1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include "hw.h" 18 19 static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz) 20 { 21 if (fbin == AR5416_BCHAN_UNUSED) 22 return fbin; 23 24 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin)); 25 } 26 27 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val) 28 { 29 REG_WRITE(ah, reg, val); 30 31 if (ah->config.analog_shiftreg) 32 udelay(100); 33 } 34 35 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask, 36 u32 shift, u32 val) 37 { 38 u32 regVal; 39 40 regVal = REG_READ(ah, reg) & ~mask; 41 regVal |= (val << shift) & mask; 42 43 REG_WRITE(ah, reg, regVal); 44 45 if (ah->config.analog_shiftreg) 46 udelay(100); 47 } 48 49 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight, 50 int16_t targetLeft, int16_t targetRight) 51 { 52 int16_t rv; 53 54 if (srcRight == srcLeft) { 55 rv = targetLeft; 56 } else { 57 rv = (int16_t) (((target - srcLeft) * targetRight + 58 (srcRight - target) * targetLeft) / 59 (srcRight - srcLeft)); 60 } 61 return rv; 62 } 63 64 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize, 65 u16 *indexL, u16 *indexR) 66 { 67 u16 i; 68 69 if (target <= pList[0]) { 70 *indexL = *indexR = 0; 71 return true; 72 } 73 if (target >= pList[listSize - 1]) { 74 *indexL = *indexR = (u16) (listSize - 1); 75 return true; 76 } 77 78 for (i = 0; i < listSize - 1; i++) { 79 if (pList[i] == target) { 80 *indexL = *indexR = i; 81 return true; 82 } 83 if (target < pList[i + 1]) { 84 *indexL = i; 85 *indexR = (u16) (i + 1); 86 return false; 87 } 88 } 89 return false; 90 } 91 92 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data, 93 int eep_start_loc, int size) 94 { 95 int i = 0, j, addr; 96 u32 addrdata[8]; 97 u32 data[8]; 98 99 for (addr = 0; addr < size; addr++) { 100 addrdata[i] = AR5416_EEPROM_OFFSET + 101 ((addr + eep_start_loc) << AR5416_EEPROM_S); 102 i++; 103 if (i == 8) { 104 REG_READ_MULTI(ah, addrdata, data, i); 105 106 for (j = 0; j < i; j++) { 107 *eep_data = data[j]; 108 eep_data++; 109 } 110 i = 0; 111 } 112 } 113 114 if (i != 0) { 115 REG_READ_MULTI(ah, addrdata, data, i); 116 117 for (j = 0; j < i; j++) { 118 *eep_data = data[j]; 119 eep_data++; 120 } 121 } 122 } 123 124 bool ath9k_hw_nvram_read(struct ath_common *common, u32 off, u16 *data) 125 { 126 return common->bus_ops->eeprom_read(common, off, data); 127 } 128 129 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList, 130 u8 *pVpdList, u16 numIntercepts, 131 u8 *pRetVpdList) 132 { 133 u16 i, k; 134 u8 currPwr = pwrMin; 135 u16 idxL = 0, idxR = 0; 136 137 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) { 138 ath9k_hw_get_lower_upper_index(currPwr, pPwrList, 139 numIntercepts, &(idxL), 140 &(idxR)); 141 if (idxR < 1) 142 idxR = 1; 143 if (idxL == numIntercepts - 1) 144 idxL = (u16) (numIntercepts - 2); 145 if (pPwrList[idxL] == pPwrList[idxR]) 146 k = pVpdList[idxL]; 147 else 148 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] + 149 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) / 150 (pPwrList[idxR] - pPwrList[idxL])); 151 pRetVpdList[i] = (u8) k; 152 currPwr += 2; 153 } 154 } 155 156 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah, 157 struct ath9k_channel *chan, 158 struct cal_target_power_leg *powInfo, 159 u16 numChannels, 160 struct cal_target_power_leg *pNewPower, 161 u16 numRates, bool isExtTarget) 162 { 163 struct chan_centers centers; 164 u16 clo, chi; 165 int i; 166 int matchIndex = -1, lowIndex = -1; 167 u16 freq; 168 169 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 170 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center; 