xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/ar9003_phy.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (c) 2010 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "ar9003_phy.h"
19 
20 static const int firstep_table[] =
21 /* level:  0   1   2   3   4   5   6   7   8  */
22 	{ -4, -2,  0,  2,  4,  6,  8, 10, 12 }; /* lvl 0-8, default 2 */
23 
24 static const int cycpwrThr1_table[] =
25 /* level:  0   1   2   3   4   5   6   7   8  */
26 	{ -6, -4, -2,  0,  2,  4,  6,  8 };     /* lvl 0-7, default 3 */
27 
28 /*
29  * register values to turn OFDM weak signal detection OFF
30  */
31 static const int m1ThreshLow_off = 127;
32 static const int m2ThreshLow_off = 127;
33 static const int m1Thresh_off = 127;
34 static const int m2Thresh_off = 127;
35 static const int m2CountThr_off =  31;
36 static const int m2CountThrLow_off =  63;
37 static const int m1ThreshLowExt_off = 127;
38 static const int m2ThreshLowExt_off = 127;
39 static const int m1ThreshExt_off = 127;
40 static const int m2ThreshExt_off = 127;
41 
42 /**
43  * ar9003_hw_set_channel - set channel on single-chip device
44  * @ah: atheros hardware structure
45  * @chan:
46  *
47  * This is the function to change channel on single-chip devices, that is
48  * all devices after ar9280.
49  *
50  * This function takes the channel value in MHz and sets
51  * hardware channel value. Assumes writes have been enabled to analog bus.
52  *
53  * Actual Expression,
54  *
55  * For 2GHz channel,
56  * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
57  * (freq_ref = 40MHz)
58  *
59  * For 5GHz channel,
60  * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
61  * (freq_ref = 40MHz/(24>>amodeRefSel))
62  *
63  * For 5GHz channels which are 5MHz spaced,
64  * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
65  * (freq_ref = 40MHz)
66  */
67 static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
68 {
69 	u16 bMode, fracMode = 0, aModeRefSel = 0;
70 	u32 freq, channelSel = 0, reg32 = 0;
71 	struct chan_centers centers;
72 	int loadSynthChannel;
73 
74 	ath9k_hw_get_channel_centers(ah, chan, &centers);
75 	freq = centers.synth_center;
76 
77 	if (freq < 4800) {     /* 2 GHz, fractional mode */
78 		if (AR_SREV_9485(ah))
79 			channelSel = CHANSEL_2G_9485(freq);
80 		else
81 			channelSel = CHANSEL_2G(freq);
82 		/* Set to 2G mode */
83 		bMode = 1;
84 	} else {
85 		channelSel = CHANSEL_5G(freq);
86 		/* Doubler is ON, so, divide channelSel by 2. */
87 		channelSel >>= 1;
88 		/* Set to 5G mode */
89 		bMode = 0;
90 	}
91 
92 	/* Enable fractional mode for all channels */
93 	fracMode = 1;
94 	aModeRefSel = 0;
95 	loadSynthChannel = 0;
96 
97 	reg32 = (bMode << 29);
98 	REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
99 
100 	/* Enable Long shift Select for Synthesizer */
101 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4,
102 		      AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1);
103 
104 	/* Program Synth. setting */
105 	reg32 = (channelSel << 2) | (fracMode << 30) |
106 		(aModeRefSel << 28) | (loadSynthChannel << 31);
107 	REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
108 
109 	/* Toggle Load Synth channel bit */
110 	loadSynthChannel = 1;
111 	reg32 = (channelSel << 2) | (fracMode << 30) |
112 		(aModeRefSel << 28) | (loadSynthChannel << 31);
113 	REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
114 
115 	ah->curchan = chan;
116 	ah->curchan_rad_index = -1;
117 
118 	return 0;
119 }
120 
121 /**
122  * ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency
123  * @ah: atheros hardware structure
124  * @chan:
125  *
126  * For single-chip solutions. Converts to baseband spur frequency given the
127  * input channel frequency and compute register settings below.
128  *
129  * Spur mitigation for MRC CCK
130  */
131 static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah,
132 					    struct ath9k_channel *chan)
133 {
134 	static const u32 spur_freq[4] = { 2420, 2440, 2464, 2480 };
135 	int cur_bb_spur, negative = 0, cck_spur_freq;
136 	int i;
137 	int range, max_spur_cnts, synth_freq;
138 	u8 *spur_fbin_ptr = NULL;
139 
140 	/*
141 	 * Need to verify range +/- 10 MHz in control channel, otherwise spur
142 	 * is out-of-band and can be ignored.
