1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include <linux/ath9k_platform.h>
19 
20 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
21 {
22         REG_WRITE(ah, reg, val);
23 
24         if (ah->config.analog_shiftreg)
25 		udelay(100);
26 }
27 
28 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
29 			       u32 shift, u32 val)
30 {
31 	REG_RMW(ah, reg, ((val << shift) & mask), mask);
32 
33 	if (ah->config.analog_shiftreg)
34 		udelay(100);
35 }
36 
37 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
38 			     int16_t targetLeft, int16_t targetRight)
39 {
40 	int16_t rv;
41 
42 	if (srcRight == srcLeft) {
43 		rv = targetLeft;
44 	} else {
45 		rv = (int16_t) (((target - srcLeft) * targetRight +
46 				 (srcRight - target) * targetLeft) /
47 				(srcRight - srcLeft));
48 	}
49 	return rv;
50 }
51 
52 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
53 				    u16 *indexL, u16 *indexR)
54 {
55 	u16 i;
56 
57 	if (target <= pList[0]) {
58 		*indexL = *indexR = 0;
59 		return true;
60 	}
61 	if (target >= pList[listSize - 1]) {
62 		*indexL = *indexR = (u16) (listSize - 1);
63 		return true;
64 	}
65 
66 	for (i = 0; i < listSize - 1; i++) {
67 		if (pList[i] == target) {
68 			*indexL = *indexR = i;
69 			return true;
70 		}
71 		if (target < pList[i + 1]) {
72 			*indexL = i;
73 			*indexR = (u16) (i + 1);
74 			return false;
75 		}
76 	}
77 	return false;
78 }
79 
80 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
81 				  int eep_start_loc, int size)
82 {
83 	int i = 0, j, addr;
84 	u32 addrdata[8];
85 	u32 data[8];
86 
87 	for (addr = 0; addr < size; addr++) {
88 		addrdata[i] = AR5416_EEPROM_OFFSET +
89 			((addr + eep_start_loc) << AR5416_EEPROM_S);
90 		i++;
91 		if (i == 8) {
92 			REG_READ_MULTI(ah, addrdata, data, i);
93 
94 			for (j = 0; j < i; j++) {
95 				*eep_data = data[j];
96 				eep_data++;
97 			}
98 			i = 0;
99 		}
100 	}
101 
102 	if (i != 0) {
103 		REG_READ_MULTI(ah, addrdata, data, i);
104 
105 		for (j = 0; j < i; j++) {
106 			*eep_data = data[j];
107 			eep_data++;
108 		}
109 	}
110 }
111 
112 static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
113 				      off_t offset, u16 *data)
114 {
115 	if (offset >= blob_size)
116 		return false;
117 
118 	*data =  blob[offset];
119 	return true;
120 }
121 
122 static bool ath9k_hw_nvram_read_pdata(struct ath9k_platform_data *pdata,
123 				      off_t offset, u16 *data)
124 {
125 	return ath9k_hw_nvram_read_array(pdata->eeprom_data,
126 					 ARRAY_SIZE(pdata->eeprom_data),
127 					 offset, data);
128 }
129 
130 static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
131 					 off_t offset, u16 *data)
132 {
133 	return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
134 					 eeprom_blob->size / sizeof(u16),
135 					 offset, data);
136 }
137 
138 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
139 {
140 	struct ath_common *common = ath9k_hw_common(ah);
141 	struct ath9k_platform_data *pdata = ah->dev->platform_data;
142 	bool ret;
143 
144 	if (ah->eeprom_blob)
145 		ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
146 	else if (pdata && !pdata->use_eeprom)
147 		ret = ath9k_hw_nvram_read_pdata(pdata, off, data);
148 	else
149 		ret = common->bus_ops->eeprom_read(common, off, data);
150 
151 	if (!ret)
152 		ath_dbg(common, EEPROM,
153 			"unable to read eeprom region at offset %u\n", off);
154 
155 	return ret;
156 }
157 
158 int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
159 {
160 	u16 magic;
161 	u16 *eepdata;
162 	int i;
163 	bool needs_byteswap = false;
164 	struct ath_common *common = ath9k_hw_common(ah);
165 
166 	if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
