1 /* 2 * Copyright (c) 2010-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/export.h> 18 #include "hw.h" 19 #include "ar9003_phy.h" 20 21 void ar9003_paprd_enable(struct ath_hw *ah, bool val) 22 { 23 struct ath9k_channel *chan = ah->curchan; 24 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 25 26 /* 27 * 3 bits for modalHeader5G.papdRateMaskHt20 28 * is used for sub-band disabling of PAPRD. 29 * 5G band is divided into 3 sub-bands -- upper, 30 * middle, lower. 31 * if bit 30 of modalHeader5G.papdRateMaskHt20 is set 32 * -- disable PAPRD for upper band 5GHz 33 * if bit 29 of modalHeader5G.papdRateMaskHt20 is set 34 * -- disable PAPRD for middle band 5GHz 35 * if bit 28 of modalHeader5G.papdRateMaskHt20 is set 36 * -- disable PAPRD for lower band 5GHz 37 */ 38 39 if (IS_CHAN_5GHZ(chan)) { 40 if (chan->channel >= UPPER_5G_SUB_BAND_START) { 41 if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20) 42 & BIT(30)) 43 val = false; 44 } else if (chan->channel >= MID_5G_SUB_BAND_START) { 45 if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20) 46 & BIT(29)) 47 val = false; 48 } else { 49 if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20) 50 & BIT(28)) 51 val = false; 52 } 53 } 54 55 if (val) { 56 ah->paprd_table_write_done = true; 57 ath9k_hw_apply_txpower(ah, chan, false); 58 } 59 60 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0, 61 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); 62 if (ah->caps.tx_chainmask & BIT(1)) 63 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1, 64 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); 65 if (ah->caps.tx_chainmask & BIT(2)) 66 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2, 67 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); 68 } 69 EXPORT_SYMBOL(ar9003_paprd_enable); 70 71 static int ar9003_get_training_power_2g(struct ath_hw *ah) 72 { 73 struct ath9k_channel *chan = ah->curchan; 74 unsigned int power, scale, delta; 75 76 scale = ar9003_get_paprd_scale_factor(ah, chan); 77 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5, 78 AR_PHY_POWERTX_RATE5_POWERTXHT20_0); 79 80 delta = abs((int) ah->paprd_target_power - (int) power); 81 if (delta > scale) 82 return -1; 83 84 if (delta < 4) 85 power -= 4 - delta; 86 87 return power; 88 } 89 90 static int ar9003_get_training_power_5g(struct ath_hw *ah) 91 { 92 struct ath_common *common = ath9k_hw_common(ah); 93 struct ath9k_channel *chan = ah->curchan; 94 unsigned int power, scale, delta; 95 96 scale = ar9003_get_paprd_scale_factor(ah, chan); 97 98 if (IS_CHAN_HT40(chan)) 99 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8, 100 AR_PHY_POWERTX_RATE8_POWERTXHT40_5); 101 else 102 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6, 103 AR_PHY_POWERTX_RATE6_POWERTXHT20_5); 104 105 power += scale; 106 delta = abs((int) ah->paprd_target_power - (int) power); 107 if (delta > scale) 108 return -1; 109 110 switch (get_streams(ah->txchainmask)) { 111 case 1: 112 delta = 6; 113 break; 114 case 2: 115 delta = 4; 116 break; 117 case 3: 118 delta = 2; 119 break; 120 default: 121 delta = 0; 122 ath_dbg(common, CALIBRATE, "Invalid tx-chainmask: %u\n", 123 ah->txchainmask); 124 } 125 126 power += delta; 127 return power; 128 } 129 130 static int ar9003_paprd_setup_single_table(struct ath_hw *ah) 131 { 132 struct ath_common *common = ath9k_hw_common(ah); 133 static const u32 ctrl0[3] = { 134 AR_PHY_PAPRD_CTRL0_B0, 135 AR_PHY_PAPRD_CTRL0_B1, 136 AR_PHY_PAPRD_CTRL0_B2 137 }; 138 static const u32 ctrl1[3] = { 139 AR_PHY_PAPRD_CTRL1_B0, 140 AR_PHY_PAPRD_CTRL1_B1, 141 AR_PHY_PAPRD_CTRL1_B2 142 }; 143 int training_power; 144 int i, val; 145 146 if (IS_CHAN_2GHZ(ah->curchan)) 147 training_power = ar9003_get_training_power_2g(ah); 148 else 149 training_power = ar9003_get_training_power_5g(ah); 150 151 ath_dbg(common, CALIBRATE, "Training power: %d, Target power: %d\n", 152 