1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/export.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20 
21 void ar9003_paprd_enable(struct ath_hw *ah, bool val)
22 {
23 	struct ath9k_channel *chan = ah->curchan;
24 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
25 
26 	/*
27 	 * 3 bits for modalHeader5G.papdRateMaskHt20
28 	 * is used for sub-band disabling of PAPRD.
29 	 * 5G band is divided into 3 sub-bands -- upper,
30 	 * middle, lower.
31 	 * if bit 30 of modalHeader5G.papdRateMaskHt20 is set
32 	 * -- disable PAPRD for upper band 5GHz
33 	 * if bit 29 of modalHeader5G.papdRateMaskHt20 is set
34 	 * -- disable PAPRD for middle band 5GHz
35 	 * if bit 28 of modalHeader5G.papdRateMaskHt20 is set
36 	 * -- disable PAPRD for lower band 5GHz
37 	 */
38 
39 	if (IS_CHAN_5GHZ(chan)) {
40 		if (chan->channel >= UPPER_5G_SUB_BAND_START) {
41 			if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
42 								  & BIT(30))
43 				val = false;
44 		} else if (chan->channel >= MID_5G_SUB_BAND_START) {
45 			if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
46 								  & BIT(29))
47 				val = false;
48 		} else {
49 			if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
50 								  & BIT(28))
51 				val = false;
52 		}
53 	}
54 
55 	if (val) {
56 		ah->paprd_table_write_done = true;
57 		ath9k_hw_apply_txpower(ah, chan, false);
58 	}
59 
60 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
61 		      AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
62 	if (ah->caps.tx_chainmask & BIT(1))
63 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
64 			      AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
65 	if (ah->caps.tx_chainmask & BIT(2))
66 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
67 			      AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
68 }
69 EXPORT_SYMBOL(ar9003_paprd_enable);
70 
71 static int ar9003_get_training_power_2g(struct ath_hw *ah)
72 {
73 	struct ath9k_channel *chan = ah->curchan;
74 	unsigned int power, scale, delta;
75 
76 	scale = ar9003_get_paprd_scale_factor(ah, chan);
77 
78 	if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
79 	    AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
80 		power = ah->paprd_target_power + 2;
81 	} else if (AR_SREV_9485(ah)) {
82 		power = 25;
83 	} else {
84 		power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
85 				       AR_PHY_POWERTX_RATE5_POWERTXHT20_0);
86 
87 		delta = abs((int) ah->paprd_target_power - (int) power);
88 		if (delta > scale)
89 			return -1;
90 
91 		if (delta < 4)
92 			power -= 4 - delta;
93 	}
94 
95 	return power;
96 }
97 
98 static int ar9003_get_training_power_5g(struct ath_hw *ah)
99 {
100 	struct ath_common *common = ath9k_hw_common(ah);
101 	struct ath9k_channel *chan = ah->curchan;
102 	unsigned int power, scale, delta;
103 
104 	scale = ar9003_get_paprd_scale_factor(ah, chan);
105 
106 	if (IS_CHAN_HT40(chan))
107 		power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
108 			AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
109 	else
110 		power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
111 			AR_PHY_POWERTX_RATE6_POWERTXHT20_5);
112 
113 	power += scale;
114 	delta = abs((int) ah->paprd_target_power - (int) power);
115 	if (delta > scale)
116 		return -1;
117 
118 	switch (get_streams(ah->txchainmask)) {
119 	case 1:
120 		delta = 6;
121 		break;
122 	case 2:
123 		delta = 4;
124 		break;
125 	case 3:
126 		delta = 2;
127 		break;
128 	default:
129 		delta = 0;
130 		ath_dbg(common, CALIBRATE, "Invalid tx-chainmask: %u\n",
131 			ah->txchainmask);
132 	}
133 
134 	power += delta;
135 	return power;
136 }
137 
138 static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
139 {
140 	struct ath_common *common = ath9k_hw_common(ah);
141 	static const u32 ctrl0[3] = {
142 		AR_PHY_PAPRD_CTRL0_B0,
143 		AR_PHY_PAPRD_CTRL0_B1,
144 		AR_PHY_PAPRD_CTRL0_B2
145 	};
146 	static const u32 ctrl1[3] = {
147 		AR_PHY_PAPRD_CTRL1_B0,
148 		AR_PHY_PAPRD_CTRL1_B1,
149 		AR_PHY_PAPRD_CTRL1_B2
150 	};
