1 /* 2 * Copyright (c) 2010 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include "hw.h" 18 #include "ar9003_phy.h" 19 20 void ar9003_paprd_enable(struct ath_hw *ah, bool val) 21 { 22 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 23 struct ath9k_channel *chan = ah->curchan; 24 25 if (val) { 26 ah->paprd_table_write_done = true; 27 28 ah->eep_ops->set_txpower(ah, chan, 29 ath9k_regd_get_ctl(regulatory, chan), 30 chan->chan->max_antenna_gain * 2, 31 chan->chan->max_power * 2, 32 min((u32) MAX_RATE_POWER, 33 (u32) regulatory->power_limit), false); 34 } 35 36 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0, 37 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); 38 if (ah->caps.tx_chainmask & BIT(1)) 39 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1, 40 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); 41 if (ah->caps.tx_chainmask & BIT(2)) 42 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2, 43 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); 44 } 45 EXPORT_SYMBOL(ar9003_paprd_enable); 46 47 static int ar9003_get_training_power_2g(struct ath_hw *ah) 48 { 49 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 50 struct ar9300_modal_eep_header *hdr = &eep->modalHeader2G; 51 unsigned int power, scale, delta; 52 53 scale = MS(le32_to_cpu(hdr->papdRateMaskHt20), AR9300_PAPRD_SCALE_1); 54 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5, 55 AR_PHY_POWERTX_RATE5_POWERTXHT20_0); 56 57 delta = abs((int) ah->paprd_target_power - (int) power); 58 if (delta > scale) 59 return -1; 60 61 if (delta < 4) 62 power -= 4 - delta; 63 64 return power; 65 } 66 67 static int ar9003_get_training_power_5g(struct ath_hw *ah) 68 { 69 struct ath_common *common = ath9k_hw_common(ah); 70 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 71 struct ar9300_modal_eep_header *hdr = &eep->modalHeader5G; 72 struct ath9k_channel *chan = ah->curchan; 73 unsigned int power, scale, delta; 74 75 if (chan->channel >= 5700) 76 scale = MS(le32_to_cpu(hdr->papdRateMaskHt20), 77 AR9300_PAPRD_SCALE_1); 78 else if (chan->channel >= 5400) 79 scale = MS(le32_to_cpu(hdr->papdRateMaskHt40), 80 AR9300_PAPRD_SCALE_2); 81 else 82 scale = MS(le32_to_cpu(hdr->papdRateMaskHt40), 83 AR9300_PAPRD_SCALE_1); 84 85 if (IS_CHAN_HT40(chan)) 86 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8, 87 AR_PHY_POWERTX_RATE8_POWERTXHT40_5); 88 else 89 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6, 90 AR_PHY_POWERTX_RATE6_POWERTXHT20_5); 91 92 power += scale; 93 delta = abs((int) ah->paprd_target_power - (int) power); 94 if (delta > scale) 95 return -1; 96 97 power += 2 * get_streams(common->tx_chainmask); 98 return power; 99 } 100 101 static int ar9003_paprd_setup_single_table(struct ath_hw *ah) 102 { 103 struct ath_common *common = ath9k_hw_common(ah); 104 static const u32 ctrl0[3] = { 105 AR_PHY_PAPRD_CTRL0_B0, 106 AR_PHY_PAPRD_CTRL0_B1, 107 AR_PHY_PAPRD_CTRL0_B2 108 }; 109 static const u32 ctrl1[3] = { 110 AR_PHY_PAPRD_CTRL1_B0, 111 AR_PHY_PAPRD_CTRL1_B1, 112 AR_PHY_PAPRD_CTRL1_B2 113 }; 114 int training_power; 115 int i; 116 117 if (IS_CHAN_2GHZ(ah->curchan)) 118 training_power = ar9003_get_training_power_2g(ah); 119 else 120 training_power = ar9003_get_training_power_5g(ah); 121 122 if (training_power < 0) { 123 ath_dbg(common, ATH_DBG_CALIBRATE, 124 "PAPRD target power delta out of range"); 125 return -ERANGE; 126 } 127 ah->paprd_training_power = training_power; 128 ath_dbg(common, ATH_DBG_CALIBRATE, 129 "Training power: %d, Target power: %d\n", 130 ah->paprd_training_power, ah->paprd_target_power); 131 132 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK, 133 ah->paprd_ratemask); 134 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK, 135 ah->paprd_ratemask); 136 REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK, 137 ah->paprd_ratemask_ht40); 138 139 for (i = 0; i < ah->caps.max_txchains; i++) { 140 REG_RMW_FIELD(ah, ctrl0[i], 141 AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1); 142 REG_RMW_FIELD(ah, ctrl1[i], 143 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1); 144 REG_RMW_FIELD(ah, ctrl1[i], 145 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1); 146 REG_RMW_FIELD(ah, ctrl1[i], 147 