1 /* 2 * Copyright (c) 2010-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/export.h> 18 #include "hw.h" 19 #include "ar9003_phy.h" 20 21 void ar9003_paprd_enable(struct ath_hw *ah, bool val) 22 { 23 struct ath9k_channel *chan = ah->curchan; 24 bool is2ghz = IS_CHAN_2GHZ(chan); 25 26 /* 27 * 3 bits for modalHeader5G.papdRateMaskHt20 28 * is used for sub-band disabling of PAPRD. 29 * 5G band is divided into 3 sub-bands -- upper, 30 * middle, lower. 31 * if bit 30 of modalHeader5G.papdRateMaskHt20 is set 32 * -- disable PAPRD for upper band 5GHz 33 * if bit 29 of modalHeader5G.papdRateMaskHt20 is set 34 * -- disable PAPRD for middle band 5GHz 35 * if bit 28 of modalHeader5G.papdRateMaskHt20 is set 36 * -- disable PAPRD for lower band 5GHz 37 */ 38 39 if (!is2ghz) { 40 if (chan->channel >= UPPER_5G_SUB_BAND_START) { 41 if (ar9003_get_paprd_rate_mask_ht20(ah, is2ghz) 42 & BIT(30)) 43 val = false; 44 } else if (chan->channel >= MID_5G_SUB_BAND_START) { 45 if (ar9003_get_paprd_rate_mask_ht20(ah, is2ghz) 46 & BIT(29)) 47 val = false; 48 } else { 49 if (ar9003_get_paprd_rate_mask_ht20(ah, is2ghz) 50 & BIT(28)) 51 val = false; 52 } 53 } 54 55 if (val) { 56 ah->paprd_table_write_done = true; 57 ath9k_hw_apply_txpower(ah, chan, false); 58 } 59 60 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0, 61 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); 62 if (ah->caps.tx_chainmask & BIT(1)) 63 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1, 64 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); 65 if (ah->caps.tx_chainmask & BIT(2)) 66 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2, 67 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); 68 } 69 EXPORT_SYMBOL(ar9003_paprd_enable); 70 71 static int ar9003_get_training_power_2g(struct ath_hw *ah) 72 { 73 struct ath9k_channel *chan = ah->curchan; 74 unsigned int power, scale, delta; 75 76 scale = ar9003_get_paprd_scale_factor(ah, chan); 77 78 if (AR_SREV_9330(ah) || AR_SREV_9340(ah) || 79 AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 80 power = ah->paprd_target_power + 2; 81 } else if (AR_SREV_9485(ah)) { 82 power = 25; 83 } else { 84 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5, 85 AR_PHY_POWERTX_RATE5_POWERTXHT20_0); 86 87 delta = abs((int) ah->paprd_target_power - (int) power); 88 if (delta > scale) 89 return -1; 90 91 if (delta < 4) 92 power -= 4 - delta; 93 } 94 95 return power; 96 } 97 98 static int ar9003_get_training_power_5g(struct ath_hw *ah) 99 { 100 struct ath_common *common = ath9k_hw_common(ah); 101 struct ath9k_channel *chan = ah->curchan; 102 unsigned int power, scale, delta; 103 104 scale = ar9003_get_paprd_scale_factor(ah, chan); 105 106 if (IS_CHAN_HT40(chan)) 107 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8, 108 AR_PHY_POWERTX_RATE8_POWERTXHT40_5); 109 else 110 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6, 111 AR_PHY_POWERTX_RATE6_POWERTXHT20_5); 112 113 power += scale; 114 delta = abs((int) ah->paprd_target_power - (int) power); 115 if (delta > scale) 116 return -1; 117 118 switch (get_streams(ah->txchainmask)) { 119 case 1: 120 delta = 6; 121 break; 122 case 2: 123 delta = 4; 124 break; 125 case 3: 126 delta = 2; 127 break; 128 default: 129 delta = 0; 130 ath_dbg(common, CALIBRATE, "Invalid tx-chainmask: %u\n", 131 ah->txchainmask); 132 } 133 134 power += delta; 135 return power; 136 } 137 138 static int ar9003_paprd_setup_single_table(struct ath_hw *ah) 139 { 140 struct ath_common *common = ath9k_hw_common(ah); 141 static const u32 ctrl0[3] = { 142 AR_PHY_PAPRD_CTRL0_B0, 143 AR_PHY_PAPRD_CTRL0_B1, 144 AR_PHY_PAPRD_CTRL0_B2 145 }; 146 static const u32 ctrl1[3] = { 147 AR_PHY_PAPRD_CTRL1_B0, 148 AR_PHY_PAPRD_CTRL1_B1, 149 AR_PHY_PAPRD_CTRL1_B2 150 }; 151 int training_power; 152 int i, val; 153 u32 am2pm_mask = ah->paprd_ratemask; 154 155 if (IS_CHAN_2GHZ(ah->curchan)) 156 training_power = ar9003_get_training_power_2g(ah); 157 else 158 training_power = ar9003_get_training_power_5g(ah); 159 160 ath_dbg(common, CALIBRATE, "Training power: %d, Target power: %d\n", 161 training_power, ah->paprd_target_power); 162 163 if (training_power < 0) { 164 ath_dbg(common, CALIBRATE, 165 "PAPRD target power delta out of range\n"); 166 return -ERANGE; 167 } 168 ah->paprd_training_power = training_power; 169 170 if (AR_SREV_9330(ah)) 171 am2pm_mask = 0; 172 173 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK, 174 ah->paprd_ratemask); 175 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK, 176 am2pm_mask); 177 REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK, 178 ah->paprd_ratemask_ht40); 179 180 ath_dbg(common, CALIBRATE, "PAPRD HT20 mask: 0x%x, HT40 mask: 0x%x\n", 181 ah->paprd_ratemask, ah->paprd_ratemask_ht40); 182 183 for (i = 0; i < ah->caps.max_txchains; i++) { 184 REG_RMW_FIELD(ah, ctrl0[i], 185 AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1); 186 REG_RMW_FIELD(ah, ctrl1[i], 187 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1); 188 REG_RMW_FIELD(ah, ctrl1[i], 189 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1); 190 REG_RMW_FIELD(ah, ctrl1[i], 191 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0); 192 REG_RMW_FIELD(ah, ctrl1[i], 193 AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181); 194 REG_RMW_FIELD(ah, ctrl1[i], 195 AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361); 196 REG_RMW_FIELD(ah, ctrl1[i], 197 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0); 198 REG_RMW_FIELD(ah, ctrl0[i], 199 AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3); 200 } 201 202 ar9003_paprd_enable(ah, false); 203 204 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 205 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30); 206 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 207 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1); 208 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 209 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1); 210 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 211 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0); 212 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 213 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0); 214 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 215 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28); 216 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 217 AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1); 218 219 if (AR_SREV_9485(ah)) { 220 val = 148; 221 } else { 222 if (IS_CHAN_2GHZ(ah->curchan)) { 223 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 224 val = 145; 225 else 226 val = 147; 227 } else { 228 val = 137; 229 } 230 } 231 232 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2, 233 AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val); 234 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 235 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4); 236 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 237 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4); 238 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 239 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7); 240 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 241 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1); 242 243 if (AR_SREV_9485(ah) || 244 AR_SREV_9462(ah) || 245 AR_SREV_9565(ah) || 246 AR_SREV_9550(ah) || 247 AR_SREV_9330(ah) || 248 AR_SREV_9340(ah)) 249 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 250 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, -3); 251 else 252 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 253 