1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20 
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
22 {
23 	return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
24 }
25 
26 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
27 {
28 	return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
29 }
30 
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32 
33 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
34 {
35 	struct ath_common *common = ath9k_hw_common(ah);
36 	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
37 	int addr, eep_start_loc = 64;
38 
39 	for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
40 		if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
41 			ath_dbg(common, EEPROM,
42 				"Unable to read eeprom region\n");
43 			return false;
44 		}
45 		eep_data++;
46 	}
47 
48 	return true;
49 }
50 
51 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
52 {
53 	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
54 
55 	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
56 
57 	return true;
58 }
59 
60 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
61 {
62 	struct ath_common *common = ath9k_hw_common(ah);
63 
64 	if (!ath9k_hw_use_flash(ah)) {
65 		ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
66 	}
67 
68 	if (common->bus_ops->ath_bus_type == ATH_USB)
69 		return __ath9k_hw_usb_4k_fill_eeprom(ah);
70 	else
71 		return __ath9k_hw_4k_fill_eeprom(ah);
72 }
73 
74 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
75 static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
76 				      struct modal_eep_4k_header *modal_hdr)
77 {
78 	PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
79 	PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
80 	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
81 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
82 	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
83 	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
84 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
85 	PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
86 	PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
87 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
88 	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
89 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
90 	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
91 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
92 	PR_EEP("xpdGain", modal_hdr->xpdGain);
93 	PR_EEP("External PD", modal_hdr->xpd);
94 	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
95 	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
96 	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
97 	PR_EEP("O/D Bias Version", modal_hdr->version);
98 	PR_EEP("CCK OutputBias", modal_hdr->ob_0);
99 	PR_EEP("BPSK OutputBias", modal_hdr->ob_1);
100 	PR_EEP("QPSK OutputBias", modal_hdr->ob_2);
101 	PR_EEP("16QAM OutputBias", modal_hdr->ob_3);
102 	PR_EEP("64QAM OutputBias", modal_hdr->ob_4);
103 	PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0);
104 	PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1);
105 	PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2);
106 	PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3);
107 	PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4);
108 	PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0);
109 	PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1);
110 	PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2);
111 	PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3);
112 	PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4);
113 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
114 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
115 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
116 	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
117 	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
118 	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
119 	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
120 	PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
121 	PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
122 	PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1);
123 	PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2);
124 	PR_EEP("TX Diversity", modal_hdr->tx_diversity);
125 
126 	return len;
127 }
128 
129 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
130 				       u8 *buf, u32 len, u32 size)
131 {
132 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
133 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
134 
135 	if (!dump_base_hdr) {
136 		len += snprintf(buf + len, size - len,
137 				"%20s :\n", "2GHz modal Header");