143 	 */
144 
145 	if (AR_SREV_9485(ah)) {
146 		spur_fbin_ptr = ar9003_get_spur_chan_ptr(ah,
147 							 IS_CHAN_2GHZ(chan));
148 		if (spur_fbin_ptr[0] == 0) /* No spur */
149 			return;
150 		max_spur_cnts = 5;
151 		if (IS_CHAN_HT40(chan)) {
152 			range = 19;
153 			if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
154 					   AR_PHY_GC_DYN2040_PRI_CH) == 0)
155 				synth_freq = chan->channel + 10;
156 			else
157 				synth_freq = chan->channel - 10;
158 		} else {
159 			range = 10;
160 			synth_freq = chan->channel;
161 		}
162 	} else {
163 		range = 10;
164 		max_spur_cnts = 4;
165 		synth_freq = chan->channel;
166 	}
167 
168 	for (i = 0; i < max_spur_cnts; i++) {
169 		negative = 0;
170 		if (AR_SREV_9485(ah))
171 			cur_bb_spur = FBIN2FREQ(spur_fbin_ptr[i],
172 					IS_CHAN_2GHZ(chan)) - synth_freq;
173 		else
174 			cur_bb_spur = spur_freq[i] - synth_freq;
175 
176 		if (cur_bb_spur < 0) {
177 			negative = 1;
178 			cur_bb_spur = -cur_bb_spur;
179 		}
180 		if (cur_bb_spur < range) {
181 			cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
182 
183 			if (negative == 1)
184 				cck_spur_freq = -cck_spur_freq;
185 
186 			cck_spur_freq = cck_spur_freq & 0xfffff;
187 
188 			REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
189 				      AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
190 			REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
191 				      AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
192 			REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
193 				      AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE,
194 				      0x2);
195 			REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
196 				      AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT,
197 				      0x1);
198 			REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
199 				      AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
200 				      cck_spur_freq);
201 
202 			return;
203 		}
204 	}
205 
206 	REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
207 		      AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
208 	REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
209 		      AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
210 	REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
211 		      AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
212 }
213 
214 /* Clean all spur register fields */
215 static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah)
216 {
217 	REG_RMW_FIELD(ah, AR_PHY_TIMING4,
218 		      AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0);
219 	REG_RMW_FIELD(ah, AR_PHY_TIMING11,
220 		      AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
221 	REG_RMW_FIELD(ah, AR_PHY_TIMING11,
222 		      AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
223 	REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
224 		      AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0);
225 	REG_RMW_FIELD(ah, AR_PHY_TIMING11,
226 		      AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0);
227 	REG_RMW_FIELD(ah, AR_PHY_TIMING11,
228 		      AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0);
229 	REG_RMW_FIELD(ah, AR_PHY_TIMING4,
230 		      AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0);
231 	REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
232 		      AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0);
233 	REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
234 		      AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0);
235 
236 	REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
237 		      AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0);
238 	REG_RMW_FIELD(ah, AR_PHY_TIMING4,
239 		      AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0);
240 	REG_RMW_FIELD(ah, AR_PHY_TIMING4,
241 		      AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0);
242 	REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
243 		      AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0);
244 	REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
245 		      AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0);
246 	REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
247 		      AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0);
248 	REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
249 		      AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0);
250 	REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
251 		      AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0);
252 	REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
253 		      AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0);
254 	REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
255 		      AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
256 }
257 
258 static void ar9003_hw_spur_ofdm(struct ath_hw *ah,
259 				int freq_offset,
260 				int spur_freq_sd,
261 				int spur_delta_phase,
262 				int spur_subchannel_sd)
263 {
264 	int mask_index = 0;
265 
266 	/* OFDM Spur mitigation */
267 	REG_RMW_FIELD(ah, AR_PHY_TIMING4,
268 		 AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1);
269 	REG_RMW_FIELD(ah, AR_PHY_TIMING11,
270 		      AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
271 	REG_RMW_FIELD(ah, AR_PHY_TIMING11,
272 		      AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
273 	REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
274 		      AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd);
275 	REG_RMW_FIELD(ah, AR_PHY_TIMING11,
276 		      AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1);
277 	REG_RMW_FIELD(ah, AR_PHY_TIMING11,
278 		      AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1);
279 	REG_RMW_FIELD(ah, AR_PHY_TIMING4,
280 		      AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1);
281 	REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
282 		      AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
283 	REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
284 		      AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1);
285 
286 	if (REG_READ_FIELD(ah, AR_PHY_MODE,
287 			   AR_PHY_MODE_DYNAMIC) == 0x1)
288 		REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
289 			      AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1);
290 
291 	mask_index = (freq_offset << 4) / 5;
292 	if (mask_index < 0)
293 		mask_index = mask_index - 1;
294 
295 	mask_index = mask_index & 0x7f;
296 
297 	REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
298 		      AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1);
299 	REG_RMW_FIELD(ah, AR_PHY_TIMING4,
300 		      AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1);
301 	REG_RMW_FIELD(ah, AR_PHY_TIMING4,
302 		      AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1);
303 	REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
304 		      AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index);
305 	REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
306 		      AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index);
307 	REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
308 		      AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index);
