1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/export.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20 
21 void ar9003_paprd_enable(struct ath_hw *ah, bool val)
22 {
23 	struct ath9k_channel *chan = ah->curchan;
24 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
25 
26 	/*
27 	 * 3 bits for modalHeader5G.papdRateMaskHt20
28 	 * is used for sub-band disabling of PAPRD.
29 	 * 5G band is divided into 3 sub-bands -- upper,
30 	 * middle, lower.
31 	 * if bit 30 of modalHeader5G.papdRateMaskHt20 is set
32 	 * -- disable PAPRD for upper band 5GHz
33 	 * if bit 29 of modalHeader5G.papdRateMaskHt20 is set
34 	 * -- disable PAPRD for middle band 5GHz
35 	 * if bit 28 of modalHeader5G.papdRateMaskHt20 is set
36 	 * -- disable PAPRD for lower band 5GHz
37 	 */
38 
39 	if (IS_CHAN_5GHZ(chan)) {
40 		if (chan->channel >= UPPER_5G_SUB_BAND_START) {
41 			if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
42 								  & BIT(30))
43 				val = false;
44 		} else if (chan->channel >= MID_5G_SUB_BAND_START) {
45 			if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
46 								  & BIT(29))
47 				val = false;
48 		} else {
49 			if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
50 								  & BIT(28))
51 				val = false;
52 		}
53 	}
54 
55 	if (val) {
56 		ah->paprd_table_write_done = true;
57 		ath9k_hw_apply_txpower(ah, chan, false);
58 	}
59 
60 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
61 		      AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
62 	if (ah->caps.tx_chainmask & BIT(1))
63 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
64 			      AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
65 	if (ah->caps.tx_chainmask & BIT(2))
66 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
67 			      AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
68 }
69 EXPORT_SYMBOL(ar9003_paprd_enable);
70 
71 static int ar9003_get_training_power_2g(struct ath_hw *ah)
72 {
73 	struct ath9k_channel *chan = ah->curchan;
74 	unsigned int power, scale, delta;
75 
76 	scale = ar9003_get_paprd_scale_factor(ah, chan);
77 	power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
78 			       AR_PHY_POWERTX_RATE5_POWERTXHT20_0);
79 
80 	delta = abs((int) ah->paprd_target_power - (int) power);
81 	if (delta > scale)
82 		return -1;
83 
84 	if (delta < 4)
85 		power -= 4 - delta;
86 
87 	return power;
88 }
89 
90 static int ar9003_get_training_power_5g(struct ath_hw *ah)
91 {
92 	struct ath_common *common = ath9k_hw_common(ah);
93 	struct ath9k_channel *chan = ah->curchan;
94 	unsigned int power, scale, delta;
95 
96 	scale = ar9003_get_paprd_scale_factor(ah, chan);
97 
98 	if (IS_CHAN_HT40(chan))
99 		power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
100 			AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
101 	else
102 		power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
103 			AR_PHY_POWERTX_RATE6_POWERTXHT20_5);
104 
105 	power += scale;
106 	delta = abs((int) ah->paprd_target_power - (int) power);
107 	if (delta > scale)
108 		return -1;
109 
110 	switch (get_streams(ah->txchainmask)) {
111 	case 1:
112 		delta = 6;
113 		break;
114 	case 2:
115 		delta = 4;
116 		break;
117 	case 3:
118 		delta = 2;
119 		break;
120 	default:
121 		delta = 0;
122 		ath_dbg(common, CALIBRATE, "Invalid tx-chainmask: %u\n",
123 			ah->txchainmask);
124 	}
125 
126 	power += delta;
127 	return power;
128 }
129 
130 static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
131 {
132 	struct ath_common *common = ath9k_hw_common(ah);
133 	static const u32 ctrl0[3] = {
134 		AR_PHY_PAPRD_CTRL0_B0,
135 		AR_PHY_PAPRD_CTRL0_B1,
136 		AR_PHY_PAPRD_CTRL0_B2
137 	};
138 	static const u32 ctrl1[3] = {
139 		AR_PHY_PAPRD_CTRL1_B0,
140 		AR_PHY_PAPRD_CTRL1_B1,
141 		AR_PHY_PAPRD_CTRL1_B2
142 	};
143 	int training_power;
144 	int i, val;
145 	u32 am2pm_mask = ah->paprd_ratemask;
146 
147 	if (IS_CHAN_2GHZ(ah->curchan))
148 		training_power = ar9003_get_training_power_2g(ah);
149 	else
150 		training_power = ar9003_get_training_power_5g(ah);
151 
152 	ath_dbg(common, CALIBRATE, "Training power: %d, Target power: %d\n",
153 		training_power, ah->paprd_target_power);
154 
155 	if (training_power < 0) {
156 		ath_dbg(common, CALIBRATE,
157 			"PAPRD target power delta out of range\n");
158 		return -ERANGE;
159 	}
160 	ah->paprd_training_power = training_power;
161 
162 	if (AR_SREV_9330(ah))
163 		am2pm_mask = 0;
164 
165 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
166 		      ah->paprd_ratemask);
167 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
168 		      am2pm_mask);
169 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
170 		      ah->paprd_ratemask_ht40);
171 
172 	for (i = 0; i < ah->caps.max_txchains; i++) {
173 		REG_RMW_FIELD(ah, ctrl0[i],
174 			      AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
175 		REG_RMW_FIELD(ah, ctrl1[i],
176 			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
177 		REG_RMW_FIELD(ah, ctrl1[i],
178 			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
179 		REG_RMW_FIELD(ah, ctrl1[i],
180 			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
181 		REG_RMW_FIELD(ah, ctrl1[i],
182 			      AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
183 		REG_RMW_FIELD(ah, ctrl1[i],
184 			      AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
185 		REG_RMW_FIELD(ah, ctrl1[i],
186 			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
187 		REG_RMW_FIELD(ah, ctrl0[i],