138 		len = ath9k_dump_4k_modal_eeprom(buf, len, size,
139 						  &eep->modalHeader);
140 		goto out;
141 	}
142 
143 	PR_EEP("Major Version", pBase->version >> 12);
144 	PR_EEP("Minor Version", pBase->version & 0xFFF);
145 	PR_EEP("Checksum", pBase->checksum);
146 	PR_EEP("Length", pBase->length);
147 	PR_EEP("RegDomain1", pBase->regDmn[0]);
148 	PR_EEP("RegDomain2", pBase->regDmn[1]);
149 	PR_EEP("TX Mask", pBase->txMask);
150 	PR_EEP("RX Mask", pBase->rxMask);
151 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
152 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
153 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
154 					AR5416_OPFLAGS_N_2G_HT20));
155 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
156 					AR5416_OPFLAGS_N_2G_HT40));
157 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
158 					AR5416_OPFLAGS_N_5G_HT20));
159 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
160 					AR5416_OPFLAGS_N_5G_HT40));
161 	PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
162 	PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
163 	PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
164 	PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
165 	PR_EEP("TX Gain type", pBase->txGainType);
166 
167 	len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
168 			pBase->macAddr);
169 
170 out:
171 	if (len > size)
172 		len = size;
173 
174 	return len;
175 }
176 #else
177 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
178 				       u8 *buf, u32 len, u32 size)
179 {
180 	return 0;
181 }
182 #endif
183 
184 
185 #undef SIZE_EEPROM_4K
186 
187 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
188 {
189 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
190 	struct ath_common *common = ath9k_hw_common(ah);
191 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
192 	u16 *eepdata, temp, magic, magic2;
193 	u32 sum = 0, el;
194 	bool need_swap = false;
195 	int i, addr;
196 
197 
198 	if (!ath9k_hw_use_flash(ah)) {
199 		if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
200 					 &magic)) {
201 			ath_err(common, "Reading Magic # failed\n");
202 			return false;
203 		}
204 
205 		ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
206 
207 		if (magic != AR5416_EEPROM_MAGIC) {
208 			magic2 = swab16(magic);
209 
210 			if (magic2 == AR5416_EEPROM_MAGIC) {
211 				need_swap = true;
212 				eepdata = (u16 *) (&ah->eeprom);
213 
214 				for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
215 					temp = swab16(*eepdata);
216 					*eepdata = temp;
217 					eepdata++;
218 				}
219 			} else {
220 				ath_err(common,
221 					"Invalid EEPROM Magic. Endianness mismatch.\n");
222 				return -EINVAL;
223 			}
224 		}
225 	}
226 
227 	ath_dbg(common, EEPROM, "need_swap = %s\n",
228 		need_swap ? "True" : "False");
229 
230 	if (need_swap)
231 		el = swab16(ah->eeprom.map4k.baseEepHeader.length);
232 	else
233 		el = ah->eeprom.map4k.baseEepHeader.length;
234 
235 	if (el > sizeof(struct ar5416_eeprom_4k))
236 		el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
237 	else
238 		el = el / sizeof(u16);
239 
240 	eepdata = (u16 *)(&ah->eeprom);
241 
242 	for (i = 0; i < el; i++)
243 		sum ^= *eepdata++;
244 
245 	if (need_swap) {
246 		u32 integer;
247 		u16 word;
248 
249 		ath_dbg(common, EEPROM,
250 			"EEPROM Endianness is not native.. Changing\n");
251 
252 		word = swab16(eep->baseEepHeader.length);
253 		eep->baseEepHeader.length = word;
254 
255 		word = swab16(eep->baseEepHeader.checksum);
256 		eep->baseEepHeader.checksum = word;
257 
258 		word = swab16(eep->baseEepHeader.version);
259 		eep->baseEepHeader.version = word;
260 
261 		word = swab16(eep->baseEepHeader.regDmn[0]);
262 		eep->baseEepHeader.regDmn[0] = word;
263 
264 		word = swab16(eep->baseEepHeader.regDmn[1]);
265 		eep->baseEepHeader.regDmn[1] = word;
266 
267 		word = swab16(eep->baseEepHeader.rfSilent);
268 		eep->baseEepHeader.rfSilent = word;
269 
270 		word = swab16(eep->baseEepHeader.blueToothOptions);
271 		eep->baseEepHeader.blueToothOptions = word;
272 
273 		word = swab16(eep->baseEepHeader.deviceCap);
274 		eep->baseEepHeader.deviceCap = word;
275 
276 		integer = swab32(eep->modalHeader.antCtrlCommon);
277 		eep->modalHeader.antCtrlCommon = integer;
278 
279 		for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
280 			integer = swab32(eep->modalHeader.antCtrlChain[i]);
281 			eep->modalHeader.antCtrlChain[i] = integer;
282 		}
283 
284 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
285 			word = swab16(eep->modalHeader.spurChans[i].spurChan);
286 			eep->modalHeader.spurChans[i].spurChan = word;
287 		}
288 	}
289 
290 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