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, -6); 254 255 val = -10; 256 257 if (IS_CHAN_2GHZ(ah->curchan) && !AR_SREV_9462(ah) && !AR_SREV_9565(ah)) 258 val = -15; 259 260 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 261 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE, 262 val); 263 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 264 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1); 265 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, 266 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0); 267 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, 268 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400); 269 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, 270 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES, 271 100); 272 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0, 273 AR_PHY_PAPRD_PRE_POST_SCALING, 261376); 274 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0, 275 AR_PHY_PAPRD_PRE_POST_SCALING, 248079); 276 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0, 277 AR_PHY_PAPRD_PRE_POST_SCALING, 233759); 278 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0, 279 AR_PHY_PAPRD_PRE_POST_SCALING, 220464); 280 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0, 281 AR_PHY_PAPRD_PRE_POST_SCALING, 208194); 282 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0, 283 AR_PHY_PAPRD_PRE_POST_SCALING, 196949); 284 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0, 285 AR_PHY_PAPRD_PRE_POST_SCALING, 185706); 286 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0, 287 AR_PHY_PAPRD_PRE_POST_SCALING, 175487); 288 return 0; 289 } 290 291 static void ar9003_paprd_get_gain_table(struct ath_hw *ah) 292 { 293 u32 *entry = ah->paprd_gain_table_entries; 294 u8 *index = ah->paprd_gain_table_index; 295 u32 reg = AR_PHY_TXGAIN_TABLE; 296 int i; 297 298 for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) { 299 entry[i] = REG_READ(ah, reg); 300 index[i] = (entry[i] >> 24) & 0xff; 301 reg += 4; 302 } 303 } 304 305 static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain, 306 int target_power) 307 { 308 int olpc_gain_delta = 0, cl_gain_mod; 309 int alpha_therm, alpha_volt; 310 int therm_cal_value, volt_cal_value; 311 int therm_value, volt_value; 312 int thermal_gain_corr, voltage_gain_corr; 313 int desired_scale, desired_gain = 0; 314 u32 reg_olpc = 0, reg_cl_gain = 0; 315 316 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, 317 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); 318 desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12, 319 AR_PHY_TPC_12_DESIRED_SCALE_HT40_5); 320 alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19, 321 AR_PHY_TPC_19_ALPHA_THERM); 322 alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19, 323 AR_PHY_TPC_19_ALPHA_VOLT); 324 therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18, 325 AR_PHY_TPC_18_THERM_CAL_VALUE); 326 volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18, 327 AR_PHY_TPC_18_VOLT_CAL_VALUE); 328 therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4, 329 AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE); 330 volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4, 331 AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE); 332 333 switch (chain) { 334 case 0: 335 reg_olpc = AR_PHY_TPC_11_B0; 336 reg_cl_gain = AR_PHY_CL_TAB_0; 337 break; 338 case 1: 339 reg_olpc = AR_PHY_TPC_11_B1; 340 reg_cl_gain = AR_PHY_CL_TAB_1; 341 break; 342 case 2: 343 reg_olpc = AR_PHY_TPC_11_B2; 344 reg_cl_gain = AR_PHY_CL_TAB_2; 345 break; 346 default: 347 ath_dbg(ath9k_hw_common(ah), CALIBRATE, 348 "Invalid chainmask: %d\n", chain); 349 break; 350 } 351 352 olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc, 353 AR_PHY_TPC_11_OLPC_GAIN_DELTA); 354 cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain, 