xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/ar9003_eeprom.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20 #include "ar9003_eeprom.h"
21 #include "ar9003_mci.h"
22 
23 #define COMP_HDR_LEN 4
24 #define COMP_CKSUM_LEN 2
25 
26 #define LE16(x) __constant_cpu_to_le16(x)
27 #define LE32(x) __constant_cpu_to_le32(x)
28 
29 /* Local defines to distinguish between extension and control CTL's */
30 #define EXT_ADDITIVE (0x8000)
31 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
32 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
33 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
34 
35 #define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
36 #define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
37 
38 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
39 
40 #define EEPROM_DATA_LEN_9485	1088
41 
42 static int ar9003_hw_power_interpolate(int32_t x,
43 				       int32_t *px, int32_t *py, u_int16_t np);
44 
45 static const struct ar9300_eeprom ar9300_default = {
46 	.eepromVersion = 2,
47 	.templateVersion = 2,
48 	.macAddr = {0, 2, 3, 4, 5, 6},
49 	.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
50 		     0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
51 	.baseEepHeader = {
52 		.regDmn = { LE16(0), LE16(0x1f) },
53 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
54 		.opCapFlags = {
55 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
56 			.eepMisc = 0,
57 		},
58 		.rfSilent = 0,
59 		.blueToothOptions = 0,
60 		.deviceCap = 0,
61 		.deviceType = 5, /* takes lower byte in eeprom location */
62 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
63 		.params_for_tuning_caps = {0, 0},
64 		.featureEnable = 0x0c,
65 		 /*
66 		  * bit0 - enable tx temp comp - disabled
67 		  * bit1 - enable tx volt comp - disabled
68 		  * bit2 - enable fastClock - enabled
69 		  * bit3 - enable doubling - enabled
70 		  * bit4 - enable internal regulator - disabled
71 		  * bit5 - enable pa predistortion - disabled
72 		  */
73 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
74 		.eepromWriteEnableGpio = 3,
75 		.wlanDisableGpio = 0,
76 		.wlanLedGpio = 8,
77 		.rxBandSelectGpio = 0xff,
78 		.txrxgain = 0,
79 		.swreg = 0,
80 	 },
81 	.modalHeader2G = {
82 	/* ar9300_modal_eep_header  2g */
83 		/* 4 idle,t1,t2,b(4 bits per setting) */
84 		.antCtrlCommon = LE32(0x110),
85 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
86 		.antCtrlCommon2 = LE32(0x22222),
87 
88 		/*
89 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
90 		 * rx1, rx12, b (2 bits each)
91 		 */
92 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
93 
94 		/*
95 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
96 		 * for ar9280 (0xa20c/b20c 5:0)
97 		 */
98 		.xatten1DB = {0, 0, 0},
99 
100 		/*
101 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
102 		 * for ar9280 (0xa20c/b20c 16:12
103 		 */
104 		.xatten1Margin = {0, 0, 0},
105 		.tempSlope = 36,
106 		.voltSlope = 0,
107 
108 		/*
109 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
110 		 * channels in usual fbin coding format
111 		 */
112 		.spurChans = {0, 0, 0, 0, 0},
113 
114 		/*
115 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
116 		 * if the register is per chain
117 		 */
118 		.noiseFloorThreshCh = {-1, 0, 0},
119 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
120 		.quick_drop = 0,
121 		.xpaBiasLvl = 0,
122 		.txFrameToDataStart = 0x0e,
123 		.txFrameToPaOn = 0x0e,
124 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
125 		.antennaGain = 0,
126 		.switchSettling = 0x2c,
127 		.adcDesiredSize = -30,
128 		.txEndToXpaOff = 0,
129 		.txEndToRxOn = 0x2,
130 		.txFrameToXpaOn = 0xe,
131 		.thresh62 = 28,
132 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
133 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
134 		.xlna_bias_strength = 0,
135 		.futureModal = {
136 			0, 0, 0, 0, 0, 0, 0,
137 		},
138 	 },
139 	.base_ext1 = {
140 		.ant_div_control = 0,
141 		.future = {0, 0, 0},
142 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
143 	},
144 	.calFreqPier2G = {
145 		FREQ2FBIN(2412, 1),
146 		FREQ2FBIN(2437, 1),
147 		FREQ2FBIN(2472, 1),
148 	 },
149 	/* ar9300_cal_data_per_freq_op_loop 2g */
150 	.calPierData2G = {
151 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
152 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
153 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
154 	 },
155 	.calTarget_freqbin_Cck = {
156 		FREQ2FBIN(2412, 1),
157 		FREQ2FBIN(2484, 1),
158 	 },
159 	.calTarget_freqbin_2G = {
160 		FREQ2FBIN(2412, 1),
161 		FREQ2FBIN(2437, 1),
162 		FREQ2FBIN(2472, 1)
163 	 },
164 	.calTarget_freqbin_2GHT20 = {
165 		FREQ2FBIN(2412, 1),
166 		FREQ2FBIN(2437, 1),
167 		FREQ2FBIN(2472, 1)
168 	 },
169 	.calTarget_freqbin_2GHT40 = {
170 		FREQ2FBIN(2412, 1),