171 172 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, 173 IS_CHAN_2GHZ(chan))) { 174 matchIndex = 0; 175 } else { 176 for (i = 0; (i < numChannels) && 177 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { 178 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel, 179 IS_CHAN_2GHZ(chan))) { 180 matchIndex = i; 181 break; 182 } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel, 183 IS_CHAN_2GHZ(chan)) && i > 0 && 184 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel, 185 IS_CHAN_2GHZ(chan))) { 186 lowIndex = i - 1; 187 break; 188 } 189 } 190 if ((matchIndex == -1) && (lowIndex == -1)) 191 matchIndex = i - 1; 192 } 193 194 if (matchIndex != -1) { 195 *pNewPower = powInfo[matchIndex]; 196 } else { 197 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel, 198 IS_CHAN_2GHZ(chan)); 199 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel, 200 IS_CHAN_2GHZ(chan)); 201 202 for (i = 0; i < numRates; i++) { 203 pNewPower->tPow2x[i] = 204 (u8)ath9k_hw_interpolate(freq, clo, chi, 205 powInfo[lowIndex].tPow2x[i], 206 powInfo[lowIndex + 1].tPow2x[i]); 207 } 208 } 209 } 210 211 void ath9k_hw_get_target_powers(struct ath_hw *ah, 212 struct ath9k_channel *chan, 213 struct cal_target_power_ht *powInfo, 214 u16 numChannels, 215 struct cal_target_power_ht *pNewPower, 216 u16 numRates, bool isHt40Target) 217 { 218 struct chan_centers centers; 219 u16 clo, chi; 220 int i; 221 int matchIndex = -1, lowIndex = -1; 222 u16 freq; 223 224 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 225 freq = isHt40Target ? centers.synth_center : centers.ctl_center; 226 227 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) { 228 matchIndex = 0; 229 } else { 230 for (i = 0; (i < numChannels) && 231 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { 232 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel, 233 IS_CHAN_2GHZ(chan))) { 234 matchIndex = i; 235 break; 236 } else 237 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel, 238 IS_CHAN_2GHZ(chan)) && i > 0 && 239 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel, 240 IS_CHAN_2GHZ(chan))) { 241 lowIndex = i - 1; 242 break; 243 } 244 } 245 if ((matchIndex == -1) && (lowIndex == -1)) 246 matchIndex = i - 1; 247 } 248 249 if (matchIndex != -1) { 250 *pNewPower = powInfo[matchIndex]; 251 } else { 252 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel, 253 IS_CHAN_2GHZ(chan)); 254 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel, 255 IS_CHAN_2GHZ(chan)); 256 257 for (i = 0; i < numRates; i++) { 258 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq, 259 clo, chi, 260 powInfo[lowIndex].tPow2x[i], 261 powInfo[lowIndex + 1].tPow2x[i]); 262 } 263 } 264 } 265 266 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower, 267 bool is2GHz, int num_band_edges) 268 { 269 u16 twiceMaxEdgePower = MAX_RATE_POWER; 270 int i; 271 272 for (i = 0; (i < num_band_edges) && 273 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) { 274 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) { 275 twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl); 276 break; 277 } else if ((i > 0) && 278 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, 279 is2GHz))) { 280 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel, 281 is2GHz) < freq && 282 CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) { 283 twiceMaxEdgePower = 284 CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl); 285 } 286 break; 287 } 288 } 289 290 return twiceMaxEdgePower; 291 } 292 293 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah) 294 { 295 struct ath_common *common = ath9k_hw_common(ah); 