188 			      AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
189 	}
190 
191 	ar9003_paprd_enable(ah, false);
192 
193 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
194 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
195 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
196 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
197 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
198 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
199 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
200 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
201 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
202 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
203 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
204 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
205 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
206 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
207 	val = AR_SREV_9462(ah) ? 0x91 : 147;
208 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2,
209 		      AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val);
210 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
211 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
212 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
213 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
214 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
215 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
216 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
217 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
218 	if (AR_SREV_9485(ah) || AR_SREV_9462(ah) || AR_SREV_9550(ah))
219 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
220 			      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
221 			      -3);
222 	else
223 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
224 			      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
225 			      -6);
226 	val = AR_SREV_9462(ah) ? -10 : -15;
227 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
228 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
229 		      val);
230 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
231 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
232 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
233 		      AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
234 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
235 		      AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
236 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
237 		      AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
238 		      100);
239 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
240 		      AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
241 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
242 		      AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
243 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
244 		      AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
245 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
246 		      AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
247 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
248 		      AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
249 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
250 		      AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
251 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
252 		      AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
253 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
254 		      AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
255 	return 0;
256 }
257 
258 static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
259 {
260 	u32 *entry = ah->paprd_gain_table_entries;
261 	u8 *index = ah->paprd_gain_table_index;
262 	u32 reg = AR_PHY_TXGAIN_TABLE;
263 	int i;
264 
265 	memset(entry, 0, sizeof(ah->paprd_gain_table_entries));
266 	memset(index, 0, sizeof(ah->paprd_gain_table_index));
267 
268 	for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
269 		entry[i] = REG_READ(ah, reg);
270 		index[i] = (entry[i] >> 24) & 0xff;
271 		reg += 4;
272 	}
273 }
274 
275 static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
276 					    int target_power)
277 {
278 	int olpc_gain_delta = 0, cl_gain_mod;
279 	int alpha_therm, alpha_volt;
280 	int therm_cal_value, volt_cal_value;
281 	int therm_value, volt_value;
282 	int thermal_gain_corr, voltage_gain_corr;
283 	int desired_scale, desired_gain = 0;
284 	u32 reg_olpc  = 0, reg_cl_gain  = 0;
285 
286 	REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
287 		    AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
288 	desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
289 				       AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
290 	alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
291 				     AR_PHY_TPC_19_ALPHA_THERM);
292 	alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
293 				    AR_PHY_TPC_19_ALPHA_VOLT);
294 	therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
295 					 AR_PHY_TPC_18_THERM_CAL_VALUE);
296 	volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
297 					AR_PHY_TPC_18_VOLT_CAL_VALUE);
298 	therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
299 				     AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
300 	volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
301 				    AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);
302 
303 	switch (chain) {
304 	case 0:
305 		reg_olpc = AR_PHY_TPC_11_B0;
306 		reg_cl_gain = AR_PHY_CL_TAB_0;
307 		break;
308 	case 1:
309 		reg_olpc = AR_PHY_TPC_11_B1;
310 		reg_cl_gain = AR_PHY_CL_TAB_1;
311 		break;
312 	case 2:
313 		reg_olpc = AR_PHY_TPC_11_B2;
314 		reg_cl_gain = AR_PHY_CL_TAB_2;
315 		break;
316 	default:
317 		ath_dbg(ath9k_hw_common(ah), CALIBRATE,
318 			"Invalid chainmask: %d\n", chain);
319 		break;
320 	}
321 
322 	olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc,
323 					 AR_PHY_TPC_11_OLPC_GAIN_DELTA);
324 	cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain,
325 					 AR_PHY_CL_TAB_CL_GAIN_MOD);
326 
327 	if (olpc_gain_delta >= 128)
328 		olpc_gain_delta = olpc_gain_delta - 256;
329 
330 	thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
331 			     (256 / 2)) / 256;
332 	voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
333 			     (128 / 2)) / 128;
334 	desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
335 	    voltage_gain_corr + desired_scale + cl_gain_mod;
336 
337 	return desired_gain;
338 }
339 
340 static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
341 {
342 	int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
343 	int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
344 	u32 *gain_table_entries = ah->paprd_gain_table_entries;
345 
346 	selected_gain_entry = gain_table_entries[gain_index];
347 	txbb1dbgain = selected_gain_entry & 0x7;
348 	txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
349 	txmxrgain = (selected_gain_entry >> 5) & 0xf;
350 	padrvgnA = (selected_gain_entry >> 9) & 0xf;
351 	padrvgnB = (selected_gain_entry >> 13) & 0xf;
352 	padrvgnC = (selected_gain_entry >> 17) & 0xf;
353 	padrvgnD = (selected_gain_entry >> 21) & 0x3;
354 
355 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
356 		      AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
357 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
358 		      AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
359 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
360 		      AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
361 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
362 		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
363 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
364 		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
365 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
366 		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
367 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
368 		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
369 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
370 		      AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
371 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
372 		      AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
373 	REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
374 	REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
375 }
376 
377 static inline int find_expn(int num)
378 {
379 	return fls(num) - 1;
380 }
381 
382 static inline int find_proper_scale(int expn, int N)
383 {
384 	return (expn > N) ? expn - 10 : 0;
385 }
386 
387 #define NUM_BIN 23
388 
389 static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
390 {
391 	unsigned int thresh_accum_cnt;
392 	int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
393 	int PA_in[NUM_BIN + 1];
394 	int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
395 	unsigned int B1_abs_max, B2_abs_max;
396 	int max_index, scale_factor;
397 	int y_est[NUM_BIN + 1];
398 	int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
399 	unsigned int x_tilde_abs;
400 	int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
401 	int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
402 	int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
403 	int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
404 	int y5, y3, tmp;
405 	int theta_low_bin = 0;
406 	int i;
407 
408 	/* disregard any bin that contains <= 16 samples */
409 	thresh_accum_cnt = 16;
410 	scale_factor = 5;
411 	max_index = 0;
412 	memset(theta, 0, sizeof(theta));
413 	memset(x_est, 0, sizeof(x_est));
414 	memset(Y, 0, sizeof(Y));
415 	memset(y_est, 0, sizeof(y_est));
416 	memset(x_tilde, 0, sizeof(x_tilde));
417 
418 	for (i = 0; i < NUM_BIN; i++) {
419 		s32 accum_cnt, accum_tx, accum_rx, accum_ang;
420 
421 		/* number of samples */
422 		accum_cnt = data_L[i] & 0xffff;
423 
424 		if (accum_cnt <= thresh_accum_cnt)
425 			continue;
426 
427 		/* sum(tx amplitude) */
428 		accum_tx = ((data_L[i] >> 16) & 0xffff) |
429 		    ((data_U[i] & 0x7ff) << 16);
430 
431 		/* sum(rx amplitude distance to lower bin edge) */
432 		accum_rx = ((data_U[i] >> 11) & 0x1f) |
433 		    ((data_L[i + 23] & 0xffff) << 5);
434 
435 		/* sum(angles) */
436 		accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
437 		    ((data_U[i + 23] & 0x7ff) << 16);
438 
439 		accum_tx <<= scale_factor;
440 		accum_rx <<= scale_factor;
441 		x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >>
442 		    scale_factor;
443 
444 		Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
445 			    scale_factor) +
446 			    (1 << scale_factor) * max_index + 16;
447 
448 		if (accum_ang >= (1 << 26))
449 			accum_ang -= 1 << 27;
450 
451 		theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) /
452 		    accum_cnt;
453 
454 		max_index++;
455 	}
456 
457 	/*
458 	 * Find average theta of first 5 bin and all of those to same value.