309 	REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
310 		      AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc);
311 	REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
312 		      AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc);
313 	REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
314 		      AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
315 	REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
316 		      AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
317 }
318 
319 static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah,
320 				     struct ath9k_channel *chan,
321 				     int freq_offset)
322 {
323 	int spur_freq_sd = 0;
324 	int spur_subchannel_sd = 0;
325 	int spur_delta_phase = 0;
326 
327 	if (IS_CHAN_HT40(chan)) {
328 		if (freq_offset < 0) {
329 			if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
330 					   AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
331 				spur_subchannel_sd = 1;
332 			else
333 				spur_subchannel_sd = 0;
334 
335 			spur_freq_sd = ((freq_offset + 10) << 9) / 11;
336 
337 		} else {
338 			if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
339 			    AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
340 				spur_subchannel_sd = 0;
341 			else
342 				spur_subchannel_sd = 1;
343 
344 			spur_freq_sd = ((freq_offset - 10) << 9) / 11;
345 
346 		}
347 
348 		spur_delta_phase = (freq_offset << 17) / 5;
349 
350 	} else {
351 		spur_subchannel_sd = 0;
352 		spur_freq_sd = (freq_offset << 9) /11;
353 		spur_delta_phase = (freq_offset << 18) / 5;
354 	}
355 
356 	spur_freq_sd = spur_freq_sd & 0x3ff;
357 	spur_delta_phase = spur_delta_phase & 0xfffff;
358 
359 	ar9003_hw_spur_ofdm(ah,
360 			    freq_offset,
361 			    spur_freq_sd,
362 			    spur_delta_phase,
363 			    spur_subchannel_sd);
364 }
365 
366 /* Spur mitigation for OFDM */
367 static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah,
368 					 struct ath9k_channel *chan)
369 {
370 	int synth_freq;
371 	int range = 10;
372 	int freq_offset = 0;
373 	int mode;
374 	u8* spurChansPtr;
375 	unsigned int i;
376 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
377 
378 	if (IS_CHAN_5GHZ(chan)) {
379 		spurChansPtr = &(eep->modalHeader5G.spurChans[0]);
380 		mode = 0;
381 	}
382 	else {
383 		spurChansPtr = &(eep->modalHeader2G.spurChans[0]);
384 		mode = 1;
385 	}
386 
387 	if (spurChansPtr[0] == 0)
388 		return; /* No spur in the mode */
389 
390 	if (IS_CHAN_HT40(chan)) {
391 		range = 19;
392 		if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
393 				   AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
394 			synth_freq = chan->channel - 10;
395 		else
396 			synth_freq = chan->channel + 10;
397 	} else {
398 		range = 10;
399 		synth_freq = chan->channel;
400 	}
401 
402 	ar9003_hw_spur_ofdm_clear(ah);
403 
404 	for (i = 0; spurChansPtr[i] && i < 5; i++) {
405 		freq_offset = FBIN2FREQ(spurChansPtr[i], mode) - synth_freq;
406 		if (abs(freq_offset) < range) {
407 			ar9003_hw_spur_ofdm_work(ah, chan, freq_offset);
408 			break;
409 		}
410 	}
411 }
412 
413 static void ar9003_hw_spur_mitigate(struct ath_hw *ah,
414 				    struct ath9k_channel *chan)
415 {
416 	ar9003_hw_spur_mitigate_mrc_cck(ah, chan);
417 	ar9003_hw_spur_mitigate_ofdm(ah, chan);
418 }
419 
420 static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah,
421 					 struct ath9k_channel *chan)
422 {
423 	u32 pll;
424 
425 	pll = SM(0x5, AR_RTC_9300_PLL_REFDIV);
426 
427 	if (chan && IS_CHAN_HALF_RATE(chan))
428 		pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL);
429 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
430 		pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL);
431 
432 	pll |= SM(0x2c, AR_RTC_9300_PLL_DIV);
433 
434 	return pll;
435 }
436 
437 static void ar9003_hw_set_channel_regs(struct ath_hw *ah,
438 				       struct ath9k_channel *chan)
439 {
440 	u32 phymode;
441 	u32 enableDacFifo = 0;
442 
443 	enableDacFifo =
444 		(REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO);
445 
446 	/* Enable 11n HT, 20 MHz */
447 	phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH |
448 		  AR_PHY_GC_SHORT_GI_40 | enableDacFifo;
449 
450 	/* Configure baseband for dynamic 20/40 operation */
451 	if (IS_CHAN_HT40(chan)) {
452 		phymode |= AR_PHY_GC_DYN2040_EN;
453 		/* Configure control (primary) channel at +-10MHz */
454 		if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
455 		    (chan->chanmode == CHANNEL_G_HT40PLUS))
456 			phymode |= AR_PHY_GC_DYN2040_PRI_CH;
457 
458 	}
459 
460 	/* make sure we preserve INI settings */
461 	phymode |= REG_READ(ah, AR_PHY_GEN_CTRL);
462 	/* turn off Green Field detection for STA for now */
463 	phymode &= ~AR_PHY_GC_GF_DETECT_EN;
464 
465 	REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);
466 
467 	/* Configure MAC for 20/40 operation */
468 	ath9k_hw_set11nmac2040(ah);
469 
470 	/* global transmit timeout (25 TUs default)*/
471 	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
472 	/* carrier sense timeout */
473 	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
474 }
475 
476 static void ar9003_hw_init_bb(struct ath_hw *ah,
477 			      struct ath9k_channel *chan)
478 {
479 	u32 synthDelay;
480 
481 	/*
482 	 * Wait for the frequency synth to settle (synth goes on
483 	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
484 	 * Value is in 100ns increments.
485 	 */
486 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
487 	if (IS_CHAN_B(chan))
488 		synthDelay = (4 * synthDelay) / 22;
489 	else
490 		synthDelay /= 10;
491 
492 	/* Activate the PHY (includes baseband activate + synthesizer on) */
493 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
494 
495 	/*
496 	 * There is an issue if the AP starts the calibration before
497 	 * the base band timeout completes.  This could result in the
498 	 * rx_clear false triggering.  As a workaround we add delay an
499 	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
500 	 * does not happen.
501 	 */
502 	udelay(synthDelay + BASE_ACTIVATE_DELAY);
503 }
504 
505 void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
506 {
507 	switch (rx) {
508 	case 0x5:
509 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
510 			    AR_PHY_SWAP_ALT_CHAIN);
511 	case 0x3:
512 	case 0x1:
513 	case 0x2:
514 	case 0x7:
515 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
516 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
517 		break;
518 	default:
519 		break;
520 	}
521 
522 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7))
523 		REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
524 	else
525 		REG_WRITE(ah, AR_SELFGEN_MASK, tx);
526 
527 	if (tx == 0x5) {
528 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
529 			    AR_PHY_SWAP_ALT_CHAIN);
530 	}
531 }
532 
533 /*
534  * Override INI values with chip specific configuration.
535  */
536 static void ar9003_hw_override_ini(struct ath_hw *ah)
537 {
538 	u32 val;
539 
540 	/*
541 	 * Set the RX_ABORT and RX_DIS and clear it only after
542 	 * RXE is set for MAC. This prevents frames with
543 	 * corrupted descriptor status.