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0); 148 REG_RMW_FIELD(ah, ctrl1[i], 149 AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181); 150 REG_RMW_FIELD(ah, ctrl1[i], 151 AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361); 152 REG_RMW_FIELD(ah, ctrl1[i], 153 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0); 154 REG_RMW_FIELD(ah, ctrl0[i], 155 AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3); 156 } 157 158 ar9003_paprd_enable(ah, false); 159 160 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 161 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30); 162 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 163 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1); 164 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 165 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1); 166 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 167 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0); 168 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 169 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0); 170 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 171 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28); 172 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 173 AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1); 174 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2, 175 AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, 147); 176 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 177 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4); 178 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 179 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4); 180 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 181 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7); 182 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 183 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1); 184 if (AR_SREV_9485(ah)) 185 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 186 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, 187 -3); 188 else 189 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 190 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, 191 -6); 192 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 193 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE, 194 -15); 195 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 196 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1); 197 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, 198 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0); 199 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, 200 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400); 201 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, 202 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES, 203 100); 204 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0, 205 AR_PHY_PAPRD_PRE_POST_SCALING, 261376); 206 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0, 207 AR_PHY_PAPRD_PRE_POST_SCALING, 248079); 208 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0, 209 AR_PHY_PAPRD_PRE_POST_SCALING, 233759); 210 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0, 211 AR_PHY_PAPRD_PRE_POST_SCALING, 220464); 212 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0, 213 AR_PHY_PAPRD_PRE_POST_SCALING, 208194); 214 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0, 215 AR_PHY_PAPRD_PRE_POST_SCALING, 196949); 216 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0, 217 AR_PHY_PAPRD_PRE_POST_SCALING, 185706); 218 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0, 219 AR_PHY_PAPRD_PRE_POST_SCALING, 175487); 220 return 0; 221 } 222 223 static void ar9003_paprd_get_gain_table(struct ath_hw *ah) 224 { 225 u32 *entry = ah->paprd_gain_table_entries; 226 u8 *index = ah->paprd_gain_table_index; 227 u32 reg = AR_PHY_TXGAIN_TABLE; 228 int i; 229 230 memset(entry, 0, sizeof(ah->paprd_gain_table_entries)); 231 memset(index, 0, sizeof(ah->paprd_gain_table_index)); 232 233 for (i = 0; i < 32; i++) { 234 entry[i] = REG_READ(ah, reg); 235 index[i] = (entry[i] >> 24) & 0xff; 236 reg += 4; 237 } 238 } 239 240 static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain, 241 int target_power) 242 { 243 int