459 	 * Curve is linear at that range.
460 	 */
461 	for (i = 1; i < 6; i++)
462 		theta_low_bin += theta[i];
463 
464 	theta_low_bin = theta_low_bin / 5;
465 	for (i = 1; i < 6; i++)
466 		theta[i] = theta_low_bin;
467 
468 	/* Set values at origin */
469 	theta[0] = theta_low_bin;
470 	for (i = 0; i <= max_index; i++)
471 		theta[i] -= theta_low_bin;
472 
473 	x_est[0] = 0;
474 	Y[0] = 0;
475 	scale_factor = 8;
476 
477 	/* low signal gain */
478 	if (x_est[6] == x_est[3])
479 		return false;
480 
481 	G_fxp =
482 	    (((Y[6] - Y[3]) * 1 << scale_factor) +
483 	     (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);
484 
485 	/* prevent division by zero */
486 	if (G_fxp == 0)
487 		return false;
488 
489 	Y_intercept =
490 	    (G_fxp * (x_est[0] - x_est[3]) +
491 	     (1 << scale_factor)) / (1 << scale_factor) + Y[3];
492 
493 	for (i = 0; i <= max_index; i++)
494 		y_est[i] = Y[i] - Y_intercept;
495 
496 	for (i = 0; i <= 3; i++) {
497 		y_est[i] = i * 32;
498 		x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
499 	}
500 
501 	if (y_est[max_index] == 0)
502 		return false;
503 
504 	x_est_fxp1_nonlin =
505 	    x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
506 				G_fxp) / G_fxp;
507 
508 	order_x_by_y =
509 	    (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];
510 
511 	if (order_x_by_y == 0)
512 		M = 10;
513 	else if (order_x_by_y == 1)
514 		M = 9;
515 	else
516 		M = 8;
517 
518 	I = (max_index > 15) ? 7 : max_index >> 1;
519 	L = max_index - I;
520 	scale_factor = 8;
521 	sum_y_sqr = 0;
522 	sum_y_quad = 0;
523 	x_tilde_abs = 0;
524 
525 	for (i = 0; i <= L; i++) {
526 		unsigned int y_sqr;
527 		unsigned int y_quad;
528 		unsigned int tmp_abs;
529 
530 		/* prevent division by zero */
531 		if (y_est[i + I] == 0)
532 			return false;
533 
534 		x_est_fxp1_nonlin =
535 		    x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
536 				    G_fxp) / G_fxp;
537 
538 		x_tilde[i] =
539 		    (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
540 									  I];
541 		x_tilde[i] =
542 		    (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
543 		x_tilde[i] =
544 		    (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
545 		y_sqr =
546 		    (y_est[i + I] * y_est[i + I] +
547 		     (scale_factor * scale_factor)) / (scale_factor *
548 						       scale_factor);
549 		tmp_abs = abs(x_tilde[i]);
550 		if (tmp_abs > x_tilde_abs)
551 			x_tilde_abs = tmp_abs;
552 
553 		y_quad = y_sqr * y_sqr;
554 		sum_y_sqr = sum_y_sqr + y_sqr;
555 		sum_y_quad = sum_y_quad + y_quad;
556 		B1_tmp[i] = y_sqr * (L + 1);
557 		B2_tmp[i] = y_sqr;
558 	}
559 
560 	B1_abs_max = 0;
561 	B2_abs_max = 0;
562 	for (i = 0; i <= L; i++) {
563 		int abs_val;
564 
565 		B1_tmp[i] -= sum_y_sqr;
566 		B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];
567 
568 		abs_val = abs(B1_tmp[i]);
569 		if (abs_val > B1_abs_max)
570 			B1_abs_max = abs_val;
571 
572 		abs_val = abs(B2_tmp[i]);
573 		if (abs_val > B2_abs_max)
574 			B2_abs_max = abs_val;
575 	}
576 
577 	Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
578 	Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
579 	Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);
580 
581 	beta_raw = 0;
582 	alpha_raw = 0;
583 	for (i = 0; i <= L; i++) {
584 		x_tilde[i] = x_tilde[i] / (1 << Q_x);
585 		B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
586 		B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
587 		beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
588 		alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
589 	}
590 
591 	scale_B =
592 	    ((sum_y_quad / scale_factor) * (L + 1) -
593 	     (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;
594 
595 	Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
