1 /* 2 * Copyright (c) 2010-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/export.h> 18 #include "hw.h" 19 #include "ar9003_phy.h" 20 21 #define AR9300_OFDM_RATES 8 22 #define AR9300_HT_SS_RATES 8 23 #define AR9300_HT_DS_RATES 8 24 #define AR9300_HT_TS_RATES 8 25 26 #define AR9300_11NA_OFDM_SHIFT 0 27 #define AR9300_11NA_HT_SS_SHIFT 8 28 #define AR9300_11NA_HT_DS_SHIFT 16 29 #define AR9300_11NA_HT_TS_SHIFT 24 30 31 #define AR9300_11NG_OFDM_SHIFT 4 32 #define AR9300_11NG_HT_SS_SHIFT 12 33 #define AR9300_11NG_HT_DS_SHIFT 20 34 #define AR9300_11NG_HT_TS_SHIFT 28 35 36 static const int firstep_table[] = 37 /* level: 0 1 2 3 4 5 6 7 8 */ 38 { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */ 39 40 static const int cycpwrThr1_table[] = 41 /* level: 0 1 2 3 4 5 6 7 8 */ 42 { -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */ 43 44 /* 45 * register values to turn OFDM weak signal detection OFF 46 */ 47 static const int m1ThreshLow_off = 127; 48 static const int m2ThreshLow_off = 127; 49 static const int m1Thresh_off = 127; 50 static const int m2Thresh_off = 127; 51 static const int m2CountThr_off = 31; 52 static const int m2CountThrLow_off = 63; 53 static const int m1ThreshLowExt_off = 127; 54 static const int m2ThreshLowExt_off = 127; 55 static const int m1ThreshExt_off = 127; 56 static const int m2ThreshExt_off = 127; 57 58 static const u8 ofdm2pwr[] = { 59 ALL_TARGET_LEGACY_6_24, 60 ALL_TARGET_LEGACY_6_24, 61 ALL_TARGET_LEGACY_6_24, 62 ALL_TARGET_LEGACY_6_24, 63 ALL_TARGET_LEGACY_6_24, 64 ALL_TARGET_LEGACY_36, 65 ALL_TARGET_LEGACY_48, 66 ALL_TARGET_LEGACY_54 67 }; 68 69 static const u8 mcs2pwr_ht20[] = { 70 ALL_TARGET_HT20_0_8_16, 71 ALL_TARGET_HT20_1_3_9_11_17_19, 72 ALL_TARGET_HT20_1_3_9_11_17_19, 73 ALL_TARGET_HT20_1_3_9_11_17_19, 74 ALL_TARGET_HT20_4, 75 ALL_TARGET_HT20_5, 76 ALL_TARGET_HT20_6, 77 ALL_TARGET_HT20_7, 78 ALL_TARGET_HT20_0_8_16, 79 ALL_TARGET_HT20_1_3_9_11_17_19, 80 ALL_TARGET_HT20_1_3_9_11_17_19, 81 ALL_TARGET_HT20_1_3_9_11_17_19, 82 ALL_TARGET_HT20_12, 83 ALL_TARGET_HT20_13, 84 ALL_TARGET_HT20_14, 85 ALL_TARGET_HT20_15, 86 ALL_TARGET_HT20_0_8_16, 87 ALL_TARGET_HT20_1_3_9_11_17_19, 88 ALL_TARGET_HT20_1_3_9_11_17_19, 89 ALL_TARGET_HT20_1_3_9_11_17_19, 90 ALL_TARGET_HT20_20, 91 ALL_TARGET_HT20_21, 92 ALL_TARGET_HT20_22, 93 ALL_TARGET_HT20_23 94 }; 95 96 static const u8 mcs2pwr_ht40[] = { 97 ALL_TARGET_HT40_0_8_16, 98 ALL_TARGET_HT40_1_3_9_11_17_19, 99 ALL_TARGET_HT40_1_3_9_11_17_19, 100 ALL_TARGET_HT40_1_3_9_11_17_19, 101 ALL_TARGET_HT40_4, 102 ALL_TARGET_HT40_5, 103 ALL_TARGET_HT40_6, 104 ALL_TARGET_HT40_7, 105 ALL_TARGET_HT40_0_8_16, 106 ALL_TARGET_HT40_1_3_9_11_17_19, 107 ALL_TARGET_HT40_1_3_9_11_17_19, 108 ALL_TARGET_HT40_1_3_9_11_17_19, 109 ALL_TARGET_HT40_12, 110 ALL_TARGET_HT40_13, 111 ALL_TARGET_HT40_14, 112 ALL_TARGET_HT40_15, 113 ALL_TARGET_HT40_0_8_16, 114 ALL_TARGET_HT40_1_3_9_11_17_19, 115 ALL_TARGET_HT40_1_3_9_11_17_19, 116 ALL_TARGET_HT40_1_3_9_11_17_19, 117 ALL_TARGET_HT40_20, 118 ALL_TARGET_HT40_21, 119 ALL_TARGET_HT40_22, 120 ALL_TARGET_HT40_23, 121 }; 122 123 /** 124 * ar9003_hw_set_channel - set channel on single-chip device 125 * @ah: atheros hardware structure 126 * @chan: 127 * 128 * This is the function to change channel on single-chip devices, that is 129 * for AR9300 family of chipsets. 130 * 131 * This function takes the channel value in MHz and sets 132 * hardware channel value. Assumes writes have been enabled to analog bus. 133 * 134 * Actual Expression, 135 * 136 * For 2GHz channel, 137 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) 138 * (freq_ref = 40MHz) 139 * 140 * For 5GHz channel, 141 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10) 142 * (freq_ref = 40MHz/(24>>amodeRefSel)) 143 * 144 * For 5GHz channels which are 5MHz spaced, 145 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) 146 * (freq_ref = 40MHz) 147 */ 148 static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan) 149 { 150 u16 bMode, fracMode = 0, aModeRefSel = 0; 151 u32 freq, chan_frac, div, channelSel = 0, reg32 = 0; 152 struct chan_centers centers; 153 int loadSynthChannel; 154 155 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 156 freq = centers.synth_center; 157 158 if (freq < 4800) { /* 2 GHz, fractional mode */ 159 if (AR_SREV_9330(ah)) { 160 if (ah->is_clk_25mhz) 161 div = 75; 162 else 163 div = 120; 164 165 channelSel = (freq * 4) / div; 166 chan_frac = (((freq * 4) % div) * 0x20000) / div; 167 channelSel = (channelSel << 17) | chan_frac; 168 } else if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) { 169 /* 170 * freq_ref = 40 / (refdiva >> amoderefsel); 171 * where refdiva=1 and amoderefsel=0 172 * ndiv = ((chan_mhz * 4) / 3) / freq_ref; 173 * chansel = int(ndiv), chanfrac = (ndiv - chansel) * 0x20000 174 */ 175 channelSel = (freq * 4) / 120; 176 chan_frac = (((freq * 4) % 120) * 0x20000) / 120; 177 channelSel = (channelSel << 17) | chan_frac; 178 } else if (AR_SREV_9340(ah)) { 179 if (ah->is_clk_25mhz) { 180 channelSel = (freq * 2) / 75; 181 chan_frac = (((freq * 2) % 75) * 0x20000) / 75; 182 channelSel = (channelSel << 17) | chan_frac; 183 } else { 184 channelSel = CHANSEL_2G(freq) >> 1; 185 } 186 } else if (AR_SREV_9550(ah) || AR_SREV_9531(ah) || 187 AR_SREV_9561(ah)) { 188 if (ah->is_clk_25mhz) 189 div = 75; 190 else 191 div = 120; 192 193 channelSel = (freq * 4) / div; 194 chan_frac = (((freq * 4) % div) * 0x20000) / div; 195 channelSel = (channelSel << 17) | chan_frac; 196 } else { 197 channelSel = CHANSEL_2G(freq); 198 } 199 /* Set to 2G mode */ 200 bMode = 1; 201 } else { 202 if ((AR_SREV_9340(ah) || AR_SREV_9550(ah) || 203 AR_SREV_9531(ah) || AR_SREV_9561(ah)) && 204 ah->is_clk_25mhz) { 205 channelSel = freq / 75; 206 chan_frac = ((freq % 75) * 0x20000) / 75; 207 channelSel = (channelSel << 17) | chan_frac; 208 } else { 209 channelSel = CHANSEL_5G(freq); 210 /* Doubler is ON, so, divide channelSel by 2. */ 211 channelSel >>= 1; 212 } 213 /* Set to 5G mode */ 214 bMode = 0; 215 } 216 217 /* Enable fractional mode for all channels */ 218 fracMode = 1; 219 aModeRefSel = 0; 220 loadSynthChannel = 0; 221 222 reg32 = (bMode << 29); 223 REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32); 224 225 /* Enable Long shift Select for Synthesizer */ 226 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4, 227 AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1); 228 229 /* Program Synth. setting */ 230 reg32 = (channelSel << 2) | (fracMode << 30) | 231 (aModeRefSel << 28) | (loadSynthChannel << 31); 232 REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32); 233 234 /* Toggle Load Synth channel bit */ 235 loadSynthChannel = 1; 236 reg32 = (channelSel << 2) | (fracMode << 30) | 237 (aModeRefSel << 28) | (loadSynthChannel << 31); 238 REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32); 239 240 ah->curchan = chan; 241 242 return 0; 243 } 244 245 /** 246 * ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency 247 * @ah: atheros hardware structure 248 * @chan: 249 * 250 * For single-chip solutions. Converts to baseband spur frequency given the 251 * input channel frequency and compute register settings below. 252 * 253 * Spur mitigation for MRC CCK 254 */ 255 static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah, 256 struct ath9k_channel *chan) 257 { 258 static const u32 spur_freq[4] = { 2420, 2440, 2464, 2480 }; 259 int cur_bb_spur, negative = 0, cck_spur_freq; 260 int i; 261 int range, max_spur_cnts, synth_freq; 262 u8 *spur_fbin_ptr = ar9003_get_spur_chan_ptr(ah, IS_CHAN_2GHZ(chan)); 263 264 /* 265 * Need to verify range +/- 10 MHz in control channel, otherwise spur 266 * is out-of-band and can be ignored. 267 */ 268 269 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) || 270 AR_SREV_9550(ah) || AR_SREV_9561(ah)) { 271 if (spur_fbin_ptr[0] == 0) /* No spur */ 272 return; 273 max_spur_cnts = 5; 274 if (IS_CHAN_HT40(chan)) { 275 range = 19; 276 if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, 277 AR_PHY_GC_DYN2040_PRI_CH) == 0) 278 synth_freq = chan->channel + 10; 279 else 280 synth_freq = chan->channel - 10; 281 } else { 282 range = 10; 283 synth_freq = chan->channel; 284 } 285 } else { 286 range = AR_SREV_9462(ah) ? 