1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "hw.h"
18 #include <linux/ath9k_platform.h>
19
ath9k_hw_analog_shift_regwrite(struct ath_hw * ah,u32 reg,u32 val)20 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
21 {
22 REG_WRITE(ah, reg, val);
23
24 if (ah->config.analog_shiftreg)
25 udelay(100);
26 }
27
ath9k_hw_analog_shift_rmw(struct ath_hw * ah,u32 reg,u32 mask,u32 shift,u32 val)28 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
29 u32 shift, u32 val)
30 {
31 REG_RMW(ah, reg, ((val << shift) & mask), mask);
32
33 if (ah->config.analog_shiftreg)
34 udelay(100);
35 }
36
ath9k_hw_interpolate(u16 target,u16 srcLeft,u16 srcRight,int16_t targetLeft,int16_t targetRight)37 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
38 int16_t targetLeft, int16_t targetRight)
39 {
40 int16_t rv;
41
42 if (srcRight == srcLeft) {
43 rv = targetLeft;
44 } else {
45 rv = (int16_t) (((target - srcLeft) * targetRight +
46 (srcRight - target) * targetLeft) /
47 (srcRight - srcLeft));
48 }
49 return rv;
50 }
51
ath9k_hw_get_lower_upper_index(u8 target,u8 * pList,u16 listSize,u16 * indexL,u16 * indexR)52 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
53 u16 *indexL, u16 *indexR)
54 {
55 u16 i;
56
57 if (target <= pList[0]) {
58 *indexL = *indexR = 0;
59 return true;
60 }
61 if (target >= pList[listSize - 1]) {
62 *indexL = *indexR = (u16) (listSize - 1);
63 return true;
64 }
65
66 for (i = 0; i < listSize - 1; i++) {
67 if (pList[i] == target) {
68 *indexL = *indexR = i;
69 return true;
70 }
71 if (target < pList[i + 1]) {
72 *indexL = i;
73 *indexR = (u16) (i + 1);
74 return false;
75 }
76 }
77 return false;
78 }
79
ath9k_hw_usb_gen_fill_eeprom(struct ath_hw * ah,u16 * eep_data,int eep_start_loc,int size)80 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
81 int eep_start_loc, int size)
82 {
83 int i = 0, j, addr;
84 u32 addrdata[8];
85 u32 data[8];
86
87 for (addr = 0; addr < size; addr++) {
88 addrdata[i] = AR5416_EEPROM_OFFSET +
89 ((addr + eep_start_loc) << AR5416_EEPROM_S);
90 i++;
91 if (i == 8) {
92 REG_READ_MULTI(ah, addrdata, data, i);
93
94 for (j = 0; j < i; j++) {
95 *eep_data = data[j];
96 eep_data++;
97 }
98 i = 0;
99 }
100 }
101
102 if (i != 0) {
103 REG_READ_MULTI(ah, addrdata, data, i);
104
105 for (j = 0; j < i; j++) {
106 *eep_data = data[j];
107 eep_data++;
108 }
109 }
110 }
111
ath9k_hw_nvram_read_array(u16 * blob,size_t blob_size,off_t offset,u16 * data)112 static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
113 off_t offset, u16 *data)
114 {
115 if (offset >= blob_size)
116 return false;
117
118 *data = blob[offset];
119 return true;
120 }
121
ath9k_hw_nvram_read_pdata(struct ath9k_platform_data * pdata,off_t offset,u16 * data)122 static bool ath9k_hw_nvram_read_pdata(struct ath9k_platform_data *pdata,
123 off_t offset, u16 *data)
124 {
125 return ath9k_hw_nvram_read_array(pdata->eeprom_data,
126 ARRAY_SIZE(pdata->eeprom_data),
127 offset, data);
128 }
129
ath9k_hw_nvram_read_firmware(const struct firmware * eeprom_blob,off_t offset,u16 * data)130 static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
131 off_t offset, u16 *data)
132 {
133 return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
134 eeprom_blob->size / sizeof(u16),
135 offset, data);
136 }
137
ath9k_hw_nvram_read_nvmem(struct ath_hw * ah,off_t offset,u16 * data)138 static bool ath9k_hw_nvram_read_nvmem(struct ath_hw *ah, off_t offset,
139 u16 *data)
140 {
141 return ath9k_hw_nvram_read_array(ah->nvmem_blob,
142 ah->nvmem_blob_len / sizeof(u16),
143 offset, data);
144 }
145
ath9k_hw_nvram_read(struct ath_hw * ah,u32 off,u16 * data)146 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
147 {
148 struct ath_common *common = ath9k_hw_common(ah);
149 struct ath9k_platform_data *pdata = ah->dev->platform_data;
150 bool ret;
151
152 if (ah->nvmem_blob)
153 ret = ath9k_hw_nvram_read_nvmem(ah, off, data);
154 else if (ah->eeprom_blob)
155 ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
156 else if (pdata && !pdata->use_eeprom)
157 ret = ath9k_hw_nvram_read_pdata(pdata, off, data);
