw(ah,
942 					  AR9285_AN_RF2G3,
943 					  AR9285_AN_RF2G3_DB1_0,
944 					  AR9285_AN_RF2G3_DB1_0_S,
945 					  db1[0]);
946 		ath9k_hw_analog_shift_rmw(ah,
947 					  AR9285_AN_RF2G3,
948 					  AR9285_AN_RF2G3_DB1_1,
949 					  AR9285_AN_RF2G3_DB1_1_S,
950 					  db1[1]);
951 		ath9k_hw_analog_shift_rmw(ah,
952 					  AR9285_AN_RF2G3,
953 					  AR9285_AN_RF2G3_DB1_2,
954 					  AR9285_AN_RF2G3_DB1_2_S,
955 					  db1[2]);
956 		ath9k_hw_analog_shift_rmw(ah,
957 					  AR9285_AN_RF2G4,
958 					  AR9285_AN_RF2G4_DB1_3,
959 					  AR9285_AN_RF2G4_DB1_3_S,
960 					  db1[3]);
961 		ath9k_hw_analog_shift_rmw(ah,
962 					  AR9285_AN_RF2G4,
963 					  AR9285_AN_RF2G4_DB1_4,
964 					  AR9285_AN_RF2G4_DB1_4_S, db1[4]);
965 
966 		ath9k_hw_analog_shift_rmw(ah,
967 					  AR9285_AN_RF2G4,
968 					  AR9285_AN_RF2G4_DB2_0,
969 					  AR9285_AN_RF2G4_DB2_0_S,
970 					  db2[0]);
971 		ath9k_hw_analog_shift_rmw(ah,
972 					  AR9285_AN_RF2G4,
973 					  AR9285_AN_RF2G4_DB2_1,
974 					  AR9285_AN_RF2G4_DB2_1_S,
975 					  db2[1]);
976 		ath9k_hw_analog_shift_rmw(ah,
977 					  AR9285_AN_RF2G4,
978 					  AR9285_AN_RF2G4_DB2_2,
979 					  AR9285_AN_RF2G4_DB2_2_S,
980 					  db2[2]);
981 		ath9k_hw_analog_shift_rmw(ah,
982 					  AR9285_AN_RF2G4,
983 					  AR9285_AN_RF2G4_DB2_3,
984 					  AR9285_AN_RF2G4_DB2_3_S,
985 					  db2[3]);
986 		ath9k_hw_analog_shift_rmw(ah,
987 					  AR9285_AN_RF2G4,
988 					  AR9285_AN_RF2G4_DB2_4,
989 					  AR9285_AN_RF2G4_DB2_4_S,
990 					  db2[4]);
991 	}
992 	REG_RMW_BUFFER_FLUSH(ah);
993 
994 	ENABLE_REG_RMW_BUFFER(ah);
995 	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
996 		      pModal->switchSettling);
997 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
998 		      pModal->adcDesiredSize);
999 
1000 	REG_RMW(ah, AR_PHY_RF_CTL4,
1001 		SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1002 		SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1003 		SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
1004 		SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON), 0);
1005 
1006 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1007 		      pModal->txEndToRxOn);
1008 
1009 	if (AR_SREV_9271_10(ah))
1010 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1011 			      pModal->txEndToRxOn);
1012 	REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1013 		      pModal->thresh62);
1014 	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1015 		      pModal->thresh62);
1016 
1017 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1018 						AR5416_EEP_MINOR_VER_2) {
1019 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1020 			      pModal->txFrameToDataStart);
1021 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1022 			      pModal->txFrameToPaOn);
1023 	}
1024 
1025 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1026 						AR5416_EEP_MINOR_VER_3) {
1027 		if (IS_CHAN_HT40(chan))
1028 			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1029 				      AR_PHY_SETTLING_SWITCH,
1030 				      pModal->swSettleHt40);
1031 	}
1032 
1033 	REG_RMW_BUFFER_FLUSH(ah);
1034 
1035 	bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1036 			EEP_4K_BB_DESIRED_SCALE_MASK);
1037 	if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1038 		u32 pwrctrl, mask, clr;
1039 
1040 		mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1041 		pwrctrl = mask * bb_desired_scale;
1042 		clr = mask * 0x1f;
1043 		ENABLE_REG_RMW_BUFFER(ah);
1044 		REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1045 		REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1046 		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1047 
1048 		mask = BIT(0)|BIT(5)|BIT(15);
1049 		pwrctrl = mask * bb_desired_scale;
1050 		clr = mask * 0x1f;
1051 		REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1052 
1053 		mask = BIT(0)|BIT(5);
1054 		pwrctrl = mask * bb_desired_scale;
1055 		clr = mask * 0x1f;
1056 		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1057 		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1058 		REG_RMW_BUFFER_FLUSH(ah);
1059 	}
1060 }
1061 
1062 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1063 {
1064 	return ah->eeprom.map4k.modalHeader.spurChans[i].spurChan;
1065 }
1066 
1067 const struct eeprom_ops eep_4k_ops = {
1068 	.check_eeprom		= ath9k_hw_4k_check_eeprom,
1069 	.get_eeprom		= ath9k_hw_4k_get_eeprom,
1070 	.fill_eeprom		= ath9k_hw_4k_fill_eeprom,
1071 	.dump_eeprom		= ath9k_hw_4k_dump_eeprom,
1072 	.get_eeprom_ver		= ath9k_hw_4k_get_eeprom_ver,
1073 	.get_eeprom_rev		= ath9k_hw_4k_get_eeprom_rev,
1074 	.set_board_values	= ath9k_hw_4k_set_board_values,
1075 	.set_txpower		= ath9k_hw_4k_set_txpower,
1076 	.get_spur_channel	= ath9k_hw_4k_get_spur_channel
1077 };
1078