xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/eeprom_4k.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "ar9002_phy.h"
19 
20 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
21 {
22 	return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
23 }
24 
25 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
26 {
27 	return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
28 }
29 
30 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
31 {
32 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
33 	struct ath_common *common = ath9k_hw_common(ah);
34 	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
35 	int addr, eep_start_loc = 0;
36 
37 	eep_start_loc = 64;
38 
39 	if (!ath9k_hw_use_flash(ah)) {
40 		ath_dbg(common, ATH_DBG_EEPROM,
41 			"Reading from EEPROM, not flash\n");
42 	}
43 
44 	for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
45 		if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
46 			ath_dbg(common, ATH_DBG_EEPROM,
47 				"Unable to read eeprom region\n");
48 			return false;
49 		}
50 		eep_data++;
51 	}
52 
53 	return true;
54 #undef SIZE_EEPROM_4K
55 }
56 
57 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
58 {
59 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
60 	struct ath_common *common = ath9k_hw_common(ah);
61 	struct ar5416_eeprom_4k *eep =
62 		(struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
63 	u16 *eepdata, temp, magic, magic2;
64 	u32 sum = 0, el;
65 	bool need_swap = false;
66 	int i, addr;
67 
68 
69 	if (!ath9k_hw_use_flash(ah)) {
70 		if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
71 					 &magic)) {
72 			ath_err(common, "Reading Magic # failed\n");
73 			return false;
74 		}
75 
76 		ath_dbg(common, ATH_DBG_EEPROM,
77 			"Read Magic = 0x%04X\n", magic);
78 
79 		if (magic != AR5416_EEPROM_MAGIC) {
80 			magic2 = swab16(magic);
81 
82 			if (magic2 == AR5416_EEPROM_MAGIC) {
83 				need_swap = true;
84 				eepdata = (u16 *) (&ah->eeprom);
85 
86 				for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
87 					temp = swab16(*eepdata);
88 					*eepdata = temp;
89 					eepdata++;
90 				}
91 			} else {
92 				ath_err(common,
93 					"Invalid EEPROM Magic. Endianness mismatch.\n");
94 				return -EINVAL;
95 			}
96 		}
97 	}
98 
99 	ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
100 		need_swap ? "True" : "False");
101 
102 	if (need_swap)
103 		el = swab16(ah->eeprom.map4k.baseEepHeader.length);
104 	else
105 		el = ah->eeprom.map4k.baseEepHeader.length;
106 
107 	if (el > sizeof(struct ar5416_eeprom_4k))
108 		el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
109 	else
110 		el = el / sizeof(u16);
111 
112 	eepdata = (u16 *)(&ah->eeprom);
113 
114 	for (i = 0; i < el; i++)
115 		sum ^= *eepdata++;
116 
117 	if (need_swap) {
118 		u32 integer;
119 		u16 word;
120 
121 		ath_dbg(common, ATH_DBG_EEPROM,
122 			"EEPROM Endianness is not native.. Changing\n");
123 
124 		word = swab16(eep->baseEepHeader.length);
125 		eep->baseEepHeader.length = word;
126 
127 		word = swab16(eep->baseEepHeader.checksum);
128 		eep->baseEepHeader.checksum = word;
129 
130 		word = swab16(eep->baseEepHeader.version);
131 		eep->baseEepHeader.version = word;
132 
133 		word = swab16(eep->baseEepHeader.regDmn[0]);
134 		eep->baseEepHeader.regDmn[0] = word;
135 
136 		word = swab16(eep->baseEepHeader.regDmn[1]);
137 		eep->baseEepHeader.regDmn[1] = word;
138 
139 		word = swab16(eep->baseEepHeader.rfSilent);
140 		eep->baseEepHeader.rfSilent = word;
141 
142 		word = swab16(eep->baseEepHeader.blueToothOptions);
143 		eep->baseEepHeader.blueToothOptions = word;
144 
145 		word = swab16(eep->baseEepHeader.deviceCap);
146 		eep->baseEepHeader.deviceCap = word;
147 
148 		integer = swab32(eep->modalHeader.antCtrlCommon);
149 		eep->modalHeader.antCtrlCommon = integer;
150 
151 		for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
152 			integer = swab32(eep->modalHeader.antCtrlChain[i]);
153 			eep->modalHeader.antCtrlChain[i] = integer;
154 		}
155 
156 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
157 			word = swab16(eep->modalHeader.spurChans[i].spurChan);
158 			eep->modalHeader.spurChans[i].spurChan = word;
159 		}
160 	}
161 
162 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
