1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20 
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
22 {
23 	return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
24 }
25 
26 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
27 {
28 	return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
29 }
30 
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32 
33 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
34 {
35 	struct ath_common *common = ath9k_hw_common(ah);
36 	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
37 	int addr, eep_start_loc = 64;
38 
39 	for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
40 		if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
41 			ath_dbg(common, ATH_DBG_EEPROM,
42 				"Unable to read eeprom region\n");
43 			return false;
44 		}
45 		eep_data++;
46 	}
47 
48 	return true;
49 }
50 
51 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
52 {
53 	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
54 
55 	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
56 
57 	return true;
58 }
59 
60 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
61 {
62 	struct ath_common *common = ath9k_hw_common(ah);
63 
64 	if (!ath9k_hw_use_flash(ah)) {
65 		ath_dbg(common, ATH_DBG_EEPROM,
66 			"Reading from EEPROM, not flash\n");
67 	}
68 
69 	if (common->bus_ops->ath_bus_type == ATH_USB)
70 		return __ath9k_hw_usb_4k_fill_eeprom(ah);
71 	else
72 		return __ath9k_hw_4k_fill_eeprom(ah);
73 }
74 
75 #undef SIZE_EEPROM_4K
76 
77 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
78 {
79 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
80 	struct ath_common *common = ath9k_hw_common(ah);
81 	struct ar5416_eeprom_4k *eep =
82 		(struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
83 	u16 *eepdata, temp, magic, magic2;
84 	u32 sum = 0, el;
85 	bool need_swap = false;
86 	int i, addr;
87 
88 
89 	if (!ath9k_hw_use_flash(ah)) {
90 		if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
91 					 &magic)) {
92 			ath_err(common, "Reading Magic # failed\n");
93 			return false;
94 		}
95 
96 		ath_dbg(common, ATH_DBG_EEPROM,
97 			"Read Magic = 0x%04X\n", magic);
98 
99 		if (magic != AR5416_EEPROM_MAGIC) {
100 			magic2 = swab16(magic);
101 
102 			if (magic2 == AR5416_EEPROM_MAGIC) {
103 				need_swap = true;
104 				eepdata = (u16 *) (&ah->eeprom);
105 
106 				for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
107 					temp = swab16(*eepdata);
108 					*eepdata = temp;
109 					eepdata++;
110 				}
111 			} else {
112 				ath_err(common,
113 					"Invalid EEPROM Magic. Endianness mismatch.\n");
114 				return -EINVAL;
115 			}
116 		}
117 	}
118 
119 	ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
120 		need_swap ? "True" : "False");
121 
122 	if (need_swap)
123 		el = swab16(ah->eeprom.map4k.baseEepHeader.length);
124 	else
125 		el = ah->eeprom.map4k.baseEepHeader.length;
126 
127 	if (el > sizeof(struct ar5416_eeprom_4k))
128 		el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
129 	else
130 		el = el / sizeof(u16);
131 
132 	eepdata = (u16 *)(&ah->eeprom);
133 
134 	for (i = 0; i < el; i++)
135 		sum ^= *eepdata++;
136 
137 	if (need_swap) {
138 		u32 integer;
139 		u16 word;
140 
141 		ath_dbg(common, ATH_DBG_EEPROM,
142 			"EEPROM Endianness is not native.. Changing\n");
143 
144 		word = swab16(eep->baseEepHeader.length);
145 		eep->baseEepHeader.length = word;
146 
147 		word = swab16(eep->baseEepHeader.checksum);
148 		eep->baseEepHeader.checksum = word;
149 
150 		word = swab16(eep->baseEepHeader.version);
151 		eep->baseEepHeader.version = word;
152 
153 		word = swab16(eep->baseEepHeader.regDmn[0]);
154 		eep->baseEepHeader.regDmn[0] = word;
155 
156 		word = swab16(eep->baseEepHeader.regDmn[1]);
157 		eep->baseEepHeader.regDmn[1] = word;
158 
159 		word = swab16(eep->baseEepHeader.rfSilent);
160 		eep->baseEepHeader.rfSilent = word;
161 
162 		word = swab16(eep->baseEepHeader.blueToothOptions);
163 		eep->baseEepHeader.blueToothOptions = word;
164 
165 		word = swab16(eep->baseEepHeader.deviceCap);
166 		eep->baseEepHeader.deviceCap = word;
167 
168 		integer = swab32(eep->modalHeader.antCtrlCommon);
169 		eep->modalHeader.antCtrlCommon = integer;
170 
171 		for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
172 			integer = swab32(eep->modalHeader.antCtrlChain[i]);
173 			eep->modalHeader.antCtrlChain[i] = integer;
174 		}
175 
176 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
177 			word = swab16(eep->modalHeader.spurChans[i].spurChan);
178 			eep->modalHeader.spurChans[i].spurChan = word;
179 		}
180 	}
181 
182 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
183 	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
184 		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
185 			sum, ah->eep_ops->get_eeprom_ver(ah));
186 		return -EINVAL;
187 	}
188 
189 	return 0;
190 #undef EEPROM_4K_SIZE
191 }
192 
193 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
194 				  enum eeprom_param param)
195 {
196 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