171 		FREQ2FBIN(2437, 1),
172 		FREQ2FBIN(2472, 1)
173 	 },
174 	.calTargetPowerCck = {
175 		 /* 1L-5L,5S,11L,11S */
176 		 { {36, 36, 36, 36} },
177 		 { {36, 36, 36, 36} },
178 	},
179 	.calTargetPower2G = {
180 		 /* 6-24,36,48,54 */
181 		 { {32, 32, 28, 24} },
182 		 { {32, 32, 28, 24} },
183 		 { {32, 32, 28, 24} },
184 	},
185 	.calTargetPower2GHT20 = {
186 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
187 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
188 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
189 	},
190 	.calTargetPower2GHT40 = {
191 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
192 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
193 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
194 	},
195 	.ctlIndex_2G =  {
196 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
197 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
198 	},
199 	.ctl_freqbin_2G = {
200 		{
201 			FREQ2FBIN(2412, 1),
202 			FREQ2FBIN(2417, 1),
203 			FREQ2FBIN(2457, 1),
204 			FREQ2FBIN(2462, 1)
205 		},
206 		{
207 			FREQ2FBIN(2412, 1),
208 			FREQ2FBIN(2417, 1),
209 			FREQ2FBIN(2462, 1),
210 			0xFF,
211 		},
212 
213 		{
214 			FREQ2FBIN(2412, 1),
215 			FREQ2FBIN(2417, 1),
216 			FREQ2FBIN(2462, 1),
217 			0xFF,
218 		},
219 		{
220 			FREQ2FBIN(2422, 1),
221 			FREQ2FBIN(2427, 1),
222 			FREQ2FBIN(2447, 1),
223 			FREQ2FBIN(2452, 1)
224 		},
225 
226 		{
227 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
228 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
229 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
230 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
231 		},
232 
233 		{
234 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
235 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
236 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
237 			0,
238 		},
239 
240 		{
241 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
242 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
243 			FREQ2FBIN(2472, 1),
244 			0,
245 		},
246 
247 		{
248 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
249 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
250 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
251 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
252 		},
253 
254 		{
255 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
256 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
257 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
258 		},
259 
260 		{
261 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
262 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
263 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
264 			0
265 		},
266 
267 		{
268 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
269 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
270 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
271 			0
272 		},
273 
274 		{
275 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
276 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
277 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
278 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
279 		}
280 	 },
281 	.ctlPowerData_2G = {
282 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
283 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
284 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
285 
286 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
287 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
288 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
289 
290 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
291 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
292 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
293 
294 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
295 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
296 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
297 	 },
298 	.modalHeader5G = {
299 		/* 4 idle,t1,t2,b (4 bits per setting) */
300 		.antCtrlCommon = LE32(0x110),
301 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
302 		.antCtrlCommon2 = LE32(0x22222),
303 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
304 		.antCtrlChain = {
305 			LE16(0x000), LE16(0x000), LE16(0x000),
306 		},
307 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
308 		.xatten1DB = {0, 0, 0},
309 
310 		/*
311 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
312 		 * for merlin (0xa20c/b20c 16:12
313 		 */
314 		.xatten1Margin = {0, 0, 0},
315 		.tempSlope = 68,
316 		.voltSlope = 0,
317 		/* spurChans spur channels in usual fbin coding format */
318 		.spurChans = {0, 0, 0, 0, 0},
319 		/* noiseFloorThreshCh Check if the register is per chain */
320 		.noiseFloorThreshCh = {-1, 0, 0},
321 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
322 		.quick_drop = 0,