5 : 10; 287 max_spur_cnts = 4; 288 synth_freq = chan->channel; 289 } 290 291 for (i = 0; i < max_spur_cnts; i++) { 292 if (AR_SREV_9462(ah) && (i == 0 || i == 3)) 293 continue; 294 295 negative = 0; 296 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) || 297 AR_SREV_9550(ah) || AR_SREV_9561(ah)) 298 cur_bb_spur = ath9k_hw_fbin2freq(spur_fbin_ptr[i], 299 IS_CHAN_2GHZ(chan)); 300 else 301 cur_bb_spur = spur_freq[i]; 302 303 cur_bb_spur -= synth_freq; 304 if (cur_bb_spur < 0) { 305 negative = 1; 306 cur_bb_spur = -cur_bb_spur; 307 } 308 if (cur_bb_spur < range) { 309 cck_spur_freq = (int)((cur_bb_spur << 19) / 11); 310 311 if (negative == 1) 312 cck_spur_freq = -cck_spur_freq; 313 314 cck_spur_freq = cck_spur_freq & 0xfffff; 315 316 REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL, 317 AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7); 318 REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, 319 AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f); 320 REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, 321 AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE, 322 0x2); 323 REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, 324 AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 325 0x1); 326 REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, 327 AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 328 cck_spur_freq); 329 330 return; 331 } 332 } 333 334 REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL, 335 AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5); 336 REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, 337 AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0); 338 REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, 339 AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0); 340 } 341 342 /* Clean all spur register fields */ 343 static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah) 344 { 345 REG_RMW_FIELD(ah, AR_PHY_TIMING4, 346 AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0); 347 REG_RMW_FIELD(ah, AR_PHY_TIMING11, 348 AR_PHY_TIMING11_SPUR_FREQ_SD, 0); 349 REG_RMW_FIELD(ah, AR_PHY_TIMING11, 350 AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0); 351 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 352 AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0); 353 REG_RMW_FIELD(ah, AR_PHY_TIMING11, 354 AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0); 355 REG_RMW_FIELD(ah, AR_PHY_TIMING11, 356 AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0); 357 REG_RMW_FIELD(ah, AR_PHY_TIMING4, 358 AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0); 359 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, 360 AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0); 361 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, 362 AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0); 363 364 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, 365 AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0); 366 REG_RMW_FIELD(ah, AR_PHY_TIMING4, 367 AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0); 368 REG_RMW_FIELD(ah, AR_PHY_TIMING4, 369 AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0); 370 REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, 371 AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0); 372 REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A, 373 AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0); 374 REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, 375 AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0); 376 REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, 377 AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0); 378 REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, 379 AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0); 380 REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A, 381 AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0); 382 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, 383 AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0); 384 } 385 386 static void ar9003_hw_spur_ofdm(struct ath_hw *ah, 387 int freq_offset, 388 int spur_freq_sd, 389 int spur_delta_phase, 390 int spur_subchannel_sd, 391 int range, 392 int synth_freq) 393 { 394 int mask_index = 0; 395 396 /* OFDM Spur mitigation */ 397 REG_RMW_FIELD(ah, AR_PHY_TIMING4, 398 AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1); 399 REG_RMW_FIELD(ah, AR_PHY_TIMING11, 400 AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd); 401 REG_RMW_FIELD(ah, AR_PHY_TIMING11, 402 AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase); 403 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 404 AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd); 405 REG_RMW_FIELD(ah, AR_PHY_TIMING11, 406 AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1); 407 408 if (!(AR_SREV_9565(ah) && range == 10 && synth_freq == 2437)) 409 REG_RMW_FIELD(ah, AR_PHY_TIMING11, 410 AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1); 411 412 REG_RMW_FIELD(ah, AR_PHY_TIMING4, 413 AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1); 414 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, 415 AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34); 416 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, 417 AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1); 418 419 if (!AR_SREV_9340(ah) && 420 REG_READ_FIELD(ah, AR_PHY_MODE, 421 AR_PHY_MODE_DYNAMIC) == 0x1) 422 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, 423 AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1); 424 425 mask_index = (freq_offset << 4) / 5; 426 if (mask_index < 0) 427 mask_index = mask_index - 1; 428 429 mask_index = mask_index & 0x7f; 430 431 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, 432 AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1); 433 REG_RMW_FIELD(ah, AR_PHY_TIMING4, 434 AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1); 435 REG_RMW_FIELD(ah, AR_PHY_TIMING4, 436 AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1); 437 REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, 438 AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index); 439 REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A, 440 AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index); 441 REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, 442 AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index); 443 REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, 444 AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc); 445 REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, 446 AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc); 447 REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A, 448 AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0); 449 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, 450 AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff); 451 } 452 453 static void ar9003_hw_spur_ofdm_9565(struct ath_hw *ah, 454 int freq_offset) 455 { 456 int mask_index = 0; 457 458 mask_index = (freq_offset << 4) / 5; 459 if (mask_index < 0) 460 mask_index = mask_index - 1; 461 462 mask_index = mask_index & 0x7f; 463 464 REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, 465 AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_B, 466 mask_index); 467 468 /* A == B */ 469 REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_B, 470 AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 471 mask_index); 472 473 REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, 474 AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_B, 475 mask_index); 476 REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, 477 AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_B, 0xe); 478 REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, 479 AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_B, 0xe); 480 481 /* A == B */ 482 REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_B, 483 AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0); 484 } 485 486 static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah, 487 struct ath9k_channel *chan, 488 int freq_offset, 489 int range, 490 int synth_freq) 491 { 492 int spur_freq_sd = 0; 493 int spur_subchannel_sd = 0; 494 int spur_delta_phase = 0; 495 496 if (IS_CHAN_HT40(chan)) { 497 if (freq_offset < 0) { 498 if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, 499 AR_PHY_GC_DYN2040_PRI_CH) == 0x0) 500 spur_subchannel_sd = 1; 501 else 502 spur_subchannel_sd = 0; 503 504 spur_freq_sd = ((freq_offset + 10) << 9) / 11; 505 506 } else { 507 if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, 508 AR_PHY_GC_DYN2040_PRI_CH) == 0x0) 509 spur_subchannel_sd = 0; 510 else 511 spur_subchannel_sd = 1; 512 513 spur_freq_sd = ((freq_offset - 10) << 9) / 11; 514 515 } 516 517 spur_delta_phase = (freq_offset << 17) / 5; 518 519 } else { 520 spur_subchannel_sd = 0; 521 spur_freq_sd = (freq_offset << 9) /11; 522 spur_delta_phase = (freq_offset << 18) / 5; 523 } 524 525 spur_freq_sd = spur_freq_sd & 0x3ff; 526 spur_delta_phase = spur_delta_phase & 0xfffff; 527 528 ar9003_hw_spur_ofdm(ah, 529 freq_offset, 530 spur_freq_sd, 531 spur_delta_phase, 532 spur_subchannel_sd, 533 range, synth_freq); 534 } 535 536 /* Spur mitigation for OFDM */ 537 static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah, 538 struct ath9k_channel *chan) 539 { 540 int synth_freq; 541 int range = 10; 542 int freq_offset = 0; 543 int mode; 544 u8* spurChansPtr; 545 unsigned int i; 546 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 547 548 if (IS_CHAN_5GHZ(chan)) { 549 spurChansPtr = &(eep->modalHeader5G.spurChans[0]); 550 mode = 0; 551 } 552 else { 553 spurChansPtr = &(eep->modalHeader2G.spurChans[0]); 554 mode = 1; 555 } 556 557 if (spurChansPtr[0] == 0) 558 return; /* No spur in the mode */ 559 560 if (IS_CHAN_HT40(chan)) { 561 range = 19; 562 if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, 563 AR_PHY_GC_DYN2040_PRI_CH) == 0x0) 564 synth_freq = chan->channel - 10; 565 else 566 synth_freq = chan->channel + 10; 567 } else { 568 range = 10; 569 synth_freq = chan->channel; 570 } 571 572 ar9003_hw_spur_ofdm_clear(ah); 573 574 for (i = 0; i < AR_EEPROM_MODAL_SPURS && spurChansPtr[i]; i++) { 575 freq_offset = ath9k_hw_fbin2freq(spurChansPtr[i], mode); 576 freq_offset -= synth_freq; 577 if (abs(freq_offset) < range) { 578 ar9003_hw_spur_ofdm_work(ah, chan, freq_offset, 579 range, synth_freq); 580 581 if (AR_SREV_9565(ah) && (i < 4)) { 582 freq_offset = ath9k_hw_fbin2freq(spurChansPtr[i + 1], 583 mode); 584 freq_offset -= synth_freq; 585 if (abs(freq_offset) < range) 586 ar9003_hw_spur_ofdm_9565(ah, freq_offset); 587 } 588 589 break; 590 } 591 } 592 } 593 594 static void ar9003_hw_spur_mitigate(struct ath_hw *ah, 595 struct ath9k_channel *chan) 596 { 597 if (!AR_SREV_9565(ah)) 598 ar9003_hw_spur_mitigate_mrc_cck(ah, chan); 599 ar9003_hw_spur_mitigate_ofdm(ah, chan); 600 } 601 602 static u32 ar9003_hw_compute_pll_control_soc(struct ath_hw *ah, 603 struct ath9k_channel *chan) 604 { 605 u32 pll; 606 607 pll = SM(0x5, AR_RTC_9300_SOC_PLL_REFDIV); 608 609 if (chan && IS_CHAN_HALF_RATE(chan)) 610 pll |= SM(0x1, AR_RTC_9300_SOC_PLL_CLKSEL); 611 else if (chan && IS_CHAN_QUARTER_RATE(chan)) 612 pll |= SM(0x2, AR_RTC_9300_SOC_PLL_CLKSEL); 613 614 pll |= SM(0x2c, AR_RTC_9300_SOC_PLL_DIV_INT); 615 616 return pll; 617 } 618 619 static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah, 620 struct ath9k_channel *chan) 621 { 622 u32 pll; 623 624 pll = SM(0x5, AR_RTC_9300_PLL_REFDIV); 625 626 if (chan && IS_CHAN_HALF_RATE(chan)) 627 pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL); 628 else if (chan && IS_CHAN_QUARTER_RATE(chan)) 629 pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL); 630 631 pll |= SM(0x2c, AR_RTC_9300_PLL_DIV); 632 633 return pll; 634 } 635 636 static void ar9003_hw_set_channel_regs(struct ath_hw *ah, 637 struct ath9k_channel *chan) 638 { 639 u32 phymode; 640 u32 enableDacFifo = 0; 641 642 enableDacFifo = 643 (REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO); 644 645 /* Enable 11n HT, 20 MHz */ 646 phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SHORT_GI_40 | enableDacFifo; 647 648 if (!AR_SREV_9561(ah)) 649 phymode |= AR_PHY_GC_SINGLE_HT_LTF1; 650 651 /* Configure baseband for dynamic 20/40 operation */ 652 if (IS_CHAN_HT40(chan)) { 653 phymode |= AR_PHY_GC_DYN2040_EN; 654 /* Configure control (primary) channel at +-10MHz */ 655 if (IS_CHAN_HT40PLUS(chan)) 656 phymode |= AR_PHY_GC_DYN2040_PRI_CH; 657 658 } 659 660 /* make sure we preserve INI settings */ 661 phymode |= REG_READ(ah, AR_PHY_GEN_CTRL); 662 /* turn off Green Field detection for STA for now */ 663 phymode &= ~AR_PHY_GC_GF_DETECT_EN; 664 665 REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode); 666 667 /* Configure MAC for 20/40 operation */ 668 ath9k_hw_set11nmac2040(ah, chan); 669 670 /* global transmit timeout (25 TUs default)*/ 671 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S); 672 /* carrier sense timeout */ 673 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); 674 } 675 676 static void ar9003_hw_init_bb(struct ath_hw *ah, 677 struct ath9k_channel *chan) 678 { 679 u32 synthDelay; 680 681 /* 682 * Wait for the frequency synth to settle (synth goes on 683 * via AR_PHY_ACTIVE_EN). Read the phy active delay register. 684 * Value is in 100ns increments. 685 */ 686 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 687 688 /* Activate the PHY (includes baseband activate + synthesizer on) */ 689 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 690 ath9k_hw_synth_delay(ah, chan, synthDelay); 691 } 692 693 void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx) 694 { 695 if (ah->caps.tx_chainmask == 5 || ah->caps.rx_chainmask == 5) 696 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, 697 AR_PHY_SWAP_ALT_CHAIN); 698 699 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx); 700 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx); 701 702 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7)) 703 tx = 3; 704 705 REG_WRITE(ah, AR_SELFGEN_MASK, tx); 706 } 707 708 /* 709 * Override INI values with chip specific configuration. 710 */ 711 static void ar9003_hw_override_ini(struct ath_hw *ah) 712 { 713 u32 val; 714 715 /* 716 * Set the RX_ABORT and RX_DIS and clear it only after 717 * RXE is set for MAC. This prevents frames with 718 * corrupted descriptor status. 719 */ 720 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); 721 722 /* 723 * For AR9280 and above, there is a new feature that allows 724 * Multicast search based on both MAC Address and Key ID. By default, 725 * this feature is enabled. But since the driver is not using this 726 * feature, we switch it off; otherwise multicast search based on 727 * MAC addr only will fail. 728 */ 729 val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE); 730 val |= AR_AGG_WEP_ENABLE_FIX | 731 AR_AGG_WEP_ENABLE | 732 AR_PCU_MISC_MODE2_CFP_IGNORE; 733 REG_WRITE(ah, AR_PCU_MISC_MODE2, val); 734 735 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 736 REG_WRITE(ah, AR_GLB_SWREG_DISCONT_MODE, 737 AR_GLB_SWREG_DISCONT_EN_BT_WLAN); 738 739 if (REG_READ_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_0, 740 AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL)) 741 ah->enabled_cals |= TX_IQ_CAL; 742 else 743 ah->enabled_cals &= ~TX_IQ_CAL; 744 745 } 746 747 if (REG_READ(ah, AR_PHY_CL_CAL_CTL) & AR_PHY_CL_CAL_ENABLE) 748 ah->enabled_cals |= TX_CL_CAL; 749 else 750 ah->enabled_cals &= ~TX_CL_CAL; 751 752 if (AR_SREV_9340(ah) || AR_SREV_9531(ah) || AR_SREV_9550(ah) || 753 AR_SREV_9561(ah)) { 754 if (ah->is_clk_25mhz) { 755 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1); 756 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7); 757 REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae); 758 } else { 759 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1); 760 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400); 761 REG_WRITE(ah, AR_SLP32_INC, 0x0001e800); 762 } 763 udelay(100); 764 } 765 } 766 767 static void ar9003_hw_prog_ini(struct ath_hw *ah, 768 struct ar5416IniArray *iniArr, 769 int column) 770 { 771 unsigned int i, regWrites = 0; 772 773 /* New INI format: Array may be undefined (pre, core, post arrays) */ 774 if (!iniArr->ia_array) 775 return; 776 777 /* 778 * New INI format: Pre, core, and post arrays for a given subsystem 779 * may be modal (> 2 columns) or non-modal (2 columns). Determine if 780 * the array is non-modal and force the column to 1. 781 */ 782 if (column >= iniArr->ia_columns) 783 column = 1; 784 785 for (i = 0; i < iniArr->ia_rows; i++) { 786 u32 reg = INI_RA(iniArr, i, 0); 787 u32 val = INI_RA(iniArr, i, column); 788 789 REG_WRITE(ah, reg, val); 790 791 DO_DELAY(regWrites); 792 } 793 } 794 795 static int ar9550_hw_get_modes_txgain_index(struct ath_hw *ah, 796 struct ath9k_channel *chan) 797 { 798 int ret; 799 800 if (IS_CHAN_2GHZ(chan)) { 801 if (IS_CHAN_HT40(chan)) 802 return 7; 803 else 804 return 8; 805 } 806 807 if (chan->channel <= 5350) 808 ret = 1; 809 else if ((chan->channel > 5350) && (chan->channel <= 5600)) 810 ret = 3; 811 else 812 ret = 5; 813 814 if (IS_CHAN_HT40(chan)) 815 ret++; 816 817 return ret; 818 } 819 820 static int ar9561_hw_get_modes_txgain_index(struct ath_hw *ah, 821 struct ath9k_channel *chan) 822 { 823 if (IS_CHAN_2GHZ(chan)) { 824 if (IS_CHAN_HT40(chan)) 825 return 1; 826 else 827 return 2; 828 } 829 830 return 0; 831 } 832 833 static void ar9003_doubler_fix(struct ath_hw *ah) 834 { 835 if (AR_SREV_9300(ah) || AR_SREV_9580(ah) || AR_SREV_9550(ah)) { 836 REG_RMW(ah, AR_PHY_65NM_CH0_RXTX2, 837 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 838 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0); 839 REG_RMW(ah, AR_PHY_65NM_CH1_RXTX2, 840 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 841 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0); 842 REG_RMW(ah, AR_PHY_65NM_CH2_RXTX2, 843 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 844 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0); 845 846 udelay(200); 847 848 REG_CLR_BIT(ah, AR_PHY_65NM_CH0_RXTX2, 849 AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK); 850 REG_CLR_BIT(ah, AR_PHY_65NM_CH1_RXTX2, 851 AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK); 852 REG_CLR_BIT(ah, AR_PHY_65NM_CH2_RXTX2, 853 AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK); 854 855 udelay(1); 856 857 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX2, 858 AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1); 859 REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX2, 860 AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1); 861 REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX2, 862 AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1); 863 864 udelay(200); 865 866 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH12, 867 AR_PHY_65NM_CH0_SYNTH12_VREFMUL3, 0xf); 868 869 REG_RMW(ah, AR_PHY_65NM_CH0_RXTX2, 0, 870 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 871 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S); 872 REG_RMW(ah, AR_PHY_65NM_CH1_RXTX2, 0, 873 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 874 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S); 875 REG_RMW(ah, AR_PHY_65NM_CH2_RXTX2, 0, 876 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 877 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S); 878 } 879 } 880 881 static int ar9003_hw_process_ini(struct ath_hw *ah, 882 struct ath9k_channel *chan) 883 { 884 unsigned int regWrites = 0, i; 885 u32 modesIndex; 886 887 if (IS_CHAN_5GHZ(chan)) 888 modesIndex = IS_CHAN_HT40(chan) ? 2 : 1; 889 else 890 modesIndex = IS_CHAN_HT40(chan) ? 3 : 4; 891 892 /* 893 * SOC, MAC, BB, RADIO initvals. 