151 	int training_power;
152 	int i, val;
153 	u32 am2pm_mask = ah->paprd_ratemask;
154 
155 	if (IS_CHAN_2GHZ(ah->curchan))
156 		training_power = ar9003_get_training_power_2g(ah);
157 	else
158 		training_power = ar9003_get_training_power_5g(ah);
159 
160 	ath_dbg(common, CALIBRATE, "Training power: %d, Target power: %d\n",
161 		training_power, ah->paprd_target_power);
162 
163 	if (training_power < 0) {
164 		ath_dbg(common, CALIBRATE,
165 			"PAPRD target power delta out of range\n");
166 		return -ERANGE;
167 	}
168 	ah->paprd_training_power = training_power;
169 
170 	if (AR_SREV_9330(ah))
171 		am2pm_mask = 0;
172 
173 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
174 		      ah->paprd_ratemask);
175 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
176 		      am2pm_mask);
177 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
178 		      ah->paprd_ratemask_ht40);
179 
180 	ath_dbg(common, CALIBRATE, "PAPRD HT20 mask: 0x%x, HT40 mask: 0x%x\n",
181 		ah->paprd_ratemask, ah->paprd_ratemask_ht40);
182 
183 	for (i = 0; i < ah->caps.max_txchains; i++) {
184 		REG_RMW_FIELD(ah, ctrl0[i],
185 			      AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
186 		REG_RMW_FIELD(ah, ctrl1[i],
187 			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
188 		REG_RMW_FIELD(ah, ctrl1[i],
189 			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
190 		REG_RMW_FIELD(ah, ctrl1[i],
191 			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
192 		REG_RMW_FIELD(ah, ctrl1[i],
193 			      AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
194 		REG_RMW_FIELD(ah, ctrl1[i],
195 			      AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
196 		REG_RMW_FIELD(ah, ctrl1[i],
197 			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
198 		REG_RMW_FIELD(ah, ctrl0[i],
199 			      AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
200 	}
201 
202 	ar9003_paprd_enable(ah, false);
203 
204 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
205 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
206 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
207 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
208 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
209 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
210 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
211 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
212 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
213 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
214 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
215 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
216 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
217 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
218 
219 	if (AR_SREV_9485(ah)) {
220 		val = 148;
221 	} else {
222 		if (IS_CHAN_2GHZ(ah->curchan)) {
223 			if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
224 				val = 145;
225 			else
226 				val = 147;
227 		} else {
228 			val = 137;
229 		}
230 	}
231 
232 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2,
233 		      AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val);
234 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
235 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
236 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
237 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
238 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
239 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
240 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
241 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
242 
243 	if (AR_SREV_9485(ah) ||
244 	    AR_SREV_9462(ah) ||
245 	    AR_SREV_9565(ah) ||
246 	    AR_SREV_9550(ah) ||
247 	    AR_SREV_9330(ah) ||
248 	    AR_SREV_9340(ah))
249 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
250 			      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, -3);
251 	else
252 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
253 			      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, -6);
254 
255 	val = -10;
