1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "ar9003_phy.h"
19 
20 static const int firstep_table[] =
21 /* level:  0   1   2   3   4   5   6   7   8  */
22 	{ -4, -2,  0,  2,  4,  6,  8, 10, 12 }; /* lvl 0-8, default 2 */
23 
24 static const int cycpwrThr1_table[] =
25 /* level:  0   1   2   3   4   5   6   7   8  */
26 	{ -6, -4, -2,  0,  2,  4,  6,  8 };     /* lvl 0-7, default 3 */
27 
28 /*
29  * register values to turn OFDM weak signal detection OFF
30  */
31 static const int m1ThreshLow_off = 127;
32 static const int m2ThreshLow_off = 127;
33 static const int m1Thresh_off = 127;
34 static const int m2Thresh_off = 127;
35 static const int m2CountThr_off =  31;
36 static const int m2CountThrLow_off =  63;
37 static const int m1ThreshLowExt_off = 127;
38 static const int m2ThreshLowExt_off = 127;
39 static const int m1ThreshExt_off = 127;
40 static const int m2ThreshExt_off = 127;
41 
42 /**
43  * ar9003_hw_set_channel - set channel on single-chip device
44  * @ah: atheros hardware structure
45  * @chan:
46  *
47  * This is the function to change channel on single-chip devices, that is
48  * all devices after ar9280.
49  *
50  * This function takes the channel value in MHz and sets
51  * hardware channel value. Assumes writes have been enabled to analog bus.
52  *
53  * Actual Expression,
54  *
55  * For 2GHz channel,
56  * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
57  * (freq_ref = 40MHz)
58  *
59  * For 5GHz channel,
60  * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
61  * (freq_ref = 40MHz/(24>>amodeRefSel))
62  *
63  * For 5GHz channels which are 5MHz spaced,
64  * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
65  * (freq_ref = 40MHz)
66  */
67 static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
68 {
69 	u16 bMode, fracMode = 0, aModeRefSel = 0;
70 	u32 freq, channelSel = 0, reg32 = 0;
71 	struct chan_centers centers;
72 	int loadSynthChannel;
73 
74 	ath9k_hw_get_channel_centers(ah, chan, &centers);
75 	freq = centers.synth_center;
76 
77 	if (freq < 4800) {     /* 2 GHz, fractional mode */
78 		if (AR_SREV_9330(ah)) {
79 			u32 chan_frac;
80 			u32 div;
81 
82 			if (ah->is_clk_25mhz)
83 				div = 75;
84 			else
85 				div = 120;
86 
87 			channelSel = (freq * 4) / div;
88 			chan_frac = (((freq * 4) % div) * 0x20000) / div;
89 			channelSel = (channelSel << 17) | chan_frac;
90 		} else if (AR_SREV_9485(ah)) {
91 			u32 chan_frac;
92 
93 			/*
94 			 * freq_ref = 40 / (refdiva >> amoderefsel); where refdiva=1 and amoderefsel=0
95 			 * ndiv = ((chan_mhz * 4) / 3) / freq_ref;
96 			 * chansel = int(ndiv), chanfrac = (ndiv - chansel) * 0x20000
97 			 */
98 			channelSel = (freq * 4) / 120;
99 			chan_frac = (((freq * 4) % 120) * 0x20000) / 120;
100 			channelSel = (channelSel << 17) | chan_frac;
101 		} else if (AR_SREV_9340(ah)) {
102 			if (ah->is_clk_25mhz) {
103 				u32 chan_frac;
104 
105 				channelSel = (freq * 2) / 75;
106 				chan_frac = (((freq * 2) % 75) * 0x20000) / 75;
107 				channelSel = (channelSel << 17) | chan_frac;
108 			} else
109 				channelSel = CHANSEL_2G(freq) >> 1;
110 		} else
111 			channelSel = CHANSEL_2G(freq);
112 		/* Set to 2G mode */
113 		bMode = 1;
114 	} else {
115 		if (AR_SREV_9340(ah) && ah->is_clk_25mhz) {
116 			u32 chan_frac;
117 
118 			channelSel = (freq * 2) / 75;
119 			chan_frac = (((freq * 2) % 75) * 0x20000) / 75;
120 			channelSel = (channelSel << 17) | chan_frac;
121 		} else {
122 			channelSel = CHANSEL_5G(freq);
123 			/* Doubler is ON, so, divide channelSel by 2. */
124 			channelSel >>= 1;
125 		}
126 		/* Set to 5G mode */
127 		bMode = 0;
128 	}
129 
130 	/* Enable fractional mode for all channels */
131 	fracMode = 1;
132 	aModeRefSel = 0;
133 	loadSynthChannel = 0;
134 
135 	reg32 = (bMode << 29);
136 	REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
137 
138 	/* Enable Long shift Select for Synthesizer */
139 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4,
140 		      AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1);
141 
142 	/* Program Synth. setting */
143 	reg32 = (channelSel << 2) | (fracMode << 30) |
144 		(aModeRefSel << 28) | (loadSynthChannel << 31);
145 	REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
146 
147 	/* Toggle Load Synth channel bit */
148 	loadSynthChannel = 1;
149 	reg32 = (channelSel << 2) | (fracMode << 30) |
150 		(aModeRefSel << 28) | (loadSynthChannel << 31);
151 	REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
152 
153 	ah->curchan = chan;
154 	ah->curchan_rad_index = -1;
155 
156 	return 0;
157 }
158 
159 /**
160  * ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency
161  * @ah: atheros hardware structure
162  * @chan:
163  *
164  * For single-chip solutions. Converts to baseband spur frequency given the
165  * input channel frequency and compute register settings below.
166  *
167  * Spur mitigation for MRC CCK
168  */
169 static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah,
170 					    struct ath9k_channel *chan)
171 {
172 	static const u32 spur_freq[4] = { 2420, 2440, 2464, 2480 };
173 	int cur_bb_spur, negative = 0, cck_spur_freq;
174 	int i;
175 	int range, max_spur_cnts, synth_freq;
176 	u8 *spur_fbin_ptr = NULL;
177 
178 	/*
179 	 * Need to verify range +/- 10 MHz in control channel, otherwise spur
180 	 * is out-of-band and can be ignored.