544 	 */
545 	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
546 
547 	/*
548 	 * For AR9280 and above, there is a new feature that allows
549 	 * Multicast search based on both MAC Address and Key ID. By default,
550 	 * this feature is enabled. But since the driver is not using this
551 	 * feature, we switch it off; otherwise multicast search based on
552 	 * MAC addr only will fail.
553 	 */
554 	val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
555 	REG_WRITE(ah, AR_PCU_MISC_MODE2,
556 		  val | AR_AGG_WEP_ENABLE_FIX | AR_AGG_WEP_ENABLE);
557 }
558 
559 static void ar9003_hw_prog_ini(struct ath_hw *ah,
560 			       struct ar5416IniArray *iniArr,
561 			       int column)
562 {
563 	unsigned int i, regWrites = 0;
564 
565 	/* New INI format: Array may be undefined (pre, core, post arrays) */
566 	if (!iniArr->ia_array)
567 		return;
568 
569 	/*
570 	 * New INI format: Pre, core, and post arrays for a given subsystem
571 	 * may be modal (> 2 columns) or non-modal (2 columns). Determine if
572 	 * the array is non-modal and force the column to 1.
573 	 */
574 	if (column >= iniArr->ia_columns)
575 		column = 1;
576 
577 	for (i = 0; i < iniArr->ia_rows; i++) {
578 		u32 reg = INI_RA(iniArr, i, 0);
579 		u32 val = INI_RA(iniArr, i, column);
580 
581 		REG_WRITE(ah, reg, val);
582 
583 		DO_DELAY(regWrites);
584 	}
585 }
586 
587 static int ar9003_hw_process_ini(struct ath_hw *ah,
588 				 struct ath9k_channel *chan)
589 {
590 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
591 	unsigned int regWrites = 0, i;
592 	struct ieee80211_channel *channel = chan->chan;
593 	u32 modesIndex, freqIndex;
594 
595 	switch (chan->chanmode) {
596 	case CHANNEL_A:
597 	case CHANNEL_A_HT20:
598 		modesIndex = 1;
599 		freqIndex = 1;
600 		break;
601 	case CHANNEL_A_HT40PLUS:
602 	case CHANNEL_A_HT40MINUS:
603 		modesIndex = 2;
604 		freqIndex = 1;
605 		break;
606 	case CHANNEL_G:
607 	case CHANNEL_G_HT20:
608 	case CHANNEL_B:
609 		modesIndex = 4;
610 		freqIndex = 2;
611 		break;
612 	case CHANNEL_G_HT40PLUS:
613 	case CHANNEL_G_HT40MINUS:
614 		modesIndex = 3;
615 		freqIndex = 2;
616 		break;
617 
618 	default:
619 		return -EINVAL;
620 	}
621 
622 	for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
623 		ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex);
624 		ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex);
625 		ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex);
626 		ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex);
627 	}
628 
629 	REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites);
630 	REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
631 
632 	/*
633 	 * For 5GHz channels requiring Fast Clock, apply
634 	 * different modal values.
635 	 */
636 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
637 		REG_WRITE_ARRAY(&ah->iniModesAdditional,
638 				modesIndex, regWrites);
639 
640 	ar9003_hw_override_ini(ah);
641 	ar9003_hw_set_channel_regs(ah, chan);
642 	ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
643 
644 	/* Set TX power */
645 	ah->eep_ops->set_txpower(ah, chan,
646 				 ath9k_regd_get_ctl(regulatory, chan),
647 				 channel->max_antenna_gain * 2,
648 				 channel->max_power * 2,
649 				 min((u32) MAX_RATE_POWER,
650 				 (u32) regulatory->power_limit), false);
651 
652 	return 0;
653 }
654 
655 static void ar9003_hw_set_rfmode(struct ath_hw *ah,
656 				 struct ath9k_channel *chan)
657 {
658 	u32 rfMode = 0;
659 
660 	if (chan == NULL)
661 		return;
662 
663 	rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
664 		? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
665 
666 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
667 		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
668 
669 	REG_WRITE(ah, AR_PHY_MODE, rfMode);
670 }
671 
672 static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah)
673 {
674 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
675 }
676 
677 static void ar9003_hw_set_delta_slope(struct ath_hw *ah,
678 				      struct ath9k_channel *chan)
679 {
680 	u32 coef_scaled, ds_coef_exp, ds_coef_man;
681 	u32 clockMhzScaled = 0x64000000;
682 	struct chan_centers centers;
683 
684 	/*
685 	 * half and quarter rate can divide the scaled clock by 2 or 4
686 	 * scale for selected channel bandwidth
687 	 */
688 	if (IS_CHAN_HALF_RATE(chan))
689 		clockMhzScaled = clockMhzScaled >> 1;
690 	else if (IS_CHAN_QUARTER_RATE(chan))
691 		clockMhzScaled = clockMhzScaled >> 2;
692 
693 	/*
694 	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
695 	 * scaled coef to provide precision for this floating calculation
696 	 */
697 	ath9k_hw_get_channel_centers(ah, chan, &centers);
698 	coef_scaled = clockMhzScaled / centers.synth_center;
699 
700 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
701 				      &ds_coef_exp);
702 
703 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
704 		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
705 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
706 		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
707 
708 	/*
709 	 * For Short GI,
710 	 * scaled coeff is 9/10 that of normal coeff
711 	 */
712 	coef_scaled = (9 * coef_scaled) / 10;
713 
714 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
715 				      &ds_coef_exp);
716 
717 	/* for short gi */
718 	REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
719 		      AR_PHY_SGI_DSC_MAN, ds_coef_man);
720 	REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
721 		      AR_PHY_SGI_DSC_EXP, ds_coef_exp);
722 }
723 
724 static bool ar9003_hw_rfbus_req(struct ath_hw *ah)
725 {
726 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
727 	return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
728 			     AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
729 }
730 
731 /*
732  * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
733  * Read the phy active delay register. Value is in 100ns increments.