296 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 297 298 switch (ar5416_get_ntxchains(ah->txchainmask)) { 299 case 1: 300 break; 301 case 2: 302 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN; 303 break; 304 case 3: 305 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN; 306 break; 307 default: 308 ath_dbg(common, ATH_DBG_EEPROM, 309 "Invalid chainmask configuration\n"); 310 break; 311 } 312 } 313 314 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah, 315 struct ath9k_channel *chan, 316 void *pRawDataSet, 317 u8 *bChans, u16 availPiers, 318 u16 tPdGainOverlap, 319 u16 *pPdGainBoundaries, u8 *pPDADCValues, 320 u16 numXpdGains) 321 { 322 int i, j, k; 323 int16_t ss; 324 u16 idxL = 0, idxR = 0, numPiers; 325 static u8 vpdTableL[AR5416_NUM_PD_GAINS] 326 [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; 327 static u8 vpdTableR[AR5416_NUM_PD_GAINS] 328 [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; 329 static u8 vpdTableI[AR5416_NUM_PD_GAINS] 330 [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; 331 332 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR; 333 u8 minPwrT4[AR5416_NUM_PD_GAINS]; 334 u8 maxPwrT4[AR5416_NUM_PD_GAINS]; 335 int16_t vpdStep; 336 int16_t tmpVal; 337 u16 sizeCurrVpdTable, maxIndex, tgtIndex; 338 bool match; 339 int16_t minDelta = 0; 340 struct chan_centers centers; 341 int pdgain_boundary_default; 342 struct cal_data_per_freq *data_def = pRawDataSet; 343 struct cal_data_per_freq_4k *data_4k = pRawDataSet; 344 struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet; 345 bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah); 346 int intercepts; 347 348 if (AR_SREV_9287(ah)) 349 intercepts = AR9287_PD_GAIN_ICEPTS; 350 else 351 intercepts = AR5416_PD_GAIN_ICEPTS; 352 353 memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS); 354 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 355 356 for (numPiers = 0; numPiers < availPiers; numPiers++) { 357 if (bChans[numPiers] == AR5416_BCHAN_UNUSED) 358 break; 359 } 360 361 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center, 362 IS_CHAN_2GHZ(chan)), 363 bChans, numPiers, &idxL, &idxR); 364 365 if (match) { 366 if (AR_SREV_9287(ah)) { 367 /* FIXME: array overrun? */ 368 for (i = 0; i < numXpdGains; i++) { 369 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0]; 370 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4]; 371 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], 372 data_9287[idxL].pwrPdg[i], 373 data_9287[idxL].vpdPdg[i], 374 intercepts, 375 vpdTableI[i]); 376 } 377 } else if (eeprom_4k) { 378 for (i = 0; i < numXpdGains; i++) { 379 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0]; 380 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4]; 381 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], 382 data_4k[idxL].pwrPdg[i], 383 data_4k[idxL].vpdPdg[i], 384 intercepts, 385 vpdTableI[i]); 386 } 387 } else { 388 for (i = 0; i < numXpdGains; i++) { 389 minPwrT4[i] = data_def[idxL].pwrPdg[i][0]; 390 maxPwrT4[i] = data_def[idxL].pwrPdg[i][4]; 391 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], 392 data_def[idxL].pwrPdg[i], 393 data_def[idxL].vpdPdg[i], 394 intercepts, 395 vpdTableI[i]); 396 } 397 } 398 } else { 399 for (i = 0; i < numXpdGains; i++) { 400 if (AR_SREV_9287(ah)) { 401 pVpdL = data_9287[idxL].vpdPdg[i]; 402 pPwrL = data_9287[idxL].pwrPdg[i]; 403 pVpdR = data_9287[idxR].vpdPdg[i]; 404 pPwrR = data_9287[idxR].pwrPdg[i]; 405 } else if (eeprom_4k) { 406 pVpdL = data_4k[idxL].vpdPdg[i]; 407 pPwrL = data_4k[idxL].pwrPdg[i]; 408 pVpdR = data_4k[idxR].vpdPdg[i]; 