291 	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
292 		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
293 			sum, ah->eep_ops->get_eeprom_ver(ah));
294 		return -EINVAL;
295 	}
296 
297 	return 0;
298 #undef EEPROM_4K_SIZE
299 }
300 
301 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
302 				  enum eeprom_param param)
303 {
304 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
305 	struct modal_eep_4k_header *pModal = &eep->modalHeader;
306 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
307 	u16 ver_minor;
308 
309 	ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
310 
311 	switch (param) {
312 	case EEP_NFTHRESH_2:
313 		return pModal->noiseFloorThreshCh[0];
314 	case EEP_MAC_LSW:
315 		return get_unaligned_be16(pBase->macAddr);
316 	case EEP_MAC_MID:
317 		return get_unaligned_be16(pBase->macAddr + 2);
318 	case EEP_MAC_MSW:
319 		return get_unaligned_be16(pBase->macAddr + 4);
320 	case EEP_REG_0:
321 		return pBase->regDmn[0];
322 	case EEP_OP_CAP:
323 		return pBase->deviceCap;
324 	case EEP_OP_MODE:
325 		return pBase->opCapFlags;
326 	case EEP_RF_SILENT:
327 		return pBase->rfSilent;
328 	case EEP_OB_2:
329 		return pModal->ob_0;
330 	case EEP_DB_2:
331 		return pModal->db1_1;
332 	case EEP_MINOR_REV:
333 		return ver_minor;
334 	case EEP_TX_MASK:
335 		return pBase->txMask;
336 	case EEP_RX_MASK:
337 		return pBase->rxMask;
338 	case EEP_FRAC_N_5G:
339 		return 0;
340 	case EEP_PWR_TABLE_OFFSET:
341 		return AR5416_PWR_TABLE_OFFSET_DB;
342 	case EEP_MODAL_VER:
343 		return pModal->version;
344 	case EEP_ANT_DIV_CTL1:
345 		return pModal->antdiv_ctl1;
346 	case EEP_TXGAIN_TYPE:
347 		return pBase->txGainType;
348 	case EEP_ANTENNA_GAIN_2G:
349 		return pModal->antennaGainCh[0];
350 	default:
351 		return 0;
352 	}
353 }
354 
355 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
356 				  struct ath9k_channel *chan)
357 {
358 	struct ath_common *common = ath9k_hw_common(ah);
359 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
360 	struct cal_data_per_freq_4k *pRawDataset;
361 	u8 *pCalBChans = NULL;
362 	u16 pdGainOverlap_t2;
363 	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
364 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
365 	u16 numPiers, i, j;
366 	u16 numXpdGain, xpdMask;
367 	u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
368 	u32 reg32, regOffset, regChainOffset;
369 
370 	xpdMask = pEepData->modalHeader.xpdGain;
371 
372 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
373 	    AR5416_EEP_MINOR_VER_2) {
374 		pdGainOverlap_t2 =
375 			pEepData->modalHeader.pdGainOverlap;
376 	} else {
377 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
378 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
379 	}
380 
381 	pCalBChans = pEepData->calFreqPier2G;
382 	numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
383 
384 	numXpdGain = 0;
385 
386 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
387 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
388 			if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
389 				break;
390 			xpdGainValues[numXpdGain] =
391 				(u16)(AR5416_PD_GAINS_IN_MASK - i);
392 			numXpdGain++;
393 		}
394 	}
395 
396 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
397 		      (numXpdGain - 1) & 0x3);
398 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
399 		      xpdGainValues[0]);
400 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
401 		      xpdGainValues[1]);
402 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
403 
404 	for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
405 		regChainOffset = i * 0x1000;
406 
407 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
408 			pRawDataset = pEepData->calPierData2G[i];
409 
410 			ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
411 					    pRawDataset, pCalBChans,
412 					    numPiers, pdGainOverlap_t2,
413 					    gainBoundaries,
414 					    pdadcValues, numXpdGain);
415 
416 			ENABLE_REGWRITE_BUFFER(ah);
417 
418 			REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
419 				  SM(pdGainOverlap_t2,
420 				     AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
421 				  | SM(gainBoundaries[0],
422 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
423 				  | SM(gainBoundaries[1],
424 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
425 				  | SM(gainBoundaries[2],
426 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
427 				  | SM(gainBoundaries[3],
428 			       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
429 
430 			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
431 			for (j = 0; j < 32; j++) {
432 				reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