734  */
735 static void ar9003_hw_rfbus_done(struct ath_hw *ah)
736 {
737 	u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
738 	if (IS_CHAN_B(ah->curchan))
739 		synthDelay = (4 * synthDelay) / 22;
740 	else
741 		synthDelay /= 10;
742 
743 	udelay(synthDelay + BASE_ACTIVATE_DELAY);
744 
745 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
746 }
747 
748 static void ar9003_hw_set_diversity(struct ath_hw *ah, bool value)
749 {
750 	u32 v = REG_READ(ah, AR_PHY_CCK_DETECT);
751 	if (value)
752 		v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
753 	else
754 		v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
755 	REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
756 }
757 
758 static bool ar9003_hw_ani_control(struct ath_hw *ah,
759 				  enum ath9k_ani_cmd cmd, int param)
760 {
761 	struct ath_common *common = ath9k_hw_common(ah);
762 	struct ath9k_channel *chan = ah->curchan;
763 	struct ar5416AniState *aniState = &chan->ani;
764 	s32 value, value2;
765 
766 	switch (cmd & ah->ani_function) {
767 	case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
768 		/*
769 		 * on == 1 means ofdm weak signal detection is ON
770 		 * on == 1 is the default, for less noise immunity
771 		 *
772 		 * on == 0 means ofdm weak signal detection is OFF
773 		 * on == 0 means more noise imm
774 		 */
775 		u32 on = param ? 1 : 0;
776 		/*
777 		 * make register setting for default
778 		 * (weak sig detect ON) come from INI file
779 		 */
780 		int m1ThreshLow = on ?
781 			aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
782 		int m2ThreshLow = on ?
783 			aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
784 		int m1Thresh = on ?
785 			aniState->iniDef.m1Thresh : m1Thresh_off;
786 		int m2Thresh = on ?
787 			aniState->iniDef.m2Thresh : m2Thresh_off;
788 		int m2CountThr = on ?
789 			aniState->iniDef.m2CountThr : m2CountThr_off;
790 		int m2CountThrLow = on ?
791 			aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
792 		int m1ThreshLowExt = on ?
793 			aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
794 		int m2ThreshLowExt = on ?
795 			aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
796 		int m1ThreshExt = on ?
797 			aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
798 		int m2ThreshExt = on ?
799 			aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
800 
801 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
802 			      AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
803 			      m1ThreshLow);
804 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
805 			      AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
806 			      m2ThreshLow);
807 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
808 			      AR_PHY_SFCORR_M1_THRESH, m1Thresh);
809 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
810 			      AR_PHY_SFCORR_M2_THRESH, m2Thresh);
811 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
812 			      AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
813 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
814 			      AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
815 			      m2CountThrLow);
816 
817 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
818 			      AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
819 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
820 			      AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
821 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
822 			      AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
823 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
824 			      AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
825 
826 		if (on)
827 			REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
828 				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
829 		else
830 			REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
831 				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
832 
833 		if (!on != aniState->ofdmWeakSigDetectOff) {
834 			ath_dbg(common, ATH_DBG_ANI,
835 				"** ch %d: ofdm weak signal: %s=>%s\n",
836 				chan->channel,
837 				!aniState->ofdmWeakSigDetectOff ?
838 				"on" : "off",
839 				on ? "on" : "off");
840 			if (on)
841 				ah->stats.ast_ani_ofdmon++;
842 			else
843 				ah->stats.ast_ani_ofdmoff++;
844 			aniState->ofdmWeakSigDetectOff = !on;
845 		}
846 		break;
847 	}
848 	case ATH9K_ANI_FIRSTEP_LEVEL:{
849 		u32 level = param;
850 
851 		if (level >= ARRAY_SIZE(firstep_table)) {
852 			ath_dbg(common, ATH_DBG_ANI,
853 				"ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n",
854 				level, ARRAY_SIZE(firstep_table));
855 			return false;
856 		}
857 
858 		/*
859 		 * make register setting relative to default
860 		 * from INI file & cap value
861 		 */
862 		value = firstep_table[level] -
863 			firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
864 			aniState->iniDef.firstep;
865 		if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
866 			value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
867 		if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
868 			value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
869 		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
870 			      AR_PHY_FIND_SIG_FIRSTEP,
871 			      value);
872 		/*
873 		 * we need to set first step low register too
874 		 * make register setting relative to default
875 		 * from INI file & cap value
876 		 */
877 		value2 = firstep_table[level] -
878 			 firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
879 			 aniState->iniDef.firstepLow;
880 		if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
881 			value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
882 		if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
883 			value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
884 
885 		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
886 			      AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2);
887 
888 		if (level != aniState->firstepLevel) {
889 			ath_dbg(common, ATH_DBG_ANI,
