1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <asm/unaligned.h> 18 #include "hw.h" 19 #include "ar9002_phy.h" 20 21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah) 22 { 23 return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF); 24 } 25 26 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah) 27 { 28 return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF); 29 } 30 31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16)) 32 33 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah) 34 { 35 u16 *eep_data = (u16 *)&ah->eeprom.map4k; 36 int addr, eep_start_loc = 64; 37 38 for (addr = 0; addr < SIZE_EEPROM_4K; addr++) { 39 if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) 40 return false; 41 eep_data++; 42 } 43 44 return true; 45 } 46 47 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah) 48 { 49 u16 *eep_data = (u16 *)&ah->eeprom.map4k; 50 51 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K); 52 53 return true; 54 } 55 56 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah) 57 { 58 struct ath_common *common = ath9k_hw_common(ah); 59 60 if (!ath9k_hw_use_flash(ah)) { 61 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n"); 62 } 63 64 if (common->bus_ops->ath_bus_type == ATH_USB) 65 return __ath9k_hw_usb_4k_fill_eeprom(ah); 66 else 67 return __ath9k_hw_4k_fill_eeprom(ah); 68 } 69 70 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS) 71 static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size, 72 struct modal_eep_4k_header *modal_hdr) 73 { 74 PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]); 75 PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon); 76 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]); 77 PR_EEP("Switch Settle", modal_hdr->switchSettling); 78 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]); 79 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]); 80 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize); 81 PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize); 82 PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]); 83 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff); 84 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn); 85 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn); 86 PR_EEP("CCA Threshold)", modal_hdr->thresh62); 87 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]); 88 PR_EEP("xpdGain", modal_hdr->xpdGain); 89 PR_EEP("External PD", modal_hdr->xpd); 90 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]); 91 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]); 92 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap); 93 PR_EEP("O/D Bias Version", modal_hdr->version); 94 PR_EEP("CCK OutputBias", modal_hdr->ob_0); 95 PR_EEP("BPSK OutputBias", modal_hdr->ob_1); 96 PR_EEP("QPSK OutputBias", modal_hdr->ob_2); 97 PR_EEP("16QAM OutputBias", modal_hdr->ob_3); 98 PR_EEP("64QAM OutputBias", modal_hdr->ob_4); 99 PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0); 100 PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1); 101 PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2); 102 PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3); 103 PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4); 104 PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0); 105 PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1); 106 PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2); 107 PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3); 108 PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4); 109 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl); 110 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart); 111 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn); 112 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc); 113 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]); 114 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]); 115 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40); 116 PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]); 117 PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]); 118 PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1); 119 PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2); 120 PR_EEP("TX Diversity", modal_hdr->tx_diversity); 121 122 return len; 123 } 124 125 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr, 126 u8 *buf, u32 len, u32 size) 127 { 128 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k; 129 struct