olpc_gain_delta = 0; 244 int alpha_therm, alpha_volt; 245 int therm_cal_value, volt_cal_value; 246 int therm_value, volt_value; 247 int thermal_gain_corr, voltage_gain_corr; 248 int desired_scale, desired_gain = 0; 249 u32 reg; 250 251 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, 252 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); 253 desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12, 254 AR_PHY_TPC_12_DESIRED_SCALE_HT40_5); 255 alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19, 256 AR_PHY_TPC_19_ALPHA_THERM); 257 alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19, 258 AR_PHY_TPC_19_ALPHA_VOLT); 259 therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18, 260 AR_PHY_TPC_18_THERM_CAL_VALUE); 261 volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18, 262 AR_PHY_TPC_18_VOLT_CAL_VALUE); 263 therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4, 264 AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE); 265 volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4, 266 AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE); 267 268 if (chain == 0) 269 reg = AR_PHY_TPC_11_B0; 270 else if (chain == 1) 271 reg = AR_PHY_TPC_11_B1; 272 else 273 reg = AR_PHY_TPC_11_B2; 274 275 olpc_gain_delta = REG_READ_FIELD(ah, reg, 276 AR_PHY_TPC_11_OLPC_GAIN_DELTA); 277 278 if (olpc_gain_delta >= 128) 279 olpc_gain_delta = olpc_gain_delta - 256; 280 281 thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) + 282 (256 / 2)) / 256; 283 voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) + 284 (128 / 2)) / 128; 285 desired_gain = target_power - olpc_gain_delta - thermal_gain_corr - 286 voltage_gain_corr + desired_scale; 287 288 return desired_gain; 289 } 290 291 static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index) 292 { 293 int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain; 294 int padrvgnA, padrvgnB, padrvgnC, padrvgnD; 295 u32 *gain_table_entries = ah->paprd_gain_table_entries; 296 297 selected_gain_entry = gain_table_entries[gain_index]; 298 txbb1dbgain = selected_gain_entry & 0x7; 299 txbb6dbgain = (selected_gain_entry >> 3) & 0x3; 300 txmxrgain = (selected_gain_entry >> 5) & 0xf; 301 padrvgnA = (selected_gain_entry >> 9) & 0xf; 302 padrvgnB = (selected_gain_entry >> 13) & 0xf; 303 padrvgnC = (selected_gain_entry >> 17) & 0xf; 304 padrvgnD = (selected_gain_entry >> 21) & 0x3; 305 306 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 307 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain); 308 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 309 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain); 310 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 311 AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain); 312 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 313 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA); 314 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 315 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB); 316 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 317 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC); 318 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 319 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD); 320 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 321 AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0); 322 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 323 AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0); 324 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0); 325 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0); 326 } 327 328 static inline int find_expn(int num) 329 { 330 return fls(num) - 1; 331 } 332 333 static inline int find_proper_scale(int expn, int N) 334 { 335 return (expn > N) ? expn - 10 : 0; 336 } 337 338 #define NUM_BIN 23 339 340 static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain) 341 { 342 unsigned int thresh_accum_cnt; 343 int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1]; 344 int PA_in[NUM_BIN + 1]; 345 int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1]; 346 unsigned int B1_abs_max, B2_abs_max; 347 int max_index, scale_factor; 348 int y_est[NUM_BIN + 1]; 349 int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1]; 