433 				REG_WRITE(ah, regOffset, reg32);
434 
435 				ath_dbg(common, EEPROM,
436 					"PDADC (%d,%4x): %4.4x %8.8x\n",
437 					i, regChainOffset, regOffset,
438 					reg32);
439 				ath_dbg(common, EEPROM,
440 					"PDADC: Chain %d | "
441 					"PDADC %3d Value %3d | "
442 					"PDADC %3d Value %3d | "
443 					"PDADC %3d Value %3d | "
444 					"PDADC %3d Value %3d |\n",
445 					i, 4 * j, pdadcValues[4 * j],
446 					4 * j + 1, pdadcValues[4 * j + 1],
447 					4 * j + 2, pdadcValues[4 * j + 2],
448 					4 * j + 3, pdadcValues[4 * j + 3]);
449 
450 				regOffset += 4;
451 			}
452 
453 			REGWRITE_BUFFER_FLUSH(ah);
454 		}
455 	}
456 }
457 
458 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
459 						 struct ath9k_channel *chan,
460 						 int16_t *ratesArray,
461 						 u16 cfgCtl,
462 						 u16 antenna_reduction,
463 						 u16 powerLimit)
464 {
465 #define CMP_TEST_GRP \
466 	(((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) ==	\
467 	 pEepData->ctlIndex[i])						\
468 	|| (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
469 	    ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
470 
471 	int i;
472 	u16 twiceMinEdgePower;
473 	u16 twiceMaxEdgePower;
474 	u16 scaledPower = 0, minCtlPower;
475 	u16 numCtlModes;
476 	const u16 *pCtlMode;
477 	u16 ctlMode, freq;
478 	struct chan_centers centers;
479 	struct cal_ctl_data_4k *rep;
480 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
481 	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
482 		0, { 0, 0, 0, 0}
483 	};
484 	struct cal_target_power_leg targetPowerOfdmExt = {
485 		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
486 		0, { 0, 0, 0, 0 }
487 	};
488 	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
489 		0, {0, 0, 0, 0}
490 	};
491 	static const u16 ctlModesFor11g[] = {
492 		CTL_11B, CTL_11G, CTL_2GHT20,
493 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
494 	};
495 
496 	ath9k_hw_get_channel_centers(ah, chan, &centers);
497 
498 	scaledPower = powerLimit - antenna_reduction;
499 	numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
500 	pCtlMode = ctlModesFor11g;
501 
502 	ath9k_hw_get_legacy_target_powers(ah, chan,
503 			pEepData->calTargetPowerCck,
504 			AR5416_NUM_2G_CCK_TARGET_POWERS,
505 			&targetPowerCck, 4, false);
506 	ath9k_hw_get_legacy_target_powers(ah, chan,
507 			pEepData->calTargetPower2G,
508 			AR5416_NUM_2G_20_TARGET_POWERS,
509 			&targetPowerOfdm, 4, false);
510 	ath9k_hw_get_target_powers(ah, chan,
511 			pEepData->calTargetPower2GHT20,
512 			AR5416_NUM_2G_20_TARGET_POWERS,
513 			&targetPowerHt20, 8, false);
514 
515 	if (IS_CHAN_HT40(chan)) {
516 		numCtlModes = ARRAY_SIZE(ctlModesFor11g);
517 		ath9k_hw_get_target_powers(ah, chan,
518 				pEepData->calTargetPower2GHT40,
519 				AR5416_NUM_2G_40_TARGET_POWERS,
520 				&targetPowerHt40, 8, true);
521 		ath9k_hw_get_legacy_target_powers(ah, chan,
522 				pEepData->calTargetPowerCck,
523 				AR5416_NUM_2G_CCK_TARGET_POWERS,
524 				&targetPowerCckExt, 4, true);
525 		ath9k_hw_get_legacy_target_powers(ah, chan,
526 				pEepData->calTargetPower2G,
527 				AR5416_NUM_2G_20_TARGET_POWERS,
528 				&targetPowerOfdmExt, 4, true);
529 	}
530 
531 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
532 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
533 			(pCtlMode[ctlMode] == CTL_2GHT40);
534 
535 		if (isHt40CtlMode)
536 			freq = centers.synth_center;
537 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
538 			freq = centers.ext_center;
539 		else
540 			freq = centers.ctl_center;
541 
542 		twiceMaxEdgePower = MAX_RATE_POWER;
543 
544 		for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
545 			     pEepData->ctlIndex[i]; i++) {
546 
547 			if (CMP_TEST_GRP) {
548 				rep = &(pEepData->ctlData[i]);
549 
550 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(
551 					freq,
552 					rep->ctlEdges[
553 					ar5416_get_ntxchains(ah->txchainmask) - 1],
554 					IS_CHAN_2GHZ(chan),
555 					AR5416_EEP4K_NUM_BAND_EDGES);
556 
557 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
558 					twiceMaxEdgePower =
559 						min(twiceMaxEdgePower,
560 						    twiceMinEdgePower);
561 				} else {
562 					twiceMaxEdgePower = twiceMinEdgePower;
563 					break;
564 				}
565 			}
566 		}
567 
568 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
569 
570 		switch (pCtlMode[ctlMode]) {
571 		case CTL_11B:
572 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
573 				targetPowerCck.tPow2x[i] =
574 					min((u16)targetPowerCck.tPow2x[i],
575 					    minCtlPower);
576 			}
577 			break;
578 		case CTL_11G:
579 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
580 				targetPowerOfdm.tPow2x[i] =