158 else
159 ret = common->bus_ops->eeprom_read(common, off, data);
160
161 if (!ret)
162 ath_dbg(common, EEPROM,
163 "unable to read eeprom region at offset %u\n", off);
164
165 return ret;
166 }
167
ath9k_hw_nvram_swap_data(struct ath_hw * ah,bool * swap_needed,int size)168 int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
169 {
170 u16 magic;
171 u16 *eepdata;
172 int i;
173 bool needs_byteswap = false;
174 struct ath_common *common = ath9k_hw_common(ah);
175
176 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
177 ath_err(common, "Reading Magic # failed\n");
178 return -EIO;
179 }
180
181 if (swab16(magic) == AR5416_EEPROM_MAGIC) {
182 needs_byteswap = true;
183 ath_dbg(common, EEPROM,
184 "EEPROM needs byte-swapping to correct endianness.\n");
185 } else if (magic != AR5416_EEPROM_MAGIC) {
186 if (ath9k_hw_use_flash(ah)) {
187 ath_dbg(common, EEPROM,
188 "Ignoring invalid EEPROM magic (0x%04x).\n",
189 magic);
190 } else {
191 ath_err(common,
192 "Invalid EEPROM magic (0x%04x).\n", magic);
193 return -EINVAL;
194 }
195 }
196
197 if (needs_byteswap) {
198 if (ah->ah_flags & AH_NO_EEP_SWAP) {
199 ath_info(common,
200 "Ignoring endianness difference in EEPROM magic bytes.\n");
201 } else {
202 eepdata = (u16 *)(&ah->eeprom);
203
204 for (i = 0; i < size; i++)
205 eepdata[i] = swab16(eepdata[i]);
206 }
207 }
208
209 if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) {
210 *swap_needed = true;
211 ath_dbg(common, EEPROM,
212 "Big Endian EEPROM detected according to EEPMISC register.\n");
213 } else {
214 *swap_needed = false;
215 }
216
217 return 0;
218 }
219
ath9k_hw_nvram_validate_checksum(struct ath_hw * ah,int size)220 bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
221 {
222 u32 i, sum = 0;
223 u16 *eepdata = (u16 *)(&ah->eeprom);
224 struct ath_common *common = ath9k_hw_common(ah);
225
226 for (i = 0; i < size; i++)
227 sum ^= eepdata[i];
228
229 if (sum != 0xffff) {
230 ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
231 return false;
232 }
233
234 return true;
235 }
236
ath9k_hw_nvram_check_version(struct ath_hw * ah,int version,int minrev)237 bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
238 {
239 struct ath_common *common = ath9k_hw_common(ah);
240
241 if (ah->eep_ops->get_eeprom_ver(ah) != version ||
242 ah->eep_ops->get_eeprom_rev(ah) < minrev) {
243 ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
244 ah->eep_ops->get_eeprom_ver(ah),
245 ah->eep_ops->get_eeprom_rev(ah));
246 return false;
247 }
248
249 return true;
250 }
251
ath9k_hw_fill_vpd_table(u8 pwrMin,u8 pwrMax,u8 * pPwrList,u8 * pVpdList,u16 numIntercepts,u8 * pRetVpdList)252 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
253 u8 *pVpdList, u16 numIntercepts,
254 u8 *pRetVpdList)
255 {
256 u16 i, k;
257 u8 currPwr = pwrMin;
258 u16 idxL = 0, idxR = 0;
259
260 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
261 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
262 numIntercepts, &(idxL),
263 &(idxR));
264 if (idxR < 1)
265 idxR = 1;
266 if (idxL == numIntercepts - 1)
267 idxL = (u16) (numIntercepts - 2);
268 if (pPwrList[idxL] == pPwrList[idxR])
269 k = pVpdList[idxL];
270 else
271 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
272 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
273 (pPwrList[idxR] - pPwrList[idxL]));
274 pRetVpdList[i] = (u8) k;
275 currPwr += 2;
276 }
277 }
278
ath9k_hw_get_legacy_target_powers(struct ath_hw * ah,struct ath9k_channel * chan,struct cal_target_power_leg * powInfo,u16 numChannels,struct cal_target_power_leg * pNewPower,u16 numRates,bool isExtTarget)279 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
280 struct ath9k_channel *chan,
281 struct cal_target_power_leg *powInfo,
282 u16 numChannels,
283 struct cal_target_power_leg *pNewPower,
284 u16 numRates, bool isExtTarget)
285 {
286 struct chan_centers centers;
287 u16 clo, chi;
288 int i;
289 int matchIndex = -1, lowIndex = -1;
290 u16 freq;
291
292 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
293 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