890 				"** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
891 				chan->channel,
892 				aniState->firstepLevel,
893 				level,
894 				ATH9K_ANI_FIRSTEP_LVL_NEW,
895 				value,
896 				aniState->iniDef.firstep);
897 			ath_dbg(common, ATH_DBG_ANI,
898 				"** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
899 				chan->channel,
900 				aniState->firstepLevel,
901 				level,
902 				ATH9K_ANI_FIRSTEP_LVL_NEW,
903 				value2,
904 				aniState->iniDef.firstepLow);
905 			if (level > aniState->firstepLevel)
906 				ah->stats.ast_ani_stepup++;
907 			else if (level < aniState->firstepLevel)
908 				ah->stats.ast_ani_stepdown++;
909 			aniState->firstepLevel = level;
910 		}
911 		break;
912 	}
913 	case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
914 		u32 level = param;
915 
916 		if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
917 			ath_dbg(common, ATH_DBG_ANI,
918 				"ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n",
919 				level, ARRAY_SIZE(cycpwrThr1_table));
920 			return false;
921 		}
922 		/*
923 		 * make register setting relative to default
924 		 * from INI file & cap value
925 		 */
926 		value = cycpwrThr1_table[level] -
927 			cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
928 			aniState->iniDef.cycpwrThr1;
929 		if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
930 			value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
931 		if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
932 			value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
933 		REG_RMW_FIELD(ah, AR_PHY_TIMING5,
934 			      AR_PHY_TIMING5_CYCPWR_THR1,
935 			      value);
936 
937 		/*
938 		 * set AR_PHY_EXT_CCA for extension channel
939 		 * make register setting relative to default
940 		 * from INI file & cap value
941 		 */
942 		value2 = cycpwrThr1_table[level] -
943 			 cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
944 			 aniState->iniDef.cycpwrThr1Ext;
945 		if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
946 			value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
947 		if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
948 			value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
949 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
950 			      AR_PHY_EXT_CYCPWR_THR1, value2);
951 
952 		if (level != aniState->spurImmunityLevel) {
953 			ath_dbg(common, ATH_DBG_ANI,
954 				"** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
955 				chan->channel,
956 				aniState->spurImmunityLevel,
957 				level,
958 				ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
959 				value,
960 				aniState->iniDef.cycpwrThr1);
961 			ath_dbg(common, ATH_DBG_ANI,
962 				"** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
963 				chan->channel,
964 				aniState->spurImmunityLevel,
965 				level,
966 				ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
967 				value2,
968 				aniState->iniDef.cycpwrThr1Ext);
969 			if (level > aniState->spurImmunityLevel)
970 				ah->stats.ast_ani_spurup++;
971 			else if (level < aniState->spurImmunityLevel)
972 				ah->stats.ast_ani_spurdown++;
973 			aniState->spurImmunityLevel = level;
974 		}
975 		break;
976 	}
977 	case ATH9K_ANI_MRC_CCK:{
978 		/*
979 		 * is_on == 1 means MRC CCK ON (default, less noise imm)
980 		 * is_on == 0 means MRC CCK is OFF (more noise imm)
981 		 */
982 		bool is_on = param ? 1 : 0;
983 		REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
984 			      AR_PHY_MRC_CCK_ENABLE, is_on);
985 		REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
986 			      AR_PHY_MRC_CCK_MUX_REG, is_on);
987 		if (!is_on != aniState->mrcCCKOff) {
988 			ath_dbg(common, ATH_DBG_ANI,
989 				"** ch %d: MRC CCK: %s=>%s\n",
990 				chan->channel,
991 				!aniState->mrcCCKOff ? "on" : "off",
992 				is_on ? "on" : "off");
993 		if (is_on)
994 			ah->stats.ast_ani_ccklow++;
995 		else
996 			ah->stats.ast_ani_cckhigh++;
997 		aniState->mrcCCKOff = !is_on;
998 		}
999 	break;
1000 	}
1001 	case ATH9K_ANI_PRESENT:
1002 		break;
1003 	default:
1004 		ath_dbg(common, ATH_DBG_ANI, "invalid cmd %u\n", cmd);
1005 		return false;
1006 	}
1007 
1008 	ath_dbg(common, ATH_DBG_ANI,
1009 		"ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
1010 		aniState->spurImmunityLevel,
1011 		!aniState->ofdmWeakSigDetectOff ? "on" : "off",
1012 		aniState->firstepLevel,
1013 		!aniState->mrcCCKOff ? "on" : "off",
1014 		aniState->listenTime,
1015 		aniState->ofdmPhyErrCount,
1016 		aniState->cckPhyErrCount);
1017 	return true;
1018 }
1019 
1020 static void ar9003_hw_do_getnf(struct ath_hw *ah,
1021 			      int16_t nfarray[NUM_NF_READINGS])
1022 {
1023 	int16_t nf;
1024 
1025 	nf = MS(REG_READ(ah, AR_PHY_CCA_0), AR_PHY_MINCCA_PWR);
1026 	nfarray[0] = sign_extend32(nf, 8);
1027 
1028 	nf = MS(REG_READ(ah, AR_PHY_CCA_1), AR_PHY_CH1_MINCCA_PWR);
1029 	nfarray[1] = sign_extend32(nf, 8);
1030 
1031 	nf = MS(REG_READ(ah, AR_PHY_CCA_2), AR_PHY_CH2_MINCCA_PWR);
1032 	nfarray[2] = sign_extend32(nf, 8);
1033 
1034 	if (!IS_CHAN_HT40(ah->curchan))
1035 		return;
1036 
1037 	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
1038 	nfarray[3] = sign_extend32(nf, 8);
1039 
1040 	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA_1), AR_PHY_CH1_EXT_MINCCA_PWR);
1041 	nfarray[4] = sign_extend32(nf, 8);
1042 
1043 	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA_2), AR_PHY_CH2_EXT_MINCCA_PWR);
1044 	nfarray[5] = sign_extend32(nf, 8);
1045 }
1046 
1047 static void ar9003_hw_set_nf_limits(struct ath_hw *ah)
1048 {
1049 	ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ;
1050 	ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ;
1051 	ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ;
1052 	ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ;
1053 	ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ;
1054 	ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ;
1055 }
1056 
1057 /*
1058  * Initialize the ANI register values with default (ini) values.
1059  * This routine is called during a (full) hardware reset after
1060  * all the registers are initialised from the INI.