581 					min((u16)targetPowerOfdm.tPow2x[i],
582 					    minCtlPower);
583 			}
584 			break;
585 		case CTL_2GHT20:
586 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
587 				targetPowerHt20.tPow2x[i] =
588 					min((u16)targetPowerHt20.tPow2x[i],
589 					    minCtlPower);
590 			}
591 			break;
592 		case CTL_11B_EXT:
593 			targetPowerCckExt.tPow2x[0] =
594 				min((u16)targetPowerCckExt.tPow2x[0],
595 				    minCtlPower);
596 			break;
597 		case CTL_11G_EXT:
598 			targetPowerOfdmExt.tPow2x[0] =
599 				min((u16)targetPowerOfdmExt.tPow2x[0],
600 				    minCtlPower);
601 			break;
602 		case CTL_2GHT40:
603 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
604 				targetPowerHt40.tPow2x[i] =
605 					min((u16)targetPowerHt40.tPow2x[i],
606 					    minCtlPower);
607 			}
608 			break;
609 		default:
610 			break;
611 		}
612 	}
613 
614 	ratesArray[rate6mb] =
615 	ratesArray[rate9mb] =
616 	ratesArray[rate12mb] =
617 	ratesArray[rate18mb] =
618 	ratesArray[rate24mb] =
619 	targetPowerOfdm.tPow2x[0];
620 
621 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
622 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
623 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
624 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
625 
626 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
627 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
628 
629 	ratesArray[rate1l] = targetPowerCck.tPow2x[0];
630 	ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
631 	ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
632 	ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
633 
634 	if (IS_CHAN_HT40(chan)) {
635 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
636 			ratesArray[rateHt40_0 + i] =
637 				targetPowerHt40.tPow2x[i];
638 		}
639 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
640 		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
641 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
642 		ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
643 	}
644 
645 #undef CMP_TEST_GRP
646 }
647 
648 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
649 				    struct ath9k_channel *chan,
650 				    u16 cfgCtl,
651 				    u8 twiceAntennaReduction,
652 				    u8 powerLimit, bool test)
653 {
654 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
655 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
656 	struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
657 	int16_t ratesArray[Ar5416RateSize];
658 	u8 ht40PowerIncForPdadc = 2;
659 	int i;
660 
661 	memset(ratesArray, 0, sizeof(ratesArray));
662 
663 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
664 	    AR5416_EEP_MINOR_VER_2) {
665 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
666 	}
667 
668 	ath9k_hw_set_4k_power_per_rate_table(ah, chan,
669 					     &ratesArray[0], cfgCtl,
670 					     twiceAntennaReduction,
671 					     powerLimit);
672 
673 	ath9k_hw_set_4k_power_cal_table(ah, chan);
674 
675 	regulatory->max_power_level = 0;
676 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
677 		if (ratesArray[i] > MAX_RATE_POWER)
678 			ratesArray[i] = MAX_RATE_POWER;
679 
680 		if (ratesArray[i] > regulatory->max_power_level)
681 			regulatory->max_power_level = ratesArray[i];
682 	}
683 
684 	if (test)
685 	    return;
686 
687 	for (i = 0; i < Ar5416RateSize; i++)
688 		ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
689 
690 	ENABLE_REGWRITE_BUFFER(ah);
691 
692 	/* OFDM power per rate */
693 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
694 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
695 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
696 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
697 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
698 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
699 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
700 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
701 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
702 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
703 
704 	/* CCK power per rate */
705 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
706 		  ATH9K_POW_SM(ratesArray[rate2s], 24)
707 		  | ATH9K_POW_SM(ratesArray[rate2l], 16)
708 		  | ATH9K_POW_SM(ratesArray[rateXr], 8)
709 		  | ATH9K_POW_SM(ratesArray[rate1l], 0));
710 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
711 		  ATH9K_POW_SM(ratesArray[rate11s], 24)
712 		  | ATH9K_POW_SM(ratesArray[rate11l], 16)
713 		  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
714 		  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
715 
716 	/* HT20 power per rate */
717 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