training_power, ah->paprd_target_power); 153 154 if (training_power < 0) { 155 ath_dbg(common, CALIBRATE, 156 "PAPRD target power delta out of range\n"); 157 return -ERANGE; 158 } 159 ah->paprd_training_power = training_power; 160 161 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK, 162 ah->paprd_ratemask); 163 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK, 164 ah->paprd_ratemask); 165 REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK, 166 ah->paprd_ratemask_ht40); 167 168 for (i = 0; i < ah->caps.max_txchains; i++) { 169 REG_RMW_FIELD(ah, ctrl0[i], 170 AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1); 171 REG_RMW_FIELD(ah, ctrl1[i], 172 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1); 173 REG_RMW_FIELD(ah, ctrl1[i], 174 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1); 175 REG_RMW_FIELD(ah, ctrl1[i], 176 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0); 177 REG_RMW_FIELD(ah, ctrl1[i], 178 AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181); 179 REG_RMW_FIELD(ah, ctrl1[i], 180 AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361); 181 REG_RMW_FIELD(ah, ctrl1[i], 182 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0); 183 REG_RMW_FIELD(ah, ctrl0[i], 184 AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3); 185 } 186 187 ar9003_paprd_enable(ah, false); 188 189 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 190 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30); 191 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 192 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1); 193 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 194 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1); 195 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 196 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0); 197 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 198 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0); 199 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 200 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28); 201 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 202 AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1); 203 val = AR_SREV_9462(ah) ? 0x91 : 147; 204 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2, 205 AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val); 206 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 207 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4); 208 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 209 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4); 210 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 211 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7); 212 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 213 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1); 214 if (AR_SREV_9485(ah) || AR_SREV_9462(ah) || AR_SREV_9550(ah)) 215 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 216 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, 217 -3); 218 else 219 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 220 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, 221 -6); 222 val = AR_SREV_9462(ah) ? -10 : -15; 223 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 224 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE, 225 val); 226 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 227 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1); 228 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, 229 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0); 230 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, 231 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400); 232 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, 233 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES, 234 100); 235 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0, 236 AR_PHY_PAPRD_PRE_POST_SCALING, 