181 	 */
182 
183 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah)) {
184 		spur_fbin_ptr = ar9003_get_spur_chan_ptr(ah,
185 							 IS_CHAN_2GHZ(chan));
186 		if (spur_fbin_ptr[0] == 0) /* No spur */
187 			return;
188 		max_spur_cnts = 5;
189 		if (IS_CHAN_HT40(chan)) {
190 			range = 19;
191 			if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
192 					   AR_PHY_GC_DYN2040_PRI_CH) == 0)
193 				synth_freq = chan->channel + 10;
194 			else
195 				synth_freq = chan->channel - 10;
196 		} else {
197 			range = 10;
198 			synth_freq = chan->channel;
199 		}
200 	} else {
201 		range = 10;
202 		max_spur_cnts = 4;
203 		synth_freq = chan->channel;
204 	}
205 
206 	for (i = 0; i < max_spur_cnts; i++) {
207 		negative = 0;
208 		if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
209 			cur_bb_spur = FBIN2FREQ(spur_fbin_ptr[i],
210 					IS_CHAN_2GHZ(chan)) - synth_freq;
211 		else
212 			cur_bb_spur = spur_freq[i] - synth_freq;
213 
214 		if (cur_bb_spur < 0) {
215 			negative = 1;
216 			cur_bb_spur = -cur_bb_spur;
217 		}
218 		if (cur_bb_spur < range) {
219 			cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
220 
221 			if (negative == 1)
222 				cck_spur_freq = -cck_spur_freq;
223 
224 			cck_spur_freq = cck_spur_freq & 0xfffff;
225 
226 			REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
227 				      AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
228 			REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
229 				      AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
230 			REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
231 				      AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE,
232 				      0x2);
233 			REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
234 				      AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT,
235 				      0x1);
236 			REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
237 				      AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
238 				      cck_spur_freq);
239 
240 			return;
241 		}
242 	}
243 
244 	REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
245 		      AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
246 	REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
247 		      AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
248 	REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
249 		      AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
250 }
251 
252 /* Clean all spur register fields */
253 static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah)
254 {
255 	REG_RMW_FIELD(ah, AR_PHY_TIMING4,
256 		      AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0);
257 	REG_RMW_FIELD(ah, AR_PHY_TIMING11,
258 		      AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
259 	REG_RMW_FIELD(ah, AR_PHY_TIMING11,
260 		      AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
261 	REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
262 		      AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0);
263 	REG_RMW_FIELD(ah, AR_PHY_TIMING11,
264 		      AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0);
265 	REG_RMW_FIELD(ah, AR_PHY_TIMING11,
266 		      AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0);
267 	REG_RMW_FIELD(ah, AR_PHY_TIMING4,
268 		      AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0);
269 	REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
270 		      AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0);
271 	REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
272 		      AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0);
273 
274 	REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
275 		      AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0);
276 	REG_RMW_FIELD(ah, AR_PHY_TIMING4,
277 		      AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0);
278 	REG_RMW_FIELD(ah, AR_PHY_TIMING4,
279 		      AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0);
280 	REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
281 		      AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0);
282 	REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
283 		      AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0);
284 	REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
285 		      AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0);
286 	REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
287 		      AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0);
288 	REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
289 		      AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0);
290 	REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
291 		      AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0);
292 	REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
293 		      AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
294 }
295 
296 static void ar9003_hw_spur_ofdm(struct ath_hw *ah,
297 				int freq_offset,
298 				int spur_freq_sd,
299 				int spur_delta_phase,
300 				int spur_subchannel_sd)
301 {
302 	int mask_index = 0;
303 
304 	/* OFDM Spur mitigation */
305 	REG_RMW_FIELD(ah, AR_PHY_TIMING4,
306 		 AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1);
307 	REG_RMW_FIELD(ah, AR_PHY_TIMING11,
308 		      AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
309 	REG_RMW_FIELD(ah, AR_PHY_TIMING11,
310 		      AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
311 	REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
312 		      AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd);
313 	REG_RMW_FIELD(ah, AR_PHY_TIMING11,
314 		      AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1);
315 	REG_RMW_FIELD(ah, AR_PHY_TIMING11,
316 		      AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1);
317 	REG_RMW_FIELD(ah, AR_PHY_TIMING4,
318 		      AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1);
319 	REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
320 		      AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
321 	REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
322 		      AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1);
323 
324 	if (REG_READ_FIELD(ah, AR_PHY_MODE,
325 			   AR_PHY_MODE_DYNAMIC) == 0x1)
326 		REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
327 			      AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1);
328 
329 	mask_index = (freq_offset << 4) / 5;
330 	if (mask_index < 0)
331 		mask_index = mask_index - 1;
332 
333 	mask_index = mask_index & 0x7f;
334 
335 	REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
336 		      AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1);
337 	REG_RMW_FIELD(ah, AR_PHY_TIMING4,
338 		      AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1);
339 	REG_RMW_FIELD(ah, AR_PHY_TIMING4,
340 		      AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1);
341 	REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
342 		      AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index);
343 	REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
344 		      AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index);
345 	REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
346 		      AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index);
347 	REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
348 		      AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc);
349 	REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
350 		      AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc);
351 	REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
352 		      AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
353 	REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