256 
257 	if (IS_CHAN_2GHZ(ah->curchan) && !AR_SREV_9462(ah) && !AR_SREV_9565(ah))
258 		val = -15;
259 
260 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
261 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
262 		      val);
263 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
264 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
265 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
266 		      AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
267 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
268 		      AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
269 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
270 		      AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
271 		      100);
272 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
273 		      AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
274 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
275 		      AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
276 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
277 		      AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
278 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
279 		      AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
280 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
281 		      AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
282 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
283 		      AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
284 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
285 		      AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
286 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
287 		      AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
288 	return 0;
289 }
290 
291 static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
292 {
293 	u32 *entry = ah->paprd_gain_table_entries;
294 	u8 *index = ah->paprd_gain_table_index;
295 	u32 reg = AR_PHY_TXGAIN_TABLE;
296 	int i;
297 
298 	for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
299 		entry[i] = REG_READ(ah, reg);
300 		index[i] = (entry[i] >> 24) & 0xff;
301 		reg += 4;
302 	}
303 }
304 
305 static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
306 					    int target_power)
307 {
308 	int olpc_gain_delta = 0, cl_gain_mod;
309 	int alpha_therm, alpha_volt;
310 	int therm_cal_value, volt_cal_value;
311 	int therm_value, volt_value;
312 	int thermal_gain_corr, voltage_gain_corr;
313 	int desired_scale, desired_gain = 0;
314 	u32 reg_olpc  = 0, reg_cl_gain  = 0;
315 
316 	REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
317 		    AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
318 	desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
319 				       AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
320 	alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
321 				     AR_PHY_TPC_19_ALPHA_THERM);
322 	alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
323 				    AR_PHY_TPC_19_ALPHA_VOLT);
324 	therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
325 					 AR_PHY_TPC_18_THERM_CAL_VALUE);
326 	volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
327 					AR_PHY_TPC_18_VOLT_CAL_VALUE);
328 	therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
329 				     AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
330 	volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
331 				    AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);
332 
333 	switch (chain) {
334 	case 0:
335 		reg_olpc = AR_PHY_TPC_11_B0;
336 		reg_cl_gain = AR_PHY_CL_TAB_0;
337 		break;
338 	case 1:
339 		reg_olpc = AR_PHY_TPC_11_B1;
340 		reg_cl_gain = AR_PHY_CL_TAB_1;
341 		break;
342 	case 2:
343 		reg_olpc = AR_PHY_TPC_11_B2;
344 		reg_cl_gain = AR_PHY_CL_TAB_2;
345 		break;
346 	default:
347 		ath_dbg(ath9k_hw_common(ah), CALIBRATE,
348 			"Invalid chainmask: %d\n", chain);
349 		break;
350 	}
351 
352 	olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc,
353 					 AR_PHY_TPC_11_OLPC_GAIN_DELTA);