355 AR_PHY_CL_TAB_CL_GAIN_MOD); 356 357 if (olpc_gain_delta >= 128) 358 olpc_gain_delta = olpc_gain_delta - 256; 359 360 thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) + 361 (256 / 2)) / 256; 362 voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) + 363 (128 / 2)) / 128; 364 desired_gain = target_power - olpc_gain_delta - thermal_gain_corr - 365 voltage_gain_corr + desired_scale + cl_gain_mod; 366 367 return desired_gain; 368 } 369 370 static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index) 371 { 372 int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain; 373 int padrvgnA, padrvgnB, padrvgnC, padrvgnD; 374 u32 *gain_table_entries = ah->paprd_gain_table_entries; 375 376 selected_gain_entry = gain_table_entries[gain_index]; 377 txbb1dbgain = selected_gain_entry & 0x7; 378 txbb6dbgain = (selected_gain_entry >> 3) & 0x3; 379 txmxrgain = (selected_gain_entry >> 5) & 0xf; 380 padrvgnA = (selected_gain_entry >> 9) & 0xf; 381 padrvgnB = (selected_gain_entry >> 13) & 0xf; 382 padrvgnC = (selected_gain_entry >> 17) & 0xf; 383 padrvgnD = (selected_gain_entry >> 21) & 0x3; 384 385 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 386 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain); 387 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 388 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain); 389 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 390 AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain); 391 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 392 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA); 393 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 394 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB); 395 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 396 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC); 397 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 398 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD); 399 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 400 AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0); 401 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 402 AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0); 403 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0); 404 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0); 405 } 406 407 static inline int find_expn(int num) 408 { 409 return fls(num) - 1; 410 } 411 412 static inline int find_proper_scale(int expn, int N) 413 { 414 return (expn > N) ? expn - 10 : 0; 415 } 416 417 #define NUM_BIN 23 418 419 static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain) 420 { 421 unsigned int thresh_accum_cnt; 422 int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1]; 423 int PA_in[NUM_BIN + 1]; 424 int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1]; 425 unsigned int B1_abs_max, B2_abs_max; 426 int max_index, scale_factor; 427 int y_est[NUM_BIN + 1]; 428 int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1]; 429 unsigned int x_tilde_abs; 430 int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad; 431 int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B; 432 int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2; 433 int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem; 434 int y5, y3, tmp; 435 int theta_low_bin = 0; 436 int i; 437 438 /* disregard any bin that contains <= 16 samples */ 439 thresh_accum_cnt = 16; 440 scale_factor = 5; 441 max_index = 0; 442 memset(theta, 0, sizeof(theta)); 443 memset(x_est, 0, sizeof(x_est)); 444 memset(Y, 0, sizeof(Y)); 445 memset(y_est, 0, sizeof(y_est)); 446 memset(x_tilde, 0, sizeof(x_tilde)); 447 448 for (i = 0; i < NUM_BIN; i++) { 449 s32 accum_cnt, accum_tx, accum_rx, accum_ang; 450 451 /* number of samples */ 452 accum_cnt = data_L[i] & 0xffff; 