294
295 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
296 IS_CHAN_2GHZ(chan))) {
297 matchIndex = 0;
298 } else {
299 for (i = 0; (i < numChannels) &&
300 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
301 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
302 IS_CHAN_2GHZ(chan))) {
303 matchIndex = i;
304 break;
305 } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
306 IS_CHAN_2GHZ(chan)) && i > 0 &&
307 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
308 IS_CHAN_2GHZ(chan))) {
309 lowIndex = i - 1;
310 break;
311 }
312 }
313 if ((matchIndex == -1) && (lowIndex == -1))
314 matchIndex = i - 1;
315 }
316
317 if (matchIndex != -1) {
318 *pNewPower = powInfo[matchIndex];
319 } else {
320 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
321 IS_CHAN_2GHZ(chan));
322 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
323 IS_CHAN_2GHZ(chan));
324
325 for (i = 0; i < numRates; i++) {
326 pNewPower->tPow2x[i] =
327 (u8)ath9k_hw_interpolate(freq, clo, chi,
328 powInfo[lowIndex].tPow2x[i],
329 powInfo[lowIndex + 1].tPow2x[i]);
330 }
331 }
332 }
333
ath9k_hw_get_target_powers(struct ath_hw * ah,struct ath9k_channel * chan,struct cal_target_power_ht * powInfo,u16 numChannels,struct cal_target_power_ht * pNewPower,u16 numRates,bool isHt40Target)334 void ath9k_hw_get_target_powers(struct ath_hw *ah,
335 struct ath9k_channel *chan,
336 struct cal_target_power_ht *powInfo,
337 u16 numChannels,
338 struct cal_target_power_ht *pNewPower,
339 u16 numRates, bool isHt40Target)
340 {
341 struct chan_centers centers;
342 u16 clo, chi;
343 int i;
344 int matchIndex = -1, lowIndex = -1;
345 u16 freq;
346
347 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
348 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
349
350 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
351 matchIndex = 0;
352 } else {
353 for (i = 0; (i < numChannels) &&
354 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
355 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
356 IS_CHAN_2GHZ(chan))) {
357 matchIndex = i;
358 break;
359 } else
360 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
361 IS_CHAN_2GHZ(chan)) && i > 0 &&
362 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
363 IS_CHAN_2GHZ(chan))) {
364 lowIndex = i - 1;
365 break;
366 }
367 }
368 if ((matchIndex == -1) && (lowIndex == -1))
369 matchIndex = i - 1;
370 }
371
372 if (matchIndex != -1) {
373 *pNewPower = powInfo[matchIndex];
374 } else {
375 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
376 IS_CHAN_2GHZ(chan));
377 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
378 IS_CHAN_2GHZ(chan));
379
380 for (i = 0; i < numRates; i++) {
381 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
382 clo, chi,
383 powInfo[lowIndex].tPow2x[i],
384 powInfo[lowIndex + 1].tPow2x[i]);
385 }
386 }
387 }
388
ath9k_hw_get_max_edge_power(u16 freq,struct cal_ctl_edges * pRdEdgesPower,bool is2GHz,int num_band_edges)389 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
390 bool is2GHz, int num_band_edges)
391 {
392 u16 twiceMaxEdgePower = MAX_RATE_POWER;
393 int i;
394
395 for (i = 0; (i < num_band_edges) &&
396 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
397 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
398 twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
399 break;
400 } else if ((i > 0) &&
401 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
402 is2GHz))) {
403 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
404 is2GHz) < freq &&
405 CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
406 twiceMaxEdgePower =
407 CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
408 }
409 break;
410 }
411 }
412
413 return twiceMaxEdgePower;
414 }
415
ath9k_hw_get_scaled_power(struct ath_hw * ah,u16 power_limit,u8 antenna_reduction)416 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
417 u8 antenna_reduction)
418 {
419 u16 reduction = antenna_reduction;
420
421 /*
422 * Reduce scaled Power by number of chains active
423 * to get the per chain tx power level.