163 	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
164 		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
165 			sum, ah->eep_ops->get_eeprom_ver(ah));
166 		return -EINVAL;
167 	}
168 
169 	return 0;
170 #undef EEPROM_4K_SIZE
171 }
172 
173 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
174 				  enum eeprom_param param)
175 {
176 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
177 	struct modal_eep_4k_header *pModal = &eep->modalHeader;
178 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
179 	u16 ver_minor;
180 
181 	ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
182 
183 	switch (param) {
184 	case EEP_NFTHRESH_2:
185 		return pModal->noiseFloorThreshCh[0];
186 	case EEP_MAC_LSW:
187 		return pBase->macAddr[0] << 8 | pBase->macAddr[1];
188 	case EEP_MAC_MID:
189 		return pBase->macAddr[2] << 8 | pBase->macAddr[3];
190 	case EEP_MAC_MSW:
191 		return pBase->macAddr[4] << 8 | pBase->macAddr[5];
192 	case EEP_REG_0:
193 		return pBase->regDmn[0];
194 	case EEP_REG_1:
195 		return pBase->regDmn[1];
196 	case EEP_OP_CAP:
197 		return pBase->deviceCap;
198 	case EEP_OP_MODE:
199 		return pBase->opCapFlags;
200 	case EEP_RF_SILENT:
201 		return pBase->rfSilent;
202 	case EEP_OB_2:
203 		return pModal->ob_0;
204 	case EEP_DB_2:
205 		return pModal->db1_1;
206 	case EEP_MINOR_REV:
207 		return ver_minor;
208 	case EEP_TX_MASK:
209 		return pBase->txMask;
210 	case EEP_RX_MASK:
211 		return pBase->rxMask;
212 	case EEP_FRAC_N_5G:
213 		return 0;
214 	case EEP_PWR_TABLE_OFFSET:
215 		return AR5416_PWR_TABLE_OFFSET_DB;
216 	case EEP_MODAL_VER:
217 		return pModal->version;
218 	case EEP_ANT_DIV_CTL1:
219 		return pModal->antdiv_ctl1;
220 	case EEP_TXGAIN_TYPE:
221 		if (ver_minor >= AR5416_EEP_MINOR_VER_19)
222 			return pBase->txGainType;
223 		else
224 			return AR5416_EEP_TXGAIN_ORIGINAL;
225 	default:
226 		return 0;
227 	}
228 }
229 
230 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
231 				  struct ath9k_channel *chan,
232 				  int16_t *pTxPowerIndexOffset)
233 {
234 	struct ath_common *common = ath9k_hw_common(ah);
235 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
236 	struct cal_data_per_freq_4k *pRawDataset;
237 	u8 *pCalBChans = NULL;
238 	u16 pdGainOverlap_t2;
239 	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
240 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
241 	u16 numPiers, i, j;
242 	u16 numXpdGain, xpdMask;
243 	u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
244 	u32 reg32, regOffset, regChainOffset;
245 
246 	xpdMask = pEepData->modalHeader.xpdGain;
247 
248 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
249 	    AR5416_EEP_MINOR_VER_2) {
250 		pdGainOverlap_t2 =
251 			pEepData->modalHeader.pdGainOverlap;
252 	} else {
253 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
254 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
255 	}
256 
257 	pCalBChans = pEepData->calFreqPier2G;
258 	numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
259 
260 	numXpdGain = 0;
261 
262 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
263 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
264 			if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
265 				break;
266 			xpdGainValues[numXpdGain] =
267 				(u16)(AR5416_PD_GAINS_IN_MASK - i);
268 			numXpdGain++;
269 		}
270 	}
271 
272 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
273 		      (numXpdGain - 1) & 0x3);
274 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
275 		      xpdGainValues[0]);
276 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
277 		      xpdGainValues[1]);
278 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
279 
280 	for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
281 		if (AR_SREV_5416_20_OR_LATER(ah) &&
282 		    (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
283 		    (i != 0)) {
284 			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
285 		} else
286 			regChainOffset = i * 0x1000;
287 
288 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
289 			pRawDataset = pEepData->calPierData2G[i];
290 
291 			ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
292 					    pRawDataset, pCalBChans,
293 					    numPiers, pdGainOverlap_t2,