354 		      AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
355 }
356 
357 static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah,
358 				     struct ath9k_channel *chan,
359 				     int freq_offset)
360 {
361 	int spur_freq_sd = 0;
362 	int spur_subchannel_sd = 0;
363 	int spur_delta_phase = 0;
364 
365 	if (IS_CHAN_HT40(chan)) {
366 		if (freq_offset < 0) {
367 			if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
368 					   AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
369 				spur_subchannel_sd = 1;
370 			else
371 				spur_subchannel_sd = 0;
372 
373 			spur_freq_sd = ((freq_offset + 10) << 9) / 11;
374 
375 		} else {
376 			if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
377 			    AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
378 				spur_subchannel_sd = 0;
379 			else
380 				spur_subchannel_sd = 1;
381 
382 			spur_freq_sd = ((freq_offset - 10) << 9) / 11;
383 
384 		}
385 
386 		spur_delta_phase = (freq_offset << 17) / 5;
387 
388 	} else {
389 		spur_subchannel_sd = 0;
390 		spur_freq_sd = (freq_offset << 9) /11;
391 		spur_delta_phase = (freq_offset << 18) / 5;
392 	}
393 
394 	spur_freq_sd = spur_freq_sd & 0x3ff;
395 	spur_delta_phase = spur_delta_phase & 0xfffff;
396 
397 	ar9003_hw_spur_ofdm(ah,
398 			    freq_offset,
399 			    spur_freq_sd,
400 			    spur_delta_phase,
401 			    spur_subchannel_sd);
402 }
403 
404 /* Spur mitigation for OFDM */
405 static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah,
406 					 struct ath9k_channel *chan)
407 {
408 	int synth_freq;
409 	int range = 10;
410 	int freq_offset = 0;
411 	int mode;
412 	u8* spurChansPtr;
413 	unsigned int i;
414 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
415 
416 	if (IS_CHAN_5GHZ(chan)) {
417 		spurChansPtr = &(eep->modalHeader5G.spurChans[0]);
418 		mode = 0;
419 	}
420 	else {
421 		spurChansPtr = &(eep->modalHeader2G.spurChans[0]);
422 		mode = 1;
423 	}
424 
425 	if (spurChansPtr[0] == 0)
426 		return; /* No spur in the mode */
427 
428 	if (IS_CHAN_HT40(chan)) {
429 		range = 19;
430 		if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
431 				   AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
432 			synth_freq = chan->channel - 10;
433 		else
434 			synth_freq = chan->channel + 10;
435 	} else {
436 		range = 10;
437 		synth_freq = chan->channel;
438 	}
439 
440 	ar9003_hw_spur_ofdm_clear(ah);
441 
442 	for (i = 0; i < AR_EEPROM_MODAL_SPURS && spurChansPtr[i]; i++) {
443 		freq_offset = FBIN2FREQ(spurChansPtr[i], mode) - synth_freq;
444 		if (abs(freq_offset) < range) {
445 			ar9003_hw_spur_ofdm_work(ah, chan, freq_offset);
446 			break;
447 		}
448 	}
449 }
450 
451 static void ar9003_hw_spur_mitigate(struct ath_hw *ah,
452 				    struct ath9k_channel *chan)
453 {
454 	ar9003_hw_spur_mitigate_mrc_cck(ah, chan);
455 	ar9003_hw_spur_mitigate_ofdm(ah, chan);
456 }
457 
458 static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah,
459 					 struct ath9k_channel *chan)
460 {
461 	u32 pll;
462 
463 	pll = SM(0x5, AR_RTC_9300_PLL_REFDIV);
464 
465 	if (chan && IS_CHAN_HALF_RATE(chan))
466 		pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL);
467 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
468 		pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL);
469 
470 	pll |= SM(0x2c, AR_RTC_9300_PLL_DIV);
471 
472 	return pll;
473 }
474 
475 static void ar9003_hw_set_channel_regs(struct ath_hw *ah,
476 				       struct ath9k_channel *chan)
477 {
478 	u32 phymode;
479 	u32 enableDacFifo = 0;
480 
481 	enableDacFifo =
482 		(REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO);
483 
484 	/* Enable 11n HT, 20 MHz */
485 	phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH |
486 		  AR_PHY_GC_SHORT_GI_40 | enableDacFifo;
487 
488 	/* Configure baseband for dynamic 20/40 operation */
489 	if (IS_CHAN_HT40(chan)) {
490 		phymode |= AR_PHY_GC_DYN2040_EN;
491 		/* Configure control (primary) channel at +-10MHz */
492 		if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
493 		    (chan->chanmode == CHANNEL_G_HT40PLUS))
494 			phymode |= AR_PHY_GC_DYN2040_PRI_CH;
495 
496 	}
497 
498 	/* make sure we preserve INI settings */
499 	phymode |= REG_READ(ah, AR_PHY_GEN_CTRL);
500 	/* turn off Green Field detection for STA for now */
501 	phymode &= ~AR_PHY_GC_GF_DETECT_EN;
502 
503 	REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);
504 
505 	/* Configure MAC for 20/40 operation */
506 	ath9k_hw_set11nmac2040(ah);
507 
508 	/* global transmit timeout (25 TUs default)*/
509 	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
510 	/* carrier sense timeout */
511 	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
512 }
513 
514 static void ar9003_hw_init_bb(struct ath_hw *ah,
515 			      struct ath9k_channel *chan)
516 {
517 	u32 synthDelay;
518 
519 	/*
520 	 * Wait for the frequency synth to settle (synth goes on
521 	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
522 	 * Value is in 100ns increments.
523 	 */
524 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
525 	if (IS_CHAN_B(chan))
526 		synthDelay = (4 * synthDelay) / 22;
527 	else
528 		synthDelay /= 10;
529 
530 	/* Activate the PHY (includes baseband activate + synthesizer on) */
531 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
532 
533 	/*
534 	 * There is an issue if the AP starts the calibration before
535 	 * the base band timeout completes.  This could result in the
536 	 * rx_clear false triggering.  As a workaround we add delay an
537 	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
538 	 * does not happen.
539 	 */
540 	udelay(synthDelay + BASE_ACTIVATE_DELAY);
541 }
542 
543 void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
544 {
545 	switch (rx) {
546 	case 0x5:
547 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
548 			    AR_PHY_SWAP_ALT_CHAIN);
549 	case 0x3:
550 	case 0x1:
551 	case 0x2:
552 	case 0x7:
553 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
554 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
555 		break;
556 	default:
557 		break;
558 	}
559 
560 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7))
561 		REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
562 	else
563 		REG_WRITE(ah, AR_SELFGEN_MASK, tx);
564 
565 	if (tx == 0x5) {
566 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
567 			    AR_PHY_SWAP_ALT_CHAIN);
568 	}
569 }
570 
571 /*
572  * Override INI values with chip specific configuration.
573  */
574 static void ar9003_hw_override_ini(struct ath_hw *ah)
575 {
576 	u32 val;
577 
578 	/*
579 	 * Set the RX_ABORT and RX_DIS and clear it only after
580 	 * RXE is set for MAC. This prevents frames with
581 	 * corrupted descriptor status.
582 	 */
583 	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
584 
585 	/*
586 	 * For AR9280 and above, there is a new feature that allows
587 	 * Multicast search based on both MAC Address and Key ID. By default,
588 	 * this feature is enabled. But since the driver is not using this
589 	 * feature, we switch it off; otherwise multicast search based on
590 	 * MAC addr only will fail.
591 	 */
592 	val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
593 	REG_WRITE(ah, AR_PCU_MISC_MODE2,
594 		  val | AR_AGG_WEP_ENABLE_FIX | AR_AGG_WEP_ENABLE);
595 }
596 
597 static void ar9003_hw_prog_ini(struct ath_hw *ah,
598 			       struct ar5416IniArray *iniArr,
599 			       int column)
600 {
601 	unsigned int i, regWrites = 0;
602 
603 	/* New INI format: Array may be undefined (pre, core, post arrays) */
604 	if (!iniArr->ia_array)
605 		return;
606 
607 	/*
608 	 * New INI format: Pre, core, and post arrays for a given subsystem
609 	 * may be modal (> 2 columns) or non-modal (2 columns). Determine if
610 	 * the array is non-modal and force the column to 1.