197 	struct modal_eep_4k_header *pModal = &eep->modalHeader;
198 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
199 	u16 ver_minor;
200 
201 	ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
202 
203 	switch (param) {
204 	case EEP_NFTHRESH_2:
205 		return pModal->noiseFloorThreshCh[0];
206 	case EEP_MAC_LSW:
207 		return get_unaligned_be16(pBase->macAddr);
208 	case EEP_MAC_MID:
209 		return get_unaligned_be16(pBase->macAddr + 2);
210 	case EEP_MAC_MSW:
211 		return get_unaligned_be16(pBase->macAddr + 4);
212 	case EEP_REG_0:
213 		return pBase->regDmn[0];
214 	case EEP_REG_1:
215 		return pBase->regDmn[1];
216 	case EEP_OP_CAP:
217 		return pBase->deviceCap;
218 	case EEP_OP_MODE:
219 		return pBase->opCapFlags;
220 	case EEP_RF_SILENT:
221 		return pBase->rfSilent;
222 	case EEP_OB_2:
223 		return pModal->ob_0;
224 	case EEP_DB_2:
225 		return pModal->db1_1;
226 	case EEP_MINOR_REV:
227 		return ver_minor;
228 	case EEP_TX_MASK:
229 		return pBase->txMask;
230 	case EEP_RX_MASK:
231 		return pBase->rxMask;
232 	case EEP_FRAC_N_5G:
233 		return 0;
234 	case EEP_PWR_TABLE_OFFSET:
235 		return AR5416_PWR_TABLE_OFFSET_DB;
236 	case EEP_MODAL_VER:
237 		return pModal->version;
238 	case EEP_ANT_DIV_CTL1:
239 		return pModal->antdiv_ctl1;
240 	case EEP_TXGAIN_TYPE:
241 		if (ver_minor >= AR5416_EEP_MINOR_VER_19)
242 			return pBase->txGainType;
243 		else
244 			return AR5416_EEP_TXGAIN_ORIGINAL;
245 	default:
246 		return 0;
247 	}
248 }
249 
250 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
251 				  struct ath9k_channel *chan,
252 				  int16_t *pTxPowerIndexOffset)
253 {
254 	struct ath_common *common = ath9k_hw_common(ah);
255 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
256 	struct cal_data_per_freq_4k *pRawDataset;
257 	u8 *pCalBChans = NULL;
258 	u16 pdGainOverlap_t2;
259 	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
260 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
261 	u16 numPiers, i, j;
262 	u16 numXpdGain, xpdMask;
263 	u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
264 	u32 reg32, regOffset, regChainOffset;
265 
266 	xpdMask = pEepData->modalHeader.xpdGain;
267 
268 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
269 	    AR5416_EEP_MINOR_VER_2) {
270 		pdGainOverlap_t2 =
271 			pEepData->modalHeader.pdGainOverlap;
272 	} else {
273 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
274 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
275 	}
276 
277 	pCalBChans = pEepData->calFreqPier2G;
278 	numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
279 
280 	numXpdGain = 0;
281 
282 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
283 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
284 			if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
285 				break;
286 			xpdGainValues[numXpdGain] =
287 				(u16)(AR5416_PD_GAINS_IN_MASK - i);
288 			numXpdGain++;
289 		}
290 	}
291 
292 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
293 		      (numXpdGain - 1) & 0x3);
294 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
295 		      xpdGainValues[0]);
296 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
297 		      xpdGainValues[1]);
298 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
299 
300 	for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
301 		if (AR_SREV_5416_20_OR_LATER(ah) &&
302 		    (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
303 		    (i != 0)) {
304 			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
305 		} else
306 			regChainOffset = i * 0x1000;
307 
308 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
309 			pRawDataset = pEepData->calPierData2G[i];
310 
311 			ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
312 					    pRawDataset, pCalBChans,
313 					    numPiers, pdGainOverlap_t2,
314 					    gainBoundaries,
315 					    pdadcValues, numXpdGain);
316 
317 			ENABLE_REGWRITE_BUFFER(ah);
318 
319 			if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
320 				REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
321 					  SM(pdGainOverlap_t2,
322 					     AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
323 					  | SM(gainBoundaries[0],
324 					       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
325 					  | SM(gainBoundaries[1],
326 					       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
327 					  | SM(gainBoundaries[2],
328 					       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
329 					  | SM(gainBoundaries[3],
330 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
331 			}
332 
333 			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
334 			for (j = 0; j < 32; j++) {
335 				reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
336 				REG_WRITE(ah, regOffset, reg32);
337 
338 				ath_dbg(common, ATH_DBG_EEPROM,
339 					"PDADC (%d,%4x): %4.4x %8.8x\n",
340 					i, regChainOffset, regOffset,
341 					reg32);
342 				ath_dbg(common, ATH_DBG_EEPROM,
343 					"PDADC: Chain %d | "
344 					"PDADC %3d Value %3d | "
345 					"PDADC %3d Value %3d | "
346 					"PDADC %3d Value %3d | "
347 					"PDADC %3d Value %3d |\n",