base_eep_header_4k *pBase = &eep->baseEepHeader; 130 131 if (!dump_base_hdr) { 132 len += scnprintf(buf + len, size - len, 133 "%20s :\n", "2GHz modal Header"); 134 len = ath9k_dump_4k_modal_eeprom(buf, len, size, 135 &eep->modalHeader); 136 goto out; 137 } 138 139 PR_EEP("Major Version", pBase->version >> 12); 140 PR_EEP("Minor Version", pBase->version & 0xFFF); 141 PR_EEP("Checksum", pBase->checksum); 142 PR_EEP("Length", pBase->length); 143 PR_EEP("RegDomain1", pBase->regDmn[0]); 144 PR_EEP("RegDomain2", pBase->regDmn[1]); 145 PR_EEP("TX Mask", pBase->txMask); 146 PR_EEP("RX Mask", pBase->rxMask); 147 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A)); 148 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G)); 149 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags & 150 AR5416_OPFLAGS_N_2G_HT20)); 151 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags & 152 AR5416_OPFLAGS_N_2G_HT40)); 153 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags & 154 AR5416_OPFLAGS_N_5G_HT20)); 155 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags & 156 AR5416_OPFLAGS_N_5G_HT40)); 157 PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01)); 158 PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF); 159 PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF); 160 PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF); 161 PR_EEP("TX Gain type", pBase->txGainType); 162 163 len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress", 164 pBase->macAddr); 165 166 out: 167 if (len > size) 168 len = size; 169 170 return len; 171 } 172 #else 173 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr, 174 u8 *buf, u32 len, u32 size) 175 { 176 return 0; 177 } 178 #endif 179 180 181 #undef SIZE_EEPROM_4K 182 183 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah) 184 { 185 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16)) 186 struct ath_common *common = ath9k_hw_common(ah); 187 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k; 188 u16 *eepdata, temp, magic, magic2; 189 u32 sum = 0, el; 190 bool need_swap = false; 191 int i, addr; 192 193 194 if (!ath9k_hw_use_flash(ah)) { 195 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, 196 &magic)) { 197 ath_err(common, "Reading Magic # failed\n"); 198 return false; 199 } 200 201 ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic); 202 203 if (magic != AR5416_EEPROM_MAGIC) { 204 magic2 = swab16(magic); 205 206 if (magic2 == AR5416_EEPROM_MAGIC) { 207 need_swap = true; 208 eepdata = (u16 *) (&ah->eeprom); 209 210 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) { 211 temp = swab16(*eepdata); 212 *eepdata = temp; 213 eepdata++; 214 } 215 } else { 216 ath_err(common, 217 "Invalid EEPROM Magic. Endianness mismatch.\n"); 218 return -EINVAL; 219 } 220 } 221 } 222 223 ath_dbg(common, EEPROM, "need_swap = %s\n", 224 need_swap ? "True" : "False"); 225 226 if (need_swap) 227 el = swab16(ah->eeprom.map4k.baseEepHeader.length); 228 else 229 el = ah->eeprom.map4k.baseEepHeader.length; 230 231 if (el > sizeof(struct ar5416_eeprom_4k)) 232 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16); 233 else 234 el = el / sizeof(u16); 235 236 eepdata = (u16 *)(&ah->eeprom); 237 238 for (i = 0; i < el; i++) 239 sum ^= *eepdata++; 240 241 if (need_swap) { 242 u32 integer; 243 u16 word; 244 245 ath_dbg(common, EEPROM, 246 "EEPROM Endianness is not native.. Changing\n"); 247 248 word = swab16(eep->baseEepHeader.length); 249 eep->baseEepHeader.length = word; 250 251 word = swab16(eep->baseEepHeader.checksum); 252 eep->baseEepHeader.checksum = word; 253 254 word = swab16(eep->baseEepHeader.version); 255 eep->baseEepHeader.version = word; 256 257 word = swab16(eep->baseEepHeader.regDmn[0]); 258 eep->baseEepHeader.regDmn[0] = word; 259 260 word = swab16(eep->baseEepHeader.regDmn[1]); 261 eep->baseEepHeader.regDmn[1] = word; 262 263 word = swab16(eep->baseEepHeader.rfSilent); 264 eep->baseEepHeader.rfSilent = word; 265 266 word = swab16(eep->baseEepHeader.blueToothOptions); 267 eep->baseEepHeader.blueToothOptions = word; 268 269 word = swab16(eep->baseEepHeader.deviceCap); 270 eep->baseEepHeader.deviceCap = word; 271 272 integer = swab32(eep->modalHeader.antCtrlCommon); 273 eep->modalHeader.antCtrlCommon = integer; 274 275 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) { 276 integer = swab32(eep->modalHeader.antCtrlChain[i]); 277 eep->modalHeader.antCtrlChain[i] = integer; 278 } 279 280 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 