261376); 237 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0, 238 AR_PHY_PAPRD_PRE_POST_SCALING, 248079); 239 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0, 240 AR_PHY_PAPRD_PRE_POST_SCALING, 233759); 241 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0, 242 AR_PHY_PAPRD_PRE_POST_SCALING, 220464); 243 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0, 244 AR_PHY_PAPRD_PRE_POST_SCALING, 208194); 245 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0, 246 AR_PHY_PAPRD_PRE_POST_SCALING, 196949); 247 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0, 248 AR_PHY_PAPRD_PRE_POST_SCALING, 185706); 249 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0, 250 AR_PHY_PAPRD_PRE_POST_SCALING, 175487); 251 return 0; 252 } 253 254 static void ar9003_paprd_get_gain_table(struct ath_hw *ah) 255 { 256 u32 *entry = ah->paprd_gain_table_entries; 257 u8 *index = ah->paprd_gain_table_index; 258 u32 reg = AR_PHY_TXGAIN_TABLE; 259 int i; 260 261 memset(entry, 0, sizeof(ah->paprd_gain_table_entries)); 262 memset(index, 0, sizeof(ah->paprd_gain_table_index)); 263 264 for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) { 265 entry[i] = REG_READ(ah, reg); 266 index[i] = (entry[i] >> 24) & 0xff; 267 reg += 4; 268 } 269 } 270 271 static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain, 272 int target_power) 273 { 274 int olpc_gain_delta = 0, cl_gain_mod; 275 int alpha_therm, alpha_volt; 276 int therm_cal_value, volt_cal_value; 277 int therm_value, volt_value; 278 int thermal_gain_corr, voltage_gain_corr; 279 int desired_scale, desired_gain = 0; 280 u32 reg_olpc = 0, reg_cl_gain = 0; 281 282 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, 283 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); 284 desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12, 285 AR_PHY_TPC_12_DESIRED_SCALE_HT40_5); 286 alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19, 287 AR_PHY_TPC_19_ALPHA_THERM); 288 alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19, 289 AR_PHY_TPC_19_ALPHA_VOLT); 290 therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18, 291 AR_PHY_TPC_18_THERM_CAL_VALUE); 292 volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18, 293 AR_PHY_TPC_18_VOLT_CAL_VALUE); 294 therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4, 295 AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE); 296 volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4, 297 AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE); 298 299 switch (chain) { 300 case 0: 301 reg_olpc = AR_PHY_TPC_11_B0; 302 reg_cl_gain = AR_PHY_CL_TAB_0; 303 break; 304 case 1: 305 reg_olpc = AR_PHY_TPC_11_B1; 306 reg_cl_gain = AR_PHY_CL_TAB_1; 307 break; 308 case 2: 309 reg_olpc = AR_PHY_TPC_11_B2; 310 reg_cl_gain = AR_PHY_CL_TAB_2; 311 break; 312 default: 313 ath_dbg(ath9k_hw_common(ah), CALIBRATE, 314 "Invalid chainmask: %d\n", chain); 315 break; 316 } 317 318 olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc, 319 AR_PHY_TPC_11_OLPC_GAIN_DELTA); 320 cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain, 321 AR_PHY_CL_TAB_CL_GAIN_MOD); 322 323 if (olpc_gain_delta >= 128) 324 olpc_gain_delta = olpc_gain_delta - 256; 325 326 thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) + 327 (256 / 2)) / 256; 328 voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) + 329 (128 / 2)) / 128; 330 desired_gain = target_power - olpc_gain_delta - thermal_gain_corr - 331 voltage_gain_corr + desired_scale + cl_gain_mod; 332 333 return desired_gain; 334 } 335 336 static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index) 337 { 338 int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain; 339 int padrvgnA, padrvgnB, padrvgnC, padrvgnD; 340 u32 *gain_table_entries = ah->paprd_gain_table_entries; 341 342 selected_gain_entry = gain_table_entries[gain_index]; 343 txbb1dbgain = selected_gain_entry & 0x7; 344 