424 */
425 switch (ar5416_get_ntxchains(ah->txchainmask)) {
426 case 1:
427 break;
428 case 2:
429 reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
430 break;
431 case 3:
432 reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
433 break;
434 }
435
436 if (power_limit > reduction)
437 power_limit -= reduction;
438 else
439 power_limit = 0;
440
441 return min_t(u16, power_limit, MAX_RATE_POWER);
442 }
443
ath9k_hw_update_regulatory_maxpower(struct ath_hw * ah)444 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
445 {
446 struct ath_common *common = ath9k_hw_common(ah);
447 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
448
449 switch (ar5416_get_ntxchains(ah->txchainmask)) {
450 case 1:
451 break;
452 case 2:
453 regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
454 break;
455 case 3:
456 regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
457 break;
458 default:
459 ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
460 break;
461 }
462 }
463
ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw * ah,struct ath9k_channel * chan,void * pRawDataSet,u8 * bChans,u16 availPiers,u16 tPdGainOverlap,u16 * pPdGainBoundaries,u8 * pPDADCValues,u16 numXpdGains)464 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
465 struct ath9k_channel *chan,
466 void *pRawDataSet,
467 u8 *bChans, u16 availPiers,
468 u16 tPdGainOverlap,
469 u16 *pPdGainBoundaries, u8 *pPDADCValues,
470 u16 numXpdGains)
471 {
472 int i, j, k;
473 int16_t ss;
474 u16 idxL = 0, idxR = 0, numPiers;
475 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
476 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
477 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
478 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
479 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
480 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
481
482 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
483 u8 minPwrT4[AR5416_NUM_PD_GAINS];
484 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
485 int16_t vpdStep;
486 int16_t tmpVal;
487 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
488 bool match;
489 int16_t minDelta = 0;
490 struct chan_centers centers;
491 int pdgain_boundary_default;
492 struct cal_data_per_freq *data_def = pRawDataSet;
493 struct cal_data_per_freq_4k *data_4k = pRawDataSet;
494 struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
495 bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
496 int intercepts;
497
498 if (AR_SREV_9287(ah))
499 intercepts = AR9287_PD_GAIN_ICEPTS;
500 else
501 intercepts = AR5416_PD_GAIN_ICEPTS;
502
503 memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
504 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
505
506 for (numPiers = 0; numPiers < availPiers; numPiers++) {
507 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
508 break;
509 }
510
511 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
512 IS_CHAN_2GHZ(chan)),
513 bChans, numPiers, &idxL, &idxR);
514
515 if (match) {
516 if (AR_SREV_9287(ah)) {
517 for (i = 0; i < numXpdGains; i++) {
518 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
519 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
520 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
521 data_9287[idxL].pwrPdg[i],
522 data_9287[idxL].vpdPdg[i],
523 intercepts,
524 vpdTableI[i]);
525 }
526 } else if (eeprom_4k) {
527 for (i = 0; i < numXpdGains; i++) {
528 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
529 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
530 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
531 data_4k[idxL].pwrPdg[i],
532 data_4k[idxL].vpdPdg[i],
533 intercepts,
534 vpdTableI[i]);
535 }
536 } else {
537 for (i = 0; i < numXpdGains; i++) {
538 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
539 maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
540 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