348 					i, 4 * j, pdadcValues[4 * j],
349 					4 * j + 1, pdadcValues[4 * j + 1],
350 					4 * j + 2, pdadcValues[4 * j + 2],
351 					4 * j + 3, pdadcValues[4 * j + 3]);
352 
353 				regOffset += 4;
354 			}
355 
356 			REGWRITE_BUFFER_FLUSH(ah);
357 		}
358 	}
359 
360 	*pTxPowerIndexOffset = 0;
361 }
362 
363 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
364 						 struct ath9k_channel *chan,
365 						 int16_t *ratesArray,
366 						 u16 cfgCtl,
367 						 u16 AntennaReduction,
368 						 u16 twiceMaxRegulatoryPower,
369 						 u16 powerLimit)
370 {
371 #define CMP_TEST_GRP \
372 	(((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) ==	\
373 	 pEepData->ctlIndex[i])						\
374 	|| (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
375 	    ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
376 
377 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
378 	int i;
379 	int16_t twiceLargestAntenna;
380 	u16 twiceMinEdgePower;
381 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
382 	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
383 	u16 numCtlModes;
384 	const u16 *pCtlMode;
385 	u16 ctlMode, freq;
386 	struct chan_centers centers;
387 	struct cal_ctl_data_4k *rep;
388 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
389 	static const u16 tpScaleReductionTable[5] =
390 		{ 0, 3, 6, 9, MAX_RATE_POWER };
391 	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
392 		0, { 0, 0, 0, 0}
393 	};
394 	struct cal_target_power_leg targetPowerOfdmExt = {
395 		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
396 		0, { 0, 0, 0, 0 }
397 	};
398 	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
399 		0, {0, 0, 0, 0}
400 	};
401 	static const u16 ctlModesFor11g[] = {
402 		CTL_11B, CTL_11G, CTL_2GHT20,
403 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
404 	};
405 
406 	ath9k_hw_get_channel_centers(ah, chan, &centers);
407 
408 	twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
409 	twiceLargestAntenna = (int16_t)min(AntennaReduction -
410 					   twiceLargestAntenna, 0);
411 
412 	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
413 	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
414 		maxRegAllowedPower -=
415 			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
416 	}
417 
418 	scaledPower = min(powerLimit, maxRegAllowedPower);
419 	scaledPower = max((u16)0, scaledPower);
420 
421 	numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
422 	pCtlMode = ctlModesFor11g;
423 
424 	ath9k_hw_get_legacy_target_powers(ah, chan,
425 			pEepData->calTargetPowerCck,
426 			AR5416_NUM_2G_CCK_TARGET_POWERS,
427 			&targetPowerCck, 4, false);
428 	ath9k_hw_get_legacy_target_powers(ah, chan,
429 			pEepData->calTargetPower2G,
430 			AR5416_NUM_2G_20_TARGET_POWERS,
431 			&targetPowerOfdm, 4, false);
432 	ath9k_hw_get_target_powers(ah, chan,
433 			pEepData->calTargetPower2GHT20,
434 			AR5416_NUM_2G_20_TARGET_POWERS,
435 			&targetPowerHt20, 8, false);
436 
437 	if (IS_CHAN_HT40(chan)) {
438 		numCtlModes = ARRAY_SIZE(ctlModesFor11g);
439 		ath9k_hw_get_target_powers(ah, chan,
440 				pEepData->calTargetPower2GHT40,
441 				AR5416_NUM_2G_40_TARGET_POWERS,
442 				&targetPowerHt40, 8, true);
443 		ath9k_hw_get_legacy_target_powers(ah, chan,
444 				pEepData->calTargetPowerCck,
445 				AR5416_NUM_2G_CCK_TARGET_POWERS,
446 				&targetPowerCckExt, 4, true);
447 		ath9k_hw_get_legacy_target_powers(ah, chan,
448 				pEepData->calTargetPower2G,
449 				AR5416_NUM_2G_20_TARGET_POWERS,
450 				&targetPowerOfdmExt, 4, true);
451 	}
452 
453 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
454 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
455 			(pCtlMode[ctlMode] == CTL_2GHT40);
456 
457 		if (isHt40CtlMode)
458 			freq = centers.synth_center;
459 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
460 			freq = centers.ext_center;
461 		else
462 			freq = centers.ctl_center;
463 
464 		if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
465 		    ah->eep_ops->get_eeprom_rev(ah) <= 2)
466 			twiceMaxEdgePower = MAX_RATE_POWER;
467 
468 		for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
469 			     pEepData->ctlIndex[i]; i++) {
470 
471 			if (CMP_TEST_GRP) {
472 				rep = &(pEepData->ctlData[i]);
473 
474 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(
475 					freq,
476 					rep->ctlEdges[
477 					ar5416_get_ntxchains(ah->txchainmask) - 1],
478 					IS_CHAN_2GHZ(chan),
479 					AR5416_EEP4K_NUM_BAND_EDGES);
480 
481 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
482 					twiceMaxEdgePower =
483 						min(twiceMaxEdgePower,
484 						    twiceMinEdgePower);
485 				} else {
486 					twiceMaxEdgePower = twiceMinEdgePower;
487 					break;
488 				}
489 			}
490 		}
491 
492 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
493 
494 		switch (pCtlMode[ctlMode]) {
495 		case CTL_11B:
496 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
497 				targetPowerCck.tPow2x[i] =
498 					min((u16)targetPowerCck.tPow2x[i],
499 					    minCtlPower);
500 			}
501 			break;
502 		case CTL_11G:
503 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