894 */ 895 for (i = 0; i < ATH_INI_NUM_SPLIT; i++) { 896 ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex); 897 ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex); 898 ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex); 899 ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex); 900 if (i == ATH_INI_POST && AR_SREV_9462_20_OR_LATER(ah)) 901 ar9003_hw_prog_ini(ah, 902 &ah->ini_radio_post_sys2ant, 903 modesIndex); 904 } 905 906 ar9003_doubler_fix(ah); 907 908 /* 909 * RXGAIN initvals. 910 */ 911 REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites); 912 913 if (AR_SREV_9462_20_OR_LATER(ah)) { 914 /* 915 * CUS217 mix LNA mode. 916 */ 917 if (ar9003_hw_get_rx_gain_idx(ah) == 2) { 918 REG_WRITE_ARRAY(&ah->ini_modes_rxgain_bb_core, 919 1, regWrites); 920 REG_WRITE_ARRAY(&ah->ini_modes_rxgain_bb_postamble, 921 modesIndex, regWrites); 922 } 923 924 /* 925 * 5G-XLNA 926 */ 927 if ((ar9003_hw_get_rx_gain_idx(ah) == 2) || 928 (ar9003_hw_get_rx_gain_idx(ah) == 3)) { 929 REG_WRITE_ARRAY(&ah->ini_modes_rxgain_xlna, 930 modesIndex, regWrites); 931 } 932 } 933 934 if (AR_SREV_9550(ah) || AR_SREV_9561(ah)) 935 REG_WRITE_ARRAY(&ah->ini_modes_rx_gain_bounds, modesIndex, 936 regWrites); 937 938 if (AR_SREV_9561(ah) && (ar9003_hw_get_rx_gain_idx(ah) == 0)) 939 REG_WRITE_ARRAY(&ah->ini_modes_rxgain_xlna, 940 modesIndex, regWrites); 941 /* 942 * TXGAIN initvals. 943 */ 944 if (AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) { 945 int modes_txgain_index = 1; 946 947 if (AR_SREV_9550(ah)) 948 modes_txgain_index = ar9550_hw_get_modes_txgain_index(ah, chan); 949 950 if (AR_SREV_9561(ah)) 951 modes_txgain_index = 952 ar9561_hw_get_modes_txgain_index(ah, chan); 953 954 if (modes_txgain_index < 0) 955 return -EINVAL; 956 957 REG_WRITE_ARRAY(&ah->iniModesTxGain, modes_txgain_index, 958 regWrites); 959 } else { 960 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites); 961 } 962 963 /* 964 * For 5GHz channels requiring Fast Clock, apply 965 * different modal values. 966 */ 967 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 968 REG_WRITE_ARRAY(&ah->iniModesFastClock, 969 modesIndex, regWrites); 970 971 /* 972 * Clock frequency initvals. 973 */ 974 REG_WRITE_ARRAY(&ah->iniAdditional, 1, regWrites); 975 976 /* 977 * JAPAN regulatory. 978 */ 979 if (chan->channel == 2484) { 980 ar9003_hw_prog_ini(ah, &ah->iniCckfirJapan2484, 1); 981 982 if (AR_SREV_9531(ah)) 983 REG_RMW_FIELD(ah, AR_PHY_FCAL_2_0, 984 AR_PHY_FLC_PWR_THRESH, 0); 985 } 986 987 ah->modes_index = modesIndex; 988 ar9003_hw_override_ini(ah); 989 ar9003_hw_set_channel_regs(ah, chan); 990 ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask); 991 ath9k_hw_apply_txpower(ah, chan, false); 992 993 return 0; 994 } 995 996 static void ar9003_hw_set_rfmode(struct ath_hw *ah, 997 struct ath9k_channel *chan) 998 { 999 u32 rfMode = 0; 1000 1001 if (chan == NULL) 1002 return; 1003 1004 if (IS_CHAN_2GHZ(chan)) 1005 rfMode |= AR_PHY_MODE_DYNAMIC; 1006 else 1007 rfMode |= AR_PHY_MODE_OFDM; 1008 1009 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1010 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE); 1011 1012 if (rfMode & (AR_PHY_MODE_QUARTER | AR_PHY_MODE_HALF)) 1013 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, 1014 AR_PHY_FRAME_CTL_CF_OVERLAP_WINDOW, 3); 1015 1016 REG_WRITE(ah, AR_PHY_MODE, rfMode); 1017 } 1018 1019 static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah) 1020 { 1021 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); 1022 } 1023 1024 static void ar9003_hw_set_delta_slope(struct ath_hw *ah, 1025 struct ath9k_channel *chan) 1026 { 1027 u32 coef_scaled, ds_coef_exp, ds_coef_man; 1028 u32 clockMhzScaled = 0x64000000; 1029 struct chan_centers centers; 1030 1031 /* 1032 * half and quarter rate can divide the scaled clock by 2 or 4 1033 * scale for selected channel bandwidth 1034 */ 1035 if (IS_CHAN_HALF_RATE(chan)) 1036 clockMhzScaled = clockMhzScaled >> 1; 1037 else if (IS_CHAN_QUARTER_RATE(chan)) 1038 clockMhzScaled = clockMhzScaled >> 2; 1039 1040 /* 1041 * ALGO -> coef = 1e8/fcarrier*fclock/40; 1042 * scaled coef to provide precision for this floating calculation 1043 */ 1044 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 1045 coef_scaled = clockMhzScaled / centers.synth_center; 1046 1047 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, 1048 &ds_coef_exp); 1049 1050 REG_RMW_FIELD(ah, AR_PHY_TIMING3, 1051 AR_PHY_TIMING3_DSC_MAN, ds_coef_man); 1052 REG_RMW_FIELD(ah, AR_PHY_TIMING3, 1053 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); 1054 1055 /* 1056 * For Short GI, 1057 * scaled coeff is 9/10 that of normal coeff 1058 */ 1059 coef_scaled = (9 * coef_scaled) / 10; 1060 1061 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, 1062 &ds_coef_exp); 1063 1064 /* for short gi */ 1065 REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA, 1066 AR_PHY_SGI_DSC_MAN, ds_coef_man); 1067 REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA, 1068 AR_PHY_SGI_DSC_EXP, ds_coef_exp); 1069 } 1070 1071 static bool ar9003_hw_rfbus_req(struct ath_hw *ah) 1072 { 1073 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); 1074 return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN, 1075 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT); 1076 } 1077 1078 /* 1079 * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN). 1080 * Read the phy active delay register. Value is in 100ns increments. 1081 */ 1082 static void ar9003_hw_rfbus_done(struct ath_hw *ah) 1083 { 1084 u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 1085 1086 ath9k_hw_synth_delay(ah, ah->curchan, synthDelay); 1087 1088 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); 1089 } 1090 1091 static bool ar9003_hw_ani_control(struct ath_hw *ah, 1092 enum ath9k_ani_cmd cmd, int param) 1093 { 1094 struct ath_common *common = ath9k_hw_common(ah); 1095 struct ath9k_channel *chan = ah->curchan; 1096 struct ar5416AniState *aniState = &ah->ani; 1097 int m1ThreshLow, m2ThreshLow; 1098 int m1Thresh, m2Thresh; 1099 int m2CountThr, m2CountThrLow; 1100 int m1ThreshLowExt, m2ThreshLowExt; 1101 int m1ThreshExt, m2ThreshExt; 1102 s32 value, value2; 1103 1104 switch (cmd & ah->ani_function) { 1105 case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{ 1106 /* 1107 * on == 1 means ofdm weak signal detection is ON 1108 * on == 1 is the default, for less noise immunity 1109 * 1110 * on == 0 means ofdm weak signal detection is OFF 1111 * on == 0 means more noise imm 1112 */ 1113 u32 on = param ? 1 : 0; 1114 1115 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 1116 goto skip_ws_det; 1117 1118 m1ThreshLow = on ? 1119 aniState->iniDef.m1ThreshLow : m1ThreshLow_off; 1120 m2ThreshLow = on ? 1121 aniState->iniDef.m2ThreshLow : m2ThreshLow_off; 1122 m1Thresh = on ? 1123 aniState->iniDef.m1Thresh : m1Thresh_off; 1124 m2Thresh = on ? 1125 aniState->iniDef.m2Thresh : m2Thresh_off; 1126 m2CountThr = on ? 1127 aniState->iniDef.m2CountThr : m2CountThr_off; 1128 m2CountThrLow = on ? 1129 aniState->iniDef.m2CountThrLow : m2CountThrLow_off; 1130 m1ThreshLowExt = on ? 1131 aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off; 1132 m2ThreshLowExt = on ? 1133 aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off; 1134 m1ThreshExt = on ? 1135 aniState->iniDef.m1ThreshExt : m1ThreshExt_off; 1136 m2ThreshExt = on ? 1137 aniState->iniDef.m2ThreshExt : m2ThreshExt_off; 1138 1139 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, 1140 AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 1141 m1ThreshLow); 1142 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, 1143 AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 1144 m2ThreshLow); 1145 REG_RMW_FIELD(ah, AR_PHY_SFCORR, 1146 AR_PHY_SFCORR_M1_THRESH, 1147 m1Thresh); 1148 REG_RMW_FIELD(ah, AR_PHY_SFCORR, 1149 AR_PHY_SFCORR_M2_THRESH, 1150 m2Thresh); 1151 REG_RMW_FIELD(ah, AR_PHY_SFCORR, 1152 AR_PHY_SFCORR_M2COUNT_THR, 1153 m2CountThr); 1154 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, 1155 AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 1156 m2CountThrLow); 1157 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 1158 AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 1159 m1ThreshLowExt); 1160 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 1161 AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 1162 m2ThreshLowExt); 1163 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 1164 AR_PHY_SFCORR_EXT_M1_THRESH, 1165 m1ThreshExt); 1166 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 1167 AR_PHY_SFCORR_EXT_M2_THRESH, 1168 m2ThreshExt); 1169 skip_ws_det: 1170 if (on) 1171 REG_SET_BIT(ah, AR_PHY_SFCORR_LOW, 1172 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); 1173 else 1174 REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW, 1175 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); 1176 1177 if (on != aniState->ofdmWeakSigDetect) { 1178 ath_dbg(common, ANI, 1179 "** ch %d: ofdm weak signal: %s=>%s\n", 1180 chan->channel, 1181 aniState->ofdmWeakSigDetect ? 