596 	scale_B = scale_B / (1 << Q_scale_B);
597 	if (scale_B == 0)
598 		return false;
599 	Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
600 	Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
601 	beta_raw = beta_raw / (1 << Q_beta);
602 	alpha_raw = alpha_raw / (1 << Q_alpha);
603 	alpha = (alpha_raw << 10) / scale_B;
604 	beta = (beta_raw << 10) / scale_B;
605 	order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
606 	order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
607 	order1_5x = order_1 / 5;
608 	order2_3x = order_2 / 3;
609 	order1_5x_rem = order_1 - 5 * order1_5x;
610 	order2_3x_rem = order_2 - 3 * order2_3x;
611 
612 	for (i = 0; i < PAPRD_TABLE_SZ; i++) {
613 		tmp = i * 32;
614 		y5 = ((beta * tmp) >> 6) >> order1_5x;
615 		y5 = (y5 * tmp) >> order1_5x;
616 		y5 = (y5 * tmp) >> order1_5x;
617 		y5 = (y5 * tmp) >> order1_5x;
618 		y5 = (y5 * tmp) >> order1_5x;
619 		y5 = y5 >> order1_5x_rem;
620 		y3 = (alpha * tmp) >> order2_3x;
621 		y3 = (y3 * tmp) >> order2_3x;
622 		y3 = (y3 * tmp) >> order2_3x;
623 		y3 = y3 >> order2_3x_rem;
624 		PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;
625 
626 		if (i >= 2) {
627 			tmp = PA_in[i] - PA_in[i - 1];
628 			if (tmp < 0)
629 				PA_in[i] =
630 				    PA_in[i - 1] + (PA_in[i - 1] -
631 						    PA_in[i - 2]);
632 		}
633 
634 		PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
635 	}
636 
637 	beta_raw = 0;
638 	alpha_raw = 0;
639 
640 	for (i = 0; i <= L; i++) {
641 		int theta_tilde =
642 		    ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
643 		theta_tilde =
644 		    ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
645 		theta_tilde =
646 		    ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
647 		beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
648 		alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
649 	}
650 
651 	Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
652 	Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
653 	beta_raw = beta_raw / (1 << Q_beta);
654 	alpha_raw = alpha_raw / (1 << Q_alpha);
655 
656 	alpha = (alpha_raw << 10) / scale_B;
657 	beta = (beta_raw << 10) / scale_B;
658 	order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
659 	order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
660 	order1_5x = order_1 / 5;
661 	order2_3x = order_2 / 3;
662 	order1_5x_rem = order_1 - 5 * order1_5x;
663 	order2_3x_rem = order_2 - 3 * order2_3x;
664 
665 	for (i = 0; i < PAPRD_TABLE_SZ; i++) {
666 		int PA_angle;
667 
668 		/* pa_table[4] is calculated from PA_angle for i=5 */
669 		if (i == 4)
670 			continue;
671 
672 		tmp = i * 32;
673 		if (beta > 0)
674 			y5 = (((beta * tmp - 64) >> 6) -
675 			      (1 << order1_5x)) / (1 << order1_5x);
676 		else
677 			y5 = ((((beta * tmp - 64) >> 6) +
678 			       (1 << order1_5x)) / (1 << order1_5x));
679 
680 		y5 = (y5 * tmp) / (1 << order1_5x);
681 		y5 = (y5 * tmp) / (1 << order1_5x);
682 		y5 = (y5 * tmp) / (1 << order1_5x);
683 		y5 = (y5 * tmp) / (1 << order1_5x);
684 		y5 = y5 / (1 << order1_5x_rem);
685 
686 		if (beta > 0)
687 			y3 = (alpha * tmp -
688 			      (1 << order2_3x)) / (1 << order2_3x);
689 		else
690 			y3 = (alpha * tmp +
691 			      (1 << order2_3x)) / (1 << order2_3x);
692 		y3 = (y3 * tmp) / (1 << order2_3x);
693 		y3 = (y3 * tmp) / (1 << order2_3x);
694 		y3 = y3 / (1 << order2_3x_rem);
695 
696 		if (i < 4) {
697 			PA_angle = 0;
698 		} else {
699 			PA_angle = y5 + y3;
700 			if (PA_angle < -150)
701 				PA_angle = -150;
702 			else if (PA_angle > 150)
703 				PA_angle = 150;
704 		}
705 
706 		pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
707 		if (i == 5) {
708 			PA_angle = (PA_angle + 2) >> 1;