323 		.xpaBiasLvl = 0,
324 		.txFrameToDataStart = 0x0e,
325 		.txFrameToPaOn = 0x0e,
326 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
327 		.antennaGain = 0,
328 		.switchSettling = 0x2d,
329 		.adcDesiredSize = -30,
330 		.txEndToXpaOff = 0,
331 		.txEndToRxOn = 0x2,
332 		.txFrameToXpaOn = 0xe,
333 		.thresh62 = 28,
334 		.papdRateMaskHt20 = LE32(0x0c80c080),
335 		.papdRateMaskHt40 = LE32(0x0080c080),
336 		.xlna_bias_strength = 0,
337 		.futureModal = {
338 			0, 0, 0, 0, 0, 0, 0,
339 		},
340 	 },
341 	.base_ext2 = {
342 		.tempSlopeLow = 0,
343 		.tempSlopeHigh = 0,
344 		.xatten1DBLow = {0, 0, 0},
345 		.xatten1MarginLow = {0, 0, 0},
346 		.xatten1DBHigh = {0, 0, 0},
347 		.xatten1MarginHigh = {0, 0, 0}
348 	},
349 	.calFreqPier5G = {
350 		FREQ2FBIN(5180, 0),
351 		FREQ2FBIN(5220, 0),
352 		FREQ2FBIN(5320, 0),
353 		FREQ2FBIN(5400, 0),
354 		FREQ2FBIN(5500, 0),
355 		FREQ2FBIN(5600, 0),
356 		FREQ2FBIN(5725, 0),
357 		FREQ2FBIN(5825, 0)
358 	},
359 	.calPierData5G = {
360 			{
361 				{0, 0, 0, 0, 0},
362 				{0, 0, 0, 0, 0},
363 				{0, 0, 0, 0, 0},
364 				{0, 0, 0, 0, 0},
365 				{0, 0, 0, 0, 0},
366 				{0, 0, 0, 0, 0},
367 				{0, 0, 0, 0, 0},
368 				{0, 0, 0, 0, 0},
369 			},
370 			{
371 				{0, 0, 0, 0, 0},
372 				{0, 0, 0, 0, 0},
373 				{0, 0, 0, 0, 0},
374 				{0, 0, 0, 0, 0},
375 				{0, 0, 0, 0, 0},
376 				{0, 0, 0, 0, 0},
377 				{0, 0, 0, 0, 0},
378 				{0, 0, 0, 0, 0},
379 			},
380 			{
381 				{0, 0, 0, 0, 0},
382 				{0, 0, 0, 0, 0},
383 				{0, 0, 0, 0, 0},
384 				{0, 0, 0, 0, 0},
385 				{0, 0, 0, 0, 0},
386 				{0, 0, 0, 0, 0},
387 				{0, 0, 0, 0, 0},
388 				{0, 0, 0, 0, 0},
389 			},
390 
391 	},
392 	.calTarget_freqbin_5G = {
393 		FREQ2FBIN(5180, 0),
394 		FREQ2FBIN(5220, 0),
395 		FREQ2FBIN(5320, 0),
396 		FREQ2FBIN(5400, 0),
397 		FREQ2FBIN(5500, 0),
398 		FREQ2FBIN(5600, 0),
399 		FREQ2FBIN(5725, 0),
400 		FREQ2FBIN(5825, 0)
401 	},
402 	.calTarget_freqbin_5GHT20 = {
403 		FREQ2FBIN(5180, 0),
404 		FREQ2FBIN(5240, 0),
405 		FREQ2FBIN(5320, 0),
406 		FREQ2FBIN(5500, 0),
407 		FREQ2FBIN(5700, 0),
408 		FREQ2FBIN(5745, 0),
409 		FREQ2FBIN(5725, 0),
410 		FREQ2FBIN(5825, 0)
411 	},
412 	.calTarget_freqbin_5GHT40 = {
413 		FREQ2FBIN(5180, 0),
414 		FREQ2FBIN(5240, 0),
415 		FREQ2FBIN(5320, 0),
416 		FREQ2FBIN(5500, 0),
417 		FREQ2FBIN(5700, 0),
418 		FREQ2FBIN(5745, 0),
419 		FREQ2FBIN(5725, 0),
420 		FREQ2FBIN(5825, 0)
421 	 },
422 	.calTargetPower5G = {
423 		/* 6-24,36,48,54 */
424 		{ {20, 20, 20, 10} },
425 		{ {20, 20, 20, 10} },
426 		{ {20, 20, 20, 10} },
427 		{ {20, 20, 20, 10} },
428 		{ {20, 20, 20, 10} },
429 		{ {20, 20, 20, 10} },
430 		{ {20, 20, 20, 10} },
431 		{ {20, 20, 20, 10} },
432 	 },
433 	.calTargetPower5GHT20 = {
434 		/*
435 		 * 0_8_16,1-3_9-11_17-19,
436 		 * 4,5,6,7,12,13,14,15,20,21,22,23
437 		 */
438 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
439 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
440 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
441 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
442 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
444 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
446 	 },
447 	.calTargetPower5GHT40 =  {
448 		/*
449 		 * 0_8_16,1-3_9-11_17-19,
450 		 * 4,5,6,7,12,13,14,15,20,21,22,23
451 		 */
452 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
453 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
454 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
455 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
456 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
458 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
460 	 },
461 	.ctlIndex_5G =  {
462 		0x10, 0x16, 0x18, 0x40, 0x46,
463 		0x48, 0x30, 0x36, 0x38
464 	},
465 	.ctl_freqbin_5G =  {
466 		{
467 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
468 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
469 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
470 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
471 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
472 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
473 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
474 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
475 		},
476 		{
477 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
478 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
479 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
480 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
481 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
482 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
483 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
484 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
485 		},
486 
487 		{
488 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