354 	cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain,
355 					 AR_PHY_CL_TAB_CL_GAIN_MOD);
356 
357 	if (olpc_gain_delta >= 128)
358 		olpc_gain_delta = olpc_gain_delta - 256;
359 
360 	thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
361 			     (256 / 2)) / 256;
362 	voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
363 			     (128 / 2)) / 128;
364 	desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
365 	    voltage_gain_corr + desired_scale + cl_gain_mod;
366 
367 	return desired_gain;
368 }
369 
370 static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
371 {
372 	int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
373 	int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
374 	u32 *gain_table_entries = ah->paprd_gain_table_entries;
375 
376 	selected_gain_entry = gain_table_entries[gain_index];
377 	txbb1dbgain = selected_gain_entry & 0x7;
378 	txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
379 	txmxrgain = (selected_gain_entry >> 5) & 0xf;
380 	padrvgnA = (selected_gain_entry >> 9) & 0xf;
381 	padrvgnB = (selected_gain_entry >> 13) & 0xf;
382 	padrvgnC = (selected_gain_entry >> 17) & 0xf;
383 	padrvgnD = (selected_gain_entry >> 21) & 0x3;
384 
385 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
386 		      AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
387 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
388 		      AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
389 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
390 		      AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
391 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
392 		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
393 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
394 		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
395 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
396 		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
397 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
398 		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
399 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
400 		      AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
401 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
402 		      AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
403 	REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
404 	REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
405 }
406 
407 static inline int find_expn(int num)
408 {
409 	return fls(num) - 1;
410 }
411 
412 static inline int find_proper_scale(int expn, int N)
413 {
414 	return (expn > N) ? expn - 10 : 0;
415 }
416 
417 #define NUM_BIN 23
418 
419 static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
420 {
421 	unsigned int thresh_accum_cnt;
422 	int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
423 	int PA_in[NUM_BIN + 1];
424 	int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
425 	unsigned int B1_abs_max, B2_abs_max;
426 	int max_index, scale_factor;
427 	int y_est[NUM_BIN + 1];
428 	int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
429 	unsigned int x_tilde_abs;
430 	int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
431 	int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
432 	int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
433 	int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
434 	int y5, y3, tmp;
435 	int theta_low_bin = 0;
436 	int i;
437 
438 	/* disregard any bin that contains <= 16 samples */
439 	thresh_accum_cnt = 16;
440 	scale_factor = 5;
441 	max_index = 0;
442 	memset(theta, 0, sizeof(theta));
443 	memset(x_est, 0, sizeof(x_est));
444 	memset(Y, 0, sizeof(Y));
445 	memset(y_est, 0, sizeof(y_est));
446 	memset(x_tilde, 0, sizeof(x_tilde));
447 
448 	for (i = 0; i < NUM_BIN; i++) {
449 		s32 accum_cnt, accum_tx, accum_rx, accum_ang;
450 
451 		/* number of samples */
452 		accum_cnt = data_L[i] & 0xffff;
453 
454 		if (accum_cnt <= thresh_accum_cnt)
455 			continue;
456 
457 		max_index++;
458 
459 		/* sum(tx amplitude) */
460 		accum_tx = ((data_L[i] >> 16) & 0xffff) |