167 		ath_err(common, "Reading Magic # failed\n");
168 		return -EIO;
169 	}
170 
171 	if (swab16(magic) == AR5416_EEPROM_MAGIC) {
172 		needs_byteswap = true;
173 		ath_dbg(common, EEPROM,
174 			"EEPROM needs byte-swapping to correct endianness.\n");
175 	} else if (magic != AR5416_EEPROM_MAGIC) {
176 		if (ath9k_hw_use_flash(ah)) {
177 			ath_dbg(common, EEPROM,
178 				"Ignoring invalid EEPROM magic (0x%04x).\n",
179 				magic);
180 		} else {
181 			ath_err(common,
182 				"Invalid EEPROM magic (0x%04x).\n", magic);
183 			return -EINVAL;
184 		}
185 	}
186 
187 	if (needs_byteswap) {
188 		if (ah->ah_flags & AH_NO_EEP_SWAP) {
189 			ath_info(common,
190 				 "Ignoring endianness difference in EEPROM magic bytes.\n");
191 		} else {
192 			eepdata = (u16 *)(&ah->eeprom);
193 
194 			for (i = 0; i < size; i++)
195 				eepdata[i] = swab16(eepdata[i]);
196 		}
197 	}
198 
199 	if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) {
200 		*swap_needed = true;
201 		ath_dbg(common, EEPROM,
202 			"Big Endian EEPROM detected according to EEPMISC register.\n");
203 	} else {
204 		*swap_needed = false;
205 	}
206 
207 	return 0;
208 }
209 
210 bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
211 {
212 	u32 i, sum = 0;
213 	u16 *eepdata = (u16 *)(&ah->eeprom);
214 	struct ath_common *common = ath9k_hw_common(ah);
215 
216 	for (i = 0; i < size; i++)
217 		sum ^= eepdata[i];
218 
219 	if (sum != 0xffff) {
220 		ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
221 		return false;
222 	}
223 
224 	return true;
225 }
226 
227 bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
228 {
229 	struct ath_common *common = ath9k_hw_common(ah);
230 
231 	if (ah->eep_ops->get_eeprom_ver(ah) != version ||
232 	    ah->eep_ops->get_eeprom_rev(ah) < minrev) {
233 		ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
234 			ah->eep_ops->get_eeprom_ver(ah),
235 			ah->eep_ops->get_eeprom_rev(ah));
236 		return false;
237 	}
238 
239 	return true;
240 }
241 
242 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
243 			     u8 *pVpdList, u16 numIntercepts,
244 			     u8 *pRetVpdList)
245 {
246 	u16 i, k;
247 	u8 currPwr = pwrMin;
248 	u16 idxL = 0, idxR = 0;
249 
250 	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
251 		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
252 					       numIntercepts, &(idxL),
253 					       &(idxR));
254 		if (idxR < 1)
255 			idxR = 1;
256 		if (idxL == numIntercepts - 1)
257 			idxL = (u16) (numIntercepts - 2);
258 		if (pPwrList[idxL] == pPwrList[idxR])
259 			k = pVpdList[idxL];
260 		else
261 			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
262 				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
263 				  (pPwrList[idxR] - pPwrList[idxL]));
264 		pRetVpdList[i] = (u8) k;
265 		currPwr += 2;
266 	}
267 }
268 
269 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
270 				       struct ath9k_channel *chan,
271 				       struct cal_target_power_leg *powInfo,
272 				       u16 numChannels,
273 				       struct cal_target_power_leg *pNewPower,
274 				       u16 numRates, bool isExtTarget)
275 {
276 	struct chan_centers centers;
277 	u16 clo, chi;
278 	int i;
279 	int matchIndex = -1, lowIndex = -1;
280 	u16 freq;
281 
282 	ath9k_hw_get_channel_centers(ah, chan, &centers);
283 	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
284 
285 	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
286 				       IS_CHAN_2GHZ(chan))) {
287 		matchIndex = 0;
288 	} else {
289 		for (i = 0; (i < numChannels) &&
290 			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
291 			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
292 						       IS_CHAN_2GHZ(chan))) {