489 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
490 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
491 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
492 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
493 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
494 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
495 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
496 		},
497 
498 		{
499 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
500 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
501 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
502 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
503 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
504 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
505 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
506 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
507 		},
508 
509 		{
510 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
511 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
512 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
513 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
514 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
515 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
516 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
517 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
518 		},
519 
520 		{
521 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
522 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
523 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
524 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
525 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
526 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
527 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
528 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
529 		},
530 
531 		{
532 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
533 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
534 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
535 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
536 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
537 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
538 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
539 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
540 		},
541 
542 		{
543 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
544 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
545 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
546 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
547 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
548 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
549 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
550 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
551 		},
552 
553 		{
554 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
555 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
556 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
557 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
558 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
559 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
560 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
561 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
562 		}
563 	 },
564 	.ctlPowerData_5G = {
565 		{
566 			{
567 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
568 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
569 			}
570 		},
571 		{
572 			{
573 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
574 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
575 			}
576 		},
577 		{
578 			{
579 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
580 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
581 			}
582 		},
583 		{
584 			{
585 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
586 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
587 			}
588 		},
589 		{
590 			{
591 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
592 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
593 			}
594 		},
595 		{
596 			{
597 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
598 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
599 			}
600 		},
601 		{
602 			{
603 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
604 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
605 			}
606 		},
607 		{
608 			{
609 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
610 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
611 			}
612 		},
613 		{
614 			{
615 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
616 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
617 			}
618 		},
619 	 }
620 };
621 
622 static const struct ar9300_eeprom ar9300_x113 = {
623 	.eepromVersion = 2,