281 word = swab16(eep->modalHeader.spurChans[i].spurChan); 282 eep->modalHeader.spurChans[i].spurChan = word; 283 } 284 } 285 286 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER || 287 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) { 288 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n", 289 sum, ah->eep_ops->get_eeprom_ver(ah)); 290 return -EINVAL; 291 } 292 293 return 0; 294 #undef EEPROM_4K_SIZE 295 } 296 297 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah, 298 enum eeprom_param param) 299 { 300 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k; 301 struct modal_eep_4k_header *pModal = &eep->modalHeader; 302 struct base_eep_header_4k *pBase = &eep->baseEepHeader; 303 u16 ver_minor; 304 305 ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK; 306 307 switch (param) { 308 case EEP_NFTHRESH_2: 309 return pModal->noiseFloorThreshCh[0]; 310 case EEP_MAC_LSW: 311 return get_unaligned_be16(pBase->macAddr); 312 case EEP_MAC_MID: 313 return get_unaligned_be16(pBase->macAddr + 2); 314 case EEP_MAC_MSW: 315 return get_unaligned_be16(pBase->macAddr + 4); 316 case EEP_REG_0: 317 return pBase->regDmn[0]; 318 case EEP_OP_CAP: 319 return pBase->deviceCap; 320 case EEP_OP_MODE: 321 return pBase->opCapFlags; 322 case EEP_RF_SILENT: 323 return pBase->rfSilent; 324 case EEP_OB_2: 325 return pModal->ob_0; 326 case EEP_DB_2: 327 return pModal->db1_1; 328 case EEP_MINOR_REV: 329 return ver_minor; 330 case EEP_TX_MASK: 331 return pBase->txMask; 332 case EEP_RX_MASK: 333 return pBase->rxMask; 334 case EEP_FRAC_N_5G: 335 return 0; 336 case EEP_PWR_TABLE_OFFSET: 337 return AR5416_PWR_TABLE_OFFSET_DB; 338 case EEP_MODAL_VER: 339 return pModal->version; 340 case EEP_ANT_DIV_CTL1: 341 return pModal->antdiv_ctl1; 342 case EEP_TXGAIN_TYPE: 343 return pBase->txGainType; 344 case EEP_ANTENNA_GAIN_2G: 345 return pModal->antennaGainCh[0]; 346 default: 347 return 0; 348 } 349 } 350 351 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah, 352 struct ath9k_channel *chan) 353 { 354 struct ath_common *common = ath9k_hw_common(ah); 355 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k; 356 struct cal_data_per_freq_4k *pRawDataset; 357 u8 *pCalBChans = NULL; 358 u16 pdGainOverlap_t2; 359 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES]; 360 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK]; 361 u16 numPiers, i, j; 362 u16 numXpdGain, xpdMask; 363 u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 }; 364 u32 reg32, regOffset, regChainOffset; 365 366 xpdMask = pEepData->modalHeader.xpdGain; 367 368 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= 369 AR5416_EEP_MINOR_VER_2) { 370 pdGainOverlap_t2 = 371 pEepData->modalHeader.pdGainOverlap; 372 } else { 373 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5), 374 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); 375 } 376 377 pCalBChans = pEepData->calFreqPier2G; 378 numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS; 379 380 numXpdGain = 0; 381 382 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { 383 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { 384 if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS) 385 break; 386 xpdGainValues[numXpdGain] = 387 (u16)(AR5416_PD_GAINS_IN_MASK - i); 388 numXpdGain++; 389 } 390 } 391 392 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 393 (numXpdGain - 1) & 0x3); 394 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1, 395 xpdGainValues[0]); 396 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2, 397 xpdGainValues[1]); 398 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0); 399 400 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) { 401 regChainOffset = i * 0x1000; 402 403 if (pEepData->baseEepHeader.txMask & (1 << i)) { 404 pRawDataset = pEepData->calPierData2G[i]; 405 406 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan, 407 pRawDataset, pCalBChans, 408 numPiers, pdGainOverlap_t2, 409 gainBoundaries, 410 pdadcValues, numXpdGain); 411 412 ENABLE_REGWRITE_BUFFER(ah); 413 414 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, 415 SM(pdGainOverlap_t2, 416 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) 417 | SM(gainBoundaries[0], 418 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) 419 | SM(gainBoundaries[1], 420 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) 421 | SM(gainBoundaries[2], 422 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) 423 | SM(gainBoundaries[3], 