611 	 */
612 	if (column >= iniArr->ia_columns)
613 		column = 1;
614 
615 	for (i = 0; i < iniArr->ia_rows; i++) {
616 		u32 reg = INI_RA(iniArr, i, 0);
617 		u32 val = INI_RA(iniArr, i, column);
618 
619 		REG_WRITE(ah, reg, val);
620 
621 		DO_DELAY(regWrites);
622 	}
623 }
624 
625 static int ar9003_hw_process_ini(struct ath_hw *ah,
626 				 struct ath9k_channel *chan)
627 {
628 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
629 	unsigned int regWrites = 0, i;
630 	struct ieee80211_channel *channel = chan->chan;
631 	u32 modesIndex;
632 
633 	switch (chan->chanmode) {
634 	case CHANNEL_A:
635 	case CHANNEL_A_HT20:
636 		modesIndex = 1;
637 		break;
638 	case CHANNEL_A_HT40PLUS:
639 	case CHANNEL_A_HT40MINUS:
640 		modesIndex = 2;
641 		break;
642 	case CHANNEL_G:
643 	case CHANNEL_G_HT20:
644 	case CHANNEL_B:
645 		modesIndex = 4;
646 		break;
647 	case CHANNEL_G_HT40PLUS:
648 	case CHANNEL_G_HT40MINUS:
649 		modesIndex = 3;
650 		break;
651 
652 	default:
653 		return -EINVAL;
654 	}
655 
656 	for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
657 		ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex);
658 		ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex);
659 		ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex);
660 		ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex);
661 	}
662 
663 	REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites);
664 	REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
665 
666 	/*
667 	 * For 5GHz channels requiring Fast Clock, apply
668 	 * different modal values.
669 	 */
670 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
671 		REG_WRITE_ARRAY(&ah->iniModesAdditional,
672 				modesIndex, regWrites);
673 
674 	if (AR_SREV_9330(ah))
675 		REG_WRITE_ARRAY(&ah->iniModesAdditional, 1, regWrites);
676 
677 	if (AR_SREV_9340(ah) && !ah->is_clk_25mhz)
678 		REG_WRITE_ARRAY(&ah->iniModesAdditional_40M, 1, regWrites);
679 
680 	ar9003_hw_override_ini(ah);
681 	ar9003_hw_set_channel_regs(ah, chan);
682 	ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
683 
684 	/* Set TX power */
685 	ah->eep_ops->set_txpower(ah, chan,
686 				 ath9k_regd_get_ctl(regulatory, chan),
687 				 channel->max_antenna_gain * 2,
688 				 channel->max_power * 2,
689 				 min((u32) MAX_RATE_POWER,
690 				 (u32) regulatory->power_limit), false);
691 
692 	return 0;
693 }
694 
695 static void ar9003_hw_set_rfmode(struct ath_hw *ah,
696 				 struct ath9k_channel *chan)
697 {
698 	u32 rfMode = 0;
699 
700 	if (chan == NULL)
701 		return;
702 
703 	rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
704 		? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
705 
706 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
707 		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
708 
709 	REG_WRITE(ah, AR_PHY_MODE, rfMode);
710 }
711 
712 static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah)
713 {
714 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
715 }
716 
717 static void ar9003_hw_set_delta_slope(struct ath_hw *ah,
718 				      struct ath9k_channel *chan)
719 {
720 	u32 coef_scaled, ds_coef_exp, ds_coef_man;
721 	u32 clockMhzScaled = 0x64000000;
722 	struct chan_centers centers;
723 
724 	/*
725 	 * half and quarter rate can divide the scaled clock by 2 or 4
726 	 * scale for selected channel bandwidth
727 	 */
728 	if (IS_CHAN_HALF_RATE(chan))
729 		clockMhzScaled = clockMhzScaled >> 1;
730 	else if (IS_CHAN_QUARTER_RATE(chan))
731 		clockMhzScaled = clockMhzScaled >> 2;
732 
733 	/*
734 	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
735 	 * scaled coef to provide precision for this floating calculation
736 	 */
737 	ath9k_hw_get_channel_centers(ah, chan, &centers);
738 	coef_scaled = clockMhzScaled / centers.synth_center;
739 
740 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
741 				      &ds_coef_exp);
742 
743 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
744 		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
745 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
746 		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
747 
748 	/*
749 	 * For Short GI,
750 	 * scaled coeff is 9/10 that of normal coeff
751 	 */
752 	coef_scaled = (9 * coef_scaled) / 10;
753 
754 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
755 				      &ds_coef_exp);
756 
757 	/* for short gi */
758 	REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
759 		      AR_PHY_SGI_DSC_MAN, ds_coef_man);
760 	REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
761 		      AR_PHY_SGI_DSC_EXP, ds_coef_exp);
762 }
763 
764 static bool ar9003_hw_rfbus_req(struct ath_hw *ah)
765 {
766 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
767 	return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
768 			     AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
769 }
770 
771 /*
772  * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
773  * Read the phy active delay register. Value is in 100ns increments.
774  */
775 static void ar9003_hw_rfbus_done(struct ath_hw *ah)
776 {
777 	u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
778 	if (IS_CHAN_B(ah->curchan))
779 		synthDelay = (4 * synthDelay) / 22;
780 	else
781 		synthDelay /= 10;
782 
783 	udelay(synthDelay + BASE_ACTIVATE_DELAY);
784 
785 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
786 }
787 
788 static void ar9003_hw_set_diversity(struct ath_hw *ah, bool value)
789 {
790 	u32 v = REG_READ(ah, AR_PHY_CCK_DETECT);
791 	if (value)
792 		v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
793 	else
794 		v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
795 	REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
796 }
797 
798 static bool ar9003_hw_ani_control(struct ath_hw *ah,
799 				  enum ath9k_ani_cmd cmd, int param)
800 {
801 	struct ath_common *common = ath9k_hw_common(ah);
802 	struct ath9k_channel *chan = ah->curchan;
803 	struct ar5416AniState *aniState = &chan->ani;
804 	s32 value, value2;
805 
806 	switch (cmd & ah->ani_function) {
807 	case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
808 		/*
809 		 * on == 1 means ofdm weak signal detection is ON
810 		 * on == 1 is the default, for less noise immunity
811 		 *
812 		 * on == 0 means ofdm weak signal detection is OFF
813 		 * on == 0 means more noise imm
814 		 */
815 		u32 on = param ? 1 : 0;
816 		/*
817 		 * make register setting for default
818 		 * (weak sig detect ON) come from INI file
819 		 */
820 		int m1ThreshLow = on ?