294 					    gainBoundaries,
295 					    pdadcValues, numXpdGain);
296 
297 			ENABLE_REGWRITE_BUFFER(ah);
298 
299 			if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
300 				REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
301 					  SM(pdGainOverlap_t2,
302 					     AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
303 					  | SM(gainBoundaries[0],
304 					       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
305 					  | SM(gainBoundaries[1],
306 					       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
307 					  | SM(gainBoundaries[2],
308 					       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
309 					  | SM(gainBoundaries[3],
310 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
311 			}
312 
313 			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
314 			for (j = 0; j < 32; j++) {
315 				reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
316 					((pdadcValues[4 * j + 1] & 0xFF) << 8) |
317 					((pdadcValues[4 * j + 2] & 0xFF) << 16)|
318 					((pdadcValues[4 * j + 3] & 0xFF) << 24);
319 				REG_WRITE(ah, regOffset, reg32);
320 
321 				ath_dbg(common, ATH_DBG_EEPROM,
322 					"PDADC (%d,%4x): %4.4x %8.8x\n",
323 					i, regChainOffset, regOffset,
324 					reg32);
325 				ath_dbg(common, ATH_DBG_EEPROM,
326 					"PDADC: Chain %d | "
327 					"PDADC %3d Value %3d | "
328 					"PDADC %3d Value %3d | "
329 					"PDADC %3d Value %3d | "
330 					"PDADC %3d Value %3d |\n",
331 					i, 4 * j, pdadcValues[4 * j],
332 					4 * j + 1, pdadcValues[4 * j + 1],
333 					4 * j + 2, pdadcValues[4 * j + 2],
334 					4 * j + 3, pdadcValues[4 * j + 3]);
335 
336 				regOffset += 4;
337 			}
338 
339 			REGWRITE_BUFFER_FLUSH(ah);
340 		}
341 	}
342 
343 	*pTxPowerIndexOffset = 0;
344 }
345 
346 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
347 						 struct ath9k_channel *chan,
348 						 int16_t *ratesArray,
349 						 u16 cfgCtl,
350 						 u16 AntennaReduction,
351 						 u16 twiceMaxRegulatoryPower,
352 						 u16 powerLimit)
353 {
354 #define CMP_TEST_GRP \
355 	(((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) ==	\
356 	 pEepData->ctlIndex[i])						\
357 	|| (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
358 	    ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
359 
360 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
361 	int i;
362 	int16_t twiceLargestAntenna;
363 	u16 twiceMinEdgePower;
364 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
365 	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
366 	u16 numCtlModes;
367 	const u16 *pCtlMode;
368 	u16 ctlMode, freq;
369 	struct chan_centers centers;
370 	struct cal_ctl_data_4k *rep;
371 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
372 	static const u16 tpScaleReductionTable[5] =
373 		{ 0, 3, 6, 9, MAX_RATE_POWER };
374 	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
375 		0, { 0, 0, 0, 0}
376 	};
377 	struct cal_target_power_leg targetPowerOfdmExt = {
378 		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
379 		0, { 0, 0, 0, 0 }
380 	};
381 	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
382 		0, {0, 0, 0, 0}
383 	};
384 	static const u16 ctlModesFor11g[] = {
385 		CTL_11B, CTL_11G, CTL_2GHT20,
386 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
387 	};
388 
389 	ath9k_hw_get_channel_centers(ah, chan, &centers);
390 
391 	twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
392 	twiceLargestAntenna = (int16_t)min(AntennaReduction -
393 					   twiceLargestAntenna, 0);
394 
395 	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
396 	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
397 		maxRegAllowedPower -=
398 			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
399 	}
400 
401 	scaledPower = min(powerLimit, maxRegAllowedPower);
402 	scaledPower = max((u16)0, scaledPower);
403 
404 	numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
405 	pCtlMode = ctlModesFor11g;
406 
407 	ath9k_hw_get_legacy_target_powers(ah, chan,
408 			pEepData->calTargetPowerCck,
409 			AR5416_NUM_2G_CCK_TARGET_POWERS,
410 			&targetPowerCck, 4, false);
411 	ath9k_hw_get_legacy_target_powers(ah, chan,
412 			pEepData->calTargetPower2G,
413 			AR5416_NUM_2G_20_TARGET_POWERS,
414 			&targetPowerOfdm, 4, false);