504 				targetPowerOfdm.tPow2x[i] =
505 					min((u16)targetPowerOfdm.tPow2x[i],
506 					    minCtlPower);
507 			}
508 			break;
509 		case CTL_2GHT20:
510 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
511 				targetPowerHt20.tPow2x[i] =
512 					min((u16)targetPowerHt20.tPow2x[i],
513 					    minCtlPower);
514 			}
515 			break;
516 		case CTL_11B_EXT:
517 			targetPowerCckExt.tPow2x[0] =
518 				min((u16)targetPowerCckExt.tPow2x[0],
519 				    minCtlPower);
520 			break;
521 		case CTL_11G_EXT:
522 			targetPowerOfdmExt.tPow2x[0] =
523 				min((u16)targetPowerOfdmExt.tPow2x[0],
524 				    minCtlPower);
525 			break;
526 		case CTL_2GHT40:
527 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
528 				targetPowerHt40.tPow2x[i] =
529 					min((u16)targetPowerHt40.tPow2x[i],
530 					    minCtlPower);
531 			}
532 			break;
533 		default:
534 			break;
535 		}
536 	}
537 
538 	ratesArray[rate6mb] =
539 	ratesArray[rate9mb] =
540 	ratesArray[rate12mb] =
541 	ratesArray[rate18mb] =
542 	ratesArray[rate24mb] =
543 	targetPowerOfdm.tPow2x[0];
544 
545 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
546 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
547 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
548 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
549 
550 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
551 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
552 
553 	ratesArray[rate1l] = targetPowerCck.tPow2x[0];
554 	ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
555 	ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
556 	ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
557 
558 	if (IS_CHAN_HT40(chan)) {
559 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
560 			ratesArray[rateHt40_0 + i] =
561 				targetPowerHt40.tPow2x[i];
562 		}
563 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
564 		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
565 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
566 		ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
567 	}
568 
569 #undef CMP_TEST_GRP
570 }
571 
572 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
573 				    struct ath9k_channel *chan,
574 				    u16 cfgCtl,
575 				    u8 twiceAntennaReduction,
576 				    u8 twiceMaxRegulatoryPower,
577 				    u8 powerLimit, bool test)
578 {
579 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
580 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
581 	struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
582 	int16_t ratesArray[Ar5416RateSize];
583 	int16_t txPowerIndexOffset = 0;
584 	u8 ht40PowerIncForPdadc = 2;
585 	int i;
586 
587 	memset(ratesArray, 0, sizeof(ratesArray));
588 
589 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
590 	    AR5416_EEP_MINOR_VER_2) {
591 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
592 	}
593 
594 	ath9k_hw_set_4k_power_per_rate_table(ah, chan,
595 					     &ratesArray[0], cfgCtl,
596 					     twiceAntennaReduction,
597 					     twiceMaxRegulatoryPower,
598 					     powerLimit);
599 
600 	ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
601 
602 	regulatory->max_power_level = 0;
603 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
604 		ratesArray[i] =	(int16_t)(txPowerIndexOffset + ratesArray[i]);
605 		if (ratesArray[i] > MAX_RATE_POWER)
606 			ratesArray[i] = MAX_RATE_POWER;
607 
608 		if (ratesArray[i] > regulatory->max_power_level)
609 			regulatory->max_power_level = ratesArray[i];
610 	}
611 
612 	if (test)
613 	    return;
614 
615 	/* Update regulatory */
616 	i = rate6mb;
617 	if (IS_CHAN_HT40(chan))
618 		i = rateHt40_0;
619 	else if (IS_CHAN_HT20(chan))
620 		i = rateHt20_0;
621 
622 	regulatory->max_power_level = ratesArray[i];
623 
624 	if (AR_SREV_9280_20_OR_LATER(ah)) {
625 		for (i = 0; i < Ar5416RateSize; i++)
626 			ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
627 	}
628 
629 	ENABLE_REGWRITE_BUFFER(ah);
630 
631 	/* OFDM power per rate */
632 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
633 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
634 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
635 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
636 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
637 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
638 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
639 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
640 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
641 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
642 
643 	/* CCK power per rate */
644 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
645 		  ATH9K_POW_SM(ratesArray[rate2s], 24)
646 		  | ATH9K_POW_SM(ratesArray[rate2l], 16)
647 		  | ATH9K_POW_SM(ratesArray[rateXr], 8)
648 		  | ATH9K_POW_SM(ratesArray[rate1l], 0));
649 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
650 		  ATH9K_POW_SM(ratesArray[rate11s], 24)
651 		  | ATH9K_POW_SM(ratesArray[rate11l], 16)
652 		  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
653 		  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