424 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); 425 426 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; 427 for (j = 0; j < 32; j++) { 428 reg32 = get_unaligned_le32(&pdadcValues[4 * j]); 429 REG_WRITE(ah, regOffset, reg32); 430 431 ath_dbg(common, EEPROM, 432 "PDADC (%d,%4x): %4.4x %8.8x\n", 433 i, regChainOffset, regOffset, 434 reg32); 435 ath_dbg(common, EEPROM, 436 "PDADC: Chain %d | " 437 "PDADC %3d Value %3d | " 438 "PDADC %3d Value %3d | " 439 "PDADC %3d Value %3d | " 440 "PDADC %3d Value %3d |\n", 441 i, 4 * j, pdadcValues[4 * j], 442 4 * j + 1, pdadcValues[4 * j + 1], 443 4 * j + 2, pdadcValues[4 * j + 2], 444 4 * j + 3, pdadcValues[4 * j + 3]); 445 446 regOffset += 4; 447 } 448 449 REGWRITE_BUFFER_FLUSH(ah); 450 } 451 } 452 } 453 454 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah, 455 struct ath9k_channel *chan, 456 int16_t *ratesArray, 457 u16 cfgCtl, 458 u16 antenna_reduction, 459 u16 powerLimit) 460 { 461 #define CMP_TEST_GRP \ 462 (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \ 463 pEepData->ctlIndex[i]) \ 464 || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \ 465 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL)) 466 467 int i; 468 u16 twiceMinEdgePower; 469 u16 twiceMaxEdgePower; 470 u16 scaledPower = 0, minCtlPower; 471 u16 numCtlModes; 472 const u16 *pCtlMode; 473 u16 ctlMode, freq; 474 struct chan_centers centers; 475 struct cal_ctl_data_4k *rep; 476 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k; 477 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = { 478 0, { 0, 0, 0, 0} 479 }; 480 struct cal_target_power_leg targetPowerOfdmExt = { 481 0, { 0, 0, 0, 0} }, targetPowerCckExt = { 482 0, { 0, 0, 0, 0 } 483 }; 484 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = { 485 0, {0, 0, 0, 0} 486 }; 487 static const u16 ctlModesFor11g[] = { 488 CTL_11B, CTL_11G, CTL_2GHT20, 489 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 490 }; 491 492 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 493 494 scaledPower = powerLimit - antenna_reduction; 495 numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; 496 pCtlMode = ctlModesFor11g; 497 498 ath9k_hw_get_legacy_target_powers(ah, chan, 499 pEepData->calTargetPowerCck, 500 AR5416_NUM_2G_CCK_TARGET_POWERS, 501 &targetPowerCck, 4, false); 502 ath9k_hw_get_legacy_target_powers(ah, chan, 503 pEepData->calTargetPower2G, 504 AR5416_NUM_2G_20_TARGET_POWERS, 505 &targetPowerOfdm, 4, false); 506 ath9k_hw_get_target_powers(ah, chan, 507 pEepData->calTargetPower2GHT20, 508 AR5416_NUM_2G_20_TARGET_POWERS, 509 &targetPowerHt20, 8, false); 510 511 if (IS_CHAN_HT40(chan)) { 512 numCtlModes = ARRAY_SIZE(ctlModesFor11g); 513 ath9k_hw_get_target_powers(ah, chan, 514 pEepData->calTargetPower2GHT40, 515 AR5416_NUM_2G_40_TARGET_POWERS, 516 &targetPowerHt40, 8, true); 517 ath9k_hw_get_legacy_target_powers(ah, chan, 518 pEepData->calTargetPowerCck, 519 AR5416_NUM_2G_CCK_TARGET_POWERS, 520 &targetPowerCckExt, 4, true); 521 ath9k_hw_get_legacy_target_powers(ah, chan, 522 pEepData->calTargetPower2G, 523 AR5416_NUM_2G_20_TARGET_POWERS, 524 &targetPowerOfdmExt, 4, true); 525 } 526 527 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { 528 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || 529 (pCtlMode[ctlMode] == CTL_2GHT40); 530 531 if (isHt40CtlMode) 532 freq = centers.synth_center; 533 else if (pCtlMode[ctlMode] & EXT_ADDITIVE) 534 freq = centers.ext_center; 535 else 536 freq = centers.ctl_center; 537 538 twiceMaxEdgePower = MAX_RATE_POWER; 539 540 for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) && 541 pEepData->ctlIndex[i]; i++) { 542 543 if (CMP_TEST_GRP) { 544 rep = &(pEepData->ctlData[i]); 545 546 twiceMinEdgePower = ath9k_hw_get_max_edge_power( 547 freq, 548 rep->ctlEdges[ 549 ar5416_get_ntxchains(ah->txchainmask) - 1], 550 IS_CHAN_2GHZ(chan), 551 AR5416_EEP4K_NUM_BAND_EDGES); 552 553 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { 554 twiceMaxEdgePower = 555 min(twiceMaxEdgePower, 556 twiceMinEdgePower); 557 } else { 558 twiceMaxEdgePower = twiceMinEdgePower; 559 break; 560 } 561 } 562 } 563 564 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower); 565 566 switch (pCtlMode[ctlMode]) { 567 case CTL_11B: 568 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) { 569 targetPowerCck.tPow2x[i] = 570 min((u16)targetPowerCck.tPow2x[i], 571 minCtlPower); 572 } 573 break; 574 case CTL_11G: 575 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) { 