1061  */
1062 static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah)
1063 {
1064 	struct ar5416AniState *aniState;
1065 	struct ath_common *common = ath9k_hw_common(ah);
1066 	struct ath9k_channel *chan = ah->curchan;
1067 	struct ath9k_ani_default *iniDef;
1068 	u32 val;
1069 
1070 	aniState = &ah->curchan->ani;
1071 	iniDef = &aniState->iniDef;
1072 
1073 	ath_dbg(common, ATH_DBG_ANI,
1074 		"ver %d.%d opmode %u chan %d Mhz/0x%x\n",
1075 		ah->hw_version.macVersion,
1076 		ah->hw_version.macRev,
1077 		ah->opmode,
1078 		chan->channel,
1079 		chan->channelFlags);
1080 
1081 	val = REG_READ(ah, AR_PHY_SFCORR);
1082 	iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
1083 	iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
1084 	iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
1085 
1086 	val = REG_READ(ah, AR_PHY_SFCORR_LOW);
1087 	iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
1088 	iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
1089 	iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
1090 
1091 	val = REG_READ(ah, AR_PHY_SFCORR_EXT);
1092 	iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
1093 	iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
1094 	iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
1095 	iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
1096 	iniDef->firstep = REG_READ_FIELD(ah,
1097 					 AR_PHY_FIND_SIG,
1098 					 AR_PHY_FIND_SIG_FIRSTEP);
1099 	iniDef->firstepLow = REG_READ_FIELD(ah,
1100 					    AR_PHY_FIND_SIG_LOW,
1101 					    AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW);
1102 	iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
1103 					    AR_PHY_TIMING5,
1104 					    AR_PHY_TIMING5_CYCPWR_THR1);
1105 	iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
1106 					       AR_PHY_EXT_CCA,
1107 					       AR_PHY_EXT_CYCPWR_THR1);
1108 
1109 	/* these levels just got reset to defaults by the INI */
1110 	aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL_NEW;
1111 	aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL_NEW;
1112 	aniState->ofdmWeakSigDetectOff = !ATH9K_ANI_USE_OFDM_WEAK_SIG;
1113 	aniState->mrcCCKOff = !ATH9K_ANI_ENABLE_MRC_CCK;
1114 }
1115 
1116 static void ar9003_hw_set_radar_params(struct ath_hw *ah,
1117 				       struct ath_hw_radar_conf *conf)
1118 {
1119 	u32 radar_0 = 0, radar_1 = 0;
1120 
1121 	if (!conf) {
1122 		REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
1123 		return;
1124 	}
1125 
1126 	radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
1127 	radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
1128 	radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
1129 	radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
1130 	radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
1131 	radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
1132 
1133 	radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
1134 	radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
1135 	radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
1136 	radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
1137 	radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
1138 
1139 	REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
1140 	REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
1141 	if (conf->ext_channel)
1142 		REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1143 	else
1144 		REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1145 }
1146 
1147 static void ar9003_hw_set_radar_conf(struct ath_hw *ah)
1148 {
1149 	struct ath_hw_radar_conf *conf = &ah->radar_conf;
1150 
1151 	conf->fir_power = -28;
1152 	conf->radar_rssi = 0;
1153 	conf->pulse_height = 10;
1154 	conf->pulse_rssi = 24;
1155 	conf->pulse_inband = 8;
1156 	conf->pulse_maxlen = 255;
1157 	conf->pulse_inband_step = 12;
1158 	conf->radar_inband = 8;
1159 }
1160 
1161 void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
1162 {
1163 	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
1164 	static const u32 ar9300_cca_regs[6] = {
1165 		AR_PHY_CCA_0,
1166 		AR_PHY_CCA_1,
1167 		AR_PHY_CCA_2,
1168 		AR_PHY_EXT_CCA,
1169 		AR_PHY_EXT_CCA_1,
1170 		AR_PHY_EXT_CCA_2,
1171 	};
1172 
1173 	priv_ops->rf_set_freq = ar9003_hw_set_channel;
1174 	priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate;
1175 	priv_ops->compute_pll_control = ar9003_hw_compute_pll_control;
1176 	priv_ops->set_channel_regs = ar9003_hw_set_channel_regs;
1177 	priv_ops->init_bb = ar9003_hw_init_bb;
1178 	priv_ops->process_ini = ar9003_hw_process_ini;
1179 	priv_ops->set_rfmode = ar9003_hw_set_rfmode;
1180 	priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive;
1181 	priv_ops->set_delta_slope = ar9003_hw_set_delta_slope;
1182 	priv_ops->rfbus_req = ar9003_hw_rfbus_req;
1183 	priv_ops->rfbus_done = ar9003_hw_rfbus_done;
1184 	priv_ops->set_diversity = ar9003_hw_set_diversity;
1185 	priv_ops->ani_control = ar9003_hw_ani_control;
1186 	priv_ops->do_getnf = ar9003_hw_do_getnf;
1187 	priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs;
1188 	priv_ops->set_radar_params = ar9003_hw_set_radar_params;
1189 
1190 	ar9003_hw_set_nf_limits(ah);
1191 	ar9003_hw_set_radar_conf(ah);
1192 	memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs));
1193 }
1194 
1195 void ar9003_hw_bb_watchdog_config(struct ath_hw *ah)
1196 {
1197 	struct ath_common *common = ath9k_hw_common(ah);
1198 	u32 idle_tmo_ms = ah->bb_watchdog_timeout_ms;
1199 	u32 val, idle_count;
1200 
1201 	if (!idle_tmo_ms) {
1202 		/* disable IRQ, disable chip-reset for BB panic */
1203 		REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
1204 			  REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) &
1205 			  ~(AR_PHY_WATCHDOG_RST_ENABLE |
1206 			    AR_PHY_WATCHDOG_IRQ_ENABLE));
1207 
1208 		/* disable watchdog in non-IDLE mode, disable in IDLE mode */
1209 		REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
1210 			  REG_READ(ah, AR_PHY_WATCHDOG_CTL_1) &
1211 			  ~(AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
1212 			    AR_PHY_WATCHDOG_IDLE_ENABLE));
1213 
1214 		ath_dbg(common, ATH_DBG_RESET, "Disabled BB Watchdog\n");
1215 		return;
1216 	}
1217 
1218 	/* enable IRQ, disable chip-reset for BB watchdog */
1219 	val = REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & AR_PHY_WATCHDOG_CNTL2_MASK;
1220 	REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
1221 		  (val | AR_PHY_WATCHDOG_IRQ_ENABLE) &
1222 		  ~AR_PHY_WATCHDOG_RST_ENABLE);
1223 
1224 	/* bound limit to 10 secs */
1225 	if (idle_tmo_ms > 10000)
1226 		idle_tmo_ms = 10000;
1227 
1228 	/*
1229 	 * The time unit for watchdog event is 2^15 44/88MHz cycles.