821 			aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
822 		int m2ThreshLow = on ?
823 			aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
824 		int m1Thresh = on ?
825 			aniState->iniDef.m1Thresh : m1Thresh_off;
826 		int m2Thresh = on ?
827 			aniState->iniDef.m2Thresh : m2Thresh_off;
828 		int m2CountThr = on ?
829 			aniState->iniDef.m2CountThr : m2CountThr_off;
830 		int m2CountThrLow = on ?
831 			aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
832 		int m1ThreshLowExt = on ?
833 			aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
834 		int m2ThreshLowExt = on ?
835 			aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
836 		int m1ThreshExt = on ?
837 			aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
838 		int m2ThreshExt = on ?
839 			aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
840 
841 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
842 			      AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
843 			      m1ThreshLow);
844 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
845 			      AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
846 			      m2ThreshLow);
847 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
848 			      AR_PHY_SFCORR_M1_THRESH, m1Thresh);
849 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
850 			      AR_PHY_SFCORR_M2_THRESH, m2Thresh);
851 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
852 			      AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
853 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
854 			      AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
855 			      m2CountThrLow);
856 
857 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
858 			      AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
859 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
860 			      AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
861 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
862 			      AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
863 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
864 			      AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
865 
866 		if (on)
867 			REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
868 				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
869 		else
870 			REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
871 				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
872 
873 		if (!on != aniState->ofdmWeakSigDetectOff) {
874 			ath_dbg(common, ATH_DBG_ANI,
875 				"** ch %d: ofdm weak signal: %s=>%s\n",
876 				chan->channel,
877 				!aniState->ofdmWeakSigDetectOff ?
878 				"on" : "off",
879 				on ? "on" : "off");
880 			if (on)
881 				ah->stats.ast_ani_ofdmon++;
882 			else
883 				ah->stats.ast_ani_ofdmoff++;
884 			aniState->ofdmWeakSigDetectOff = !on;
885 		}
886 		break;
887 	}
888 	case ATH9K_ANI_FIRSTEP_LEVEL:{
889 		u32 level = param;
890 
891 		if (level >= ARRAY_SIZE(firstep_table)) {
892 			ath_dbg(common, ATH_DBG_ANI,
893 				"ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n",
894 				level, ARRAY_SIZE(firstep_table));
895 			return false;
896 		}
897 
898 		/*
899 		 * make register setting relative to default
900 		 * from INI file & cap value
901 		 */
902 		value = firstep_table[level] -
903 			firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
904 			aniState->iniDef.firstep;
905 		if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
906 			value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
907 		if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
908 			value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
909 		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
910 			      AR_PHY_FIND_SIG_FIRSTEP,
911 			      value);
912 		/*
913 		 * we need to set first step low register too
914 		 * make register setting relative to default
915 		 * from INI file & cap value
916 		 */
917 		value2 = firstep_table[level] -
918 			 firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
919 			 aniState->iniDef.firstepLow;
920 		if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
921 			value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
922 		if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
923 			value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
924 
925 		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
926 			      AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2);
927 
928 		if (level != aniState->firstepLevel) {
929 			ath_dbg(common, ATH_DBG_ANI,
930 				"** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
931 				chan->channel,
932 				aniState->firstepLevel,
933 				level,
934 				ATH9K_ANI_FIRSTEP_LVL_NEW,
935 				value,
936 				aniState->iniDef.firstep);
937 			ath_dbg(common, ATH_DBG_ANI,
938 				"** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
939 				chan->channel,
940 				aniState->firstepLevel,
941 				level,
942 				ATH9K_ANI_FIRSTEP_LVL_NEW,
943 				value2,
944 				aniState->iniDef.firstepLow);
945 			if (level > aniState->firstepLevel)
946 				ah->stats.ast_ani_stepup++;
947 			else if (level < aniState->firstepLevel)
948 				ah->stats.ast_ani_stepdown++;
949 			aniState->firstepLevel = level;
950 		}
951 		break;
952 	}
953 	case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
954 		u32 level = param;
955 
956 		if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
957 			ath_dbg(common, ATH_DBG_ANI,
958 				"ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n",
959 				level, ARRAY_SIZE(cycpwrThr1_table));
960 			return false;
961 		}
962 		/*
963 		 * make register setting relative to default
964 		 * from INI file & cap value
965 		 */
966 		value = cycpwrThr1_table[level] -
967 			cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
968 			aniState->iniDef.cycpwrThr1;
969 		if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
970 			value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
971 		if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
972 			value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
973 		REG_RMW_FIELD(ah, AR_PHY_TIMING5,
974 			      AR_PHY_TIMING5_CYCPWR_THR1,
975 			      value);
976 
977 		/*
978 		 * set AR_PHY_EXT_CCA for extension channel
979 		 * make register setting relative to default
980 		 * from INI file & cap value
981 		 */
982 		value2 = cycpwrThr1_table[level] -
983 			 cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
984 			 aniState->iniDef.cycpwrThr1Ext;
985 		if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