718 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
719 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
720 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
721 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
722 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
723 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
724 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
725 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
726 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
727 
728 	/* HT40 power per rate */
729 	if (IS_CHAN_HT40(chan)) {
730 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
731 			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
732 				       ht40PowerIncForPdadc, 24)
733 			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
734 					 ht40PowerIncForPdadc, 16)
735 			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
736 					 ht40PowerIncForPdadc, 8)
737 			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
738 					 ht40PowerIncForPdadc, 0));
739 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
740 			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
741 				       ht40PowerIncForPdadc, 24)
742 			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
743 					 ht40PowerIncForPdadc, 16)
744 			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
745 					 ht40PowerIncForPdadc, 8)
746 			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
747 					 ht40PowerIncForPdadc, 0));
748 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
749 			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
750 			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
751 			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
752 			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
753 	}
754 
755 	REGWRITE_BUFFER_FLUSH(ah);
756 }
757 
758 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
759 				 struct modal_eep_4k_header *pModal,
760 				 struct ar5416_eeprom_4k *eep,
761 				 u8 txRxAttenLocal)
762 {
763 	REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
764 		  pModal->antCtrlChain[0]);
765 
766 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
767 		  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
768 		   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
769 		     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
770 		  SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
771 		  SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
772 
773 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
774 	    AR5416_EEP_MINOR_VER_3) {
775 		txRxAttenLocal = pModal->txRxAttenCh[0];
776 
777 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
778 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
779 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
780 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
781 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
782 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
783 			      pModal->xatten2Margin[0]);
784 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
785 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
786 
787 		/* Set the block 1 value to block 0 value */
788 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
789 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
790 			      pModal->bswMargin[0]);
791 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
792 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
793 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
794 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
795 			      pModal->xatten2Margin[0]);
796 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
797 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
798 			      pModal->xatten2Db[0]);
799 	}
800 
801 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
802 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
803 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
804 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
805 
806 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
807 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
808 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
809 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
810 }
811 
812 /*
813  * Read EEPROM header info and program the device for correct operation
814  * given the channel value.
815  */
816 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
817 					 struct ath9k_channel *chan)
818 {
819 	struct modal_eep_4k_header *pModal;
820 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
821 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
822 	u8 txRxAttenLocal;
823 	u8 ob[5], db1[5], db2[5];