461 		    ((data_U[i] & 0x7ff) << 16);
462 
463 		/* sum(rx amplitude distance to lower bin edge) */
464 		accum_rx = ((data_U[i] >> 11) & 0x1f) |
465 		    ((data_L[i + 23] & 0xffff) << 5);
466 
467 		/* sum(angles) */
468 		accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
469 		    ((data_U[i + 23] & 0x7ff) << 16);
470 
471 		accum_tx <<= scale_factor;
472 		accum_rx <<= scale_factor;
473 		x_est[max_index] =
474 			(((accum_tx + accum_cnt) / accum_cnt) + 32) >>
475 			scale_factor;
476 
477 		Y[max_index] =
478 			((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
479 			    scale_factor) +
480 			(1 << scale_factor) * i + 16;
481 
482 		if (accum_ang >= (1 << 26))
483 			accum_ang -= 1 << 27;
484 
485 		theta[max_index] =
486 			((accum_ang * (1 << scale_factor)) + accum_cnt) /
487 			accum_cnt;
488 	}
489 
490 	/*
491 	 * Find average theta of first 5 bin and all of those to same value.
492 	 * Curve is linear at that range.
493 	 */
494 	for (i = 1; i < 6; i++)
495 		theta_low_bin += theta[i];
496 
497 	theta_low_bin = theta_low_bin / 5;
498 	for (i = 1; i < 6; i++)
499 		theta[i] = theta_low_bin;
500 
501 	/* Set values at origin */
502 	theta[0] = theta_low_bin;
503 	for (i = 0; i <= max_index; i++)
504 		theta[i] -= theta_low_bin;
505 
506 	x_est[0] = 0;
507 	Y[0] = 0;
508 	scale_factor = 8;
509 
510 	/* low signal gain */
511 	if (x_est[6] == x_est[3])
512 		return false;
513 
514 	G_fxp =
515 	    (((Y[6] - Y[3]) * 1 << scale_factor) +
516 	     (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);
517 
518 	/* prevent division by zero */
519 	if (G_fxp == 0)
520 		return false;
521 
522 	Y_intercept =
523 	    (G_fxp * (x_est[0] - x_est[3]) +
524 	     (1 << scale_factor)) / (1 << scale_factor) + Y[3];
525 
526 	for (i = 0; i <= max_index; i++)
527 		y_est[i] = Y[i] - Y_intercept;
528 
529 	for (i = 0; i <= 3; i++) {
530 		y_est[i] = i * 32;
531 		x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
532 	}
533 
534 	if (y_est[max_index] == 0)
535 		return false;
536 
537 	x_est_fxp1_nonlin =
538 	    x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
539 				G_fxp) / G_fxp;
540 
541 	order_x_by_y =
542 	    (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];
543 
544 	if (order_x_by_y == 0)
545 		M = 10;
546 	else if (order_x_by_y == 1)
547 		M = 9;
548 	else
549 		M = 8;
550 
551 	I = (max_index > 15) ? 7 : max_index >> 1;
552 	L = max_index - I;
553 	scale_factor = 8;
554 	sum_y_sqr = 0;
555 	sum_y_quad = 0;
556 	x_tilde_abs = 0;
557 
558 	for (i = 0; i <= L; i++) {
559 		unsigned int y_sqr;
560 		unsigned int y_quad;
561 		unsigned int tmp_abs;
562 
563 		/* prevent division by zero */
564 		if (y_est[i + I] == 0)
565 			return false;
566 
567 		x_est_fxp1_nonlin =
568 		    x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
569 				    G_fxp) / G_fxp;
570 
571 		x_tilde[i] =
572 		    (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
573 									  I];
574 		x_tilde[i] =
575 		    (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
576 		x_tilde[i] =
577 		    (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
578 		y_sqr =
579 		    (y_est[i + I] * y_est[i + I] +
580 		     (scale_factor * scale_factor)) / (scale_factor *
581 						       scale_factor);
582 		tmp_abs = abs(x_tilde[i]);
583 		if (tmp_abs > x_tilde_abs)
584 			x_tilde_abs = tmp_abs;
585 
586 		y_quad = y_sqr * y_sqr;
587 		sum_y_sqr = sum_y_sqr + y_sqr;
588 		sum_y_quad = sum_y_quad + y_quad;
589 		B1_tmp[i] = y_sqr * (L + 1);
590 		B2_tmp[i] = y_sqr;
591 	}
592 
593 	B1_abs_max = 0;
594 	B2_abs_max = 0;
595 	for (i = 0; i <= L; i++) {
596 		int abs_val;
597 
598 		B1_tmp[i] -= sum_y_sqr;
599 		B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];
600 
601 		abs_val = abs(B1_tmp[i]);
602 		if (abs_val > B1_abs_max)
603 			B1_abs_max = abs_val;
604 
605 		abs_val = abs(B2_tmp[i]);
606 		if (abs_val > B2_abs_max)
607 			B2_abs_max = abs_val;
608 	}
609 
610 	Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
611 	Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