415 	ath9k_hw_get_target_powers(ah, chan,
416 			pEepData->calTargetPower2GHT20,
417 			AR5416_NUM_2G_20_TARGET_POWERS,
418 			&targetPowerHt20, 8, false);
419 
420 	if (IS_CHAN_HT40(chan)) {
421 		numCtlModes = ARRAY_SIZE(ctlModesFor11g);
422 		ath9k_hw_get_target_powers(ah, chan,
423 				pEepData->calTargetPower2GHT40,
424 				AR5416_NUM_2G_40_TARGET_POWERS,
425 				&targetPowerHt40, 8, true);
426 		ath9k_hw_get_legacy_target_powers(ah, chan,
427 				pEepData->calTargetPowerCck,
428 				AR5416_NUM_2G_CCK_TARGET_POWERS,
429 				&targetPowerCckExt, 4, true);
430 		ath9k_hw_get_legacy_target_powers(ah, chan,
431 				pEepData->calTargetPower2G,
432 				AR5416_NUM_2G_20_TARGET_POWERS,
433 				&targetPowerOfdmExt, 4, true);
434 	}
435 
436 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
437 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
438 			(pCtlMode[ctlMode] == CTL_2GHT40);
439 
440 		if (isHt40CtlMode)
441 			freq = centers.synth_center;
442 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
443 			freq = centers.ext_center;
444 		else
445 			freq = centers.ctl_center;
446 
447 		if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
448 		    ah->eep_ops->get_eeprom_rev(ah) <= 2)
449 			twiceMaxEdgePower = MAX_RATE_POWER;
450 
451 		for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
452 			     pEepData->ctlIndex[i]; i++) {
453 
454 			if (CMP_TEST_GRP) {
455 				rep = &(pEepData->ctlData[i]);
456 
457 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(
458 					freq,
459 					rep->ctlEdges[
460 					ar5416_get_ntxchains(ah->txchainmask) - 1],
461 					IS_CHAN_2GHZ(chan),
462 					AR5416_EEP4K_NUM_BAND_EDGES);
463 
464 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
465 					twiceMaxEdgePower =
466 						min(twiceMaxEdgePower,
467 						    twiceMinEdgePower);
468 				} else {
469 					twiceMaxEdgePower = twiceMinEdgePower;
470 					break;
471 				}
472 			}
473 		}
474 
475 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
476 
477 		switch (pCtlMode[ctlMode]) {
478 		case CTL_11B:
479 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
480 				targetPowerCck.tPow2x[i] =
481 					min((u16)targetPowerCck.tPow2x[i],
482 					    minCtlPower);
483 			}
484 			break;
485 		case CTL_11G:
486 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
487 				targetPowerOfdm.tPow2x[i] =
488 					min((u16)targetPowerOfdm.tPow2x[i],
489 					    minCtlPower);
490 			}
491 			break;
492 		case CTL_2GHT20:
493 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
494 				targetPowerHt20.tPow2x[i] =
495 					min((u16)targetPowerHt20.tPow2x[i],
496 					    minCtlPower);
497 			}
498 			break;
499 		case CTL_11B_EXT:
500 			targetPowerCckExt.tPow2x[0] =
501 				min((u16)targetPowerCckExt.tPow2x[0],
502 				    minCtlPower);
503 			break;
504 		case CTL_11G_EXT:
505 			targetPowerOfdmExt.tPow2x[0] =
506 				min((u16)targetPowerOfdmExt.tPow2x[0],
507 				    minCtlPower);
508 			break;
509 		case CTL_2GHT40:
510 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
511 				targetPowerHt40.tPow2x[i] =
512 					min((u16)targetPowerHt40.tPow2x[i],
513 					    minCtlPower);
514 			}
515 			break;
516 		default:
517 			break;
518 		}
519 	}
520 
521 	ratesArray[rate6mb] =
522 	ratesArray[rate9mb] =
523 	ratesArray[rate12mb] =
524 	ratesArray[rate18mb] =
525 	ratesArray[rate24mb] =
526 	targetPowerOfdm.tPow2x[0];
527 
528 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
529 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
530 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
531 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
532 
533 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
534 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
535 
536 	ratesArray[rate1l] = targetPowerCck.tPow2x[0];
537 	ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
538 	ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
539 	ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
540 
541 	if (IS_CHAN_HT40(chan)) {
542 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
543 			ratesArray[rateHt40_0 + i] =
544 				targetPowerHt40.tPow2x[i];
545 		}
546 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
547 		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