709 			pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
710 			    (PA_angle & 0x7ff);
711 		}
712 	}
713 
714 	*gain = G_fxp;
715 	return true;
716 }
717 
718 void ar9003_paprd_populate_single_table(struct ath_hw *ah,
719 					struct ath9k_hw_cal_data *caldata,
720 					int chain)
721 {
722 	u32 *paprd_table_val = caldata->pa_table[chain];
723 	u32 small_signal_gain = caldata->small_signal_gain[chain];
724 	u32 training_power = ah->paprd_training_power;
725 	u32 reg = 0;
726 	int i;
727 
728 	if (chain == 0)
729 		reg = AR_PHY_PAPRD_MEM_TAB_B0;
730 	else if (chain == 1)
731 		reg = AR_PHY_PAPRD_MEM_TAB_B1;
732 	else if (chain == 2)
733 		reg = AR_PHY_PAPRD_MEM_TAB_B2;
734 
735 	for (i = 0; i < PAPRD_TABLE_SZ; i++) {
736 		REG_WRITE(ah, reg, paprd_table_val[i]);
737 		reg = reg + 4;
738 	}
739 
740 	if (chain == 0)
741 		reg = AR_PHY_PA_GAIN123_B0;
742 	else if (chain == 1)
743 		reg = AR_PHY_PA_GAIN123_B1;
744 	else
745 		reg = AR_PHY_PA_GAIN123_B2;
746 
747 	REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);
748 
749 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
750 		      AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
751 		      training_power);
752 
753 	if (ah->caps.tx_chainmask & BIT(1))
754 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
755 			      AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
756 			      training_power);
757 
758 	if (ah->caps.tx_chainmask & BIT(2))
759 		/* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */
760 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
761 			      AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
762 			      training_power);
763 }
764 EXPORT_SYMBOL(ar9003_paprd_populate_single_table);
765 
766 int ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
767 {
768 	unsigned int i, desired_gain, gain_index;
769 	unsigned int train_power = ah->paprd_training_power;
770 
771 	desired_gain = ar9003_get_desired_gain(ah, chain, train_power);
772 
773 	gain_index = 0;
774 	for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
775 		if (ah->paprd_gain_table_index[i] >= desired_gain)
776 			break;
777 		gain_index++;
778 	}
779 
780 	ar9003_tx_force_gain(ah, gain_index);
781 
782 	REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
783 			AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
784 
785 	return 0;
786 }
787 EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);
788 
789 static bool ar9003_paprd_retrain_pa_in(struct ath_hw *ah,
790 				       struct ath9k_hw_cal_data *caldata,
791 				       int chain)
792 {
793 	u32 *pa_in = caldata->pa_table[chain];
794 	int capdiv_offset, quick_drop_offset;
795 	int capdiv2g, quick_drop;
796 	int count = 0;
797 	int i;
798 
799 	if (!AR_SREV_9485(ah) && !AR_SREV_9330(ah))
800 		return false;
801 
802 	capdiv2g = REG_READ_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
803 				  AR_PHY_65NM_CH0_TXRF3_CAPDIV2G);
804 
805 	quick_drop = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
806 				    AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP);
807 
808 	if (quick_drop)
809 		quick_drop -= 0x40;
810 
811 	for (i = 0; i < NUM_BIN + 1; i++) {
812 		if (pa_in[i] == 1400)
813 			count++;
814 	}
815 
816 	if (AR_SREV_9485(ah)) {
817 		if (pa_in[23] < 800) {
818 			capdiv_offset = (int)((1000 - pa_in[23] + 75) / 150);
819 			capdiv2g += capdiv_offset;
820 			if (capdiv2g > 7) {
821 				capdiv2g = 7;
822 				if (pa_in[23] < 600) {
823 					quick_drop++;
824 					if (quick_drop > 0)
825 						quick_drop = 0;
826 				}
827 			}
828 		} else if (pa_in[23] == 1400) {
829 			quick_drop_offset = min_t(int, count / 3, 2);
830 			quick_drop += quick_drop_offset;
831 			capdiv2g += quick_drop_offset / 2;
832 
833 			if (capdiv2g > 7)
834 				capdiv2g = 7;