293 				matchIndex = i;
294 				break;
295 			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
296 						IS_CHAN_2GHZ(chan)) && i > 0 &&
297 				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
298 						IS_CHAN_2GHZ(chan))) {
299 				lowIndex = i - 1;
300 				break;
301 			}
302 		}
303 		if ((matchIndex == -1) && (lowIndex == -1))
304 			matchIndex = i - 1;
305 	}
306 
307 	if (matchIndex != -1) {
308 		*pNewPower = powInfo[matchIndex];
309 	} else {
310 		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
311 					 IS_CHAN_2GHZ(chan));
312 		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
313 					 IS_CHAN_2GHZ(chan));
314 
315 		for (i = 0; i < numRates; i++) {
316 			pNewPower->tPow2x[i] =
317 				(u8)ath9k_hw_interpolate(freq, clo, chi,
318 						powInfo[lowIndex].tPow2x[i],
319 						powInfo[lowIndex + 1].tPow2x[i]);
320 		}
321 	}
322 }
323 
324 void ath9k_hw_get_target_powers(struct ath_hw *ah,
325 				struct ath9k_channel *chan,
326 				struct cal_target_power_ht *powInfo,
327 				u16 numChannels,
328 				struct cal_target_power_ht *pNewPower,
329 				u16 numRates, bool isHt40Target)
330 {
331 	struct chan_centers centers;
332 	u16 clo, chi;
333 	int i;
334 	int matchIndex = -1, lowIndex = -1;
335 	u16 freq;
336 
337 	ath9k_hw_get_channel_centers(ah, chan, &centers);
338 	freq = isHt40Target ? centers.synth_center : centers.ctl_center;
339 
340 	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
341 		matchIndex = 0;
342 	} else {
343 		for (i = 0; (i < numChannels) &&
344 			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
345 			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
346 						       IS_CHAN_2GHZ(chan))) {
347 				matchIndex = i;
348 				break;
349 			} else
350 				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
351 						IS_CHAN_2GHZ(chan)) && i > 0 &&
352 				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
353 						IS_CHAN_2GHZ(chan))) {
354 					lowIndex = i - 1;
355 					break;
356 				}
357 		}
358 		if ((matchIndex == -1) && (lowIndex == -1))
359 			matchIndex = i - 1;
360 	}
361 
362 	if (matchIndex != -1) {
363 		*pNewPower = powInfo[matchIndex];
364 	} else {
365 		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
366 					 IS_CHAN_2GHZ(chan));
367 		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
368 					 IS_CHAN_2GHZ(chan));
369 
370 		for (i = 0; i < numRates; i++) {
371 			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
372 						clo, chi,
373 						powInfo[lowIndex].tPow2x[i],
374 						powInfo[lowIndex + 1].tPow2x[i]);
375 		}
376 	}
377 }
378 
379 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
380 				bool is2GHz, int num_band_edges)
381 {
382 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
383 	int i;
384 
385 	for (i = 0; (i < num_band_edges) &&
386 		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
387 		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
388 			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
389 			break;
390 		} else if ((i > 0) &&
391 			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
392 						      is2GHz))) {
393 			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
394 					       is2GHz) < freq &&
395 			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
396 				twiceMaxEdgePower =
397 					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
398 			}
399 			break;
400 		}
401 	}
402 
403 	return twiceMaxEdgePower;
404 }
405 
406 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
407 			      u8 antenna_reduction)
408 {
409 	u16 reduction = antenna_reduction;
410 
411 	/*
412 	 * Reduce scaled Power by number of chains active
413 	 * to get the per chain tx power level.