576 targetPowerOfdm.tPow2x[i] = 577 min((u16)targetPowerOfdm.tPow2x[i], 578 minCtlPower); 579 } 580 break; 581 case CTL_2GHT20: 582 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) { 583 targetPowerHt20.tPow2x[i] = 584 min((u16)targetPowerHt20.tPow2x[i], 585 minCtlPower); 586 } 587 break; 588 case CTL_11B_EXT: 589 targetPowerCckExt.tPow2x[0] = 590 min((u16)targetPowerCckExt.tPow2x[0], 591 minCtlPower); 592 break; 593 case CTL_11G_EXT: 594 targetPowerOfdmExt.tPow2x[0] = 595 min((u16)targetPowerOfdmExt.tPow2x[0], 596 minCtlPower); 597 break; 598 case CTL_2GHT40: 599 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { 600 targetPowerHt40.tPow2x[i] = 601 min((u16)targetPowerHt40.tPow2x[i], 602 minCtlPower); 603 } 604 break; 605 default: 606 break; 607 } 608 } 609 610 ratesArray[rate6mb] = 611 ratesArray[rate9mb] = 612 ratesArray[rate12mb] = 613 ratesArray[rate18mb] = 614 ratesArray[rate24mb] = 615 targetPowerOfdm.tPow2x[0]; 616 617 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1]; 618 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2]; 619 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3]; 620 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0]; 621 622 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) 623 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i]; 624 625 ratesArray[rate1l] = targetPowerCck.tPow2x[0]; 626 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1]; 627 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2]; 628 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3]; 629 630 if (IS_CHAN_HT40(chan)) { 631 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { 632 ratesArray[rateHt40_0 + i] = 633 targetPowerHt40.tPow2x[i]; 634 } 635 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0]; 636 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0]; 637 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0]; 638 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0]; 639 } 640 641 #undef CMP_TEST_GRP 642 } 643 644 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah, 645 struct ath9k_channel *chan, 646 u16 cfgCtl, 647 u8 twiceAntennaReduction, 648 u8 powerLimit, bool test) 649 { 650 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 651 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k; 652 struct modal_eep_4k_header *pModal = &pEepData->modalHeader; 653 int16_t ratesArray[Ar5416RateSize]; 654 u8 ht40PowerIncForPdadc = 2; 655 int i; 656 657 memset(ratesArray, 0, sizeof(ratesArray)); 658 659 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= 660 AR5416_EEP_MINOR_VER_2) { 661 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; 662 } 663 664 ath9k_hw_set_4k_power_per_rate_table(ah, chan, 665 &ratesArray[0], cfgCtl, 666 twiceAntennaReduction, 667 powerLimit); 668 669 ath9k_hw_set_4k_power_cal_table(ah, chan); 670 671 regulatory->max_power_level = 0; 672 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) { 673 if (ratesArray[i] > MAX_RATE_POWER) 674 ratesArray[i] = MAX_RATE_POWER; 675 676 if (ratesArray[i] > regulatory->max_power_level) 677 regulatory->max_power_level = ratesArray[i]; 678 } 679 680 if (test) 681 return; 682 683 for (i = 0; i < Ar5416RateSize; i++) 684 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2; 685 686 ENABLE_REGWRITE_BUFFER(ah); 687 688 /* OFDM power per rate */ 689 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, 690 ATH9K_POW_SM(ratesArray[rate18mb], 24) 691 | ATH9K_POW_SM(ratesArray[rate12mb], 16) 692 | ATH9K_POW_SM(ratesArray[rate9mb], 8) 693 | ATH9K_POW_SM(ratesArray[rate6mb], 0)); 694 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, 695 ATH9K_POW_SM(ratesArray[rate54mb], 24) 696 | ATH9K_POW_SM(ratesArray[rate48mb], 16) 697 | ATH9K_POW_SM(ratesArray[rate36mb], 8) 698 | ATH9K_POW_SM(ratesArray[rate24mb], 0)); 699 700 /* CCK power per rate */ 701 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, 702 ATH9K_POW_SM(ratesArray[rate2s], 24) 703 | ATH9K_POW_SM(ratesArray[rate2l], 16) 704 | ATH9K_POW_SM(ratesArray[rateXr], 8) 705 | ATH9K_POW_SM(ratesArray[rate1l], 0)); 706 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, 707 ATH9K_POW_SM(ratesArray[rate11s], 24) 708 | ATH9K_POW_SM(ratesArray[rate11l], 16) 709 | ATH9K_POW_SM(ratesArray[rate5_5s], 8) 710 | ATH9K_POW_SM(ratesArray[rate5_5l], 0)); 711 712 /* HT20 power per rate */ 713 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, 714 ATH9K_POW_SM(ratesArray[rateHt20_3], 24) 715 