835 
836 			if (quick_drop > 0) {
837 				quick_drop = 0;
838 				capdiv2g -= quick_drop_offset;
839 				if (capdiv2g < 0)
840 					capdiv2g = 0;
841 			}
842 		} else {
843 			return false;
844 		}
845 	} else if (AR_SREV_9330(ah)) {
846 		if (pa_in[23] < 1000) {
847 			capdiv_offset = (1000 - pa_in[23]) / 100;
848 			capdiv2g += capdiv_offset;
849 			if (capdiv_offset > 3) {
850 				capdiv_offset = 1;
851 				quick_drop--;
852 			}
853 
854 			capdiv2g += capdiv_offset;
855 			if (capdiv2g > 6)
856 				capdiv2g = 6;
857 			if (quick_drop < -4)
858 				quick_drop = -4;
859 		} else if (pa_in[23] == 1400) {
860 			if (count > 3) {
861 				quick_drop++;
862 				capdiv2g -= count / 4;
863 				if (quick_drop > -2)
864 					quick_drop = -2;
865 			} else {
866 				capdiv2g--;
867 			}
868 
869 			if (capdiv2g < 0)
870 				capdiv2g = 0;
871 		} else {
872 			return false;
873 		}
874 	}
875 
876 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
877 		      AR_PHY_65NM_CH0_TXRF3_CAPDIV2G, capdiv2g);
878 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
879 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
880 		      quick_drop);
881 
882 	return true;
883 }
884 
885 int ar9003_paprd_create_curve(struct ath_hw *ah,
886 			      struct ath9k_hw_cal_data *caldata, int chain)
887 {
888 	u16 *small_signal_gain = &caldata->small_signal_gain[chain];
889 	u32 *pa_table = caldata->pa_table[chain];
890 	u32 *data_L, *data_U;
891 	int i, status = 0;
892 	u32 *buf;
893 	u32 reg;
894 
895 	memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
896 
897 	buf = kmalloc(2 * 48 * sizeof(u32), GFP_ATOMIC);
898 	if (!buf)
899 		return -ENOMEM;
900 
901 	data_L = &buf[0];
902 	data_U = &buf[48];
903 
904 	REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
905 		    AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
906 
907 	reg = AR_PHY_CHAN_INFO_TAB_0;
908 	for (i = 0; i < 48; i++)
909 		data_L[i] = REG_READ(ah, reg + (i << 2));
910 
911 	REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
912 		    AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
913 
914 	for (i = 0; i < 48; i++)
915 		data_U[i] = REG_READ(ah, reg + (i << 2));
916 
917 	if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
918 		status = -2;
919 
920 	if (ar9003_paprd_retrain_pa_in(ah, caldata, chain))
921 		status = -EINPROGRESS;
922 
923 	REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
924 		    AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
925 
926 	kfree(buf);
927 
928 	return status;
929 }
930 EXPORT_SYMBOL(ar9003_paprd_create_curve);
931 
932 int ar9003_paprd_init_table(struct ath_hw *ah)
933 {
934 	int ret;
935 
936 	ret = ar9003_paprd_setup_single_table(ah);
937 	if (ret < 0)
938 	    return ret;
939 
940 	ar9003_paprd_get_gain_table(ah);
941 	return 0;
942 }
943 EXPORT_SYMBOL(ar9003_paprd_init_table);
944 
945 bool ar9003_paprd_is_done(struct ath_hw *ah)
946 {
947 	int paprd_done, agc2_pwr;
948 	paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
949 				AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
950 
951 	if (paprd_done == 0x1) {
952 		agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
953 				AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR);
954 
955 		ath_dbg(ath9k_hw_common(ah), CALIBRATE,
956 			"AGC2_PWR = 0x%x training done = 0x%x\n",
957 			agc2_pwr, paprd_done);
958 	/*
959 	 * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE'
960 	 * when the training is completely done, otherwise retraining is
961 	 * done to make sure the value is in ideal range
962 	 */
963 		if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE)
964 			paprd_done = 0;
965 	}
966 
967 	return !!paprd_done;
968 }
969 EXPORT_SYMBOL(ar9003_paprd_is_done);
970