824 	u8 ant_div_control1, ant_div_control2;
825 	u8 bb_desired_scale;
826 	u32 regVal;
827 
828 	pModal = &eep->modalHeader;
829 	txRxAttenLocal = 23;
830 
831 	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
832 
833 	/* Single chain for 4K EEPROM*/
834 	ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
835 
836 	/* Initialize Ant Diversity settings from EEPROM */
837 	if (pModal->version >= 3) {
838 		ant_div_control1 = pModal->antdiv_ctl1;
839 		ant_div_control2 = pModal->antdiv_ctl2;
840 
841 		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
842 		regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
843 
844 		regVal |= SM(ant_div_control1,
845 			     AR_PHY_9285_ANT_DIV_CTL);
846 		regVal |= SM(ant_div_control2,
847 			     AR_PHY_9285_ANT_DIV_ALT_LNACONF);
848 		regVal |= SM((ant_div_control2 >> 2),
849 			     AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
850 		regVal |= SM((ant_div_control1 >> 1),
851 			     AR_PHY_9285_ANT_DIV_ALT_GAINTB);
852 		regVal |= SM((ant_div_control1 >> 2),
853 			     AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
854 
855 
856 		REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
857 		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
858 		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
859 		regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
860 		regVal |= SM((ant_div_control1 >> 3),
861 			     AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
862 
863 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
864 		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
865 	}
866 
867 	if (pModal->version >= 2) {
868 		ob[0] = pModal->ob_0;
869 		ob[1] = pModal->ob_1;
870 		ob[2] = pModal->ob_2;
871 		ob[3] = pModal->ob_3;
872 		ob[4] = pModal->ob_4;
873 
874 		db1[0] = pModal->db1_0;
875 		db1[1] = pModal->db1_1;
876 		db1[2] = pModal->db1_2;
877 		db1[3] = pModal->db1_3;
878 		db1[4] = pModal->db1_4;
879 
880 		db2[0] = pModal->db2_0;
881 		db2[1] = pModal->db2_1;
882 		db2[2] = pModal->db2_2;
883 		db2[3] = pModal->db2_3;
884 		db2[4] = pModal->db2_4;
885 	} else if (pModal->version == 1) {
886 		ob[0] = pModal->ob_0;
887 		ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
888 		db1[0] = pModal->db1_0;
889 		db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
890 		db2[0] = pModal->db2_0;
891 		db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
892 	} else {
893 		int i;
894 
895 		for (i = 0; i < 5; i++) {
896 			ob[i] = pModal->ob_0;
897 			db1[i] = pModal->db1_0;
898 			db2[i] = pModal->db1_0;
899 		}
900 	}
901 
902 	if (AR_SREV_9271(ah)) {
903 		ath9k_hw_analog_shift_rmw(ah,
904 					  AR9285_AN_RF2G3,
905 					  AR9271_AN_RF2G3_OB_cck,
906 					  AR9271_AN_RF2G3_OB_cck_S,
907 					  ob[0]);
908 		ath9k_hw_analog_shift_rmw(ah,
909 					  AR9285_AN_RF2G3,
910 					  AR9271_AN_RF2G3_OB_psk,
911 					  AR9271_AN_RF2G3_OB_psk_S,
912 					  ob[1]);
913 		ath9k_hw_analog_shift_rmw(ah,
914 					  AR9285_AN_RF2G3,
915 					  AR9271_AN_RF2G3_OB_qam,
916 					  AR9271_AN_RF2G3_OB_qam_S,
917 					  ob[2]);
918 		ath9k_hw_analog_shift_rmw(ah,
919 					  AR9285_AN_RF2G3,
920 					  AR9271_AN_RF2G3_DB_1,
921 					  AR9271_AN_RF2G3_DB_1_S,
922 					  db1[0]);
923 		ath9k_hw_analog_shift_rmw(ah,
924 					  AR9285_AN_RF2G4,
925 					  AR9271_AN_RF2G4_DB_2,
926 					  AR9271_AN_RF2G4_DB_2_S,
927 					  db2[0]);
928 	} else {
929 		ath9k_hw_analog_shift_rmw(ah,
930 					  AR9285_AN_RF2G3,
931 					  AR9285_AN_RF2G3_OB_0,
932 					  AR9285_AN_RF2G3_OB_0_S,
933 					  ob[0]);
934 		ath9k_hw_analog_shift_rmw(ah,
935 					  AR9285_AN_RF2G3,
936 					  AR9285_AN_RF2G3_OB_1,
937 					  AR9285_AN_RF2G3_OB_1_S,
938 					  ob[1]);
939 		ath9k_hw_analog_shift_rmw(ah,
940 					  AR9285_AN_RF2G3,
941 					  AR9285_AN_RF2G3_OB_2,
942 					  AR9285_AN_RF2G3_OB_2_S,
943 					  ob[2]);
944 		ath9k_hw_analog_shift_rmw(ah,
945 					  AR9285_AN_RF2G3,
946 					  AR9285_AN_RF2G3_OB_3,
947 					  AR9285_AN_RF2G3_OB_3_S,
948 					  ob[3]);
949 		ath9k_hw_analog_shift_rmw(ah,
950 					  AR9285_AN_RF2G3,
951 					  AR9285_AN_RF2G3_OB_4,
952 					  AR9285_AN_RF2G3_OB_4_S,
953 					  ob[4]);
954 
955 		ath9k_hw_analog_shift_rmw(ah,
956 					  AR9285_AN_RF2G3,
957 					  AR9285_AN_RF2G3_DB1_0,
958 					  AR9285_AN_RF2G3_DB1_0_S,
959 					  db1[0]);
960 		ath9k_hw_analog_shift_rmw(ah,
961 					  AR9285_AN_RF2G3,
962 					  AR9285_AN_RF2G3_DB1_1,
963 					  AR9285_AN_RF2G3_DB1_1_S,
964 					  db1[1]);
965 		ath9k_hw_analog_shift_rmw(ah,
966 					  AR9285_AN_RF2G3,
967 					  AR9285_AN_RF2G3_DB1_2,
968 					  AR9285_AN_RF2G3_DB1_2_S,
969 					  db1[2]);
970 		ath9k_hw_analog_shift_rmw(ah,
971 					  AR9285_AN_RF2G4,
972 					  AR9285_AN_RF2G4_DB1_3,