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16) 716 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8) 717 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0)); 718 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, 719 ATH9K_POW_SM(ratesArray[rateHt20_7], 24) 720 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16) 721 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8) 722 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0)); 723 724 /* HT40 power per rate */ 725 if (IS_CHAN_HT40(chan)) { 726 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, 727 ATH9K_POW_SM(ratesArray[rateHt40_3] + 728 ht40PowerIncForPdadc, 24) 729 | ATH9K_POW_SM(ratesArray[rateHt40_2] + 730 ht40PowerIncForPdadc, 16) 731 | ATH9K_POW_SM(ratesArray[rateHt40_1] + 732 ht40PowerIncForPdadc, 8) 733 | ATH9K_POW_SM(ratesArray[rateHt40_0] + 734 ht40PowerIncForPdadc, 0)); 735 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, 736 ATH9K_POW_SM(ratesArray[rateHt40_7] + 737 ht40PowerIncForPdadc, 24) 738 | ATH9K_POW_SM(ratesArray[rateHt40_6] + 739 ht40PowerIncForPdadc, 16) 740 | ATH9K_POW_SM(ratesArray[rateHt40_5] + 741 ht40PowerIncForPdadc, 8) 742 | ATH9K_POW_SM(ratesArray[rateHt40_4] + 743 ht40PowerIncForPdadc, 0)); 744 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, 745 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) 746 | ATH9K_POW_SM(ratesArray[rateExtCck], 16) 747 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) 748 | ATH9K_POW_SM(ratesArray[rateDupCck], 0)); 749 } 750 751 /* TPC initializations */ 752 if (ah->tpc_enabled) { 753 int ht40_delta; 754 755 ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0; 756 ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta); 757 /* Enable TPC */ 758 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, 759 MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE); 760 } else { 761 /* Disable TPC */ 762 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER); 763 } 764 765 REGWRITE_BUFFER_FLUSH(ah); 766 } 767 768 static void ath9k_hw_4k_set_gain(struct ath_hw *ah, 769 struct modal_eep_4k_header *pModal, 770 struct ar5416_eeprom_4k *eep, 771 u8 txRxAttenLocal) 772 { 773 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0, 774 pModal->antCtrlChain[0]); 775 776 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), 777 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) & 778 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | 779 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | 780 SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | 781 SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); 782 783 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= 784 AR5416_EEP_MINOR_VER_3) { 785 txRxAttenLocal = pModal->txRxAttenCh[0]; 786 787 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, 788 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]); 789 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, 790 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]); 791 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, 792 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, 793 pModal->xatten2Margin[0]); 794 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, 795 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]); 796 797 /* Set the block 1 value to block 0 value */ 798 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000, 799 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, 800 pModal->bswMargin[0]); 801 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000, 802 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]); 803 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000, 804 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, 805 pModal->xatten2Margin[0]); 806 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000, 807 AR_PHY_GAIN_2GHZ_XATTEN2_DB, 808 pModal->xatten2Db[0]); 809 } 810 811 REG_RMW_FIELD(ah, AR_PHY_RXGAIN, 812 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); 813 REG_RMW_FIELD(ah, AR_PHY_RXGAIN, 814 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]); 815 816 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000, 817 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); 818 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000, 819 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]); 820 } 821 822 /* 823 * Read EEPROM header info and program the device for correct operation 824 * given the channel value. 