624 	.templateVersion = 6,
625 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
626 	.custData = {"x113-023-f0000"},
627 	.baseEepHeader = {
628 		.regDmn = { LE16(0), LE16(0x1f) },
629 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
630 		.opCapFlags = {
631 			.opFlags = AR5416_OPFLAGS_11A,
632 			.eepMisc = 0,
633 		},
634 		.rfSilent = 0,
635 		.blueToothOptions = 0,
636 		.deviceCap = 0,
637 		.deviceType = 5, /* takes lower byte in eeprom location */
638 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
639 		.params_for_tuning_caps = {0, 0},
640 		.featureEnable = 0x0d,
641 		 /*
642 		  * bit0 - enable tx temp comp - disabled
643 		  * bit1 - enable tx volt comp - disabled
644 		  * bit2 - enable fastClock - enabled
645 		  * bit3 - enable doubling - enabled
646 		  * bit4 - enable internal regulator - disabled
647 		  * bit5 - enable pa predistortion - disabled
648 		  */
649 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
650 		.eepromWriteEnableGpio = 6,
651 		.wlanDisableGpio = 0,
652 		.wlanLedGpio = 8,
653 		.rxBandSelectGpio = 0xff,
654 		.txrxgain = 0x21,
655 		.swreg = 0,
656 	 },
657 	.modalHeader2G = {
658 	/* ar9300_modal_eep_header  2g */
659 		/* 4 idle,t1,t2,b(4 bits per setting) */
660 		.antCtrlCommon = LE32(0x110),
661 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
662 		.antCtrlCommon2 = LE32(0x44444),
663 
664 		/*
665 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
666 		 * rx1, rx12, b (2 bits each)
667 		 */
668 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
669 
670 		/*
671 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
672 		 * for ar9280 (0xa20c/b20c 5:0)
673 		 */
674 		.xatten1DB = {0, 0, 0},
675 
676 		/*
677 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
678 		 * for ar9280 (0xa20c/b20c 16:12
679 		 */
680 		.xatten1Margin = {0, 0, 0},
681 		.tempSlope = 25,
682 		.voltSlope = 0,
683 
684 		/*
685 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
686 		 * channels in usual fbin coding format
687 		 */
688 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
689 
690 		/*
691 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
692 		 * if the register is per chain
693 		 */
694 		.noiseFloorThreshCh = {-1, 0, 0},
695 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
696 		.quick_drop = 0,
697 		.xpaBiasLvl = 0,
698 		.txFrameToDataStart = 0x0e,
699 		.txFrameToPaOn = 0x0e,
700 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
701 		.antennaGain = 0,
702 		.switchSettling = 0x2c,
703 		.adcDesiredSize = -30,
704 		.txEndToXpaOff = 0,
705 		.txEndToRxOn = 0x2,
706 		.txFrameToXpaOn = 0xe,
707 		.thresh62 = 28,
708 		.papdRateMaskHt20 = LE32(0x0c80c080),
709 		.papdRateMaskHt40 = LE32(0x0080c080),
710 		.xlna_bias_strength = 0,
711 		.futureModal = {
712 			0, 0, 0, 0, 0, 0, 0,
713 		},
714 	 },
715 	 .base_ext1 = {
716 		.ant_div_control = 0,
717 		.future = {0, 0, 0},
718 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
719 	 },
720 	.calFreqPier2G = {
721 		FREQ2FBIN(2412, 1),
722 		FREQ2FBIN(2437, 1),
723 		FREQ2FBIN(2472, 1),
724 	 },
725 	/* ar9300_cal_data_per_freq_op_loop 2g */
726 	.calPierData2G = {
727 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
728 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
729 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
730 	 },
731 	.calTarget_freqbin_Cck = {
732 		FREQ2FBIN(2412, 1),
733 		FREQ2FBIN(2472, 1),
734 	 },
735 	.calTarget_freqbin_2G = {
736 		FREQ2FBIN(2412, 1),
737 		FREQ2FBIN(2437, 1),
738 		FREQ2FBIN(2472, 1)
739 	 },
740 	.calTarget_freqbin_2GHT20 = {
741 		FREQ2FBIN(2412, 1),
742 		FREQ2FBIN(2437, 1),
743 		FREQ2FBIN(2472, 1)
744 	 },
745 	.calTarget_freqbin_2GHT40 = {
746 		FREQ2FBIN(2412, 1),
747 		FREQ2FBIN(2437, 1),
748 		FREQ2FBIN(2472, 1)
749 	 },
750 	.calTargetPowerCck = {
751 		 /* 1L-5L,5S,11L,11S */
752 		 { {34, 34, 34, 34} },
753 		 { {34, 34, 34, 34} },
754 	},
755 	.calTargetPower2G = {
756 		 /* 6-24,36,48,54 */
757 		 { {34, 34, 32, 32} },
758 		 { {34, 34, 32, 32} },
759 		 { {34, 34, 32, 32} },
760 	},
761 	.calTargetPower2GHT20 = {
762 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
763 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
764 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
765 	},
766 	.calTargetPower2GHT40 = {
767 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
768 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
769 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
770 	},
771 	.ctlIndex_2G =  {
772 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
773 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
774 	},
775 	.ctl_freqbin_2G = {
776 		{
777 			FREQ2FBIN(2412, 1),
778 			FREQ2FBIN(2417, 1),
779 			FREQ2FBIN(2457, 1),
780 			FREQ2FBIN(2462, 1)
781 		},
782 		{