541 data_def[idxL].pwrPdg[i],
542 data_def[idxL].vpdPdg[i],
543 intercepts,
544 vpdTableI[i]);
545 }
546 }
547 } else {
548 for (i = 0; i < numXpdGains; i++) {
549 if (AR_SREV_9287(ah)) {
550 pVpdL = data_9287[idxL].vpdPdg[i];
551 pPwrL = data_9287[idxL].pwrPdg[i];
552 pVpdR = data_9287[idxR].vpdPdg[i];
553 pPwrR = data_9287[idxR].pwrPdg[i];
554 } else if (eeprom_4k) {
555 pVpdL = data_4k[idxL].vpdPdg[i];
556 pPwrL = data_4k[idxL].pwrPdg[i];
557 pVpdR = data_4k[idxR].vpdPdg[i];
558 pPwrR = data_4k[idxR].pwrPdg[i];
559 } else {
560 pVpdL = data_def[idxL].vpdPdg[i];
561 pPwrL = data_def[idxL].pwrPdg[i];
562 pVpdR = data_def[idxR].vpdPdg[i];
563 pPwrR = data_def[idxR].pwrPdg[i];
564 }
565
566 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
567
568 maxPwrT4[i] =
569 min(pPwrL[intercepts - 1],
570 pPwrR[intercepts - 1]);
571
572
573 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
574 pPwrL, pVpdL,
575 intercepts,
576 vpdTableL[i]);
577 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
578 pPwrR, pVpdR,
579 intercepts,
580 vpdTableR[i]);
581
582 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
583 vpdTableI[i][j] =
584 (u8)(ath9k_hw_interpolate((u16)
585 FREQ2FBIN(centers.
586 synth_center,
587 IS_CHAN_2GHZ
588 (chan)),
589 bChans[idxL], bChans[idxR],
590 vpdTableL[i][j], vpdTableR[i][j]));
591 }
592 }
593 }
594
595 k = 0;
596
597 for (i = 0; i < numXpdGains; i++) {
598 if (i == (numXpdGains - 1))
599 pPdGainBoundaries[i] =
600 (u16)(maxPwrT4[i] / 2);
601 else
602 pPdGainBoundaries[i] =
603 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
604
605 pPdGainBoundaries[i] =
606 min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
607
608 minDelta = 0;
609
610 if (i == 0) {
611 if (AR_SREV_9280_20_OR_LATER(ah))
612 ss = (int16_t)(0 - (minPwrT4[i] / 2));
613 else
614 ss = 0;
615 } else {
616 ss = (int16_t)((pPdGainBoundaries[i - 1] -
617 (minPwrT4[i] / 2)) -
618 tPdGainOverlap + 1 + minDelta);
619 }
620 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
621 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
622
623 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
624 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
625 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
626 ss++;
627 }
628
629 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
630 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
631 (minPwrT4[i] / 2));
632 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
633 tgtIndex : sizeCurrVpdTable;
634
635 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
636 pPDADCValues[k++] = vpdTableI[i][ss++];
637 }
638
639 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
640 vpdTableI[i][sizeCurrVpdTable - 2]);
641 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
642
643 if (tgtIndex >= maxIndex) {
644 while ((ss <= tgtIndex) &&
645 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
646 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
647 (ss - maxIndex + 1) * vpdStep));
648 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
649 255 : tmpVal);
650 ss++;
651 }
652 }
653 }
654
655 if (eeprom_4k)
656 pdgain_boundary_default = 58;
657 else
658 pdgain_boundary_default = pPdGainBoundaries[i - 1];
659
660 while (i < AR5416_PD_GAINS_IN_MASK) {
661 pPdGainBoundaries[i] = pdgain_boundary_default;
662 i++;
663 }
664
665 while (k < AR5416_NUM_PDADC_VALUES) {
666 pPDADCValues[k] = pPDADCValues[k - 1];
667 k++;
668 }
669 }
670
ath9k_hw_eeprom_init(struct ath_hw * ah)671 int ath9k_hw_eeprom_init(struct ath_hw *ah)
672 {
673 if (AR_SREV_9300_20_OR_LATER(ah))
674 ah->eep_ops = &eep_ar9300_ops;
675 else if (AR_SREV_9287(ah)) {
676 ah->eep_ops = &eep_ar9287_ops;
677 } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
678 ah->eep_ops = &eep_4k_ops;
679 } else {
680 ah->eep_ops = &eep_def_ops;
681 }
682
683 if (!ah->eep_ops->fill_eeprom(ah))
684 return -EIO;
685
686 return ah->eep_ops->check_eeprom(ah);
687 }
688