350 unsigned int x_tilde_abs; 351 int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad; 352 int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B; 353 int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2; 354 int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem; 355 int y5, y3, tmp; 356 int theta_low_bin = 0; 357 int i; 358 359 /* disregard any bin that contains <= 16 samples */ 360 thresh_accum_cnt = 16; 361 scale_factor = 5; 362 max_index = 0; 363 memset(theta, 0, sizeof(theta)); 364 memset(x_est, 0, sizeof(x_est)); 365 memset(Y, 0, sizeof(Y)); 366 memset(y_est, 0, sizeof(y_est)); 367 memset(x_tilde, 0, sizeof(x_tilde)); 368 369 for (i = 0; i < NUM_BIN; i++) { 370 s32 accum_cnt, accum_tx, accum_rx, accum_ang; 371 372 /* number of samples */ 373 accum_cnt = data_L[i] & 0xffff; 374 375 if (accum_cnt <= thresh_accum_cnt) 376 continue; 377 378 /* sum(tx amplitude) */ 379 accum_tx = ((data_L[i] >> 16) & 0xffff) | 380 ((data_U[i] & 0x7ff) << 16); 381 382 /* sum(rx amplitude distance to lower bin edge) */ 383 accum_rx = ((data_U[i] >> 11) & 0x1f) | 384 ((data_L[i + 23] & 0xffff) << 5); 385 386 /* sum(angles) */ 387 accum_ang = ((data_L[i + 23] >> 16) & 0xffff) | 388 ((data_U[i + 23] & 0x7ff) << 16); 389 390 accum_tx <<= scale_factor; 391 accum_rx <<= scale_factor; 392 x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >> 393 scale_factor; 394 395 Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >> 396 scale_factor) + 397 (1 << scale_factor) * max_index + 16; 398 399 if (accum_ang >= (1 << 26)) 400 accum_ang -= 1 << 27; 401 402 theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) / 403 accum_cnt; 404 405 max_index++; 406 } 407 408 /* 409 * Find average theta of first 5 bin and all of those to same value. 410 * Curve is linear at that range. 411 */ 412 for (i = 1; i < 6; i++) 413 theta_low_bin += theta[i]; 414 415 theta_low_bin = theta_low_bin / 5; 416 for (i = 1; i < 6; i++) 417 theta[i] = theta_low_bin; 418 419 /* Set values at origin */ 420 theta[0] = theta_low_bin; 421 for (i = 0; i <= max_index; i++) 422 theta[i] -= theta_low_bin; 423 424 x_est[0] = 0; 425 Y[0] = 0; 426 scale_factor = 8; 427 428 /* low signal gain */ 429 if (x_est[6] == x_est[3]) 430 return false; 431 432 G_fxp = 433 (((Y[6] - Y[3]) * 1 << scale_factor) + 434 (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]); 435 436 /* prevent division by zero */ 437 if (G_fxp == 0) 438 return false; 439 440 Y_intercept = 441 (G_fxp * (x_est[0] - x_est[3]) + 442 (1 << scale_factor)) / (1 << scale_factor) + Y[3]; 443 444 for (i = 0; i <= max_index; i++) 445 y_est[i] = Y[i] - Y_intercept; 446 447 for (i = 0; i <= 3; i++) { 448 y_est[i] = i * 32; 449 x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp; 450 } 451 452 if (y_est[max_index] == 0) 453 return false; 454 455 x_est_fxp1_nonlin = 456 x_est[max_index] - ((1 << scale_factor) * y_est[max_index] + 457 G_fxp) / G_fxp; 458 459 order_x_by_y = 460 (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index]; 461 462 if (order_x_by_y == 0) 463 M = 10; 464 else if (order_x_by_y == 1) 465 M = 9; 466 else 467 M = 8; 468 469 I = (max_index > 15) ? 7 : max_index >> 1; 470 L = max_index - I; 471 scale_factor = 8; 472 sum_y_sqr = 0; 473 sum_y_quad = 0; 474 x_tilde_abs = 0; 475 476 for (i = 0; i <= L; i++) { 477 unsigned int y_sqr; 478 unsigned int y_quad; 479 unsigned int tmp_abs; 480 481 /* prevent division by zero */ 482 if (y_est[i + I] == 0) 483 return false; 484 485 x_est_fxp1_nonlin = 486 x_est[i + I] - ((1 << scale_factor) * y_est[i + I] + 487 G_fxp) / G_fxp; 488 489 x_tilde[i] = 490 (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i + 491 I]; 492 x_tilde[i] = 493 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I]; 494 x_tilde[i] = 495 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I]; 496 y_sqr = 497 (y_est[i + I] * y_est[i + I] + 498 (scale_factor * scale_factor)) / (scale_factor * 499 scale_factor); 500 tmp_abs = abs(x_tilde[i]); 501 if (tmp_abs > x_tilde_abs) 502 x_tilde_abs = tmp_abs; 503 504 y_quad = y_sqr * y_sqr; 505 sum_y_sqr = sum_y_sqr + y_sqr; 506 sum_y_quad = sum_y_quad + y_quad; 507 B1_tmp[i] = y_sqr * (L + 1); 508 B2_tmp[i] = y_sqr; 509 } 510 511 B1_abs_max = 0; 512 