612 	Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);
613 
614 	beta_raw = 0;
615 	alpha_raw = 0;
616 	for (i = 0; i <= L; i++) {
617 		x_tilde[i] = x_tilde[i] / (1 << Q_x);
618 		B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
619 		B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
620 		beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
621 		alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
622 	}
623 
624 	scale_B =
625 	    ((sum_y_quad / scale_factor) * (L + 1) -
626 	     (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;
627 
628 	Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
629 	scale_B = scale_B / (1 << Q_scale_B);
630 	if (scale_B == 0)
631 		return false;
632 	Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
633 	Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
634 	beta_raw = beta_raw / (1 << Q_beta);
635 	alpha_raw = alpha_raw / (1 << Q_alpha);
636 	alpha = (alpha_raw << 10) / scale_B;
637 	beta = (beta_raw << 10) / scale_B;
638 	order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
639 	order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
640 	order1_5x = order_1 / 5;
641 	order2_3x = order_2 / 3;
642 	order1_5x_rem = order_1 - 5 * order1_5x;
643 	order2_3x_rem = order_2 - 3 * order2_3x;
644 
645 	for (i = 0; i < PAPRD_TABLE_SZ; i++) {
646 		tmp = i * 32;
647 		y5 = ((beta * tmp) >> 6) >> order1_5x;
648 		y5 = (y5 * tmp) >> order1_5x;
649 		y5 = (y5 * tmp) >> order1_5x;
650 		y5 = (y5 * tmp) >> order1_5x;
651 		y5 = (y5 * tmp) >> order1_5x;
652 		y5 = y5 >> order1_5x_rem;
653 		y3 = (alpha * tmp) >> order2_3x;
654 		y3 = (y3 * tmp) >> order2_3x;
655 		y3 = (y3 * tmp) >> order2_3x;
656 		y3 = y3 >> order2_3x_rem;
657 		PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;
658 
659 		if (i >= 2) {
660 			tmp = PA_in[i] - PA_in[i - 1];
661 			if (tmp < 0)
662 				PA_in[i] =
663 				    PA_in[i - 1] + (PA_in[i - 1] -
664 						    PA_in[i - 2]);
665 		}
666 
667 		PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
668 	}
669 
670 	beta_raw = 0;
671 	alpha_raw = 0;
672 
673 	for (i = 0; i <= L; i++) {
674 		int theta_tilde =
675 		    ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
676 		theta_tilde =
677 		    ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
678 		theta_tilde =
679 		    ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
680 		beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
681 		alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
682 	}
683 
684 	Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
685 	Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
686 	beta_raw = beta_raw / (1 << Q_beta);
687 	alpha_raw = alpha_raw / (1 << Q_alpha);
688 
689 	alpha = (alpha_raw << 10) / scale_B;
690 	beta = (beta_raw << 10) / scale_B;
691 	order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
692 	order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
693 	order1_5x = order_1 / 5;
694 	order2_3x = order_2 / 3;
695 	order1_5x_rem = order_1 - 5 * order1_5x;
696 	order2_3x_rem = order_2 - 3 * order2_3x;
697 
698 	for (i = 0; i < PAPRD_TABLE_SZ; i++) {
699 		int PA_angle;
700 
701 		/* pa_table[4] is calculated from PA_angle for i=5 */
702 		if (i == 4)
703 			continue;
704 
705 		tmp = i * 32;
706 		if (beta > 0)
707 			y5 = (((beta * tmp - 64) >> 6) -
708 			      (1 << order1_5x)) / (1 << order1_5x);
709 		else
710 			y5 = ((((beta * tmp - 64) >> 6) +
711 			       (1 << order1_5x)) / (1 << order1_5x));
712 
713 		y5 = (y5 * tmp) / (1 << order1_5x);
714 		y5 = (y5 * tmp) / (1 << order1_5x);
715 		y5 = (y5 * tmp) / (1 << order1_5x);
716 		y5 = (y5 * tmp) / (1 << order1_5x);
717 		y5 = y5 / (1 << order1_5x_rem);
718 
719 		if (beta > 0)
720 			y3 = (alpha * tmp -
721 			      (1 << order2_3x)) / (1 << order2_3x);
722 		else
723 			y3 = (alpha * tmp +
724 			      (1 << order2_3x)) / (1 << order2_3x);
725 		y3 = (y3 * tmp) / (1 << order2_3x);
726 		y3 = (y3 * tmp) / (1 << order2_3x);
727 		y3 = y3 / (1 << order2_3x_rem);
728 
729 		if (i < 4) {
730 			PA_angle = 0;