1182 "on" : "off", 1183 on ? "on" : "off"); 1184 if (on) 1185 ah->stats.ast_ani_ofdmon++; 1186 else 1187 ah->stats.ast_ani_ofdmoff++; 1188 aniState->ofdmWeakSigDetect = on; 1189 } 1190 break; 1191 } 1192 case ATH9K_ANI_FIRSTEP_LEVEL:{ 1193 u32 level = param; 1194 1195 if (level >= ARRAY_SIZE(firstep_table)) { 1196 ath_dbg(common, ANI, 1197 "ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n", 1198 level, ARRAY_SIZE(firstep_table)); 1199 return false; 1200 } 1201 1202 /* 1203 * make register setting relative to default 1204 * from INI file & cap value 1205 */ 1206 value = firstep_table[level] - 1207 firstep_table[ATH9K_ANI_FIRSTEP_LVL] + 1208 aniState->iniDef.firstep; 1209 if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN) 1210 value = ATH9K_SIG_FIRSTEP_SETTING_MIN; 1211 if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX) 1212 value = ATH9K_SIG_FIRSTEP_SETTING_MAX; 1213 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, 1214 AR_PHY_FIND_SIG_FIRSTEP, 1215 value); 1216 /* 1217 * we need to set first step low register too 1218 * make register setting relative to default 1219 * from INI file & cap value 1220 */ 1221 value2 = firstep_table[level] - 1222 firstep_table[ATH9K_ANI_FIRSTEP_LVL] + 1223 aniState->iniDef.firstepLow; 1224 if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN) 1225 value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN; 1226 if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX) 1227 value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX; 1228 1229 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW, 1230 AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2); 1231 1232 if (level != aniState->firstepLevel) { 1233 ath_dbg(common, ANI, 1234 "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n", 1235 chan->channel, 1236 aniState->firstepLevel, 1237 level, 1238 ATH9K_ANI_FIRSTEP_LVL, 1239 value, 1240 aniState->iniDef.firstep); 1241 ath_dbg(common, ANI, 1242 "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n", 1243 chan->channel, 1244 aniState->firstepLevel, 1245 level, 1246 ATH9K_ANI_FIRSTEP_LVL, 1247 value2, 1248 aniState->iniDef.firstepLow); 1249 if (level > aniState->firstepLevel) 1250 ah->stats.ast_ani_stepup++; 1251 else if (level < aniState->firstepLevel) 1252 ah->stats.ast_ani_stepdown++; 1253 aniState->firstepLevel = level; 1254 } 1255 break; 1256 } 1257 case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{ 1258 u32 level = param; 1259 1260 if (level >= ARRAY_SIZE(cycpwrThr1_table)) { 1261 ath_dbg(common, ANI, 1262 "ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n", 1263 level, ARRAY_SIZE(cycpwrThr1_table)); 1264 return false; 1265 } 1266 /* 1267 * make register setting relative to default 1268 * from INI file & cap value 1269 */ 1270 value = cycpwrThr1_table[level] - 1271 cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL] + 1272 aniState->iniDef.cycpwrThr1; 1273 if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN) 1274 value = ATH9K_SIG_SPUR_IMM_SETTING_MIN; 1275 if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX) 1276 value = ATH9K_SIG_SPUR_IMM_SETTING_MAX; 1277 REG_RMW_FIELD(ah, AR_PHY_TIMING5, 1278 AR_PHY_TIMING5_CYCPWR_THR1, 1279 value); 1280 1281 /* 1282 * set AR_PHY_EXT_CCA for extension channel 1283 * make register setting relative to default 1284 * from INI file & cap value 1285 */ 1286 value2 = cycpwrThr1_table[level] - 1287 cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL] + 1288 aniState->iniDef.cycpwrThr1Ext; 1289 if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN) 1290 value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN; 1291 if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX) 1292 value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX; 1293 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, 1294 AR_PHY_EXT_CYCPWR_THR1, value2); 1295 1296 if (level != aniState->spurImmunityLevel) { 1297 ath_dbg(common, ANI, 1298 "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n", 1299 chan->channel, 1300 aniState->spurImmunityLevel, 1301 level, 1302 ATH9K_ANI_SPUR_IMMUNE_LVL, 1303 value, 1304 aniState->iniDef.cycpwrThr1); 1305 ath_dbg(common, ANI, 1306 "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n", 1307 chan->channel, 1308 aniState->spurImmunityLevel, 1309 level, 1310 ATH9K_ANI_SPUR_IMMUNE_LVL, 1311 value2, 1312 aniState->iniDef.cycpwrThr1Ext); 1313 if (level > aniState->spurImmunityLevel) 1314 ah->stats.ast_ani_spurup++; 1315 else if (level < aniState->spurImmunityLevel) 1316 ah->stats.ast_ani_spurdown++; 1317 aniState->spurImmunityLevel = level; 1318 } 1319 break; 1320 } 1321 case ATH9K_ANI_MRC_CCK:{ 1322 /* 1323 * is_on == 1 means MRC CCK ON (default, less noise imm) 1324 * is_on == 0 means MRC CCK is OFF (more noise imm) 1325 */ 1326 bool is_on = param ? 1 : 0; 1327 1328 if (ah->caps.rx_chainmask == 1) 1329 break; 1330 1331 REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL, 1332 AR_PHY_MRC_CCK_ENABLE, is_on); 1333 REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL, 1334 AR_PHY_MRC_CCK_MUX_REG, is_on); 1335 if (is_on != aniState->mrcCCK) { 1336 ath_dbg(common, ANI, "** ch %d: MRC CCK: %s=>%s\n", 1337 chan->channel, 1338 aniState->mrcCCK ? "on" : "off", 1339 is_on ? "on" : "off"); 1340 if (is_on) 1341 ah->stats.ast_ani_ccklow++; 1342 else 1343 ah->stats.ast_ani_cckhigh++; 1344 aniState->mrcCCK = is_on; 1345 } 1346 break; 1347 } 1348 default: 1349 ath_dbg(common, ANI, "invalid cmd %u\n", cmd); 1350 return false; 1351 } 1352 1353 ath_dbg(common, ANI, 1354 "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n", 1355 aniState->spurImmunityLevel, 1356 aniState->ofdmWeakSigDetect ? "on" : "off", 1357 aniState->firstepLevel, 1358 aniState->mrcCCK ? "on" : "off", 1359 aniState->listenTime, 1360 aniState->ofdmPhyErrCount, 1361 aniState->cckPhyErrCount); 1362 return true; 1363 } 1364 1365 static void ar9003_hw_do_getnf(struct ath_hw *ah, 1366 int16_t nfarray[NUM_NF_READINGS]) 1367 { 1368 #define AR_PHY_CH_MINCCA_PWR 0x1FF00000 1369 #define AR_PHY_CH_MINCCA_PWR_S 20 1370 #define AR_PHY_CH_EXT_MINCCA_PWR 0x01FF0000 1371 #define AR_PHY_CH_EXT_MINCCA_PWR_S 16 1372 1373 int16_t nf; 1374 int i; 1375 1376 for (i = 0; i < AR9300_MAX_CHAINS; i++) { 1377 if (ah->rxchainmask & BIT(i)) { 1378 nf = MS(REG_READ(ah, ah->nf_regs[i]), 1379 AR_PHY_CH_MINCCA_PWR); 1380 nfarray[i] = sign_extend32(nf, 8); 1381 1382 if (IS_CHAN_HT40(ah->curchan)) { 1383 u8 ext_idx = AR9300_MAX_CHAINS + i; 1384 1385 nf = MS(REG_READ(ah, ah->nf_regs[ext_idx]), 1386 AR_PHY_CH_EXT_MINCCA_PWR); 1387 nfarray[ext_idx] = sign_extend32(nf, 8); 1388 } 1389 } 1390 } 1391 } 1392 1393 static void ar9003_hw_set_nf_limits(struct ath_hw *ah) 1394 { 1395 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ; 1396 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ; 1397 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ; 1398 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ; 1399 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ; 1400 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ; 1401 1402 if (AR_SREV_9330(ah)) 1403 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9330_2GHZ; 1404 1405 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 1406 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_2GHZ; 1407 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9462_2GHZ; 1408 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_5GHZ; 1409 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9462_5GHZ; 1410 } 1411 } 1412 1413 /* 1414 * Initialize the ANI register values with default (ini) values. 1415 * This routine is called during a (full) hardware reset after 1416 * all the registers are initialised from the INI. 1417 */ 1418 static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah) 1419 { 1420 struct ar5416AniState *aniState; 1421 struct ath_common *common = ath9k_hw_common(ah); 1422 struct ath9k_channel *chan = ah->curchan; 1423 struct ath9k_ani_default *iniDef; 1424 u32 val; 1425 1426 aniState = &ah->ani; 1427 iniDef = &aniState->iniDef; 1428 1429 ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz\n", 1430 ah->hw_version.macVersion, 1431 ah->hw_version.macRev, 1432 ah->opmode, 1433 chan->channel); 1434 1435 val = REG_READ(ah, AR_PHY_SFCORR); 1436 iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH); 1437 iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH); 1438 iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR); 1439 1440 val = REG_READ(ah, AR_PHY_SFCORR_LOW); 1441 iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW); 1442 iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW); 1443 iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW); 1444 1445 val = REG_READ(ah, AR_PHY_SFCORR_EXT); 1446 iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH); 1447 iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH); 1448 iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW); 1449 iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW); 1450 iniDef->firstep = REG_READ_FIELD(ah, 1451 AR_PHY_FIND_SIG, 1452 AR_PHY_FIND_SIG_FIRSTEP); 1453 iniDef->firstepLow = REG_READ_FIELD(ah, 1454 AR_PHY_FIND_SIG_LOW, 1455 AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW); 1456 iniDef->cycpwrThr1 = REG_READ_FIELD(ah, 1457 AR_PHY_TIMING5, 1458 AR_PHY_TIMING5_CYCPWR_THR1); 1459 iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah, 1460 AR_PHY_EXT_CCA, 1461 AR_PHY_EXT_CYCPWR_THR1); 1462 1463 /* these levels just got reset to defaults by the INI */ 1464 aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL; 1465 aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL; 1466 aniState->ofdmWeakSigDetect = true; 1467 aniState->mrcCCK = true; 1468 } 1469 1470 static