409 pPwrR = data_4k[idxR].pwrPdg[i]; 410 } else { 411 pVpdL = data_def[idxL].vpdPdg[i]; 412 pPwrL = data_def[idxL].pwrPdg[i]; 413 pVpdR = data_def[idxR].vpdPdg[i]; 414 pPwrR = data_def[idxR].pwrPdg[i]; 415 } 416 417 minPwrT4[i] = max(pPwrL[0], pPwrR[0]); 418 419 maxPwrT4[i] = 420 min(pPwrL[intercepts - 1], 421 pPwrR[intercepts - 1]); 422 423 424 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], 425 pPwrL, pVpdL, 426 intercepts, 427 vpdTableL[i]); 428 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], 429 pPwrR, pVpdR, 430 intercepts, 431 vpdTableR[i]); 432 433 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) { 434 vpdTableI[i][j] = 435 (u8)(ath9k_hw_interpolate((u16) 436 FREQ2FBIN(centers. 437 synth_center, 438 IS_CHAN_2GHZ 439 (chan)), 440 bChans[idxL], bChans[idxR], 441 vpdTableL[i][j], vpdTableR[i][j])); 442 } 443 } 444 } 445 446 k = 0; 447 448 for (i = 0; i < numXpdGains; i++) { 449 if (i == (numXpdGains - 1)) 450 pPdGainBoundaries[i] = 451 (u16)(maxPwrT4[i] / 2); 452 else 453 pPdGainBoundaries[i] = 454 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4); 455 456 pPdGainBoundaries[i] = 457 min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]); 458 459 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) { 460 minDelta = pPdGainBoundaries[0] - 23; 461 pPdGainBoundaries[0] = 23; 462 } else { 463 minDelta = 0; 464 } 465 466 if (i == 0) { 467 if (AR_SREV_9280_20_OR_LATER(ah)) 468 ss = (int16_t)(0 - (minPwrT4[i] / 2)); 469 else 470 ss = 0; 471 } else { 472 ss = (int16_t)((pPdGainBoundaries[i - 1] - 473 (minPwrT4[i] / 2)) - 474 tPdGainOverlap + 1 + minDelta); 475 } 476 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]); 477 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); 478 479 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { 480 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep); 481 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal); 482 ss++; 483 } 484 485 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1); 486 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap - 487 (minPwrT4[i] / 2)); 488 maxIndex = (tgtIndex < sizeCurrVpdTable) ? 489 tgtIndex : sizeCurrVpdTable; 490 491 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { 492 pPDADCValues[k++] = vpdTableI[i][ss++]; 493 } 494 495 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - 496 vpdTableI[i][sizeCurrVpdTable - 2]); 497 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); 498 499 if (tgtIndex >= maxIndex) { 500 while ((ss <= tgtIndex) && 501 (k < (AR5416_NUM_PDADC_VALUES - 1))) { 502 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] + 503 (ss - maxIndex + 1) * vpdStep)); 504 pPDADCValues[k++] = (u8)((tmpVal > 255) ? 505 255 : tmpVal); 506 ss++; 507 } 508 } 509 } 510 511 if (eeprom_4k) 512 pdgain_boundary_default = 58; 513 else 514 pdgain_boundary_default = pPdGainBoundaries[i - 1]; 515 516 while (i < AR5416_PD_GAINS_IN_MASK) { 517 pPdGainBoundaries[i] = pdgain_boundary_default; 518 i++; 519 } 520 521 while (k < AR5416_NUM_PDADC_VALUES) { 522 pPDADCValues[k] = pPDADCValues[k - 1]; 523 k++; 524 } 525 } 526 527 int ath9k_hw_eeprom_init(struct ath_hw *ah) 528 { 529 int status; 530 531 if (AR_SREV_9300_20_OR_LATER(ah)) 532 ah->eep_ops = &eep_ar9300_ops; 533 else if (AR_SREV_9287(ah)) { 534 ah->eep_ops = &eep_ar9287_ops; 535 } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) { 536 ah->eep_ops = &eep_4k_ops; 537 } else { 538 ah->eep_ops = &eep_def_ops; 539 } 540 541 if (!ah->eep_ops->fill_eeprom(ah)) 542 return -EIO; 543 544 status = ah->eep_ops->check_eeprom(ah); 545 546 return status; 547 } 548