548 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
549 		ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
550 	}
551 
552 #undef CMP_TEST_GRP
553 }
554 
555 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
556 				    struct ath9k_channel *chan,
557 				    u16 cfgCtl,
558 				    u8 twiceAntennaReduction,
559 				    u8 twiceMaxRegulatoryPower,
560 				    u8 powerLimit, bool test)
561 {
562 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
563 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
564 	struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
565 	int16_t ratesArray[Ar5416RateSize];
566 	int16_t txPowerIndexOffset = 0;
567 	u8 ht40PowerIncForPdadc = 2;
568 	int i;
569 
570 	memset(ratesArray, 0, sizeof(ratesArray));
571 
572 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
573 	    AR5416_EEP_MINOR_VER_2) {
574 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
575 	}
576 
577 	ath9k_hw_set_4k_power_per_rate_table(ah, chan,
578 					     &ratesArray[0], cfgCtl,
579 					     twiceAntennaReduction,
580 					     twiceMaxRegulatoryPower,
581 					     powerLimit);
582 
583 	ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
584 
585 	regulatory->max_power_level = 0;
586 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
587 		ratesArray[i] =	(int16_t)(txPowerIndexOffset + ratesArray[i]);
588 		if (ratesArray[i] > MAX_RATE_POWER)
589 			ratesArray[i] = MAX_RATE_POWER;
590 
591 		if (ratesArray[i] > regulatory->max_power_level)
592 			regulatory->max_power_level = ratesArray[i];
593 	}
594 
595 	if (test)
596 	    return;
597 
598 	/* Update regulatory */
599 	i = rate6mb;
600 	if (IS_CHAN_HT40(chan))
601 		i = rateHt40_0;
602 	else if (IS_CHAN_HT20(chan))
603 		i = rateHt20_0;
604 
605 	regulatory->max_power_level = ratesArray[i];
606 
607 	if (AR_SREV_9280_20_OR_LATER(ah)) {
608 		for (i = 0; i < Ar5416RateSize; i++)
609 			ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
610 	}
611 
612 	ENABLE_REGWRITE_BUFFER(ah);
613 
614 	/* OFDM power per rate */
615 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
616 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
617 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
618 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
619 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
620 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
621 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
622 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
623 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
624 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
625 
626 	/* CCK power per rate */
627 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
628 		  ATH9K_POW_SM(ratesArray[rate2s], 24)
629 		  | ATH9K_POW_SM(ratesArray[rate2l], 16)
630 		  | ATH9K_POW_SM(ratesArray[rateXr], 8)
631 		  | ATH9K_POW_SM(ratesArray[rate1l], 0));
632 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
633 		  ATH9K_POW_SM(ratesArray[rate11s], 24)
634 		  | ATH9K_POW_SM(ratesArray[rate11l], 16)
635 		  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
636 		  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
637 
638 	/* HT20 power per rate */
639 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
640 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
641 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
642 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
643 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
644 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
645 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
646 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
647 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
648 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
649 
650 	/* HT40 power per rate */
651 	if (IS_CHAN_HT40(chan)) {
652 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
653 			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
654 				       ht40PowerIncForPdadc, 24)
655 			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
656 					 ht40PowerIncForPdadc, 16)
657 			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
658 					 ht40PowerIncForPdadc, 8)