986 			value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
987 		if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
988 			value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
989 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
990 			      AR_PHY_EXT_CYCPWR_THR1, value2);
991 
992 		if (level != aniState->spurImmunityLevel) {
993 			ath_dbg(common, ATH_DBG_ANI,
994 				"** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
995 				chan->channel,
996 				aniState->spurImmunityLevel,
997 				level,
998 				ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
999 				value,
1000 				aniState->iniDef.cycpwrThr1);
1001 			ath_dbg(common, ATH_DBG_ANI,
1002 				"** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
1003 				chan->channel,
1004 				aniState->spurImmunityLevel,
1005 				level,
1006 				ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
1007 				value2,
1008 				aniState->iniDef.cycpwrThr1Ext);
1009 			if (level > aniState->spurImmunityLevel)
1010 				ah->stats.ast_ani_spurup++;
1011 			else if (level < aniState->spurImmunityLevel)
1012 				ah->stats.ast_ani_spurdown++;
1013 			aniState->spurImmunityLevel = level;
1014 		}
1015 		break;
1016 	}
1017 	case ATH9K_ANI_MRC_CCK:{
1018 		/*
1019 		 * is_on == 1 means MRC CCK ON (default, less noise imm)
1020 		 * is_on == 0 means MRC CCK is OFF (more noise imm)
1021 		 */
1022 		bool is_on = param ? 1 : 0;
1023 		REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
1024 			      AR_PHY_MRC_CCK_ENABLE, is_on);
1025 		REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
1026 			      AR_PHY_MRC_CCK_MUX_REG, is_on);
1027 		if (!is_on != aniState->mrcCCKOff) {
1028 			ath_dbg(common, ATH_DBG_ANI,
1029 				"** ch %d: MRC CCK: %s=>%s\n",
1030 				chan->channel,
1031 				!aniState->mrcCCKOff ? "on" : "off",
1032 				is_on ? "on" : "off");
1033 		if (is_on)
1034 			ah->stats.ast_ani_ccklow++;
1035 		else
1036 			ah->stats.ast_ani_cckhigh++;
1037 		aniState->mrcCCKOff = !is_on;
1038 		}
1039 	break;
1040 	}
1041 	case ATH9K_ANI_PRESENT:
1042 		break;
1043 	default:
1044 		ath_dbg(common, ATH_DBG_ANI, "invalid cmd %u\n", cmd);
1045 		return false;
1046 	}
1047 
1048 	ath_dbg(common, ATH_DBG_ANI,
1049 		"ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
1050 		aniState->spurImmunityLevel,
1051 		!aniState->ofdmWeakSigDetectOff ? "on" : "off",
1052 		aniState->firstepLevel,
1053 		!aniState->mrcCCKOff ? "on" : "off",
1054 		aniState->listenTime,
1055 		aniState->ofdmPhyErrCount,
1056 		aniState->cckPhyErrCount);
1057 	return true;
1058 }
1059 
1060 static void ar9003_hw_do_getnf(struct ath_hw *ah,
1061 			      int16_t nfarray[NUM_NF_READINGS])
1062 {
1063 #define AR_PHY_CH_MINCCA_PWR	0x1FF00000
1064 #define AR_PHY_CH_MINCCA_PWR_S	20
1065 #define AR_PHY_CH_EXT_MINCCA_PWR 0x01FF0000
1066 #define AR_PHY_CH_EXT_MINCCA_PWR_S 16
1067 
1068 	int16_t nf;
1069 	int i;
1070 
1071 	for (i = 0; i < AR9300_MAX_CHAINS; i++) {
1072 		if (ah->rxchainmask & BIT(i)) {
1073 			nf = MS(REG_READ(ah, ah->nf_regs[i]),
1074 					 AR_PHY_CH_MINCCA_PWR);
1075 			nfarray[i] = sign_extend32(nf, 8);
1076 
1077 			if (IS_CHAN_HT40(ah->curchan)) {
1078 				u8 ext_idx = AR9300_MAX_CHAINS + i;
1079 
1080 				nf = MS(REG_READ(ah, ah->nf_regs[ext_idx]),
1081 						 AR_PHY_CH_EXT_MINCCA_PWR);
1082 				nfarray[ext_idx] = sign_extend32(nf, 8);
1083 			}
1084 		}
1085 	}
1086 }
1087 
1088 static void ar9003_hw_set_nf_limits(struct ath_hw *ah)
1089 {
1090 	ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ;
1091 	ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ;
1092 	if (AR_SREV_9330(ah))
1093 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9330_2GHZ;
1094 	else
1095 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ;
1096 	ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ;
1097 	ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ;
1098 	ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ;
1099 }
1100 
1101 /*
1102  * Initialize the ANI register values with default (ini) values.
1103  * This routine is called during a (full) hardware reset after
1104  * all the registers are initialised from the INI.
1105  */
1106 static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah)
1107 {
1108 	struct ar5416AniState *aniState;
1109 	struct ath_common *common = ath9k_hw_common(ah);
1110 	struct ath9k_channel *chan = ah->curchan;
1111 	struct ath9k_ani_default *iniDef;
1112 	u32 val;
1113 
1114 	aniState = &ah->curchan->ani;
1115 	iniDef = &aniState->iniDef;
1116 
1117 	ath_dbg(common, ATH_DBG_ANI,
1118 		"ver %d.%d opmode %u chan %d Mhz/0x%x\n",
1119 		ah->hw_version.macVersion,
1120 		ah->hw_version.macRev,
1121 		ah->opmode,
1122 		chan->channel,
1123 		chan->channelFlags);
1124 
1125 	val = REG_READ(ah, AR_PHY_SFCORR);
1126 	iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
1127 	iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
1128 	iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
1129 
1130 	val = REG_READ(ah, AR_PHY_SFCORR_LOW);
1131 	iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
1132 	iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
1133 	iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
1134 
1135 	val = REG_READ(ah, AR_PHY_SFCORR_EXT);
1136 	iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
1137 	iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
1138 	iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
1139 	iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
1140 	iniDef->firstep = REG_READ_FIELD(ah,
1141 					 AR_PHY_FIND_SIG,
1142 					 AR_PHY_FIND_SIG_FIRSTEP);
1143 	iniDef->firstepLow = REG_READ_FIELD(ah,
1144 					    AR_PHY_FIND_SIG_LOW,
1145 					    AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW);
1146 	iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
1147 					    AR_PHY_TIMING5,
1148 					    AR_PHY_TIMING5_CYCPWR_THR1);
1149 	iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
1150 					       AR_PHY_EXT_CCA,
1151 					       AR_PHY_EXT_CYCPWR_THR1);
1152 
1153 	/* these levels just got reset to defaults by the INI */
1154 	aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL_NEW;
1155 	aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL_NEW;
1156 	aniState->ofdmWeakSigDetectOff = !ATH9K_ANI_USE_OFDM_WEAK_SIG;
1157 	aniState->mrcCCKOff = !ATH9K_ANI_ENABLE_MRC_CCK;
1158 }
1159 
1160 static void ar9003_hw_set_radar_params(struct ath_hw *ah,
1161 				       struct ath_hw_radar_conf *conf)
1162 {
1163 	u32 radar_0 = 0, radar_1 = 0;
1164 
1165 	if (!conf) {