void ar9003_hw_set_radar_params(struct ath_hw *ah, 1471 struct ath_hw_radar_conf *conf) 1472 { 1473 unsigned int regWrites = 0; 1474 u32 radar_0 = 0, radar_1; 1475 1476 if (!conf) { 1477 REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA); 1478 return; 1479 } 1480 1481 radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA; 1482 radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR); 1483 radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI); 1484 radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT); 1485 radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI); 1486 radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND); 1487 1488 radar_1 = REG_READ(ah, AR_PHY_RADAR_1); 1489 radar_1 &= ~(AR_PHY_RADAR_1_MAXLEN | AR_PHY_RADAR_1_RELSTEP_THRESH | 1490 AR_PHY_RADAR_1_RELPWR_THRESH); 1491 radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI; 1492 radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK; 1493 radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN); 1494 radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH); 1495 radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH); 1496 1497 REG_WRITE(ah, AR_PHY_RADAR_0, radar_0); 1498 REG_WRITE(ah, AR_PHY_RADAR_1, radar_1); 1499 if (conf->ext_channel) 1500 REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA); 1501 else 1502 REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA); 1503 1504 if (AR_SREV_9300(ah) || AR_SREV_9340(ah) || AR_SREV_9580(ah)) { 1505 REG_WRITE_ARRAY(&ah->ini_dfs, 1506 IS_CHAN_HT40(ah->curchan) ? 2 : 1, regWrites); 1507 } 1508 } 1509 1510 static void ar9003_hw_set_radar_conf(struct ath_hw *ah) 1511 { 1512 struct ath_hw_radar_conf *conf = &ah->radar_conf; 1513 1514 conf->fir_power = -28; 1515 conf->radar_rssi = 0; 1516 conf->pulse_height = 10; 1517 conf->pulse_rssi = 15; 1518 conf->pulse_inband = 8; 1519 conf->pulse_maxlen = 255; 1520 conf->pulse_inband_step = 12; 1521 conf->radar_inband = 8; 1522 } 1523 1524 static void ar9003_hw_antdiv_comb_conf_get(struct ath_hw *ah, 1525 struct ath_hw_antcomb_conf *antconf) 1526 { 1527 u32 regval; 1528 1529 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); 1530 antconf->main_lna_conf = (regval & AR_PHY_ANT_DIV_MAIN_LNACONF) >> 1531 AR_PHY_ANT_DIV_MAIN_LNACONF_S; 1532 antconf->alt_lna_conf = (regval & AR_PHY_ANT_DIV_ALT_LNACONF) >> 1533 AR_PHY_ANT_DIV_ALT_LNACONF_S; 1534 antconf->fast_div_bias = (regval & AR_PHY_ANT_FAST_DIV_BIAS) >> 1535 AR_PHY_ANT_FAST_DIV_BIAS_S; 1536 1537 if (AR_SREV_9330_11(ah)) { 1538 antconf->lna1_lna2_switch_delta = -1; 1539 antconf->lna1_lna2_delta = -9; 1540 antconf->div_group = 1; 1541 } else if (AR_SREV_9485(ah)) { 1542 antconf->lna1_lna2_switch_delta = -1; 1543 antconf->lna1_lna2_delta = -9; 1544 antconf->div_group = 2; 1545 } else if (AR_SREV_9565(ah)) { 1546 antconf->lna1_lna2_switch_delta = 3; 1547 antconf->lna1_lna2_delta = -9; 1548 antconf->div_group = 3; 1549 } else { 1550 antconf->lna1_lna2_switch_delta = -1; 1551 antconf->lna1_lna2_delta = -3; 1552 antconf->div_group = 0; 1553 } 1554 } 1555 1556 static void ar9003_hw_antdiv_comb_conf_set(struct ath_hw *ah, 1557 struct ath_hw_antcomb_conf *antconf) 1558 { 1559 u32 regval; 1560 1561 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); 1562 regval &= ~(AR_PHY_ANT_DIV_MAIN_LNACONF | 1563 AR_PHY_ANT_DIV_ALT_LNACONF | 1564 AR_PHY_ANT_FAST_DIV_BIAS | 1565 AR_PHY_ANT_DIV_MAIN_GAINTB | 1566 AR_PHY_ANT_DIV_ALT_GAINTB); 1567 regval |= ((antconf->main_lna_conf << AR_PHY_ANT_DIV_MAIN_LNACONF_S) 1568 & AR_PHY_ANT_DIV_MAIN_LNACONF); 1569 regval |= ((antconf->alt_lna_conf << AR_PHY_ANT_DIV_ALT_LNACONF_S) 1570 & AR_PHY_ANT_DIV_ALT_LNACONF); 1571 regval |= ((antconf->fast_div_bias << AR_PHY_ANT_FAST_DIV_BIAS_S) 1572 & AR_PHY_ANT_FAST_DIV_BIAS); 1573 regval |= ((antconf->main_gaintb << AR_PHY_ANT_DIV_MAIN_GAINTB_S) 1574 & AR_PHY_ANT_DIV_MAIN_GAINTB); 1575 regval |= ((antconf->alt_gaintb << AR_PHY_ANT_DIV_ALT_GAINTB_S) 1576 & AR_PHY_ANT_DIV_ALT_GAINTB); 1577 1578 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); 1579 } 1580 1581 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT 1582 1583 static void ar9003_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable) 1584 { 1585 struct ath9k_hw_capabilities *pCap = &ah->caps; 1586 u8 ant_div_ctl1; 1587 u32 regval; 1588 1589 if (!AR_SREV_9485(ah) && !AR_SREV_9565(ah)) 1590 return; 1591 1592 if (AR_SREV_9485(ah)) { 1593 regval = ar9003_hw_ant_ctrl_common_2_get(ah, 1594 IS_CHAN_2GHZ(ah->curchan)); 1595 if (enable) { 1596 regval &= ~AR_SWITCH_TABLE_COM2_ALL; 1597 regval |= ah->config.ant_ctrl_comm2g_switch_enable; 1598 } 1599 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, 1600 AR_SWITCH_TABLE_COM2_ALL, regval); 1601 } 1602 1603 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 1604 1605 /* 1606 * Set MAIN/ALT LNA conf. 1607 * Set MAIN/ALT gain_tb. 1608 */ 1609 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); 1610 regval &= (~AR_ANT_DIV_CTRL_ALL); 1611 regval |= (ant_div_ctl1 & 0x3f) << AR_ANT_DIV_CTRL_ALL_S; 1612 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); 1613 1614 if (AR_SREV_9485_11_OR_LATER(ah)) { 1615 /* 1616 * Enable LNA diversity. 1617 */ 1618 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); 1619 regval &= ~AR_PHY_ANT_DIV_LNADIV; 1620 regval |= ((ant_div_ctl1 >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S; 1621 if (enable) 1622 regval |= AR_ANT_DIV_ENABLE; 1623 1624 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); 1625 1626 /* 1627 * Enable fast antenna diversity. 1628 */ 1629 regval = REG_READ(ah, AR_PHY_CCK_DETECT); 1630 regval &= ~AR_FAST_DIV_ENABLE; 1631 regval |= ((ant_div_ctl1 >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S; 1632 if (enable) 1633 regval |= AR_FAST_DIV_ENABLE; 1634 1635 REG_WRITE(ah, AR_PHY_CCK_DETECT, regval); 1636 1637 if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) { 1638 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); 1639 regval &= (~(AR_PHY_ANT_DIV_MAIN_LNACONF | 1640 AR_PHY_ANT_DIV_ALT_LNACONF | 1641 AR_PHY_ANT_DIV_ALT_GAINTB | 1642 AR_PHY_ANT_DIV_MAIN_GAINTB)); 1643 /* 1644 * Set MAIN to LNA1 and ALT to LNA2 at the 1645 * beginning. 1646 */ 1647 regval |= (ATH_ANT_DIV_COMB_LNA1 << 1648 AR_PHY_ANT_DIV_MAIN_LNACONF_S); 1649 regval |= (ATH_ANT_DIV_COMB_LNA2 << 1650 AR_PHY_ANT_DIV_ALT_LNACONF_S); 1651 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); 1652 } 1653 } else if (AR_SREV_9565(ah)) { 1654 if (enable) { 1655 REG_SET_BIT(ah, AR_PHY_MC_GAIN_CTRL, 1656 AR_ANT_DIV_ENABLE); 1657 REG_SET_BIT(ah, AR_PHY_MC_GAIN_CTRL, 1658 (1 << AR_PHY_ANT_SW_RX_PROT_S)); 1659 REG_SET_BIT(ah, AR_PHY_CCK_DETECT, 1660 AR_FAST_DIV_ENABLE); 1661 REG_SET_BIT(ah, AR_PHY_RESTART, 1662 AR_PHY_RESTART_ENABLE_DIV_M2FLAG); 1663 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, 1664 AR_BTCOEX_WL_LNADIV_FORCE_ON); 1665 } else { 1666 REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL, 1667 AR_ANT_DIV_ENABLE); 1668 REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL, 1669 (1 << AR_PHY_ANT_SW_RX_PROT_S)); 1670 REG_CLR_BIT(ah, AR_PHY_CCK_DETECT, 1671 AR_FAST_DIV_ENABLE); 1672 REG_CLR_BIT(ah, AR_PHY_RESTART, 1673 AR_PHY_RESTART_ENABLE_DIV_M2FLAG); 1674 REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV, 1675 AR_BTCOEX_WL_LNADIV_FORCE_ON); 1676 1677 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); 1678 regval &= ~(AR_PHY_ANT_DIV_MAIN_LNACONF | 1679 AR_PHY_ANT_DIV_ALT_LNACONF | 1680 AR_PHY_ANT_DIV_MAIN_GAINTB | 1681 AR_PHY_ANT_DIV_ALT_GAINTB); 1682 regval |= (ATH_ANT_DIV_COMB_LNA1 << 1683 AR_PHY_ANT_DIV_MAIN_LNACONF_S); 1684 regval |= (ATH_ANT_DIV_COMB_LNA2 << 1685 AR_PHY_ANT_DIV_ALT_LNACONF_S); 1686 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); 1687 } 1688 } 1689 } 1690 1691 #endif 1692 1693 static int ar9003_hw_fast_chan_change(struct ath_hw *ah, 1694 struct ath9k_channel *chan, 1695 u8 *ini_reloaded) 1696 { 1697 unsigned int regWrites = 0; 1698 u32 modesIndex, txgain_index; 1699 1700 if (IS_CHAN_5GHZ(chan)) 1701 modesIndex = IS_CHAN_HT40(chan) ? 2 : 1; 1702 else 1703 modesIndex = IS_CHAN_HT40(chan) ? 3 : 4; 1704 1705 txgain_index = AR_SREV_9531(ah) ? 1 : modesIndex; 1706 1707 if (modesIndex == ah->modes_index) { 1708 *ini_reloaded = false; 1709 goto set_rfmode; 1710 } 1711 1712 ar9003_hw_prog_ini(ah, &ah->iniSOC[ATH_INI_POST], modesIndex); 1713 ar9003_hw_prog_ini(ah, &ah->iniMac[ATH_INI_POST], modesIndex); 1714 ar9003_hw_prog_ini(ah, &ah->iniBB[ATH_INI_POST], modesIndex); 1715 ar9003_hw_prog_ini(ah, &ah->iniRadio[ATH_INI_POST], modesIndex); 1716 1717 if (AR_SREV_9462_20_OR_LATER(ah)) 1718 ar9003_hw_prog_ini(ah, &ah->ini_radio_post_sys2ant, 1719 modesIndex); 1720 1721 REG_WRITE_ARRAY(&ah->iniModesTxGain, txgain_index, regWrites); 1722 1723 if (AR_SREV_9462_20_OR_LATER(ah)) { 1724 /* 1725 * CUS217 mix LNA mode. 1726 */ 1727 if (ar9003_hw_get_rx_gain_idx(ah) == 2) { 1728 REG_WRITE_ARRAY(&ah->ini_modes_rxgain_bb_core, 1729 1, regWrites); 1730 REG_WRITE_ARRAY(&ah->ini_modes_rxgain_bb_postamble, 1731 modesIndex, regWrites); 1732 } 1733 } 1734 1735 /* 1736 * For 5GHz channels requiring Fast Clock, apply 1737 * different modal values. 1738 */ 1739 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1740 REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex, regWrites); 1741 1742 if (AR_SREV_9565(ah)) 1743 REG_WRITE_ARRAY(&ah->iniModesFastClock, 1, regWrites); 1744 1745 /* 1746 * JAPAN regulatory. 