453 454 if (accum_cnt <= thresh_accum_cnt) 455 continue; 456 457 max_index++; 458 459 /* sum(tx amplitude) */ 460 accum_tx = ((data_L[i] >> 16) & 0xffff) | 461 ((data_U[i] & 0x7ff) << 16); 462 463 /* sum(rx amplitude distance to lower bin edge) */ 464 accum_rx = ((data_U[i] >> 11) & 0x1f) | 465 ((data_L[i + 23] & 0xffff) << 5); 466 467 /* sum(angles) */ 468 accum_ang = ((data_L[i + 23] >> 16) & 0xffff) | 469 ((data_U[i + 23] & 0x7ff) << 16); 470 471 accum_tx <<= scale_factor; 472 accum_rx <<= scale_factor; 473 x_est[max_index] = 474 (((accum_tx + accum_cnt) / accum_cnt) + 32) >> 475 scale_factor; 476 477 Y[max_index] = 478 ((((accum_rx + accum_cnt) / accum_cnt) + 32) >> 479 scale_factor) + 480 (1 << scale_factor) * i + 16; 481 482 if (accum_ang >= (1 << 26)) 483 accum_ang -= 1 << 27; 484 485 theta[max_index] = 486 ((accum_ang * (1 << scale_factor)) + accum_cnt) / 487 accum_cnt; 488 } 489 490 /* 491 * Find average theta of first 5 bin and all of those to same value. 492 * Curve is linear at that range. 493 */ 494 for (i = 1; i < 6; i++) 495 theta_low_bin += theta[i]; 496 497 theta_low_bin = theta_low_bin / 5; 498 for (i = 1; i < 6; i++) 499 theta[i] = theta_low_bin; 500 501 /* Set values at origin */ 502 theta[0] = theta_low_bin; 503 for (i = 0; i <= max_index; i++) 504 theta[i] -= theta_low_bin; 505 506 x_est[0] = 0; 507 Y[0] = 0; 508 scale_factor = 8; 509 510 /* low signal gain */ 511 if (x_est[6] == x_est[3]) 512 return false; 513 514 G_fxp = 515 (((Y[6] - Y[3]) * 1 << scale_factor) + 516 (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]); 517 518 /* prevent division by zero */ 519 if (G_fxp == 0) 520 return false; 521 522 Y_intercept = 523 (G_fxp * (x_est[0] - x_est[3]) + 524 (1 << scale_factor)) / (1 << scale_factor) + Y[3]; 525 526 for (i = 0; i <= max_index; i++) 527 y_est[i] = Y[i] - Y_intercept; 528 529 for (i = 0; i <= 3; i++) { 530 y_est[i] = i * 32; 531 x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp; 532 } 533 534 if (y_est[max_index] == 0) 535 return false; 536 537 x_est_fxp1_nonlin = 538 x_est[max_index] - ((1 << scale_factor) * y_est[max_index] + 539 G_fxp) / G_fxp; 540 541 order_x_by_y = 542 (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index]; 543 544 if (order_x_by_y == 0) 545 M = 10; 546 else if (order_x_by_y == 1) 547 M = 9; 548 else 549 M = 8; 550 551 I = (max_index > 15) ? 7 : max_index >> 1; 552 L = max_index - I; 553 scale_factor = 8; 554 sum_y_sqr = 0; 555 sum_y_quad = 0; 556 x_tilde_abs = 0; 557 558 for (i = 0; i <= L; i++) { 559 unsigned int y_sqr; 560 unsigned int y_quad; 561 unsigned int tmp_abs; 562 563 /* prevent division by zero */ 564 if (y_est[i + I] == 0) 565 return false; 566 567 x_est_fxp1_nonlin = 568 x_est[i + I] - ((1 << scale_factor) * y_est[i + I] + 569 G_fxp) / G_fxp; 570 571 x_tilde[i] = 572 (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i + 573 I]; 574 x_tilde[i] = 575 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I]; 576 x_tilde[i] = 577 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I]; 578 y_sqr = 579 (y_est[i + I] * y_est[i + I] + 580 (scale_factor * scale_factor)) / (scale_factor * 581 scale_factor); 582 tmp_abs = abs(x_tilde[i]); 583 if (tmp_abs > x_tilde_abs) 584 x_tilde_abs = tmp_abs; 585 586 y_quad = y_sqr * y_sqr; 587 sum_y_sqr = sum_y_sqr + y_sqr; 588 sum_y_quad = sum_y_quad + y_quad; 589 B1_tmp[i] = y_sqr * (L + 1); 590 B2_tmp[i] = y_sqr; 591 } 592 593 B1_abs_max = 0; 594 B2_abs_max = 0; 595 for (i = 0; i <= L; i++) { 596 int abs_val; 597 598 B1_tmp[i] -= sum_y_sqr; 599 B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i]; 600 601 abs_val = abs(B1_tmp[i]); 602 if (abs_val > B1_abs_max) 603 B1_abs_max = abs_val; 604 605 abs_val = abs(B2_tmp[i]); 606 if (abs_val > B2_abs_max) 607 B2_abs_max = abs_val; 608 } 609 610 Q_x = find_proper_scale(find_expn(x_tilde_abs), 10); 611 Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10); 612 Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10); 613 614 beta_raw = 0; 615 alpha_raw = 0; 616 for (i = 0; i <= L; i++) { 617 x_tilde[i] = x_tilde[i] / (1 << Q_x); 618 B1_tmp[i] = B1_tmp[i] / (1 << Q_B1); 619 B2_tmp[i] = B2_tmp[i] / (1 << Q_B2); 620 beta_raw = beta_raw + B1_tmp[i] * x_tilde[i]; 621 alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i]; 622 } 623 624 scale_B = 625 ((sum_y_quad / scale_factor) * (L + 1) - 626 (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor; 627 628 Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10); 629 scale_B = scale_B / (1 << Q_scale_B); 630 if (scale_B == 0) 631 return false; 632 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10); 633 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10); 634 beta_raw = beta_raw / (1 << Q_beta); 635 alpha_raw = alpha_raw / (1 << Q_alpha); 636 alpha = (alpha_raw << 10) / scale_B; 637 beta = (beta_raw << 10) / scale_B; 638 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B; 639 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B; 640 order1_5x = order_1 / 5; 641 order2_3x = order_2 / 3; 642 order1_5x_rem = order_1 - 5 * order1_5x; 643 order2_3x_rem = order_2 - 3 * order2_3x; 644 645 for (i = 0; i < PAPRD_TABLE_SZ; i++) { 646 tmp = i * 32; 647 y5 = ((beta * tmp) >> 6) >> order1_5x; 648 y5 = (y5 * tmp) >> order1_5x; 649 y5 = (y5 * tmp) >> order1_5x; 650 y5 = (y5 * tmp) >> order1_5x; 651 y5 = (y5 * tmp) >> order1_5x; 652 y5 = y5 >> order1_5x_rem; 653 y3 = (alpha * tmp) >> order2_3x; 654 y3 = (y3 * tmp) >> order2_3x; 655 y3 = (y3 * tmp) >> order2_3x; 656 y3 = y3 >> order2_3x_rem; 657 PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp; 658 659 if (i >= 2) { 660 tmp = PA_in[i] - PA_in[i - 1]; 661 if (tmp < 0) 662 PA_in[i] = 663 PA_in[i - 1] + (PA_in[i - 1] - 664 PA_in[i - 2]); 665 } 666 667 PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400; 668 } 669 670 beta_raw = 0; 671 alpha_raw = 0; 672 673 for (i = 0; i <= L; i++) { 674 int theta_tilde = 675 ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I]; 676 theta_tilde = 677 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I]; 678 theta_tilde = 679 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I]; 680 beta_raw = beta_raw + B1_tmp[i] * theta_tilde; 681 alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde; 682 } 683 684 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10); 685 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10); 686 beta_raw = beta_raw / (1 << Q_beta); 687 alpha_raw = alpha_raw / (1 << Q_alpha); 688 689 alpha = (alpha_raw << 10) / scale_B; 690 beta = (beta_raw << 10) / scale_B; 691 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5; 692 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5; 693 order1_5x = order_1 / 5; 694 order2_3x = order_2 / 3; 695 order1_5x_rem = order_1 - 5 * order1_5x; 696 order2_3x_rem = order_2 - 3 * order2_3x; 697 698 for (i = 0; i < PAPRD_TABLE_SZ; i++) { 699 int PA_angle; 700 701 /* pa_table[4] is calculated from PA_angle for i=5 */ 702 if (i == 4) 703 continue; 704 705 tmp = i * 32; 706 if (beta > 0) 707 y5 = (((beta * tmp - 64) >> 6) - 708 (1 << order1_5x)) / (1 << order1_5x); 709 else 710 y5 = ((((beta * tmp - 64) >> 6) + 711 (1 << order1_5x)) / (1 << order1_5x)); 712 713 y5 = (y5 * tmp) / (1 << order1_5x); 714 y5 = (y5 * tmp) / (1 << order1_5x); 715 y5 = (y5 * tmp) / (1 << order1_5x); 716 y5 = (y5 * tmp) / (1 << order1_5x); 717 y5 = y5 / (1 << order1_5x_rem); 718 719 if (beta > 0) 720 y3 = (alpha * tmp - 721 (1 << order2_3x)) / (1 << order2_3x); 722 else 723 y3 = (alpha * tmp + 724 (1 << order2_3x)) / (1 << order2_3x); 725 y3 = (y3 * tmp) / (1 << order2_3x); 726 y3 = (y3 * tmp) / (1 << order2_3x); 727 y3 = y3 / (1 << order2_3x_rem); 728 729 if (i < 4) { 730 PA_angle = 0; 731 } else { 732 PA_angle = y5 + y3; 733 if (PA_angle < -150) 734 PA_angle = -150; 735 else if (PA_angle > 150) 736 PA_angle = 150; 737 } 738 739 pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff); 740 if (i == 5) { 741 PA_angle = (PA_angle + 2) >> 1; 742 pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) + 743 (PA_angle & 0x7ff); 744 } 745 } 746 747 *gain = G_fxp; 748 return true; 749 } 750 751 void ar9003_paprd_populate_single_table(struct ath_hw *ah, 752 struct ath9k_hw_cal_data *caldata, 753 int chain) 754 { 755 u32 *paprd_table_val = caldata->pa_table[chain]; 756 u32 small_signal_gain = caldata->small_signal_gain[chain]; 757 u32 training_power = ah->paprd_training_power; 758 u32 reg = 0; 759 int i; 760 761 if (chain == 0) 762 reg = AR_PHY_PAPRD_MEM_TAB_B0; 763 else if (chain == 1) 764 reg = AR_PHY_PAPRD_MEM_TAB_B1; 765 else if (chain == 2) 766 reg = AR_PHY_PAPRD_MEM_TAB_B2; 767 768 for (i = 0; i < PAPRD_TABLE_SZ; i++) { 769 REG_WRITE(ah, reg, paprd_table_val[i]); 770 reg = reg + 4; 771 } 772 773 if (chain == 0) 774 reg = AR_PHY_PA_GAIN123_B0; 775 else if (chain == 1) 776 reg = AR_PHY_PA_GAIN123_B1; 777 else 778 reg = AR_PHY_PA_GAIN123_B2; 779 780 REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain); 781 782 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0, 783 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, 784 training_power); 785 786 if (ah->caps.tx_chainmask & BIT(1)) 787 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1, 788 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, 789 training_power); 790 791 if (ah->caps.tx_chainmask & BIT(2)) 792 /* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */ 793 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2, 794 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, 795 training_power); 796 } 797 EXPORT_SYMBOL(ar9003_paprd_populate_single_table); 798 799 void ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain) 800 { 801 unsigned int i, desired_gain, gain_index; 802 unsigned int train_power = ah->paprd_training_power; 803 804 desired_gain = ar9003_get_desired_gain(ah, chain, train_power); 805 806 gain_index = 0; 807 for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) { 808 if (ah->paprd_gain_table_index[i] >= desired_gain) 809 break; 810 gain_index++; 811 } 812 813 ar9003_tx_force_gain(ah, gain_index); 814 815 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, 816 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); 817 } 818 EXPORT_SYMBOL(ar9003_paprd_setup_gain_table); 819 820 static bool ar9003_paprd_retrain_pa_in(struct ath_hw *ah, 821 struct ath9k_hw_cal_data *caldata, 822 int chain) 823 { 824 u32 *pa_in = caldata->pa_table[chain]; 825 int capdiv_offset, quick_drop_offset; 826 int capdiv2g, quick_drop; 827 int count = 0; 828 int i; 829 830 if (!AR_SREV_9485(ah) && !AR_SREV_9330(ah)) 831 return false; 832 833 capdiv2g = REG_READ_FIELD(ah, AR_PHY_65NM_CH0_TXRF3, 834 AR_PHY_65NM_CH0_TXRF3_CAPDIV2G); 835 836 quick_drop = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 837 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP); 838 839 if (quick_drop) 840 quick_drop -= 0x40; 841 842 for (i = 0; i < NUM_BIN + 1; i++) { 843 if (pa_in[i] == 1400) 844 count++; 845 } 846 847 if (AR_SREV_9485(ah)) { 848 if (pa_in[23] < 800) { 849 capdiv_offset = (int)((1000 - pa_in[23] + 75) / 150); 850 capdiv2g += capdiv_offset; 851 if (capdiv2g > 7) { 852 capdiv2g = 7; 853 if (pa_in[23] < 600) { 854 quick_drop++; 855 if (quick_drop > 0) 856 quick_drop = 0; 857 } 858 } 859 } else if (pa_in[23] == 1400) { 860 quick_drop_offset = min_t(int, count / 3, 2); 861 quick_drop += quick_drop_offset; 862 capdiv2g += quick_drop_offset / 2; 863 864 if (capdiv2g > 7) 865 capdiv2g = 7; 