414 	 */
415 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
416 	case 1:
417 		break;
418 	case 2:
419 		reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
420 		break;
421 	case 3:
422 		reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
423 		break;
424 	}
425 
426 	if (power_limit > reduction)
427 		power_limit -= reduction;
428 	else
429 		power_limit = 0;
430 
431 	return power_limit;
432 }
433 
434 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
435 {
436 	struct ath_common *common = ath9k_hw_common(ah);
437 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
438 
439 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
440 	case 1:
441 		break;
442 	case 2:
443 		regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
444 		break;
445 	case 3:
446 		regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
447 		break;
448 	default:
449 		ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
450 		break;
451 	}
452 }
453 
454 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
455 				struct ath9k_channel *chan,
456 				void *pRawDataSet,
457 				u8 *bChans, u16 availPiers,
458 				u16 tPdGainOverlap,
459 				u16 *pPdGainBoundaries, u8 *pPDADCValues,
460 				u16 numXpdGains)
461 {
462 	int i, j, k;
463 	int16_t ss;
464 	u16 idxL = 0, idxR = 0, numPiers;
465 	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
466 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
467 	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
468 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
469 	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
470 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
471 
472 	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
473 	u8 minPwrT4[AR5416_NUM_PD_GAINS];
474 	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
475 	int16_t vpdStep;
476 	int16_t tmpVal;
477 	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
478 	bool match;
479 	int16_t minDelta = 0;
480 	struct chan_centers centers;
481 	int pdgain_boundary_default;
482 	struct cal_data_per_freq *data_def = pRawDataSet;
483 	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
484 	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
485 	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
486 	int intercepts;
487 
488 	if (AR_SREV_9287(ah))
489 		intercepts = AR9287_PD_GAIN_ICEPTS;
490 	else
491 		intercepts = AR5416_PD_GAIN_ICEPTS;
492 
493 	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
494 	ath9k_hw_get_channel_centers(ah, chan, &centers);
495 
496 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
497 		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
498 			break;
499 	}
500 
501 	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
502 							     IS_CHAN_2GHZ(chan)),
503 					       bChans, numPiers, &idxL, &idxR);
504 
505 	if (match) {
506 		if (AR_SREV_9287(ah)) {
507 			for (i = 0; i < numXpdGains; i++) {
508 				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
509 				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
510 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
511 						data_9287[idxL].pwrPdg[i],
512 						data_9287[idxL].vpdPdg[i],
513 						intercepts,
514 						vpdTableI[i]);
515 			}
516 		} else if (eeprom_4k) {
517 			for (i = 0; i < numXpdGains; i++) {
518 				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
519 				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
520 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
521 						data_4k[idxL].pwrPdg[i],
522 						data_4k[idxL].vpdPdg[i],
523 						intercepts,
524 						vpdTableI[i]);
525 			}
526 		} else {
527 			for (i = 0; i < numXpdGains; i++) {
528 				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
529 				maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
530 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
531 						data_def[idxL].pwrPdg[i],
532 						data_def[idxL].vpdPdg[i],
533 						intercepts,
534 						vpdTableI[i]);
535 			}
536 		}
537 	} else {
538 		for (i = 0; i < numXpdGains; i++) {
539 			if (AR_SREV_9287(ah)) {
540 				pVpdL = data_9287[idxL].vpdPdg[i];
541 				pPwrL = data_9287[idxL].pwrPdg[i];
542 				pVpdR = data_9287[idxR].vpdPdg[i];
543 				pPwrR = data_9287[idxR].pwrPdg[i];
544 			} else if (eeprom_4k) {
545 				pVpdL = data_4k[idxL].vpdPdg[i];
546 				pPwrL = data_4k[idxL].pwrPdg[i];
547 				pVpdR = data_4k[idxR].vpdPdg[i];
548 				pPwrR = data_4k[idxR].pwrPdg[i];
549 			} else {
550 				pVpdL = data_def[idxL].vpdPdg[i];
551 				pPwrL = data_def[idxL].pwrPdg[i];
552 				pVpdR = data_def[idxR].vpdPdg[i];
553 				pPwrR = data_def[idxR].pwrPdg[i];
554 			}
555 
556 			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
557 
558 			maxPwrT4[i] =
559 				min(pPwrL[intercepts - 1],
560 				    pPwrR[intercepts - 1]);
561 
562 
563 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
564 						pPwrL, pVpdL,
565 						intercepts,
566 						vpdTableL[i]);
567 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
568 						pPwrR, pVpdR,
569 						intercepts,
570 						vpdTableR[i]);
571 
572 			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
573 				vpdTableI[i][j] =
574 					(u8)(ath9k_hw_interpolate((u16)