1747 */ 1748 if (chan->channel == 2484) 1749 ar9003_hw_prog_ini(ah, &ah->iniCckfirJapan2484, 1); 1750 1751 ah->modes_index = modesIndex; 1752 *ini_reloaded = true; 1753 1754 set_rfmode: 1755 ar9003_hw_set_rfmode(ah, chan); 1756 return 0; 1757 } 1758 1759 static void ar9003_hw_spectral_scan_config(struct ath_hw *ah, 1760 struct ath_spec_scan *param) 1761 { 1762 u8 count; 1763 1764 if (!param->enabled) { 1765 REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN, 1766 AR_PHY_SPECTRAL_SCAN_ENABLE); 1767 return; 1768 } 1769 1770 REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA); 1771 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE); 1772 1773 /* on AR93xx and newer, count = 0 will make the the chip send 1774 * spectral samples endlessly. Check if this really was intended, 1775 * and fix otherwise. 1776 */ 1777 count = param->count; 1778 if (param->endless) 1779 count = 0; 1780 else if (param->count == 0) 1781 count = 1; 1782 1783 if (param->short_repeat) 1784 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, 1785 AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT); 1786 else 1787 REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN, 1788 AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT); 1789 1790 REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN, 1791 AR_PHY_SPECTRAL_SCAN_COUNT, count); 1792 REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN, 1793 AR_PHY_SPECTRAL_SCAN_PERIOD, param->period); 1794 REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN, 1795 AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period); 1796 1797 return; 1798 } 1799 1800 static void ar9003_hw_spectral_scan_trigger(struct ath_hw *ah) 1801 { 1802 /* Activate spectral scan */ 1803 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, 1804 AR_PHY_SPECTRAL_SCAN_ACTIVE); 1805 } 1806 1807 static void ar9003_hw_spectral_scan_wait(struct ath_hw *ah) 1808 { 1809 struct ath_common *common = ath9k_hw_common(ah); 1810 1811 /* Poll for spectral scan complete */ 1812 if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN, 1813 AR_PHY_SPECTRAL_SCAN_ACTIVE, 1814 0, AH_WAIT_TIMEOUT)) { 1815 ath_err(common, "spectral scan wait failed\n"); 1816 return; 1817 } 1818 } 1819 1820 static void ar9003_hw_tx99_start(struct ath_hw *ah, u32 qnum) 1821 { 1822 REG_SET_BIT(ah, AR_PHY_TEST, PHY_AGC_CLR); 1823 REG_SET_BIT(ah, 0x9864, 0x7f000); 1824 REG_SET_BIT(ah, 0x9924, 0x7f00fe); 1825 REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS); 1826 REG_WRITE(ah, AR_CR, AR_CR_RXD); 1827 REG_WRITE(ah, AR_DLCL_IFS(qnum), 0); 1828 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */ 1829 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20); 1830 REG_WRITE(ah, AR_TIME_OUT, 0x00000400); 1831 REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff); 1832 REG_SET_BIT(ah, AR_QMISC(qnum), AR_Q_MISC_DCU_EARLY_TERM_REQ); 1833 } 1834 1835 static void ar9003_hw_tx99_stop(struct ath_hw *ah) 1836 { 1837 REG_CLR_BIT(ah, AR_PHY_TEST, PHY_AGC_CLR); 1838 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS); 1839 } 1840 1841 static void ar9003_hw_tx99_set_txpower(struct ath_hw *ah, u8 txpower) 1842 { 1843 static s16 p_pwr_array[ar9300RateSize] = { 0 }; 1844 unsigned int i; 1845 1846 if (txpower <= MAX_RATE_POWER) { 1847 for (i = 0; i < ar9300RateSize; i++) 1848 p_pwr_array[i] = txpower; 1849 } else { 1850 for (i = 0; i < ar9300RateSize; i++) 1851 p_pwr_array[i] = MAX_RATE_POWER; 1852 } 1853 1854 REG_WRITE(ah, 0xa458, 0); 1855 1856 REG_WRITE(ah, 0xa3c0, 1857 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24) | 1858 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16) | 1859 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 8) | 1860 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0)); 1861 REG_WRITE(ah, 0xa3c4, 1862 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_54], 24) | 1863 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_48], 16) | 1864 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_36], 8) | 1865 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0)); 1866 REG_WRITE(ah, 0xa3c8, 1867 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24) | 1868 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 16) | 1869 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0)); 1870 REG_WRITE(ah, 0xa3cc, 1871 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11S], 24) | 1872 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11L], 16) | 1873 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_5S], 8) | 1874 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0)); 1875 REG_WRITE(ah, 0xa3d0, 1876 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_5], 24) | 1877 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_4], 16) | 1878 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19], 8)| 1879 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_0_8_16], 0)); 1880 REG_WRITE(ah, 0xa3d4, 1881 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_13], 24) | 1882 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_12], 16) | 1883 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_7], 8) | 1884 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_6], 0)); 1885 REG_WRITE(ah, 0xa3e4, 1886 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_21], 24) | 1887 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_20], 16) | 1888 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_15], 8) | 1889 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_14], 0)); 1890 REG_WRITE(ah, 0xa3e8, 1891 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_23], 24) | 1892 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_22], 16) | 1893 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_23], 8) | 1894 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT20_22], 0)); 1895 REG_WRITE(ah, 0xa3d8, 1896 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_5], 24) | 1897 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_4], 16) | 1898 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19], 8) | 1899 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_0_8_16], 0)); 1900 REG_WRITE(ah, 0xa3dc, 1901 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_13], 24) | 1902 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_12], 16) | 1903 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_7], 8) | 1904 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_6], 0)); 1905 REG_WRITE(ah, 0xa3ec, 1906 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_21], 24) | 1907 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_20], 16) | 1908 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_15], 8) | 1909 ATH9K_POW_SM(p_pwr_array[ALL_TARGET_HT40_14], 0)); 1910 } 1911 1912 static void ar9003_hw_init_txpower_cck(struct ath_hw *ah, u8 *rate_array) 1913 { 1914 ah->tx_power[0] = rate_array[ALL_TARGET_LEGACY_1L_5L]; 1915 ah->tx_power[1] = rate_array[ALL_TARGET_LEGACY_1L_5L]; 1916 ah->tx_power[2] = min(rate_array[ALL_TARGET_LEGACY_1L_5L], 1917 rate_array[ALL_TARGET_LEGACY_5S]); 1918 ah->tx_power[3] = min(rate_array[ALL_TARGET_LEGACY_11L], 1919 rate_array[ALL_TARGET_LEGACY_11S]); 1920 } 1921 1922 static void ar9003_hw_init_txpower_ofdm(struct ath_hw *ah, u8 *rate_array, 1923 int offset) 1924 { 1925 int i, j; 1926 1927 for (i = offset; i < offset + AR9300_OFDM_RATES; i++) { 1928 /* OFDM rate to power table idx */ 1929 j = ofdm2pwr[i - offset]; 1930 ah->tx_power[i] = rate_array[j]; 1931 } 1932 } 1933 1934 static void ar9003_hw_init_txpower_ht(struct ath_hw *ah, u8 *rate_array, 1935 int ss_offset, int ds_offset, 1936 int ts_offset, bool is_40) 1937 { 1938 int i, j, mcs_idx = 0; 1939 const u8 *mcs2pwr = (is_40) ? mcs2pwr_ht40 : mcs2pwr_ht20; 1940 1941 for (i = ss_offset; i < ss_offset + AR9300_HT_SS_RATES; i++) { 1942 j = mcs2pwr[mcs_idx]; 1943 ah->tx_power[i] = rate_array[j]; 1944 mcs_idx++; 1945 } 1946 1947 for (i = ds_offset; i < ds_offset + AR9300_HT_DS_RATES; i++) { 1948 j = mcs2pwr[mcs_idx]; 1949 ah->tx_power[i] = rate_array[j]; 1950 mcs_idx++; 1951 } 1952 1953 for (i = ts_offset; i < ts_offset + AR9300_HT_TS_RATES; i++) { 1954 j = mcs2pwr[mcs_idx]; 1955 ah->tx_power[i] = rate_array[j]; 1956 mcs_idx++; 1957 } 1958 } 1959 1960 static void ar9003_hw_init_txpower_stbc(struct ath_hw *ah, int ss_offset, 1961 int ds_offset, int ts_offset) 1962 { 1963 memcpy(&ah->tx_power_stbc[ss_offset], &ah->tx_power[ss_offset], 1964 AR9300_HT_SS_RATES); 1965 memcpy(&ah->tx_power_stbc[ds_offset], &ah->tx_power[ds_offset], 1966 AR9300_HT_DS_RATES); 1967 memcpy(&ah->tx_power_stbc[ts_offset], &ah->tx_power[ts_offset], 1968 AR9300_HT_TS_RATES); 1969 } 1970 1971 void ar9003_hw_init_rate_txpower(struct ath_hw *ah, u8 *rate_array, 1972 struct ath9k_channel *chan) 1973 { 1974 if (IS_CHAN_5GHZ(chan)) { 1975 ar9003_hw_init_txpower_ofdm(ah, rate_array, 1976 AR9300_11NA_OFDM_SHIFT); 1977 if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) { 1978 ar9003_hw_init_txpower_ht(ah, rate_array, 1979 AR9300_11NA_HT_SS_SHIFT, 1980 AR9300_11NA_HT_DS_SHIFT, 1981 AR9300_11NA_HT_TS_SHIFT, 1982 IS_CHAN_HT40(chan)); 1983 ar9003_hw_init_txpower_stbc(ah, 1984 AR9300_11NA_HT_SS_SHIFT, 1985 AR9300_11NA_HT_DS_SHIFT, 1986 AR9300_11NA_HT_TS_SHIFT); 1987 } 1988 } else { 1989 ar9003_hw_init_txpower_cck(ah, rate_array); 1990 ar9003_hw_init_txpower_ofdm(ah, rate_array, 