B2_abs_max = 0; 513 for (i = 0; i <= L; i++) { 514 int abs_val; 515 516 B1_tmp[i] -= sum_y_sqr; 517 B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i]; 518 519 abs_val = abs(B1_tmp[i]); 520 if (abs_val > B1_abs_max) 521 B1_abs_max = abs_val; 522 523 abs_val = abs(B2_tmp[i]); 524 if (abs_val > B2_abs_max) 525 B2_abs_max = abs_val; 526 } 527 528 Q_x = find_proper_scale(find_expn(x_tilde_abs), 10); 529 Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10); 530 Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10); 531 532 beta_raw = 0; 533 alpha_raw = 0; 534 for (i = 0; i <= L; i++) { 535 x_tilde[i] = x_tilde[i] / (1 << Q_x); 536 B1_tmp[i] = B1_tmp[i] / (1 << Q_B1); 537 B2_tmp[i] = B2_tmp[i] / (1 << Q_B2); 538 beta_raw = beta_raw + B1_tmp[i] * x_tilde[i]; 539 alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i]; 540 } 541 542 scale_B = 543 ((sum_y_quad / scale_factor) * (L + 1) - 544 (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor; 545 546 Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10); 547 scale_B = scale_B / (1 << Q_scale_B); 548 if (scale_B == 0) 549 return false; 550 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10); 551 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10); 552 beta_raw = beta_raw / (1 << Q_beta); 553 alpha_raw = alpha_raw / (1 << Q_alpha); 554 alpha = (alpha_raw << 10) / scale_B; 555 beta = (beta_raw << 10) / scale_B; 556 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B; 557 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B; 558 order1_5x = order_1 / 5; 559 order2_3x = order_2 / 3; 560 order1_5x_rem = order_1 - 5 * order1_5x; 561 order2_3x_rem = order_2 - 3 * order2_3x; 562 563 for (i = 0; i < PAPRD_TABLE_SZ; i++) { 564 tmp = i * 32; 565 y5 = ((beta * tmp) >> 6) >> order1_5x; 566 y5 = (y5 * tmp) >> order1_5x; 567 y5 = (y5 * tmp) >> order1_5x; 568 y5 = (y5 * tmp) >> order1_5x; 569 y5 = (y5 * tmp) >> order1_5x; 570 y5 = y5 >> order1_5x_rem; 571 y3 = (alpha * tmp) >> order2_3x; 572 y3 = (y3 * tmp) >> order2_3x; 573 y3 = (y3 * tmp) >> order2_3x; 574 y3 = y3 >> order2_3x_rem; 575 PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp; 576 577 if (i >= 2) { 578 tmp = PA_in[i] - PA_in[i - 1]; 579 if (tmp < 0) 580 PA_in[i] = 581 PA_in[i - 1] + (PA_in[i - 1] - 582 PA_in[i - 2]); 583 } 584 585 PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400; 586 } 587 588 beta_raw = 0; 589 alpha_raw = 0; 590 591 for (i = 0; i <= L; i++) { 592 int theta_tilde = 593 ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I]; 594 theta_tilde = 595 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I]; 596 theta_tilde = 597 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I]; 598 beta_raw = beta_raw + B1_tmp[i] * theta_tilde; 599 alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde; 600 } 601 602 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10); 603 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10); 604 beta_raw = beta_raw / (1 << Q_beta); 605 alpha_raw = alpha_raw / (1 << Q_alpha); 606 607 alpha = (alpha_raw << 10) / scale_B; 608 beta = (beta_raw << 10) / scale_B; 609 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5; 610 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5; 611 order1_5x = order_1 / 5; 612 order2_3x = order_2 / 3; 613 order1_5x_rem = order_1 - 5 * order1_5x; 614 order2_3x_rem = order_2 - 3 * order2_3x; 615 616 for (i = 0; i < PAPRD_TABLE_SZ; i++) { 617 int PA_angle; 618 619 /* pa_table[4] is calculated from PA_angle for i=5 */ 620 if (i == 4) 621 continue; 622 623 tmp = i * 32; 624 if (beta > 0) 625 y5 = (((beta * tmp - 64) >> 6) - 626 (1 << order1_5x)) / (1 << order1_5x); 627 else 628 y5 = ((((beta * tmp - 64) >> 6) + 629 (1 << order1_5x)) / (1 << order1_5x)); 630 631 y5 = (y5 * tmp) / (1 << order1_5x); 632 y5 = (y5 * tmp) / (1 << order1_5x); 633 y5 = (y5 * tmp) / (1 << order1_5x); 634 y5 = (y5 * tmp) / (1 << order1_5x); 635 y5 = y5 / (1 << order1_5x_rem); 636 637 if (beta > 0) 638 y3 = (alpha * tmp - 639 (1 << order2_3x)) / (1 << order2_3x); 640 else 641 y3 = (alpha * tmp + 642 (1 << order2_3x)) / (1 << order2_3x); 643 y3 = (y3 * tmp) / (1 << order2_3x); 644 y3 = (y3 * tmp) / (1 << order2_3x); 645 y3 = y3 / (1 << order2_3x_rem); 646 647 if (i < 4) { 648 