654 
655 	/* HT20 power per rate */
656 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
657 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
658 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
659 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
660 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
661 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
662 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
663 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
664 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
665 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
666 
667 	/* HT40 power per rate */
668 	if (IS_CHAN_HT40(chan)) {
669 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
670 			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
671 				       ht40PowerIncForPdadc, 24)
672 			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
673 					 ht40PowerIncForPdadc, 16)
674 			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
675 					 ht40PowerIncForPdadc, 8)
676 			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
677 					 ht40PowerIncForPdadc, 0));
678 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
679 			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
680 				       ht40PowerIncForPdadc, 24)
681 			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
682 					 ht40PowerIncForPdadc, 16)
683 			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
684 					 ht40PowerIncForPdadc, 8)
685 			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
686 					 ht40PowerIncForPdadc, 0));
687 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
688 			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
689 			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
690 			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
691 			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
692 	}
693 
694 	REGWRITE_BUFFER_FLUSH(ah);
695 }
696 
697 static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
698 				  struct ath9k_channel *chan)
699 {
700 	struct modal_eep_4k_header *pModal;
701 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
702 	u8 biaslevel;
703 
704 	if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
705 		return;
706 
707 	if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
708 		return;
709 
710 	pModal = &eep->modalHeader;
711 
712 	if (pModal->xpaBiasLvl != 0xff) {
713 		biaslevel = pModal->xpaBiasLvl;
714 		INI_RA(&ah->iniAddac, 7, 1) =
715 		  (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
716 	}
717 }
718 
719 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
720 				 struct modal_eep_4k_header *pModal,
721 				 struct ar5416_eeprom_4k *eep,
722 				 u8 txRxAttenLocal)
723 {
724 	REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
725 		  pModal->antCtrlChain[0]);
726 
727 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
728 		  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
729 		   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
730 		     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
731 		  SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
732 		  SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
733 
734 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
735 	    AR5416_EEP_MINOR_VER_3) {
736 		txRxAttenLocal = pModal->txRxAttenCh[0];
737 
738 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
739 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
740 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
741 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
742 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
743 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
744 			      pModal->xatten2Margin[0]);
745 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
746 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
747 
748 		/* Set the block 1 value to block 0 value */
749 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
750 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
751 			      pModal->bswMargin[0]);
752 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
753 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
754 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
755 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
756 			      pModal->xatten2Margin[0]);
757 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
758 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
759 			      pModal->xatten2Db[0]);
760 	}
761 
762 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
763 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
764 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
765 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
766 
767 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
768 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
769 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
770 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
771 }
772 
773 /*
774  * Read EEPROM header info and program the device for correct operation
775  * given the channel value.