txbb6dbgain = (selected_gain_entry >> 3) & 0x3; 345 txmxrgain = (selected_gain_entry >> 5) & 0xf; 346 padrvgnA = (selected_gain_entry >> 9) & 0xf; 347 padrvgnB = (selected_gain_entry >> 13) & 0xf; 348 padrvgnC = (selected_gain_entry >> 17) & 0xf; 349 padrvgnD = (selected_gain_entry >> 21) & 0x3; 350 351 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 352 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain); 353 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 354 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain); 355 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 356 AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain); 357 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 358 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA); 359 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 360 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB); 361 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 362 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC); 363 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 364 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD); 365 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 366 AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0); 367 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 368 AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0); 369 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0); 370 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0); 371 } 372 373 static inline int find_expn(int num) 374 { 375 return fls(num) - 1; 376 } 377 378 static inline int find_proper_scale(int expn, int N) 379 { 380 return (expn > N) ? expn - 10 : 0; 381 } 382 383 #define NUM_BIN 23 384 385 static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain) 386 { 387 unsigned int thresh_accum_cnt; 388 int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1]; 389 int PA_in[NUM_BIN + 1]; 390 int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1]; 391 unsigned int B1_abs_max, B2_abs_max; 392 int max_index, scale_factor; 393 int y_est[NUM_BIN + 1]; 394 int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1]; 395 unsigned int x_tilde_abs; 396 int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad; 397 int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B; 398 int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2; 399 int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem; 400 int y5, y3, tmp; 401 int theta_low_bin = 0; 402 int i; 403 404 /* disregard any bin that contains <= 16 samples */ 405 thresh_accum_cnt = 16; 406 scale_factor = 5; 407 max_index = 0; 408 memset(theta, 0, sizeof(theta)); 409 memset(x_est, 0, sizeof(x_est)); 410 memset(Y, 0, sizeof(Y)); 411 memset(y_est, 0, sizeof(y_est)); 412 memset(x_tilde, 0, sizeof(x_tilde)); 413 414 for (i = 0; i < NUM_BIN; i++) { 415 s32 accum_cnt, accum_tx, accum_rx, accum_ang; 416 417 /* number of samples */ 418 accum_cnt = data_L[i] & 0xffff; 419 420 if (accum_cnt <= thresh_accum_cnt) 421 continue; 422 423 /* sum(tx amplitude) */ 424 accum_tx = ((data_L[i] >> 16) & 0xffff) | 425 ((data_U[i] & 0x7ff) << 16); 426 427 /* sum(rx amplitude distance to lower bin edge) */ 428 accum_rx = ((data_U[i] >> 11) & 0x1f) | 429 ((data_L[i + 23] & 0xffff) << 5); 430 431 /* sum(angles) */ 432 accum_ang = ((data_L[i + 23] >> 16) & 0xffff) | 433 ((data_U[i + 23] & 0x7ff) << 16); 434 435 accum_tx <<= scale_factor; 436 accum_rx <<= scale_factor; 437 x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >> 438 scale_factor; 439 440 Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >> 441 scale_factor) + 442 (1 << scale_factor) * max_index + 16; 443 444 if (accum_ang >= (1 << 26)) 445 accum_ang -= 1 << 27; 446 447 theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) / 448 accum_cnt; 449 450 max_index++; 451 } 452 453 /* 454 * Find average theta of first 5 bin and all of those to same value. 