PA_angle = 0; 649 } else { 650 PA_angle = y5 + y3; 651 if (PA_angle < -150) 652 PA_angle = -150; 653 else if (PA_angle > 150) 654 PA_angle = 150; 655 } 656 657 pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff); 658 if (i == 5) { 659 PA_angle = (PA_angle + 2) >> 1; 660 pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) + 661 (PA_angle & 0x7ff); 662 } 663 } 664 665 *gain = G_fxp; 666 return true; 667 } 668 669 void ar9003_paprd_populate_single_table(struct ath_hw *ah, 670 struct ath9k_hw_cal_data *caldata, 671 int chain) 672 { 673 u32 *paprd_table_val = caldata->pa_table[chain]; 674 u32 small_signal_gain = caldata->small_signal_gain[chain]; 675 u32 training_power = ah->paprd_training_power; 676 u32 reg = 0; 677 int i; 678 679 if (chain == 0) 680 reg = AR_PHY_PAPRD_MEM_TAB_B0; 681 else if (chain == 1) 682 reg = AR_PHY_PAPRD_MEM_TAB_B1; 683 else if (chain == 2) 684 reg = AR_PHY_PAPRD_MEM_TAB_B2; 685 686 for (i = 0; i < PAPRD_TABLE_SZ; i++) { 687 REG_WRITE(ah, reg, paprd_table_val[i]); 688 reg = reg + 4; 689 } 690 691 if (chain == 0) 692 reg = AR_PHY_PA_GAIN123_B0; 693 else if (chain == 1) 694 reg = AR_PHY_PA_GAIN123_B1; 695 else 696 reg = AR_PHY_PA_GAIN123_B2; 697 698 REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain); 699 700 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0, 701 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, 702 training_power); 703 704 if (ah->caps.tx_chainmask & BIT(1)) 705 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1, 706 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, 707 training_power); 708 709 if (ah->caps.tx_chainmask & BIT(2)) 710 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2, 711 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, 712 training_power); 713 } 714 EXPORT_SYMBOL(ar9003_paprd_populate_single_table); 715 716 int ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain) 717 { 718 unsigned int i, desired_gain, gain_index; 719 unsigned int train_power = ah->paprd_training_power; 720 721 desired_gain = ar9003_get_desired_gain(ah, chain, train_power); 722 723 gain_index = 0; 724 for (i = 0; i < 32; i++) { 725 if (ah->paprd_gain_table_index[i] >= desired_gain) 726 break; 727 gain_index++; 728 } 729 730 ar9003_tx_force_gain(ah, gain_index); 731 732 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, 733 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); 734 735 return 0; 736 } 737 EXPORT_SYMBOL(ar9003_paprd_setup_gain_table); 738 739 int ar9003_paprd_create_curve(struct ath_hw *ah, 740 struct ath9k_hw_cal_data *caldata, int chain) 741 { 742 u16 *small_signal_gain = &caldata->small_signal_gain[chain]; 743 u32 *pa_table = caldata->pa_table[chain]; 744 u32 *data_L, *data_U; 745 int i, status = 0; 746 u32 *buf; 747 u32 reg; 748 749 memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain])); 750 751 buf = kmalloc(2 * 48 * sizeof(u32), GFP_ATOMIC); 752 if (!buf) 753 return -ENOMEM; 754 755 data_L = &buf[0]; 756 data_U = &buf[48]; 757 758 REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY, 759 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ); 760 761 reg = AR_PHY_CHAN_INFO_TAB_0; 762 for (i = 0; i < 48; i++) 763 data_L[i] = REG_READ(ah, reg + (i << 2)); 764 765 REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY, 766 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ); 767 768 for (i = 0; i < 48; i++) 769 data_U[i] = REG_READ(ah, reg + (i << 2)); 770 771 if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain)) 772 status = -2; 773 774 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, 775 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); 776 777 kfree(buf); 778 779 return status; 780 } 781 EXPORT_SYMBOL(ar9003_paprd_create_curve); 782 783 int ar9003_paprd_init_table(struct ath_hw *ah) 784 { 785 int ret; 786 787 ret = ar9003_paprd_setup_single_table(ah); 788 if (ret < 0) 789 return ret; 790 791 ar9003_paprd_get_gain_table(ah); 792 return 0; 793 } 794 EXPORT_SYMBOL(ar9003_paprd_init_table); 795 796 bool ar9003_paprd_is_done(struct ath_hw *ah) 797 { 798 return !!REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1, 799 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); 800 } 801 EXPORT_SYMBOL(ar9003_paprd_is_done); 802