1166 		REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
1167 		return;
1168 	}
1169 
1170 	radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
1171 	radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
1172 	radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
1173 	radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
1174 	radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
1175 	radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
1176 
1177 	radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
1178 	radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
1179 	radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
1180 	radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
1181 	radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
1182 
1183 	REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
1184 	REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
1185 	if (conf->ext_channel)
1186 		REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1187 	else
1188 		REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1189 }
1190 
1191 static void ar9003_hw_set_radar_conf(struct ath_hw *ah)
1192 {
1193 	struct ath_hw_radar_conf *conf = &ah->radar_conf;
1194 
1195 	conf->fir_power = -28;
1196 	conf->radar_rssi = 0;
1197 	conf->pulse_height = 10;
1198 	conf->pulse_rssi = 24;
1199 	conf->pulse_inband = 8;
1200 	conf->pulse_maxlen = 255;
1201 	conf->pulse_inband_step = 12;
1202 	conf->radar_inband = 8;
1203 }
1204 
1205 static void ar9003_hw_antdiv_comb_conf_get(struct ath_hw *ah,
1206 				   struct ath_hw_antcomb_conf *antconf)
1207 {
1208 	u32 regval;
1209 
1210 	regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
1211 	antconf->main_lna_conf = (regval & AR_PHY_9485_ANT_DIV_MAIN_LNACONF) >>
1212 				  AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S;
1213 	antconf->alt_lna_conf = (regval & AR_PHY_9485_ANT_DIV_ALT_LNACONF) >>
1214 				 AR_PHY_9485_ANT_DIV_ALT_LNACONF_S;
1215 	antconf->fast_div_bias = (regval & AR_PHY_9485_ANT_FAST_DIV_BIAS) >>
1216 				  AR_PHY_9485_ANT_FAST_DIV_BIAS_S;
1217 
1218 	if (AR_SREV_9330_11(ah)) {
1219 		antconf->lna1_lna2_delta = -9;
1220 		antconf->div_group = 1;
1221 	} else if (AR_SREV_9485(ah)) {
1222 		antconf->lna1_lna2_delta = -9;
1223 		antconf->div_group = 2;
1224 	} else {
1225 		antconf->lna1_lna2_delta = -3;
1226 		antconf->div_group = 0;
1227 	}
1228 }
1229 
1230 static void ar9003_hw_antdiv_comb_conf_set(struct ath_hw *ah,
1231 				   struct ath_hw_antcomb_conf *antconf)
1232 {
1233 	u32 regval;
1234 
1235 	regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
1236 	regval &= ~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
1237 		    AR_PHY_9485_ANT_DIV_ALT_LNACONF |
1238 		    AR_PHY_9485_ANT_FAST_DIV_BIAS |
1239 		    AR_PHY_9485_ANT_DIV_MAIN_GAINTB |
1240 		    AR_PHY_9485_ANT_DIV_ALT_GAINTB);
1241 	regval |= ((antconf->main_lna_conf <<
1242 					AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S)
1243 		   & AR_PHY_9485_ANT_DIV_MAIN_LNACONF);
1244 	regval |= ((antconf->alt_lna_conf << AR_PHY_9485_ANT_DIV_ALT_LNACONF_S)
1245 		   & AR_PHY_9485_ANT_DIV_ALT_LNACONF);
1246 	regval |= ((antconf->fast_div_bias << AR_PHY_9485_ANT_FAST_DIV_BIAS_S)
1247 		   & AR_PHY_9485_ANT_FAST_DIV_BIAS);
1248 	regval |= ((antconf->main_gaintb << AR_PHY_9485_ANT_DIV_MAIN_GAINTB_S)
1249 		   & AR_PHY_9485_ANT_DIV_MAIN_GAINTB);
1250 	regval |= ((antconf->alt_gaintb << AR_PHY_9485_ANT_DIV_ALT_GAINTB_S)
1251 		   & AR_PHY_9485_ANT_DIV_ALT_GAINTB);
1252 
1253 	REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
1254 }
1255 
1256 void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
1257 {
1258 	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
1259 	struct ath_hw_ops *ops = ath9k_hw_ops(ah);
1260 	static const u32 ar9300_cca_regs[6] = {
1261 		AR_PHY_CCA_0,
1262 		AR_PHY_CCA_1,
1263 		AR_PHY_CCA_2,
1264 		AR_PHY_EXT_CCA,
1265 		AR_PHY_EXT_CCA_1,
1266 		AR_PHY_EXT_CCA_2,
1267 	};
1268 
1269 	priv_ops->rf_set_freq = ar9003_hw_set_channel;
1270 	priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate;
1271 	priv_ops->compute_pll_control = ar9003_hw_compute_pll_control;
1272 	priv_ops->set_channel_regs = ar9003_hw_set_channel_regs;
1273 	priv_ops->init_bb = ar9003_hw_init_bb;
1274 	priv_ops->process_ini = ar9003_hw_process_ini;
1275 	priv_ops->set_rfmode = ar9003_hw_set_rfmode;
1276 	priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive;
1277 	priv_ops->set_delta_slope = ar9003_hw_set_delta_slope;
1278 	priv_ops->rfbus_req = ar9003_hw_rfbus_req;
1279 	priv_ops->rfbus_done = ar9003_hw_rfbus_done;
1280 	priv_ops->set_diversity = ar9003_hw_set_diversity;
1281 	priv_ops->ani_control = ar9003_hw_ani_control;
1282 	priv_ops->do_getnf = ar9003_hw_do_getnf;
1283 	priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs;
1284 	priv_ops->set_radar_params = ar9003_hw_set_radar_params;
1285 
1286 	ops->antdiv_comb_conf_get = ar9003_hw_antdiv_comb_conf_get;
1287 	ops->antdiv_comb_conf_set = ar9003_hw_antdiv_comb_conf_set;
1288 
1289 	ar9003_hw_set_nf_limits(ah);
1290 	ar9003_hw_set_radar_conf(ah);
1291 	memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs));
1292 }
1293 
1294 void ar9003_hw_bb_watchdog_config(struct ath_hw *ah)
1295 {
1296 	struct ath_common *common = ath9k_hw_common(ah);
1297 	u32 idle_tmo_ms = ah->bb_watchdog_timeout_ms;
1298 	u32 val, idle_count;
1299 
1300 	if (!idle_tmo_ms) {
1301 		/* disable IRQ, disable chip-reset for BB panic */
1302 		REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
1303 			  REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) &
1304 			  ~(AR_PHY_WATCHDOG_RST_ENABLE |
1305 			    AR_PHY_WATCHDOG_IRQ_ENABLE));
1306 
1307 		/* disable watchdog in non-IDLE mode, disable in IDLE mode */
1308 		REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
1309 			  REG_READ(ah, AR_PHY_WATCHDOG_CTL_1) &
1310 			  ~(AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
1311 			    AR_PHY_WATCHDOG_IDLE_ENABLE));
1312 
1313 		ath_dbg(common, ATH_DBG_RESET, "Disabled BB Watchdog\n");
1314 		return;
1315 	}
1316 
1317 	/* enable IRQ, disable chip-reset for BB watchdog */
1318 	val = REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & AR_PHY_WATCHDOG_CNTL2_MASK;
1319 	REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
1320 		  (val | AR_PHY_WATCHDOG_IRQ_ENABLE) &
1321 		  ~AR_PHY_WATCHDOG_RST_ENABLE);
1322 
1323 	/* bound limit to 10 secs */
1324 	if (idle_tmo_ms > 10000)
1325 		idle_tmo_ms = 10000;
1326 
1327 	/*
1328 	 * The time unit for watchdog event is 2^15 44/88MHz cycles.