455 * Curve is linear at that range. 456 */ 457 for (i = 1; i < 6; i++) 458 theta_low_bin += theta[i]; 459 460 theta_low_bin = theta_low_bin / 5; 461 for (i = 1; i < 6; i++) 462 theta[i] = theta_low_bin; 463 464 /* Set values at origin */ 465 theta[0] = theta_low_bin; 466 for (i = 0; i <= max_index; i++) 467 theta[i] -= theta_low_bin; 468 469 x_est[0] = 0; 470 Y[0] = 0; 471 scale_factor = 8; 472 473 /* low signal gain */ 474 if (x_est[6] == x_est[3]) 475 return false; 476 477 G_fxp = 478 (((Y[6] - Y[3]) * 1 << scale_factor) + 479 (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]); 480 481 /* prevent division by zero */ 482 if (G_fxp == 0) 483 return false; 484 485 Y_intercept = 486 (G_fxp * (x_est[0] - x_est[3]) + 487 (1 << scale_factor)) / (1 << scale_factor) + Y[3]; 488 489 for (i = 0; i <= max_index; i++) 490 y_est[i] = Y[i] - Y_intercept; 491 492 for (i = 0; i <= 3; i++) { 493 y_est[i] = i * 32; 494 x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp; 495 } 496 497 if (y_est[max_index] == 0) 498 return false; 499 500 x_est_fxp1_nonlin = 501 x_est[max_index] - ((1 << scale_factor) * y_est[max_index] + 502 G_fxp) / G_fxp; 503 504 order_x_by_y = 505 (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index]; 506 507 if (order_x_by_y == 0) 508 M = 10; 509 else if (order_x_by_y == 1) 510 M = 9; 511 else 512 M = 8; 513 514 I = (max_index > 15) ? 7 : max_index >> 1; 515 L = max_index - I; 516 scale_factor = 8; 517 sum_y_sqr = 0; 518 sum_y_quad = 0; 519 x_tilde_abs = 0; 520 521 for (i = 0; i <= L; i++) { 522 unsigned int y_sqr; 523 unsigned int y_quad; 524 unsigned int tmp_abs; 525 526 /* prevent division by zero */ 527 if (y_est[i + I] == 0) 528 return false; 529 530 x_est_fxp1_nonlin = 531 x_est[i + I] - ((1 << scale_factor) * y_est[i + I] + 532 G_fxp) / G_fxp; 533 534 x_tilde[i] = 535 (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i + 536 I]; 537 x_tilde[i] = 538 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I]; 539 x_tilde[i] = 540 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I]; 541 y_sqr = 542 (y_est[i + I] * y_est[i + I] + 543 (scale_factor * scale_factor)) / (scale_factor * 544 scale_factor); 545 tmp_abs = abs(x_tilde[i]); 546 if (tmp_abs > x_tilde_abs) 547 x_tilde_abs = tmp_abs; 548 549 y_quad = y_sqr * y_sqr; 550 sum_y_sqr = sum_y_sqr + y_sqr; 551 sum_y_quad = sum_y_quad + y_quad; 552 B1_tmp[i] = y_sqr * (L + 1); 553 B2_tmp[i] = y_sqr; 554 } 555 556 B1_abs_max = 0; 557 B2_abs_max = 0; 558 for (i = 0; i <= L; i++) { 559 int abs_val; 560 561 B1_tmp[i] -= sum_y_sqr; 562 B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i]; 563 564 abs_val = abs(B1_tmp[i]); 565 if (abs_val > B1_abs_max) 566 B1_abs_max = abs_val; 567 568 abs_val = abs(B2_tmp[i]); 569 if (abs_val > B2_abs_max) 570 B2_abs_max = abs_val; 571 } 572 573 Q_x = find_proper_scale(find_expn(x_tilde_abs), 10); 574 Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10); 575 Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10); 576 577 beta_raw = 0; 578 alpha_raw = 0; 579 for (i = 0; i <= L; i++) { 580 x_tilde[i] = x_tilde[i] / (1 << Q_x); 581 B1_tmp[i] = B1_tmp[i] / (1 << Q_B1); 582 B2_tmp[i] = B2_tmp[i] / (1 << Q_B2); 583 beta_raw = beta_raw + B1_tmp[i] * x_tilde[i]; 584 alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i]; 585 } 586 587 scale_B = 588 ((sum_y_quad / scale_factor) * (L + 1) - 589 (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor; 590 591 Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10); 592 scale_B = scale_B / (1 << Q_scale_B); 593 if (scale_B == 0) 594 return false; 595 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10); 596 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10); 597 beta_raw = beta_raw / (1 << Q_beta); 598 alpha_raw = alpha_raw / (1 << Q_alpha); 599 alpha = (alpha_raw << 10) / scale_B; 600 beta = (beta_raw << 