776  */
777 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
778 					 struct ath9k_channel *chan)
779 {
780 	struct modal_eep_4k_header *pModal;
781 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
782 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
783 	u8 txRxAttenLocal;
784 	u8 ob[5], db1[5], db2[5];
785 	u8 ant_div_control1, ant_div_control2;
786 	u32 regVal;
787 
788 	pModal = &eep->modalHeader;
789 	txRxAttenLocal = 23;
790 
791 	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
792 
793 	/* Single chain for 4K EEPROM*/
794 	ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
795 
796 	/* Initialize Ant Diversity settings from EEPROM */
797 	if (pModal->version >= 3) {
798 		ant_div_control1 = pModal->antdiv_ctl1;
799 		ant_div_control2 = pModal->antdiv_ctl2;
800 
801 		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
802 		regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
803 
804 		regVal |= SM(ant_div_control1,
805 			     AR_PHY_9285_ANT_DIV_CTL);
806 		regVal |= SM(ant_div_control2,
807 			     AR_PHY_9285_ANT_DIV_ALT_LNACONF);
808 		regVal |= SM((ant_div_control2 >> 2),
809 			     AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
810 		regVal |= SM((ant_div_control1 >> 1),
811 			     AR_PHY_9285_ANT_DIV_ALT_GAINTB);
812 		regVal |= SM((ant_div_control1 >> 2),
813 			     AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
814 
815 
816 		REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
817 		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
818 		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
819 		regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
820 		regVal |= SM((ant_div_control1 >> 3),
821 			     AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
822 
823 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
824 		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
825 	}
826 
827 	if (pModal->version >= 2) {
828 		ob[0] = pModal->ob_0;
829 		ob[1] = pModal->ob_1;
830 		ob[2] = pModal->ob_2;
831 		ob[3] = pModal->ob_3;
832 		ob[4] = pModal->ob_4;
833 
834 		db1[0] = pModal->db1_0;
835 		db1[1] = pModal->db1_1;
836 		db1[2] = pModal->db1_2;
837 		db1[3] = pModal->db1_3;
838 		db1[4] = pModal->db1_4;
839 
840 		db2[0] = pModal->db2_0;
841 		db2[1] = pModal->db2_1;
842 		db2[2] = pModal->db2_2;
843 		db2[3] = pModal->db2_3;
844 		db2[4] = pModal->db2_4;
845 	} else if (pModal->version == 1) {
846 		ob[0] = pModal->ob_0;
847 		ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
848 		db1[0] = pModal->db1_0;
849 		db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
850 		db2[0] = pModal->db2_0;
851 		db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
852 	} else {
853 		int i;
854 
855 		for (i = 0; i < 5; i++) {
856 			ob[i] = pModal->ob_0;
857 			db1[i] = pModal->db1_0;
858 			db2[i] = pModal->db1_0;
859 		}
860 	}
861 
862 	if (AR_SREV_9271(ah)) {
863 		ath9k_hw_analog_shift_rmw(ah,
864 					  AR9285_AN_RF2G3,
865 					  AR9271_AN_RF2G3_OB_cck,
866 					  AR9271_AN_RF2G3_OB_cck_S,
867 					  ob[0]);
868 		ath9k_hw_analog_shift_rmw(ah,
869 					  AR9285_AN_RF2G3,
870 					  AR9271_AN_RF2G3_OB_psk,
871 					  AR9271_AN_RF2G3_OB_psk_S,
872 					  ob[1]);
873 		ath9k_hw_analog_shift_rmw(ah,
874 					  AR9285_AN_RF2G3,