731 		} else {
732 			PA_angle = y5 + y3;
733 			if (PA_angle < -150)
734 				PA_angle = -150;
735 			else if (PA_angle > 150)
736 				PA_angle = 150;
737 		}
738 
739 		pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
740 		if (i == 5) {
741 			PA_angle = (PA_angle + 2) >> 1;
742 			pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
743 			    (PA_angle & 0x7ff);
744 		}
745 	}
746 
747 	*gain = G_fxp;
748 	return true;
749 }
750 
751 void ar9003_paprd_populate_single_table(struct ath_hw *ah,
752 					struct ath9k_hw_cal_data *caldata,
753 					int chain)
754 {
755 	u32 *paprd_table_val = caldata->pa_table[chain];
756 	u32 small_signal_gain = caldata->small_signal_gain[chain];
757 	u32 training_power = ah->paprd_training_power;
758 	u32 reg = 0;
759 	int i;
760 
761 	if (chain == 0)
762 		reg = AR_PHY_PAPRD_MEM_TAB_B0;
763 	else if (chain == 1)
764 		reg = AR_PHY_PAPRD_MEM_TAB_B1;
765 	else if (chain == 2)
766 		reg = AR_PHY_PAPRD_MEM_TAB_B2;
767 
768 	for (i = 0; i < PAPRD_TABLE_SZ; i++) {
769 		REG_WRITE(ah, reg, paprd_table_val[i]);
770 		reg = reg + 4;
771 	}
772 
773 	if (chain == 0)
774 		reg = AR_PHY_PA_GAIN123_B0;
775 	else if (chain == 1)
776 		reg = AR_PHY_PA_GAIN123_B1;
777 	else
778 		reg = AR_PHY_PA_GAIN123_B2;
779 
780 	REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);
781 
782 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
783 		      AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
784 		      training_power);
785 
786 	if (ah->caps.tx_chainmask & BIT(1))
787 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
788 			      AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
789 			      training_power);
790 
791 	if (ah->caps.tx_chainmask & BIT(2))
792 		/* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */
793 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
794 			      AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
795 			      training_power);
796 }
797 EXPORT_SYMBOL(ar9003_paprd_populate_single_table);
798 
799 void ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
800 {
801 	unsigned int i, desired_gain, gain_index;
802 	unsigned int train_power = ah->paprd_training_power;
803 
804 	desired_gain = ar9003_get_desired_gain(ah, chain, train_power);
805 
806 	gain_index = 0;
807 	for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
808 		if (ah->paprd_gain_table_index[i] >= desired_gain)
809 			break;
810 		gain_index++;
811 	}
812 
813 	ar9003_tx_force_gain(ah, gain_index);
814 
815 	REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
816 			AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
817 }
818 EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);
819 
820 static bool ar9003_paprd_retrain_pa_in(struct ath_hw *ah,
821 				       struct ath9k_hw_cal_data *caldata,
822 				       int chain)
823 {
824 	u32 *pa_in = caldata->pa_table[chain];
825 	int capdiv_offset, quick_drop_offset;
826 	int capdiv2g, quick_drop;
827 	int count = 0;
828 	int i;
829 
830 	if (!AR_SREV_9485(ah) && !AR_SREV_9330(ah))
831 		return false;
832 
833 	capdiv2g = REG_READ_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
834 				  AR_PHY_65NM_CH0_TXRF3_CAPDIV2G);
835 
836 	quick_drop = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
837 				    AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP);
838 
839 	if (quick_drop)
840 		quick_drop -= 0x40;
841 
842 	for (i = 0; i < NUM_BIN + 1; i++) {
843 		if (pa_in[i] == 1400)
844 			count++;
845 	}
846 
847 	if (AR_SREV_9485(ah)) {
848 		if (pa_in[23] < 800) {
849 			capdiv_offset = (int)((1000 - pa_in[23] + 75) / 150);
850 			capdiv2g += capdiv_offset;
851 			if (capdiv2g > 7) {
852 				capdiv2g = 7;
853 				if (pa_in[23] < 600) {
854 					quick_drop++;
855 					if (quick_drop > 0)
856 						quick_drop = 0;
857 				}
858 			}
859 		} else if (pa_in[23] == 1400) {
860 			quick_drop_offset = min_t(int, count / 3, 2);
861 			quick_drop += quick_drop_offset;
862 			capdiv2g += quick_drop_offset / 2;
863 
864 			if (capdiv2g > 7)
865 				capdiv2g = 7;
866 