866 867 if (quick_drop > 0) { 868 quick_drop = 0; 869 capdiv2g -= quick_drop_offset; 870 if (capdiv2g < 0) 871 capdiv2g = 0; 872 } 873 } else { 874 return false; 875 } 876 } else if (AR_SREV_9330(ah)) { 877 if (pa_in[23] < 1000) { 878 capdiv_offset = (1000 - pa_in[23]) / 100; 879 capdiv2g += capdiv_offset; 880 if (capdiv_offset > 3) { 881 capdiv_offset = 1; 882 quick_drop--; 883 } 884 885 capdiv2g += capdiv_offset; 886 if (capdiv2g > 6) 887 capdiv2g = 6; 888 if (quick_drop < -4) 889 quick_drop = -4; 890 } else if (pa_in[23] == 1400) { 891 if (count > 3) { 892 quick_drop++; 893 capdiv2g -= count / 4; 894 if (quick_drop > -2) 895 quick_drop = -2; 896 } else { 897 capdiv2g--; 898 } 899 900 if (capdiv2g < 0) 901 capdiv2g = 0; 902 } else { 903 return false; 904 } 905 } 906 907 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3, 908 AR_PHY_65NM_CH0_TXRF3_CAPDIV2G, capdiv2g); 909 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 910 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, 911 quick_drop); 912 913 return true; 914 } 915 916 int ar9003_paprd_create_curve(struct ath_hw *ah, 917 struct ath9k_hw_cal_data *caldata, int chain) 918 { 919 u16 *small_signal_gain = &caldata->small_signal_gain[chain]; 920 u32 *pa_table = caldata->pa_table[chain]; 921 u32 *data_L, *data_U; 922 int i, status = 0; 923 u32 *buf; 924 u32 reg; 925 926 memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain])); 927 928 buf = kmalloc_array(2 * 48, sizeof(u32), GFP_KERNEL); 929 if (!buf) 930 return -ENOMEM; 931 932 data_L = &buf[0]; 933 data_U = &buf[48]; 934 935 REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY, 936 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ); 937 938 reg = AR_PHY_CHAN_INFO_TAB_0; 939 for (i = 0; i < 48; i++) 940 data_L[i] = REG_READ(ah, reg + (i << 2)); 941 942 REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY, 943 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ); 944 945 for (i = 0; i < 48; i++) 946 data_U[i] = REG_READ(ah, reg + (i << 2)); 947 948 if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain)) 949 status = -2; 950 951 if (ar9003_paprd_retrain_pa_in(ah, caldata, chain)) 952 status = -EINPROGRESS; 953 954 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, 955 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); 956 957 kfree(buf); 958 959 return status; 960 } 961 EXPORT_SYMBOL(ar9003_paprd_create_curve); 962 963 int ar9003_paprd_init_table(struct ath_hw *ah) 964 { 965 int ret; 966 967 ret = ar9003_paprd_setup_single_table(ah); 968 if (ret < 0) 969 return ret; 970 971 ar9003_paprd_get_gain_table(ah); 972 return 0; 973 } 974 EXPORT_SYMBOL(ar9003_paprd_init_table); 975 976 bool ar9003_paprd_is_done(struct ath_hw *ah) 977 { 978 int paprd_done, agc2_pwr; 979 980 paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1, 981 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); 982 983 if (AR_SREV_9485(ah)) 984 goto exit; 985 986 if (paprd_done == 0x1) { 987 agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1, 988 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR); 989 990 ath_dbg(ath9k_hw_common(ah), CALIBRATE, 991 "AGC2_PWR = 0x%x training done = 0x%x\n", 992 agc2_pwr, paprd_done); 993 /* 994 * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE' 995 * when the training is completely done, otherwise retraining is 996 * done to make sure the value is in ideal range 997 */ 998 if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE) 999 paprd_done = 0; 1000 } 1001 exit: 1002 return !!paprd_done; 1003 } 1004 EXPORT_SYMBOL(ar9003_paprd_is_done); 1005 1006 bool ar9003_is_paprd_enabled(struct ath_hw *ah) 1007 { 1008 if ((ah->caps.hw_caps & ATH9K_HW_CAP_PAPRD) && ah->config.enable_paprd) 1009 return true; 1010 1011 return false; 1012 } 1013 EXPORT_SYMBOL(ar9003_is_paprd_enabled); 1014