659 			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
660 					 ht40PowerIncForPdadc, 0));
661 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
662 			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
663 				       ht40PowerIncForPdadc, 24)
664 			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
665 					 ht40PowerIncForPdadc, 16)
666 			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
667 					 ht40PowerIncForPdadc, 8)
668 			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
669 					 ht40PowerIncForPdadc, 0));
670 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
671 			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
672 			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
673 			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
674 			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
675 	}
676 
677 	REGWRITE_BUFFER_FLUSH(ah);
678 }
679 
680 static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
681 				  struct ath9k_channel *chan)
682 {
683 	struct modal_eep_4k_header *pModal;
684 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
685 	u8 biaslevel;
686 
687 	if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
688 		return;
689 
690 	if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
691 		return;
692 
693 	pModal = &eep->modalHeader;
694 
695 	if (pModal->xpaBiasLvl != 0xff) {
696 		biaslevel = pModal->xpaBiasLvl;
697 		INI_RA(&ah->iniAddac, 7, 1) =
698 		  (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
699 	}
700 }
701 
702 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
703 				 struct modal_eep_4k_header *pModal,
704 				 struct ar5416_eeprom_4k *eep,
705 				 u8 txRxAttenLocal)
706 {
707 	REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
708 		  pModal->antCtrlChain[0]);
709 
710 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
711 		  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
712 		   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
713 		     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
714 		  SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
715 		  SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
716 
717 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
718 	    AR5416_EEP_MINOR_VER_3) {
719 		txRxAttenLocal = pModal->txRxAttenCh[0];
720 
721 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
722 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
723 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
724 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
725 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
726 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
727 			      pModal->xatten2Margin[0]);
728 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
729 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
730 
731 		/* Set the block 1 value to block 0 value */
732 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
733 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
734 			      pModal->bswMargin[0]);
735 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
736 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
737 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
738 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
739 			      pModal->xatten2Margin[0]);
740 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
741 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
742 			      pModal->xatten2Db[0]);
743 	}
744 
745 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
746 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
747 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
748 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
749 
750 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
751 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
752 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
753 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
754 }
755 
756 /*
757  * Read EEPROM header info and program the device for correct operation
758  * given the channel value.
759  */
760 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
761 					 struct ath9k_channel *chan)
762 {
763 	struct modal_eep_4k_header *pModal;
764 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