1329 	 *
1330 	 * For HT20 we have a time unit of 2^15/44 MHz = .74 ms per tick
1331 	 * For HT40 we have a time unit of 2^15/88 MHz = .37 ms per tick
1332 	 *
1333 	 * Given we use fast clock now in 5 GHz, these time units should
1334 	 * be common for both 2 GHz and 5 GHz.
1335 	 */
1336 	idle_count = (100 * idle_tmo_ms) / 74;
1337 	if (ah->curchan && IS_CHAN_HT40(ah->curchan))
1338 		idle_count = (100 * idle_tmo_ms) / 37;
1339 
1340 	/*
1341 	 * enable watchdog in non-IDLE mode, disable in IDLE mode,
1342 	 * set idle time-out.
1343 	 */
1344 	REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
1345 		  AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
1346 		  AR_PHY_WATCHDOG_IDLE_MASK |
1347 		  (AR_PHY_WATCHDOG_NON_IDLE_MASK & (idle_count << 2)));
1348 
1349 	ath_dbg(common, ATH_DBG_RESET,
1350 		"Enabled BB Watchdog timeout (%u ms)\n",
1351 		idle_tmo_ms);
1352 }
1353 
1354 void ar9003_hw_bb_watchdog_read(struct ath_hw *ah)
1355 {
1356 	/*
1357 	 * we want to avoid printing in ISR context so we save the
1358 	 * watchdog status to be printed later in bottom half context.
1359 	 */
1360 	ah->bb_watchdog_last_status = REG_READ(ah, AR_PHY_WATCHDOG_STATUS);
1361 
1362 	/*
1363 	 * the watchdog timer should reset on status read but to be sure
1364 	 * sure we write 0 to the watchdog status bit.
1365 	 */
1366 	REG_WRITE(ah, AR_PHY_WATCHDOG_STATUS,
1367 		  ah->bb_watchdog_last_status & ~AR_PHY_WATCHDOG_STATUS_CLR);
1368 }
1369 
1370 void ar9003_hw_bb_watchdog_dbg_info(struct ath_hw *ah)
1371 {
1372 	struct ath_common *common = ath9k_hw_common(ah);
1373 	u32 status;
1374 
1375 	if (likely(!(common->debug_mask & ATH_DBG_RESET)))
1376 		return;
1377 
1378 	status = ah->bb_watchdog_last_status;
1379 	ath_dbg(common, ATH_DBG_RESET,
1380 		"\n==== BB update: BB status=0x%08x ====\n", status);
1381 	ath_dbg(common, ATH_DBG_RESET,
1382 		"** BB state: wd=%u det=%u rdar=%u rOFDM=%d rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1383 		MS(status, AR_PHY_WATCHDOG_INFO),
1384 		MS(status, AR_PHY_WATCHDOG_DET_HANG),
1385 		MS(status, AR_PHY_WATCHDOG_RADAR_SM),
1386 		MS(status, AR_PHY_WATCHDOG_RX_OFDM_SM),
1387 		MS(status, AR_PHY_WATCHDOG_RX_CCK_SM),
1388 		MS(status, AR_PHY_WATCHDOG_TX_OFDM_SM),
1389 		MS(status, AR_PHY_WATCHDOG_TX_CCK_SM),
1390 		MS(status, AR_PHY_WATCHDOG_AGC_SM),
1391 		MS(status, AR_PHY_WATCHDOG_SRCH_SM));
1392 
1393 	ath_dbg(common, ATH_DBG_RESET,
1394 		"** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1395 		REG_READ(ah, AR_PHY_WATCHDOG_CTL_1),
1396 		REG_READ(ah, AR_PHY_WATCHDOG_CTL_2));
1397 	ath_dbg(common, ATH_DBG_RESET,
1398 		"** BB mode: BB_gen_controls=0x%08x **\n",
1399 		REG_READ(ah, AR_PHY_GEN_CTRL));
1400 
1401 #define PCT(_field) (common->cc_survey._field * 100 / common->cc_survey.cycles)
1402 	if (common->cc_survey.cycles)
1403 		ath_dbg(common, ATH_DBG_RESET,
1404 			"** BB busy times: rx_clear=%d%%, rx_frame=%d%%, tx_frame=%d%% **\n",
1405 			PCT(rx_busy), PCT(rx_frame), PCT(tx_frame));
1406 
1407 	ath_dbg(common, ATH_DBG_RESET,
1408 		"==== BB update: done ====\n\n");
1409 }
1410 EXPORT_SYMBOL(ar9003_hw_bb_watchdog_dbg_info);
1411 
1412 void ar9003_hw_disable_phy_restart(struct ath_hw *ah)
1413 {
1414 	u32 val;
1415 
1416 	/* While receiving unsupported rate frame rx state machine
1417 	 * gets into a state 0xb and if phy_restart happens in that
1418 	 * state, BB would go hang. If RXSM is in 0xb state after
1419 	 * first bb panic, ensure to disable the phy_restart.
1420 	 */
1421 	if (!((MS(ah->bb_watchdog_last_status,
1422 		  AR_PHY_WATCHDOG_RX_OFDM_SM) == 0xb) ||
1423 	    ah->bb_hang_rx_ofdm))
1424 		return;
1425 
1426 	ah->bb_hang_rx_ofdm = true;
1427 	val = REG_READ(ah, AR_PHY_RESTART);
1428 	val &= ~AR_PHY_RESTART_ENA;
1429 
1430 	REG_WRITE(ah, AR_PHY_RESTART, val);
1431 }
1432 EXPORT_SYMBOL(ar9003_hw_disable_phy_restart);
1433