973 					  AR9285_AN_RF2G4_DB1_3_S,
974 					  db1[3]);
975 		ath9k_hw_analog_shift_rmw(ah,
976 					  AR9285_AN_RF2G4,
977 					  AR9285_AN_RF2G4_DB1_4,
978 					  AR9285_AN_RF2G4_DB1_4_S, db1[4]);
979 
980 		ath9k_hw_analog_shift_rmw(ah,
981 					  AR9285_AN_RF2G4,
982 					  AR9285_AN_RF2G4_DB2_0,
983 					  AR9285_AN_RF2G4_DB2_0_S,
984 					  db2[0]);
985 		ath9k_hw_analog_shift_rmw(ah,
986 					  AR9285_AN_RF2G4,
987 					  AR9285_AN_RF2G4_DB2_1,
988 					  AR9285_AN_RF2G4_DB2_1_S,
989 					  db2[1]);
990 		ath9k_hw_analog_shift_rmw(ah,
991 					  AR9285_AN_RF2G4,
992 					  AR9285_AN_RF2G4_DB2_2,
993 					  AR9285_AN_RF2G4_DB2_2_S,
994 					  db2[2]);
995 		ath9k_hw_analog_shift_rmw(ah,
996 					  AR9285_AN_RF2G4,
997 					  AR9285_AN_RF2G4_DB2_3,
998 					  AR9285_AN_RF2G4_DB2_3_S,
999 					  db2[3]);
1000 		ath9k_hw_analog_shift_rmw(ah,
1001 					  AR9285_AN_RF2G4,
1002 					  AR9285_AN_RF2G4_DB2_4,
1003 					  AR9285_AN_RF2G4_DB2_4_S,
1004 					  db2[4]);
1005 	}
1006 
1007 
1008 	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1009 		      pModal->switchSettling);
1010 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1011 		      pModal->adcDesiredSize);
1012 
1013 	REG_WRITE(ah, AR_PHY_RF_CTL4,
1014 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1015 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1016 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
1017 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1018 
1019 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1020 		      pModal->txEndToRxOn);
1021 
1022 	if (AR_SREV_9271_10(ah))
1023 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1024 			      pModal->txEndToRxOn);
1025 	REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1026 		      pModal->thresh62);
1027 	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1028 		      pModal->thresh62);
1029 
1030 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1031 						AR5416_EEP_MINOR_VER_2) {
1032 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1033 			      pModal->txFrameToDataStart);
1034 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1035 			      pModal->txFrameToPaOn);
1036 	}
1037 
1038 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1039 						AR5416_EEP_MINOR_VER_3) {
1040 		if (IS_CHAN_HT40(chan))
1041 			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1042 				      AR_PHY_SETTLING_SWITCH,
1043 				      pModal->swSettleHt40);
1044 	}
1045 
1046 	bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1047 			EEP_4K_BB_DESIRED_SCALE_MASK);
1048 	if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1049 		u32 pwrctrl, mask, clr;
1050 
1051 		mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1052 		pwrctrl = mask * bb_desired_scale;
1053 		clr = mask * 0x1f;
1054 		REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1055 		REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1056 		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1057 
1058 		mask = BIT(0)|BIT(5)|BIT(15);
1059 		pwrctrl = mask * bb_desired_scale;
1060 		clr = mask * 0x1f;
1061 		REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1062 
1063 		mask = BIT(0)|BIT(5);
1064 		pwrctrl = mask * bb_desired_scale;
1065 		clr = mask * 0x1f;
1066 		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1067 		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1068 	}
1069 }
1070 
1071 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1072 {
1073 #define EEP_MAP4K_SPURCHAN \
1074 	(ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1075 	struct ath_common *common = ath9k_hw_common(ah);
1076 
1077 	u16 spur_val = AR_NO_SPUR;
1078 
1079 	ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1080 		i, is2GHz, ah->config.spurchans[i][is2GHz]);
1081 
1082 	switch (ah->config.spurmode) {
1083 	case SPUR_DISABLE:
1084 		break;
1085 	case SPUR_ENABLE_IOCTL:
1086 		spur_val = ah->config.spurchans[i][is2GHz];
1087 		ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1088 			spur_val);
1089 		break;
1090 	case SPUR_ENABLE_EEPROM:
1091 		spur_val = EEP_MAP4K_SPURCHAN;
1092 		break;
1093 	}
1094 
1095 	return spur_val;
1096 
1097 #undef EEP_MAP4K_SPURCHAN
1098 }
1099 
1100 const struct eeprom_ops eep_4k_ops = {
1101 	.check_eeprom		= ath9k_hw_4k_check_eeprom,
1102 	.get_eeprom		= ath9k_hw_4k_get_eeprom,
1103 	.fill_eeprom		= ath9k_hw_4k_fill_eeprom,
1104 	.dump_eeprom		= ath9k_hw_4k_dump_eeprom,
1105 	.get_eeprom_ver		= ath9k_hw_4k_get_eeprom_ver,
1106 	.get_eeprom_rev		= ath9k_hw_4k_get_eeprom_rev,
1107 	.set_board_values	= ath9k_hw_4k_set_board_values,
1108 	.set_txpower		= ath9k_hw_4k_set_txpower,
1109 	.get_spur_channel	= ath9k_hw_4k_get_spur_channel
1110 };
1111