765 	u8 txRxAttenLocal;
766 	u8 ob[5], db1[5], db2[5];
767 	u8 ant_div_control1, ant_div_control2;
768 	u32 regVal;
769 
770 	pModal = &eep->modalHeader;
771 	txRxAttenLocal = 23;
772 
773 	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
774 
775 	/* Single chain for 4K EEPROM*/
776 	ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
777 
778 	/* Initialize Ant Diversity settings from EEPROM */
779 	if (pModal->version >= 3) {
780 		ant_div_control1 = pModal->antdiv_ctl1;
781 		ant_div_control2 = pModal->antdiv_ctl2;
782 
783 		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
784 		regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
785 
786 		regVal |= SM(ant_div_control1,
787 			     AR_PHY_9285_ANT_DIV_CTL);
788 		regVal |= SM(ant_div_control2,
789 			     AR_PHY_9285_ANT_DIV_ALT_LNACONF);
790 		regVal |= SM((ant_div_control2 >> 2),
791 			     AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
792 		regVal |= SM((ant_div_control1 >> 1),
793 			     AR_PHY_9285_ANT_DIV_ALT_GAINTB);
794 		regVal |= SM((ant_div_control1 >> 2),
795 			     AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
796 
797 
798 		REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
799 		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
800 		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
801 		regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
802 		regVal |= SM((ant_div_control1 >> 3),
803 			     AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
804 
805 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
806 		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
807 	}
808 
809 	if (pModal->version >= 2) {
810 		ob[0] = pModal->ob_0;
811 		ob[1] = pModal->ob_1;
812 		ob[2] = pModal->ob_2;
813 		ob[3] = pModal->ob_3;
814 		ob[4] = pModal->ob_4;
815 
816 		db1[0] = pModal->db1_0;
817 		db1[1] = pModal->db1_1;
818 		db1[2] = pModal->db1_2;
819 		db1[3] = pModal->db1_3;
820 		db1[4] = pModal->db1_4;
821 
822 		db2[0] = pModal->db2_0;
823 		db2[1] = pModal->db2_1;
824 		db2[2] = pModal->db2_2;
825 		db2[3] = pModal->db2_3;
826 		db2[4] = pModal->db2_4;
827 	} else if (pModal->version == 1) {
828 		ob[0] = pModal->ob_0;
829 		ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
830 		db1[0] = pModal->db1_0;
831 		db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
832 		db2[0] = pModal->db2_0;
833 		db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
834 	} else {
835 		int i;
836 
837 		for (i = 0; i < 5; i++) {
838 			ob[i] = pModal->ob_0;
839 			db1[i] = pModal->db1_0;
840 			db2[i] = pModal->db1_0;
841 		}
842 	}
843 
844 	if (AR_SREV_9271(ah)) {
845 		ath9k_hw_analog_shift_rmw(ah,
846 					  AR9285_AN_RF2G3,
847 					  AR9271_AN_RF2G3_OB_cck,
848 					  AR9271_AN_RF2G3_OB_cck_S,
849 					  ob[0]);
850 		ath9k_hw_analog_shift_rmw(ah,
851 					  AR9285_AN_RF2G3,
852 					  AR9271_AN_RF2G3_OB_psk,
853 					  AR9271_AN_RF2G3_OB_psk_S,
854 					  ob[1]);
855 		ath9k_hw_analog_shift_rmw(ah,
856 					  AR9285_AN_RF2G3,
857 					  AR9271_AN_RF2G3_OB_qam,
858 					  AR9271_AN_RF2G3_OB_qam_S,
859 					  ob[2]);
860 		ath9k_hw_analog_shift_rmw(ah,
861 					  AR9285_AN_RF2G3,
862 					  AR9271_AN_RF2G3_DB_1,
863 					  AR9271_AN_RF2G3_DB_1_S,
864 					  db1[0]);
865 		ath9k_hw_analog_shift_rmw(ah,
866 					  AR9285_AN_RF2G4,
867 					  AR9271_AN_RF2G4_DB_2,
868 					  AR9271_AN_RF2G4_DB_2_S,
869 					  db2[0]);
870 	} else {
871 		ath9k_hw_analog_shift_rmw(ah,
872 					  AR9285_AN_RF2G3,
873 					  AR9285_AN_RF2G3_OB_0,
874 					  AR9285_AN_RF2G3_OB_0_S,
875 					  ob[0]);
876 		ath9k_hw_analog_shift_rmw(ah,
877 					  AR9285_AN_RF2G3,
878 					  AR9285_AN_RF2G3_OB_1,
879 					  AR9285_AN_RF2G3_OB_1_S,
880 					  ob[1]);
881 		ath9k_hw_analog_shift_rmw(ah,
882 					  AR9285_AN_RF2G3,
883 					  AR9285_AN_RF2G3_OB_2,
884 					  AR9285_AN_RF2G3_OB_2_S,
885 					  ob[2]);
886 		ath9k_hw_analog_shift_rmw(ah,
887 					  AR9285_AN_RF2G3,
888 					  AR9285_AN_RF2G3_OB_3,
889 					  AR9285_AN_RF2G3_OB_3_S,
890 					  ob[3]);
891 		ath9k_hw_analog_shift_rmw(ah,
892 					  AR9285_AN_RF2G3,
893 					  AR9285_AN_RF2G3_OB_4,
894 					  AR9285_AN_RF2G3_OB_4_S,
895 					  ob[4]);
896 
897 		ath9k_hw_analog_shift_rmw(ah,
898 					  AR9285_AN_RF2G3,