875 					  AR9271_AN_RF2G3_OB_qam,
876 					  AR9271_AN_RF2G3_OB_qam_S,
877 					  ob[2]);
878 		ath9k_hw_analog_shift_rmw(ah,
879 					  AR9285_AN_RF2G3,
880 					  AR9271_AN_RF2G3_DB_1,
881 					  AR9271_AN_RF2G3_DB_1_S,
882 					  db1[0]);
883 		ath9k_hw_analog_shift_rmw(ah,
884 					  AR9285_AN_RF2G4,
885 					  AR9271_AN_RF2G4_DB_2,
886 					  AR9271_AN_RF2G4_DB_2_S,
887 					  db2[0]);
888 	} else {
889 		ath9k_hw_analog_shift_rmw(ah,
890 					  AR9285_AN_RF2G3,
891 					  AR9285_AN_RF2G3_OB_0,
892 					  AR9285_AN_RF2G3_OB_0_S,
893 					  ob[0]);
894 		ath9k_hw_analog_shift_rmw(ah,
895 					  AR9285_AN_RF2G3,
896 					  AR9285_AN_RF2G3_OB_1,
897 					  AR9285_AN_RF2G3_OB_1_S,
898 					  ob[1]);
899 		ath9k_hw_analog_shift_rmw(ah,
900 					  AR9285_AN_RF2G3,
901 					  AR9285_AN_RF2G3_OB_2,
902 					  AR9285_AN_RF2G3_OB_2_S,
903 					  ob[2]);
904 		ath9k_hw_analog_shift_rmw(ah,
905 					  AR9285_AN_RF2G3,
906 					  AR9285_AN_RF2G3_OB_3,
907 					  AR9285_AN_RF2G3_OB_3_S,
908 					  ob[3]);
909 		ath9k_hw_analog_shift_rmw(ah,
910 					  AR9285_AN_RF2G3,
911 					  AR9285_AN_RF2G3_OB_4,
912 					  AR9285_AN_RF2G3_OB_4_S,
913 					  ob[4]);
914 
915 		ath9k_hw_analog_shift_rmw(ah,
916 					  AR9285_AN_RF2G3,
917 					  AR9285_AN_RF2G3_DB1_0,
918 					  AR9285_AN_RF2G3_DB1_0_S,
919 					  db1[0]);
920 		ath9k_hw_analog_shift_rmw(ah,
921 					  AR9285_AN_RF2G3,
922 					  AR9285_AN_RF2G3_DB1_1,
923 					  AR9285_AN_RF2G3_DB1_1_S,
924 					  db1[1]);
925 		ath9k_hw_analog_shift_rmw(ah,
926 					  AR9285_AN_RF2G3,
927 					  AR9285_AN_RF2G3_DB1_2,
928 					  AR9285_AN_RF2G3_DB1_2_S,
929 					  db1[2]);
930 		ath9k_hw_analog_shift_rmw(ah,
931 					  AR9285_AN_RF2G4,
932 					  AR9285_AN_RF2G4_DB1_3,
933 					  AR9285_AN_RF2G4_DB1_3_S,
934 					  db1[3]);
935 		ath9k_hw_analog_shift_rmw(ah,
936 					  AR9285_AN_RF2G4,
937 					  AR9285_AN_RF2G4_DB1_4,
938 					  AR9285_AN_RF2G4_DB1_4_S, db1[4]);
939 
940 		ath9k_hw_analog_shift_rmw(ah,
941 					  AR9285_AN_RF2G4,
942 					  AR9285_AN_RF2G4_DB2_0,
943 					  AR9285_AN_RF2G4_DB2_0_S,
944 					  db2[0]);
945 		ath9k_hw_analog_shift_rmw(ah,
946 					  AR9285_AN_RF2G4,
947 					  AR9285_AN_RF2G4_DB2_1,
948 					  AR9285_AN_RF2G4_DB2_1_S,
949 					  db2[1]);
950 		ath9k_hw_analog_shift_rmw(ah,
951 					  AR9285_AN_RF2G4,
952 					  AR9285_AN_RF2G4_DB2_2,
953 					  AR9285_AN_RF2G4_DB2_2_S,
954 					  db2[2]);
955 		ath9k_hw_analog_shift_rmw(ah,
956 					  AR9285_AN_RF2G4,
957 					  AR9285_AN_RF2G4_DB2_3,
958 					  AR9285_AN_RF2G4_DB2_3_S,
959 					  db2[3]);
960 		ath9k_hw_analog_shift_rmw(ah,
961 					  AR9285_AN_RF2G4,
962 					  AR9285_AN_RF2G4_DB2_4,
963 					  AR9285_AN_RF2G4_DB2_4_S,
964 					  db2[4]);
965 	}
966 
967 
968 	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
969 		      pModal->switchSettling);
970 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
971 		      pModal->adcDesiredSize);
972 
973 	REG_WRITE(ah, AR_PHY_RF_CTL4,
974 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
975 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
976 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
977 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
978 
979 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