1991 AR9300_11NG_OFDM_SHIFT); 1992 if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) { 1993 ar9003_hw_init_txpower_ht(ah, rate_array, 1994 AR9300_11NG_HT_SS_SHIFT, 1995 AR9300_11NG_HT_DS_SHIFT, 1996 AR9300_11NG_HT_TS_SHIFT, 1997 IS_CHAN_HT40(chan)); 1998 ar9003_hw_init_txpower_stbc(ah, 1999 AR9300_11NG_HT_SS_SHIFT, 2000 AR9300_11NG_HT_DS_SHIFT, 2001 AR9300_11NG_HT_TS_SHIFT); 2002 } 2003 } 2004 } 2005 2006 void ar9003_hw_attach_phy_ops(struct ath_hw *ah) 2007 { 2008 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah); 2009 struct ath_hw_ops *ops = ath9k_hw_ops(ah); 2010 static const u32 ar9300_cca_regs[6] = { 2011 AR_PHY_CCA_0, 2012 AR_PHY_CCA_1, 2013 AR_PHY_CCA_2, 2014 AR_PHY_EXT_CCA, 2015 AR_PHY_EXT_CCA_1, 2016 AR_PHY_EXT_CCA_2, 2017 }; 2018 2019 priv_ops->rf_set_freq = ar9003_hw_set_channel; 2020 priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate; 2021 2022 if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) || 2023 AR_SREV_9561(ah)) 2024 priv_ops->compute_pll_control = ar9003_hw_compute_pll_control_soc; 2025 else 2026 priv_ops->compute_pll_control = ar9003_hw_compute_pll_control; 2027 2028 priv_ops->set_channel_regs = ar9003_hw_set_channel_regs; 2029 priv_ops->init_bb = ar9003_hw_init_bb; 2030 priv_ops->process_ini = ar9003_hw_process_ini; 2031 priv_ops->set_rfmode = ar9003_hw_set_rfmode; 2032 priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive; 2033 priv_ops->set_delta_slope = ar9003_hw_set_delta_slope; 2034 priv_ops->rfbus_req = ar9003_hw_rfbus_req; 2035 priv_ops->rfbus_done = ar9003_hw_rfbus_done; 2036 priv_ops->ani_control = ar9003_hw_ani_control; 2037 priv_ops->do_getnf = ar9003_hw_do_getnf; 2038 priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs; 2039 priv_ops->set_radar_params = ar9003_hw_set_radar_params; 2040 priv_ops->fast_chan_change = ar9003_hw_fast_chan_change; 2041 2042 ops->antdiv_comb_conf_get = ar9003_hw_antdiv_comb_conf_get; 2043 ops->antdiv_comb_conf_set = ar9003_hw_antdiv_comb_conf_set; 2044 ops->spectral_scan_config = ar9003_hw_spectral_scan_config; 2045 ops->spectral_scan_trigger = ar9003_hw_spectral_scan_trigger; 2046 ops->spectral_scan_wait = ar9003_hw_spectral_scan_wait; 2047 2048 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT 2049 ops->set_bt_ant_diversity = ar9003_hw_set_bt_ant_diversity; 2050 #endif 2051 ops->tx99_start = ar9003_hw_tx99_start; 2052 ops->tx99_stop = ar9003_hw_tx99_stop; 2053 ops->tx99_set_txpower = ar9003_hw_tx99_set_txpower; 2054 2055 ar9003_hw_set_nf_limits(ah); 2056 ar9003_hw_set_radar_conf(ah); 2057 memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs)); 2058 } 2059 2060 /* 2061 * Baseband Watchdog signatures: 2062 * 2063 * 0x04000539: BB hang when operating in HT40 DFS Channel. 2064 * Full chip reset is not required, but a recovery 2065 * mechanism is needed. 2066 * 2067 * 0x1300000a: Related to CAC deafness. 2068 * Chip reset is not required. 2069 * 2070 * 0x0400000a: Related to CAC deafness. 2071 * Full chip reset is required. 2072 * 2073 * 0x04000b09: RX state machine gets into an illegal state 2074 * when a packet with unsupported rate is received. 2075 * Full chip reset is required and PHY_RESTART has 2076 * to be disabled. 2077 * 2078 * 0x04000409: Packet stuck on receive. 2079 * Full chip reset is required for all chips except 2080 * AR9340, AR9531 and AR9561. 2081 */ 2082 2083 /* 2084 * ar9003_hw_bb_watchdog_check(): Returns true if a chip reset is required. 2085 */ 2086 bool ar9003_hw_bb_watchdog_check(struct ath_hw *ah) 2087 { 2088 u32 val; 2089 2090 switch(ah->bb_watchdog_last_status) { 2091 case 0x04000539: 2092 val = REG_READ(ah, AR_PHY_RADAR_0); 2093 val &= (~AR_PHY_RADAR_0_FIRPWR); 2094 val |= SM(0x7f, AR_PHY_RADAR_0_FIRPWR); 2095 REG_WRITE(ah, AR_PHY_RADAR_0, val); 2096 udelay(1); 2097 val = REG_READ(ah, AR_PHY_RADAR_0); 2098 val &= ~AR_PHY_RADAR_0_FIRPWR; 2099 val |= SM(AR9300_DFS_FIRPWR, AR_PHY_RADAR_0_FIRPWR); 2100 REG_WRITE(ah, AR_PHY_RADAR_0, val); 2101 2102 return false; 2103 case 0x1300000a: 2104 return false; 2105 case 0x0400000a: 2106 case 0x04000b09: 2107 return true; 2108 case 0x04000409: 2109 if (AR_SREV_9340(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) 2110 return false; 2111 else 2112 return true; 2113 default: 2114 /* 2115 * For any other unknown signatures, do a 2116 * full chip reset. 2117 */ 2118 return true; 2119 } 2120 } 2121 EXPORT_SYMBOL(ar9003_hw_bb_watchdog_check); 2122 2123 void ar9003_hw_bb_watchdog_config(struct ath_hw *ah) 2124 { 2125 struct ath_common *common = ath9k_hw_common(ah); 2126 u32 idle_tmo_ms = ah->bb_watchdog_timeout_ms; 2127 u32 val, idle_count; 2128 2129 if (!idle_tmo_ms) { 2130 /* disable IRQ, disable chip-reset for BB panic */ 2131 REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2, 2132 REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & 2133 ~(AR_PHY_WATCHDOG_RST_ENABLE | 2134 AR_PHY_WATCHDOG_IRQ_ENABLE)); 2135 2136 /* disable watchdog in non-IDLE mode, disable in IDLE mode */ 2137 REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1, 2138 REG_READ(ah, AR_PHY_WATCHDOG_CTL_1) & 2139 ~(AR_PHY_WATCHDOG_NON_IDLE_ENABLE | 2140 AR_PHY_WATCHDOG_IDLE_ENABLE)); 2141 2142 ath_dbg(common, RESET, "Disabled BB Watchdog\n"); 2143 return; 2144 } 2145 2146 /* enable IRQ, disable chip-reset for BB watchdog */ 2147 val = REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & AR_PHY_WATCHDOG_CNTL2_MASK; 2148 REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2, 2149 (val | AR_PHY_WATCHDOG_IRQ_ENABLE) & 2150 ~AR_PHY_WATCHDOG_RST_ENABLE); 2151 2152 /* bound limit to 10 secs */ 2153 if (idle_tmo_ms > 10000) 2154 idle_tmo_ms = 10000; 2155 2156 /* 2157 * The time unit for watchdog event is 2^15 44/88MHz cycles. 2158 * 2159 * For HT20 we have a time unit of 2^15/44 MHz = .74 ms per tick 2160 * For HT40 we have a time unit of 2^15/88 MHz = .37 ms per tick 2161 * 2162 * Given we use fast clock now in 5 GHz, these time units should 2163 * be common for both 2 GHz and 5 GHz. 2164 */ 2165 idle_count = (100 * idle_tmo_ms) / 74; 2166 if (ah->curchan && IS_CHAN_HT40(ah->curchan)) 2167 idle_count = (100 * idle_tmo_ms) / 37; 2168 2169 /* 2170 * enable watchdog in non-IDLE mode, disable in IDLE mode, 2171 * set idle time-out. 2172 */ 2173 REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1, 2174 AR_PHY_WATCHDOG_NON_IDLE_ENABLE | 2175 AR_PHY_WATCHDOG_IDLE_MASK | 2176 (AR_PHY_WATCHDOG_NON_IDLE_MASK & (idle_count << 2))); 2177 2178 ath_dbg(common, RESET, "Enabled BB Watchdog timeout (%u ms)\n", 2179 idle_tmo_ms); 2180 } 2181 2182 void ar9003_hw_bb_watchdog_read(struct ath_hw *ah) 2183 { 2184 /* 2185 * we want to avoid printing in ISR context so we save the 2186 * watchdog status to be printed later in bottom half context. 2187 */ 2188 ah->bb_watchdog_last_status = REG_READ(ah, AR_PHY_WATCHDOG_STATUS); 2189 2190 /* 2191 * the watchdog timer should reset on status read but to be sure 2192 * sure we write 0 to the watchdog status bit. 2193 */ 2194 REG_WRITE(ah, AR_PHY_WATCHDOG_STATUS, 2195 ah->bb_watchdog_last_status & ~AR_PHY_WATCHDOG_STATUS_CLR); 2196 } 2197 2198 void ar9003_hw_bb_watchdog_dbg_info(struct ath_hw *ah) 2199 { 2200 struct ath_common *common = ath9k_hw_common(ah); 2201 u32 status; 2202 2203 if (likely(!(common->debug_mask & ATH_DBG_RESET))) 2204 return; 2205 2206 status = ah->bb_watchdog_last_status; 2207 ath_dbg(common, RESET, 2208 "\n==== BB update: BB status=0x%08x ====\n", status); 2209 ath_dbg(common, RESET, 2210 "** BB state: wd=%u det=%u rdar=%u rOFDM=%d rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n", 2211 MS(status, AR_PHY_WATCHDOG_INFO), 2212 MS(status, AR_PHY_WATCHDOG_DET_HANG), 2213 MS(status, AR_PHY_WATCHDOG_RADAR_SM), 2214 MS(status, AR_PHY_WATCHDOG_RX_OFDM_SM), 2215 MS(status, AR_PHY_WATCHDOG_RX_CCK_SM), 2216 MS(status, AR_PHY_WATCHDOG_TX_OFDM_SM), 2217 MS(status, AR_PHY_WATCHDOG_TX_CCK_SM), 2218 MS(status, AR_PHY_WATCHDOG_AGC_SM), 2219 MS(status, AR_PHY_WATCHDOG_SRCH_SM)); 2220 2221 ath_dbg(common, RESET, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n", 2222 REG_READ(ah, AR_PHY_WATCHDOG_CTL_1), 2223 REG_READ(ah, AR_PHY_WATCHDOG_CTL_2)); 2224 ath_dbg(common, RESET, "** BB mode: BB_gen_controls=0x%08x **\n", 2225 REG_READ(ah, AR_PHY_GEN_CTRL)); 2226 2227 #define PCT(_field) (common->cc_survey._field * 100 / common->cc_survey.cycles) 2228 if (common->cc_survey.cycles) 2229 ath_dbg(common, RESET, 2230 "** BB busy times: rx_clear=%d%%, rx_frame=%d%%, tx_frame=%d%% **\n", 2231 PCT(rx_busy), PCT(rx_frame), PCT(tx_frame)); 2232 2233 ath_dbg(common, RESET, "==== BB update: done ====\n\n"); 2234 } 2235 EXPORT_SYMBOL(ar9003_hw_bb_watchdog_dbg_info); 2236 2237 void ar9003_hw_disable_phy_restart(struct ath_hw *ah) 2238 { 2239 u8 result; 2240 u32 val; 2241 2242 /* While receiving unsupported rate frame rx state machine 2243 * gets into a state 0xb and if phy_restart happens in that 2244 * state, BB would go hang. If RXSM is in 0xb state after 2245 * first bb panic, ensure to disable the phy_restart. 2246 */ 2247 result = MS(ah->bb_watchdog_last_status, AR_PHY_WATCHDOG_RX_OFDM_SM); 2248 2249 if ((result == 0xb) || ah->bb_hang_rx_ofdm) { 2250 ah->bb_hang_rx_ofdm = true; 2251 val = REG_READ(ah, AR_PHY_RESTART); 2252 val &= ~AR_PHY_RESTART_ENA; 2253 REG_WRITE(ah, AR_PHY_RESTART, val); 2254 } 2255 } 2256 EXPORT_SYMBOL(ar9003_hw_disable_phy_restart); 2257