1230 	 *
1231 	 * For HT20 we have a time unit of 2^15/44 MHz = .74 ms per tick
1232 	 * For HT40 we have a time unit of 2^15/88 MHz = .37 ms per tick
1233 	 *
1234 	 * Given we use fast clock now in 5 GHz, these time units should
1235 	 * be common for both 2 GHz and 5 GHz.
1236 	 */
1237 	idle_count = (100 * idle_tmo_ms) / 74;
1238 	if (ah->curchan && IS_CHAN_HT40(ah->curchan))
1239 		idle_count = (100 * idle_tmo_ms) / 37;
1240 
1241 	/*
1242 	 * enable watchdog in non-IDLE mode, disable in IDLE mode,
1243 	 * set idle time-out.
1244 	 */
1245 	REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
1246 		  AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
1247 		  AR_PHY_WATCHDOG_IDLE_MASK |
1248 		  (AR_PHY_WATCHDOG_NON_IDLE_MASK & (idle_count << 2)));
1249 
1250 	ath_dbg(common, ATH_DBG_RESET,
1251 		"Enabled BB Watchdog timeout (%u ms)\n",
1252 		idle_tmo_ms);
1253 }
1254 
1255 void ar9003_hw_bb_watchdog_read(struct ath_hw *ah)
1256 {
1257 	/*
1258 	 * we want to avoid printing in ISR context so we save the
1259 	 * watchdog status to be printed later in bottom half context.
1260 	 */
1261 	ah->bb_watchdog_last_status = REG_READ(ah, AR_PHY_WATCHDOG_STATUS);
1262 
1263 	/*
1264 	 * the watchdog timer should reset on status read but to be sure
1265 	 * sure we write 0 to the watchdog status bit.
1266 	 */
1267 	REG_WRITE(ah, AR_PHY_WATCHDOG_STATUS,
1268 		  ah->bb_watchdog_last_status & ~AR_PHY_WATCHDOG_STATUS_CLR);
1269 }
1270 
1271 void ar9003_hw_bb_watchdog_dbg_info(struct ath_hw *ah)
1272 {
1273 	struct ath_common *common = ath9k_hw_common(ah);
1274 	u32 status;
1275 
1276 	if (likely(!(common->debug_mask & ATH_DBG_RESET)))
1277 		return;
1278 
1279 	status = ah->bb_watchdog_last_status;
1280 	ath_dbg(common, ATH_DBG_RESET,
1281 		"\n==== BB update: BB status=0x%08x ====\n", status);
1282 	ath_dbg(common, ATH_DBG_RESET,
1283 		"** BB state: wd=%u det=%u rdar=%u rOFDM=%d rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1284 		MS(status, AR_PHY_WATCHDOG_INFO),
1285 		MS(status, AR_PHY_WATCHDOG_DET_HANG),
1286 		MS(status, AR_PHY_WATCHDOG_RADAR_SM),
1287 		MS(status, AR_PHY_WATCHDOG_RX_OFDM_SM),
1288 		MS(status, AR_PHY_WATCHDOG_RX_CCK_SM),
1289 		MS(status, AR_PHY_WATCHDOG_TX_OFDM_SM),
1290 		MS(status, AR_PHY_WATCHDOG_TX_CCK_SM),
1291 		MS(status, AR_PHY_WATCHDOG_AGC_SM),
1292 		MS(status, AR_PHY_WATCHDOG_SRCH_SM));
1293 
1294 	ath_dbg(common, ATH_DBG_RESET,
1295 		"** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1296 		REG_READ(ah, AR_PHY_WATCHDOG_CTL_1),
1297 		REG_READ(ah, AR_PHY_WATCHDOG_CTL_2));
1298 	ath_dbg(common, ATH_DBG_RESET,
1299 		"** BB mode: BB_gen_controls=0x%08x **\n",
1300 		REG_READ(ah, AR_PHY_GEN_CTRL));
1301 
1302 #define PCT(_field) (common->cc_survey._field * 100 / common->cc_survey.cycles)
1303 	if (common->cc_survey.cycles)
1304 		ath_dbg(common, ATH_DBG_RESET,
1305 			"** BB busy times: rx_clear=%d%%, rx_frame=%d%%, tx_frame=%d%% **\n",
1306 			PCT(rx_busy), PCT(rx_frame), PCT(tx_frame));
1307 
1308 	ath_dbg(common, ATH_DBG_RESET,
1309 		"==== BB update: done ====\n\n");
1310 }
1311 EXPORT_SYMBOL(ar9003_hw_bb_watchdog_dbg_info);
1312