867 			if (quick_drop > 0) {
868 				quick_drop = 0;
869 				capdiv2g -= quick_drop_offset;
870 				if (capdiv2g < 0)
871 					capdiv2g = 0;
872 			}
873 		} else {
874 			return false;
875 		}
876 	} else if (AR_SREV_9330(ah)) {
877 		if (pa_in[23] < 1000) {
878 			capdiv_offset = (1000 - pa_in[23]) / 100;
879 			capdiv2g += capdiv_offset;
880 			if (capdiv_offset > 3) {
881 				capdiv_offset = 1;
882 				quick_drop--;
883 			}
884 
885 			capdiv2g += capdiv_offset;
886 			if (capdiv2g > 6)
887 				capdiv2g = 6;
888 			if (quick_drop < -4)
889 				quick_drop = -4;
890 		} else if (pa_in[23] == 1400) {
891 			if (count > 3) {
892 				quick_drop++;
893 				capdiv2g -= count / 4;
894 				if (quick_drop > -2)
895 					quick_drop = -2;
896 			} else {
897 				capdiv2g--;
898 			}
899 
900 			if (capdiv2g < 0)
901 				capdiv2g = 0;
902 		} else {
903 			return false;
904 		}
905 	}
906 
907 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
908 		      AR_PHY_65NM_CH0_TXRF3_CAPDIV2G, capdiv2g);
909 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
910 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
911 		      quick_drop);
912 
913 	return true;
914 }
915 
916 int ar9003_paprd_create_curve(struct ath_hw *ah,
917 			      struct ath9k_hw_cal_data *caldata, int chain)
918 {
919 	u16 *small_signal_gain = &caldata->small_signal_gain[chain];
920 	u32 *pa_table = caldata->pa_table[chain];
921 	u32 *data_L, *data_U;
922 	int i, status = 0;
923 	u32 *buf;
924 	u32 reg;
925 
926 	memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
927 
928 	buf = kmalloc_array(2 * 48, sizeof(u32), GFP_KERNEL);
929 	if (!buf)
930 		return -ENOMEM;
931 
932 	data_L = &buf[0];
933 	data_U = &buf[48];
934 
935 	REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
936 		    AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
937 
938 	reg = AR_PHY_CHAN_INFO_TAB_0;
939 	for (i = 0; i < 48; i++)
940 		data_L[i] = REG_READ(ah, reg + (i << 2));
941 
942 	REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
943 		    AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
944 
945 	for (i = 0; i < 48; i++)
946 		data_U[i] = REG_READ(ah, reg + (i << 2));
947 
948 	if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
949 		status = -2;
950 
951 	if (ar9003_paprd_retrain_pa_in(ah, caldata, chain))
952 		status = -EINPROGRESS;
953 
954 	REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
955 		    AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
956 
957 	kfree(buf);
958 
959 	return status;
960 }
961 EXPORT_SYMBOL(ar9003_paprd_create_curve);
962 
963 int ar9003_paprd_init_table(struct ath_hw *ah)
964 {
965 	int ret;
966 
967 	ret = ar9003_paprd_setup_single_table(ah);
968 	if (ret < 0)
969 	    return ret;
970 
971 	ar9003_paprd_get_gain_table(ah);
972 	return 0;
973 }
974 EXPORT_SYMBOL(ar9003_paprd_init_table);
975 
976 bool ar9003_paprd_is_done(struct ath_hw *ah)
977 {
978 	int paprd_done, agc2_pwr;
979 
980 	paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
981 				AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
982 
983 	if (AR_SREV_9485(ah))
984 		goto exit;
985 
986 	if (paprd_done == 0x1) {
987 		agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
988 				AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR);
989 
990 		ath_dbg(ath9k_hw_common(ah), CALIBRATE,
991 			"AGC2_PWR = 0x%x training done = 0x%x\n",
992 			agc2_pwr, paprd_done);
993 	/*
994 	 * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE'
995 	 * when the training is completely done, otherwise retraining is
996 	 * done to make sure the value is in ideal range
997 	 */
998 		if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE)
999 			paprd_done = 0;
1000 	}
1001 exit:
1002 	return !!paprd_done;
1003 }
1004 EXPORT_SYMBOL(ar9003_paprd_is_done);
1005 
1006 bool ar9003_is_paprd_enabled(struct ath_hw *ah)
1007 {
1008 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_PAPRD) && ah->config.enable_paprd)
1009 		return true;
1010 
1011 	return false;
1012 }
1013 EXPORT_SYMBOL(ar9003_is_paprd_enabled);
1014