10) / scale_B; 601 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B; 602 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B; 603 order1_5x = order_1 / 5; 604 order2_3x = order_2 / 3; 605 order1_5x_rem = order_1 - 5 * order1_5x; 606 order2_3x_rem = order_2 - 3 * order2_3x; 607 608 for (i = 0; i < PAPRD_TABLE_SZ; i++) { 609 tmp = i * 32; 610 y5 = ((beta * tmp) >> 6) >> order1_5x; 611 y5 = (y5 * tmp) >> order1_5x; 612 y5 = (y5 * tmp) >> order1_5x; 613 y5 = (y5 * tmp) >> order1_5x; 614 y5 = (y5 * tmp) >> order1_5x; 615 y5 = y5 >> order1_5x_rem; 616 y3 = (alpha * tmp) >> order2_3x; 617 y3 = (y3 * tmp) >> order2_3x; 618 y3 = (y3 * tmp) >> order2_3x; 619 y3 = y3 >> order2_3x_rem; 620 PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp; 621 622 if (i >= 2) { 623 tmp = PA_in[i] - PA_in[i - 1]; 624 if (tmp < 0) 625 PA_in[i] = 626 PA_in[i - 1] + (PA_in[i - 1] - 627 PA_in[i - 2]); 628 } 629 630 PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400; 631 } 632 633 beta_raw = 0; 634 alpha_raw = 0; 635 636 for (i = 0; i <= L; i++) { 637 int theta_tilde = 638 ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I]; 639 theta_tilde = 640 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I]; 641 theta_tilde = 642 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I]; 643 beta_raw = beta_raw + B1_tmp[i] * theta_tilde; 644 alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde; 645 } 646 647 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10); 648 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10); 649 beta_raw = beta_raw / (1 << Q_beta); 650 alpha_raw = alpha_raw / (1 << Q_alpha); 651 652 alpha = (alpha_raw << 10) / scale_B; 653 beta = (beta_raw << 10) / scale_B; 654 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5; 655 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5; 656 order1_5x = order_1 / 5; 657 order2_3x = order_2 / 3; 658 order1_5x_rem = order_1 - 5 * order1_5x; 659 order2_3x_rem = order_2 - 3 * order2_3x; 660 661 for (i = 0; i < PAPRD_TABLE_SZ; i++) { 662 int PA_angle; 663 664 /* pa_table[4] is calculated from PA_angle for i=5 */ 665 if (i == 4) 666 continue; 667 668 tmp = i * 32; 669 if (beta > 0) 670 y5 = (((beta * tmp - 64) >> 6) - 671 (1 << order1_5x)) / (1 << order1_5x); 672 else 673 y5 = ((((beta * tmp - 64) >> 6) + 674 (1 << order1_5x)) / (1 << order1_5x)); 675 676 y5 = (y5 * tmp) / (1 << order1_5x); 677 y5 = (y5 * tmp) / (1 << order1_5x); 678 y5 = (y5 * tmp) / (1 << order1_5x); 679 y5 = (y5 * tmp) / (1 << order1_5x); 680 y5 = y5 / (1 << order1_5x_rem); 681 682 if (beta > 0) 683 y3 = (alpha * tmp - 684 (1 << order2_3x)) / (1 << order2_3x); 685 else 686 y3 = (alpha * tmp + 687 (1 << order2_3x)) / (1 << order2_3x); 688 y3 = (y3 * tmp) / (1 << order2_3x); 689 y3 = (y3 * tmp) / (1 << order2_3x); 690 y3 = y3 / (1 << order2_3x_rem); 691 692 if (i < 4) { 693 PA_angle = 0; 694 } else { 695 PA_angle = y5 + y3; 696 if (PA_angle < -150) 697 PA_angle = -150; 698 else if (PA_angle > 150) 699 PA_angle = 150; 700 } 701 702 pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff); 703 if (i == 5) { 704 PA_angle = (PA_angle + 2) >> 1; 705 pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) + 706 (PA_angle & 0x7ff); 707 } 708 } 709 710 *gain = G_fxp; 711 return true; 712 } 713 714 void ar9003_paprd_populate_single_table(struct ath_hw *ah, 715 struct ath9k_hw_cal_data *caldata, 716 int chain) 717 { 718 u32 *paprd_table_val = caldata->pa_table[chain]; 719 u32 small_signal_gain = caldata->small_signal_gain[chain]; 720 u32 training_power = ah->paprd_training_power; 721 u32 reg = 0; 722 int i; 723 724 if (chain == 0) 725 reg = AR_PHY_PAPRD_MEM_TAB_B0; 726 else if (chain == 1) 727 reg = AR_PHY_PAPRD_MEM_TAB_B1; 728 else if (chain == 2) 729 reg = AR_PHY_PAPRD_MEM_TAB_B2; 730 731 for (i = 0; i < PAPRD_TABLE_SZ; i++) { 732 REG_WRITE(ah, reg, paprd_table_val[i]); 733 reg = reg + 4; 734 } 735 736 if (chain == 0) 737 reg = AR_PHY_PA_GAIN123_B0; 738 else if (chain == 1) 739 reg = AR_PHY_PA_GAIN123_B1; 740 else 741 reg = AR_PHY_PA_GAIN123_B2; 742 743 REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain); 744 745 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0, 746 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, 747 training_power); 748 749 if (ah->caps.tx_chainmask & BIT(1)) 750 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1, 751 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, 752 training_power); 753 754 if (ah->caps.tx_chainmask & BIT(2)) 755 /* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */ 756 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2, 757 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, 758 training_power); 759 } 760 EXPORT_SYMBOL(ar9003_paprd_populate_single_table); 761 762 int ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain) 763 { 764 unsigned int i, desired_gain, gain_index; 765 unsigned int train_power = ah->paprd_training_power; 766 767 desired_gain = ar9003_get_desired_gain(ah, chain, train_power); 768 769 gain_index = 0; 770 for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) { 771 if (ah->paprd_gain_table_index[i] >= desired_gain) 772 break; 773 gain_index++; 774 } 775 776 ar9003_tx_force_gain(ah, gain_index); 777 778 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, 779 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); 780 781 return 0; 782 } 783 EXPORT_SYMBOL(ar9003_paprd_setup_gain_table); 784 785 int ar9003_paprd_create_curve(struct ath_hw *ah, 786 struct ath9k_hw_cal_data *caldata, int chain) 787 { 788 u16 *small_signal_gain = &caldata->small_signal_gain[chain]; 789 u32 *pa_table = caldata->pa_table[chain]; 790 u32 *data_L, *data_U; 791 int i, status = 0; 792 u32 *buf; 793 u32 reg; 794 795 memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain])); 796 797 buf = kmalloc(2 * 48 * sizeof(u32), GFP_ATOMIC); 798 if (!buf) 799 return -ENOMEM; 800 801 data_L = &buf[0]; 802 data_U = &buf[48]; 803 804 REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY, 805 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ); 806 807 reg = AR_PHY_CHAN_INFO_TAB_0; 808 for (i = 0; i < 48; i++) 809 data_L[i] = REG_READ(ah, reg + (i << 2)); 810 811 REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY, 812 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ); 813 814 for (i = 0; i < 48; i++) 815 data_U[i] = REG_READ(ah, reg + (i << 2)); 816 817 if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain)) 818 status = -2; 819 820 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, 821 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); 822 823 kfree(buf); 824 825 return status; 826 } 827 EXPORT_SYMBOL(ar9003_paprd_create_curve); 828 829 int ar9003_paprd_init_table(struct ath_hw *ah) 830 { 831 int ret; 832 833 ret = ar9003_paprd_setup_single_table(ah); 834 if (ret < 0) 835 return ret; 836 837 ar9003_paprd_get_gain_table(ah); 838 return 0; 839 } 840 EXPORT_SYMBOL(ar9003_paprd_init_table); 841 842 bool ar9003_paprd_is_done(struct ath_hw *ah) 843 { 844 int paprd_done, agc2_pwr; 845 paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1, 846 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); 847 848 if (paprd_done == 0x1) { 849 agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1, 850 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR); 851 852 ath_dbg(ath9k_hw_common(ah), CALIBRATE, 853 "AGC2_PWR = 0x%x training done = 0x%x\n", 854 agc2_pwr, paprd_done); 855 /* 856 * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE' 857 * when the training is completely done, otherwise retraining is 858 * done to make sure the value is in ideal range 859 */ 860 if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE) 861 paprd_done = 0; 862 } 863 864 return !!paprd_done; 865 } 866 EXPORT_SYMBOL(ar9003_paprd_is_done); 867