899 					  AR9285_AN_RF2G3_DB1_0,
900 					  AR9285_AN_RF2G3_DB1_0_S,
901 					  db1[0]);
902 		ath9k_hw_analog_shift_rmw(ah,
903 					  AR9285_AN_RF2G3,
904 					  AR9285_AN_RF2G3_DB1_1,
905 					  AR9285_AN_RF2G3_DB1_1_S,
906 					  db1[1]);
907 		ath9k_hw_analog_shift_rmw(ah,
908 					  AR9285_AN_RF2G3,
909 					  AR9285_AN_RF2G3_DB1_2,
910 					  AR9285_AN_RF2G3_DB1_2_S,
911 					  db1[2]);
912 		ath9k_hw_analog_shift_rmw(ah,
913 					  AR9285_AN_RF2G4,
914 					  AR9285_AN_RF2G4_DB1_3,
915 					  AR9285_AN_RF2G4_DB1_3_S,
916 					  db1[3]);
917 		ath9k_hw_analog_shift_rmw(ah,
918 					  AR9285_AN_RF2G4,
919 					  AR9285_AN_RF2G4_DB1_4,
920 					  AR9285_AN_RF2G4_DB1_4_S, db1[4]);
921 
922 		ath9k_hw_analog_shift_rmw(ah,
923 					  AR9285_AN_RF2G4,
924 					  AR9285_AN_RF2G4_DB2_0,
925 					  AR9285_AN_RF2G4_DB2_0_S,
926 					  db2[0]);
927 		ath9k_hw_analog_shift_rmw(ah,
928 					  AR9285_AN_RF2G4,
929 					  AR9285_AN_RF2G4_DB2_1,
930 					  AR9285_AN_RF2G4_DB2_1_S,
931 					  db2[1]);
932 		ath9k_hw_analog_shift_rmw(ah,
933 					  AR9285_AN_RF2G4,
934 					  AR9285_AN_RF2G4_DB2_2,
935 					  AR9285_AN_RF2G4_DB2_2_S,
936 					  db2[2]);
937 		ath9k_hw_analog_shift_rmw(ah,
938 					  AR9285_AN_RF2G4,
939 					  AR9285_AN_RF2G4_DB2_3,
940 					  AR9285_AN_RF2G4_DB2_3_S,
941 					  db2[3]);
942 		ath9k_hw_analog_shift_rmw(ah,
943 					  AR9285_AN_RF2G4,
944 					  AR9285_AN_RF2G4_DB2_4,
945 					  AR9285_AN_RF2G4_DB2_4_S,
946 					  db2[4]);
947 	}
948 
949 
950 	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
951 		      pModal->switchSettling);
952 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
953 		      pModal->adcDesiredSize);
954 
955 	REG_WRITE(ah, AR_PHY_RF_CTL4,
956 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
957 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
958 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
959 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
960 
961 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
962 		      pModal->txEndToRxOn);
963 
964 	if (AR_SREV_9271_10(ah))
965 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
966 			      pModal->txEndToRxOn);
967 	REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
968 		      pModal->thresh62);
969 	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
970 		      pModal->thresh62);
971 
972 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
973 						AR5416_EEP_MINOR_VER_2) {
974 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
975 			      pModal->txFrameToDataStart);
976 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
977 			      pModal->txFrameToPaOn);
978 	}
979 
980 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
981 						AR5416_EEP_MINOR_VER_3) {
982 		if (IS_CHAN_HT40(chan))
983 			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
984 				      AR_PHY_SETTLING_SWITCH,
985 				      pModal->swSettleHt40);
986 	}
987 }
988 
989 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
990 {
991 #define EEP_MAP4K_SPURCHAN \
992 	(ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
993 	struct ath_common *common = ath9k_hw_common(ah);
994 
995 	u16 spur_val = AR_NO_SPUR;
996 
997 	ath_dbg(common, ATH_DBG_ANI,
998 		"Getting spur idx:%d is2Ghz:%d val:%x\n",
999 		i, is2GHz, ah->config.spurchans[i][is2GHz]);
1000 
1001 	switch (ah->config.spurmode) {
1002 	case SPUR_DISABLE:
1003 		break;
1004 	case SPUR_ENABLE_IOCTL:
1005 		spur_val = ah->config.spurchans[i][is2GHz];
1006 		ath_dbg(common, ATH_DBG_ANI,
1007 			"Getting spur val from new loc. %d\n", spur_val);
1008 		break;
1009 	case SPUR_ENABLE_EEPROM:
1010 		spur_val = EEP_MAP4K_SPURCHAN;
1011 		break;
1012 	}
1013 
1014 	return spur_val;
1015 
1016 #undef EEP_MAP4K_SPURCHAN
1017 }
1018 
1019 const struct eeprom_ops eep_4k_ops = {
1020 	.check_eeprom		= ath9k_hw_4k_check_eeprom,
1021 	.get_eeprom		= ath9k_hw_4k_get_eeprom,
1022 	.fill_eeprom		= ath9k_hw_4k_fill_eeprom,
1023 	.get_eeprom_ver		= ath9k_hw_4k_get_eeprom_ver,
1024 	.get_eeprom_rev		= ath9k_hw_4k_get_eeprom_rev,
1025 	.set_board_values	= ath9k_hw_4k_set_board_values,
1026 	.set_addac		= ath9k_hw_4k_set_addac,
1027 	.set_txpower		= ath9k_hw_4k_set_txpower,
1028 	.get_spur_channel	= ath9k_hw_4k_get_spur_channel
1029 };
1030