825 */ 826 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah, 827 struct ath9k_channel *chan) 828 { 829 struct ath9k_hw_capabilities *pCap = &ah->caps; 830 struct modal_eep_4k_header *pModal; 831 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k; 832 struct base_eep_header_4k *pBase = &eep->baseEepHeader; 833 u8 txRxAttenLocal; 834 u8 ob[5], db1[5], db2[5]; 835 u8 ant_div_control1, ant_div_control2; 836 u8 bb_desired_scale; 837 u32 regVal; 838 839 pModal = &eep->modalHeader; 840 txRxAttenLocal = 23; 841 842 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon); 843 844 /* Single chain for 4K EEPROM*/ 845 ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal); 846 847 /* Initialize Ant Diversity settings from EEPROM */ 848 if (pModal->version >= 3) { 849 ant_div_control1 = pModal->antdiv_ctl1; 850 ant_div_control2 = pModal->antdiv_ctl2; 851 852 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); 853 regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL)); 854 855 regVal |= SM(ant_div_control1, 856 AR_PHY_9285_ANT_DIV_CTL); 857 regVal |= SM(ant_div_control2, 858 AR_PHY_9285_ANT_DIV_ALT_LNACONF); 859 regVal |= SM((ant_div_control2 >> 2), 860 AR_PHY_9285_ANT_DIV_MAIN_LNACONF); 861 regVal |= SM((ant_div_control1 >> 1), 862 AR_PHY_9285_ANT_DIV_ALT_GAINTB); 863 regVal |= SM((ant_div_control1 >> 2), 864 AR_PHY_9285_ANT_DIV_MAIN_GAINTB); 865 866 867 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal); 868 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); 869 regVal = REG_READ(ah, AR_PHY_CCK_DETECT); 870 regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); 871 regVal |= SM((ant_div_control1 >> 3), 872 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); 873 874 REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal); 875 regVal = REG_READ(ah, AR_PHY_CCK_DETECT); 876 877 if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) { 878 /* 879 * If diversity combining is enabled, 880 * set MAIN to LNA1 and ALT to LNA2 initially. 881 */ 882 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); 883 regVal &= (~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF | 884 AR_PHY_9285_ANT_DIV_ALT_LNACONF)); 885 886 regVal |= (ATH_ANT_DIV_COMB_LNA1 << 887 AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S); 888 regVal |= (ATH_ANT_DIV_COMB_LNA2 << 889 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S); 890 regVal &= (~(AR_PHY_9285_FAST_DIV_BIAS)); 891 regVal |= (0 << AR_PHY_9285_FAST_DIV_BIAS_S); 892 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal); 893 } 894 } 895 896 if (pModal->version >= 2) { 897 ob[0] = pModal->ob_0; 898 ob[1] = pModal->ob_1; 899 ob[2] = pModal->ob_2; 900 ob[3] = pModal->ob_3; 901 ob[4] = pModal->ob_4; 902 903 db1[0] = pModal->db1_0; 904 db1[1] = pModal->db1_1; 905 db1[2] = pModal->db1_2; 906 db1[3] = pModal->db1_3; 907 db1[4] = pModal->db1_4; 908 909 db2[0] = pModal->db2_0; 910 db2[1] = pModal->db2_1; 911 db2[2] = pModal->db2_2; 912 db2[3] = pModal->db2_3; 913 db2[4] = pModal->db2_4; 914 } else if (pModal->version == 1) { 915 ob[0] = pModal->ob_0; 916 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1; 917 db1[0] = pModal->db1_0; 918 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1; 919 db2[0] = pModal->db2_0; 920 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1; 921 } else { 922 int i; 923 924 for (i = 0; i < 5; i++) { 925 ob[i] = pModal->ob_0; 926 db1[i] = pModal->db1_0; 927 db2[i] = pModal->db1_0; 928 } 929 } 930 931 if (AR_SREV_9271(ah)) { 932 ath9k_hw_analog_shift_rmw(ah, 933 AR9285_AN_RF2G3, 934 AR9271_AN_RF2G3_OB_cck, 935 AR9271_AN_RF2G3_OB_cck_S, 936 ob[0]); 937 ath9k_hw_analog_shift_rmw(ah, 938 AR9285_AN_RF2G3, 939 AR9271_AN_RF2G3_OB_psk, 940 AR9271_AN_RF2G3_OB_psk_S, 941 ob[1]); 942 ath9k_hw_analog_shift_rmw(ah, 943 AR9285_AN_RF2G3, 944 AR9271_AN_RF2G3_OB_qam, 945 AR9271_AN_RF2G3_OB_qam_S, 946 ob[2]); 947 ath9k_hw_analog_shift_rmw(ah, 948 AR9285_AN_RF2G3, 949 AR9271_AN_RF2G3_DB_1, 950 AR9271_AN_RF2G3_DB_1_S, 951 db1[0]); 952 ath9k_hw_analog_shift_rmw(ah, 953 AR9285_AN_RF2G4, 954 AR9271_AN_RF2G4_DB_2, 955 AR9271_AN_RF2G4_DB_2_S, 956 db2[0]); 957 } else { 958 ath9k_hw_analog_shift_rmw(ah, 959 AR9285_AN_RF2G3, 960 AR9285_AN_RF2G3_OB_0, 961 AR9285_AN_RF2G3_OB_0_S, 962 ob[0]); 963 ath9k_hw_analog_shift_rmw(ah, 964 AR9285_AN_RF2G3, 965 AR9285_AN_RF2G3_OB_1, 966 AR9285_AN_RF2G3_OB_1_S, 967 ob[1]); 968 ath9k_hw_analog_shift_rmw(ah, 969 AR9285_AN_RF2G3, 970 AR9285_AN_RF2G3_OB_2, 971 AR9285_AN_RF2G3_OB_2_S, 972 ob[2]); 973 ath9k_hw_analog_shift_rmw(ah, 