575 					     FREQ2FBIN(centers.
576 						       synth_center,
577 						       IS_CHAN_2GHZ
578 						       (chan)),
579 					     bChans[idxL], bChans[idxR],
580 					     vpdTableL[i][j], vpdTableR[i][j]));
581 			}
582 		}
583 	}
584 
585 	k = 0;
586 
587 	for (i = 0; i < numXpdGains; i++) {
588 		if (i == (numXpdGains - 1))
589 			pPdGainBoundaries[i] =
590 				(u16)(maxPwrT4[i] / 2);
591 		else
592 			pPdGainBoundaries[i] =
593 				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
594 
595 		pPdGainBoundaries[i] =
596 			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
597 
598 		minDelta = 0;
599 
600 		if (i == 0) {
601 			if (AR_SREV_9280_20_OR_LATER(ah))
602 				ss = (int16_t)(0 - (minPwrT4[i] / 2));
603 			else
604 				ss = 0;
605 		} else {
606 			ss = (int16_t)((pPdGainBoundaries[i - 1] -
607 					(minPwrT4[i] / 2)) -
608 				       tPdGainOverlap + 1 + minDelta);
609 		}
610 		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
611 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
612 
613 		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
614 			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
615 			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
616 			ss++;
617 		}
618 
619 		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
620 		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
621 				(minPwrT4[i] / 2));
622 		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
623 			tgtIndex : sizeCurrVpdTable;
624 
625 		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
626 			pPDADCValues[k++] = vpdTableI[i][ss++];
627 		}
628 
629 		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
630 				    vpdTableI[i][sizeCurrVpdTable - 2]);
631 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
632 
633 		if (tgtIndex >= maxIndex) {
634 			while ((ss <= tgtIndex) &&
635 			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
636 				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
637 						    (ss - maxIndex + 1) * vpdStep));
638 				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
639 							 255 : tmpVal);
640 				ss++;
641 			}
642 		}
643 	}
644 
645 	if (eeprom_4k)
646 		pdgain_boundary_default = 58;
647 	else
648 		pdgain_boundary_default = pPdGainBoundaries[i - 1];
649 
650 	while (i < AR5416_PD_GAINS_IN_MASK) {
651 		pPdGainBoundaries[i] = pdgain_boundary_default;
652 		i++;
653 	}
654 
655 	while (k < AR5416_NUM_PDADC_VALUES) {
656 		pPDADCValues[k] = pPDADCValues[k - 1];
657 		k++;
658 	}
659 }
660 
661 int ath9k_hw_eeprom_init(struct ath_hw *ah)
662 {
663 	int status;
664 
665 	if (AR_SREV_9300_20_OR_LATER(ah))
666 		ah->eep_ops = &eep_ar9300_ops;
667 	else if (AR_SREV_9287(ah)) {
668 		ah->eep_ops = &eep_ar9287_ops;
669 	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
670 		ah->eep_ops = &eep_4k_ops;
671 	} else {
672 		ah->eep_ops = &eep_def_ops;
673 	}
674 
675 	if (!ah->eep_ops->fill_eeprom(ah))
676 		return -EIO;
677 
678 	status = ah->eep_ops->check_eeprom(ah);
679 
680 	return status;
681 }
682