980 		      pModal->txEndToRxOn);
981 
982 	if (AR_SREV_9271_10(ah))
983 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
984 			      pModal->txEndToRxOn);
985 	REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
986 		      pModal->thresh62);
987 	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
988 		      pModal->thresh62);
989 
990 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
991 						AR5416_EEP_MINOR_VER_2) {
992 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
993 			      pModal->txFrameToDataStart);
994 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
995 			      pModal->txFrameToPaOn);
996 	}
997 
998 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
999 						AR5416_EEP_MINOR_VER_3) {
1000 		if (IS_CHAN_HT40(chan))
1001 			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1002 				      AR_PHY_SETTLING_SWITCH,
1003 				      pModal->swSettleHt40);
1004 	}
1005 	if (AR_SREV_9271(ah) || AR_SREV_9285(ah)) {
1006 		u8 bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1007 				EEP_4K_BB_DESIRED_SCALE_MASK);
1008 		if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1009 			u32 pwrctrl, mask, clr;
1010 
1011 			mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1012 			pwrctrl = mask * bb_desired_scale;
1013 			clr = mask * 0x1f;
1014 			REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1015 			REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1016 			REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1017 
1018 			mask = BIT(0)|BIT(5)|BIT(15);
1019 			pwrctrl = mask * bb_desired_scale;
1020 			clr = mask * 0x1f;
1021 			REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1022 
1023 			mask = BIT(0)|BIT(5);
1024 			pwrctrl = mask * bb_desired_scale;
1025 			clr = mask * 0x1f;
1026 			REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1027 			REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1028 		}
1029 	}
1030 }
1031 
1032 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1033 {
1034 #define EEP_MAP4K_SPURCHAN \
1035 	(ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1036 	struct ath_common *common = ath9k_hw_common(ah);
1037 
1038 	u16 spur_val = AR_NO_SPUR;
1039 
1040 	ath_dbg(common, ATH_DBG_ANI,
1041 		"Getting spur idx:%d is2Ghz:%d val:%x\n",
1042 		i, is2GHz, ah->config.spurchans[i][is2GHz]);
1043 
1044 	switch (ah->config.spurmode) {
1045 	case SPUR_DISABLE:
1046 		break;
1047 	case SPUR_ENABLE_IOCTL:
1048 		spur_val = ah->config.spurchans[i][is2GHz];
1049 		ath_dbg(common, ATH_DBG_ANI,
1050 			"Getting spur val from new loc. %d\n", spur_val);
1051 		break;
1052 	case SPUR_ENABLE_EEPROM:
1053 		spur_val = EEP_MAP4K_SPURCHAN;
1054 		break;
1055 	}
1056 
1057 	return spur_val;
1058 
1059 #undef EEP_MAP4K_SPURCHAN
1060 }
1061 
1062 const struct eeprom_ops eep_4k_ops = {
1063 	.check_eeprom		= ath9k_hw_4k_check_eeprom,
1064 	.get_eeprom		= ath9k_hw_4k_get_eeprom,
1065 	.fill_eeprom		= ath9k_hw_4k_fill_eeprom,
1066 	.get_eeprom_ver		= ath9k_hw_4k_get_eeprom_ver,
1067 	.get_eeprom_rev		= ath9k_hw_4k_get_eeprom_rev,
1068 	.set_board_values	= ath9k_hw_4k_set_board_values,
1069 	.set_addac		= ath9k_hw_4k_set_addac,
1070 	.set_txpower		= ath9k_hw_4k_set_txpower,
1071 	.get_spur_channel	= ath9k_hw_4k_get_spur_channel
1072 };
1073