974 AR9285_AN_RF2G3, 975 AR9285_AN_RF2G3_OB_3, 976 AR9285_AN_RF2G3_OB_3_S, 977 ob[3]); 978 ath9k_hw_analog_shift_rmw(ah, 979 AR9285_AN_RF2G3, 980 AR9285_AN_RF2G3_OB_4, 981 AR9285_AN_RF2G3_OB_4_S, 982 ob[4]); 983 984 ath9k_hw_analog_shift_rmw(ah, 985 AR9285_AN_RF2G3, 986 AR9285_AN_RF2G3_DB1_0, 987 AR9285_AN_RF2G3_DB1_0_S, 988 db1[0]); 989 ath9k_hw_analog_shift_rmw(ah, 990 AR9285_AN_RF2G3, 991 AR9285_AN_RF2G3_DB1_1, 992 AR9285_AN_RF2G3_DB1_1_S, 993 db1[1]); 994 ath9k_hw_analog_shift_rmw(ah, 995 AR9285_AN_RF2G3, 996 AR9285_AN_RF2G3_DB1_2, 997 AR9285_AN_RF2G3_DB1_2_S, 998 db1[2]); 999 ath9k_hw_analog_shift_rmw(ah, 1000 AR9285_AN_RF2G4, 1001 AR9285_AN_RF2G4_DB1_3, 1002 AR9285_AN_RF2G4_DB1_3_S, 1003 db1[3]); 1004 ath9k_hw_analog_shift_rmw(ah, 1005 AR9285_AN_RF2G4, 1006 AR9285_AN_RF2G4_DB1_4, 1007 AR9285_AN_RF2G4_DB1_4_S, db1[4]); 1008 1009 ath9k_hw_analog_shift_rmw(ah, 1010 AR9285_AN_RF2G4, 1011 AR9285_AN_RF2G4_DB2_0, 1012 AR9285_AN_RF2G4_DB2_0_S, 1013 db2[0]); 1014 ath9k_hw_analog_shift_rmw(ah, 1015 AR9285_AN_RF2G4, 1016 AR9285_AN_RF2G4_DB2_1, 1017 AR9285_AN_RF2G4_DB2_1_S, 1018 db2[1]); 1019 ath9k_hw_analog_shift_rmw(ah, 1020 AR9285_AN_RF2G4, 1021 AR9285_AN_RF2G4_DB2_2, 1022 AR9285_AN_RF2G4_DB2_2_S, 1023 db2[2]); 1024 ath9k_hw_analog_shift_rmw(ah, 1025 AR9285_AN_RF2G4, 1026 AR9285_AN_RF2G4_DB2_3, 1027 AR9285_AN_RF2G4_DB2_3_S, 1028 db2[3]); 1029 ath9k_hw_analog_shift_rmw(ah, 1030 AR9285_AN_RF2G4, 1031 AR9285_AN_RF2G4_DB2_4, 1032 AR9285_AN_RF2G4_DB2_4_S, 1033 db2[4]); 1034 } 1035 1036 1037 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, 1038 pModal->switchSettling); 1039 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, 1040 pModal->adcDesiredSize); 1041 1042 REG_WRITE(ah, AR_PHY_RF_CTL4, 1043 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) | 1044 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) | 1045 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) | 1046 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); 1047 1048 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, 1049 pModal->txEndToRxOn); 1050 1051 if (AR_SREV_9271_10(ah)) 1052 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, 1053 pModal->txEndToRxOn); 1054 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, 1055 pModal->thresh62); 1056 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, 1057 pModal->thresh62); 1058 1059 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= 1060 AR5416_EEP_MINOR_VER_2) { 1061 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START, 1062 pModal->txFrameToDataStart); 1063 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON, 1064 pModal->txFrameToPaOn); 1065 } 1066 1067 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= 1068 AR5416_EEP_MINOR_VER_3) { 1069 if (IS_CHAN_HT40(chan)) 1070 REG_RMW_FIELD(ah, AR_PHY_SETTLING, 1071 AR_PHY_SETTLING_SWITCH, 1072 pModal->swSettleHt40); 1073 } 1074 1075 bb_desired_scale = (pModal->bb_scale_smrt_antenna & 1076 EEP_4K_BB_DESIRED_SCALE_MASK); 1077 if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) { 1078 u32 pwrctrl, mask, clr; 1079 1080 mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25); 1081 pwrctrl = mask * bb_desired_scale; 1082 clr = mask * 0x1f; 1083 REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr); 1084 REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr); 1085 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr); 1086 1087 mask = BIT(0)|BIT(5)|BIT(15); 1088 pwrctrl = mask * bb_desired_scale; 1089 clr = mask * 0x1f; 1090 REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr); 1091 1092 mask = BIT(0)|BIT(5); 1093 pwrctrl = mask * bb_desired_scale; 1094 clr = mask * 0x1f; 1095 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr); 1096 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr); 1097 } 1098 } 1099 1100 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz) 1101 { 1102 return ah->eeprom.map4k.modalHeader.spurChans[i].spurChan; 1103 } 1104 1105 const struct eeprom_ops eep_4k_ops = { 1106 .check_eeprom = ath9k_hw_4k_check_eeprom, 1107 .get_eeprom = ath9k_hw_4k_get_eeprom, 1108 .fill_eeprom = ath9k_hw_4k_fill_eeprom, 1109 .dump_eeprom = ath9k_hw_4k_dump_eeprom, 1110 .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver, 1111 .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev, 1112 .set_board_values = ath9k_hw_4k_set_board_values, 1113 .set_txpower = ath9k_hw_4k_set_txpower, 1114 .get_spur_channel = ath9k_hw_4k_get_spur_channel 1115 }; 1116