783 			FREQ2FBIN(2412, 1),
784 			FREQ2FBIN(2417, 1),
785 			FREQ2FBIN(2462, 1),
786 			0xFF,
787 		},
788 
789 		{
790 			FREQ2FBIN(2412, 1),
791 			FREQ2FBIN(2417, 1),
792 			FREQ2FBIN(2462, 1),
793 			0xFF,
794 		},
795 		{
796 			FREQ2FBIN(2422, 1),
797 			FREQ2FBIN(2427, 1),
798 			FREQ2FBIN(2447, 1),
799 			FREQ2FBIN(2452, 1)
800 		},
801 
802 		{
803 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
804 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
805 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
806 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
807 		},
808 
809 		{
810 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
811 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
812 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
813 			0,
814 		},
815 
816 		{
817 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
818 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
819 			FREQ2FBIN(2472, 1),
820 			0,
821 		},
822 
823 		{
824 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
825 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
826 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
827 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
828 		},
829 
830 		{
831 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
832 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
833 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
834 		},
835 
836 		{
837 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
838 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
839 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
840 			0
841 		},
842 
843 		{
844 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
845 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
846 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
847 			0
848 		},
849 
850 		{
851 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
852 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
853 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
854 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
855 		}
856 	 },
857 	.ctlPowerData_2G = {
858 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
859 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
860 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
861 
862 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
863 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
864 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
865 
866 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
867 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
868 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
869 
870 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
871 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
872 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
873 	 },
874 	.modalHeader5G = {
875 		/* 4 idle,t1,t2,b (4 bits per setting) */
876 		.antCtrlCommon = LE32(0x220),
877 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
878 		.antCtrlCommon2 = LE32(0x11111),
879 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
880 		.antCtrlChain = {
881 			LE16(0x150), LE16(0x150), LE16(0x150),
882 		},
883 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
884 		.xatten1DB = {0, 0, 0},
885 
886 		/*
887 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
888 		 * for merlin (0xa20c/b20c 16:12
889 		 */
890 		.xatten1Margin = {0, 0, 0},
891 		.tempSlope = 68,
892 		.voltSlope = 0,
893 		/* spurChans spur channels in usual fbin coding format */
894 		.spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
895 		/* noiseFloorThreshCh Check if the register is per chain */
896 		.noiseFloorThreshCh = {-1, 0, 0},
897 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
898 		.quick_drop = 0,
899 		.xpaBiasLvl = 0xf,
900 		.txFrameToDataStart = 0x0e,
901 		.txFrameToPaOn = 0x0e,
902 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
903 		.antennaGain = 0,
904 		.switchSettling = 0x2d,
905 		.adcDesiredSize = -30,
906 		.txEndToXpaOff = 0,
907 		.txEndToRxOn = 0x2,
908 		.txFrameToXpaOn = 0xe,
909 		.thresh62 = 28,
910 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
911 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
912 		.xlna_bias_strength = 0,
913 		.futureModal = {
914 			0, 0, 0, 0, 0, 0, 0,
915 		},
916 	 },
917 	.base_ext2 = {
918 		.tempSlopeLow = 72,
919 		.tempSlopeHigh = 105,
920 		.xatten1DBLow = {0, 0, 0},
921 		.xatten1MarginLow = {0, 0, 0},
922 		.xatten1DBHigh = {0, 0, 0},
923 		.xatten1MarginHigh = {0, 0, 0}
924 	 },
925 	.calFreqPier5G = {
926 		FREQ2FBIN(5180, 0),
927 		FREQ2FBIN(5240, 0),
928 		FREQ2FBIN(5320, 0),
929 		FREQ2FBIN(5400, 0),
930 		FREQ2FBIN(5500, 0),
931 		FREQ2FBIN(5600, 0),
932 		FREQ2FBIN(5745, 0),
933 		FREQ2FBIN(5785, 0)
934 	},
935 	.calPierData5G = {
936 			{
937 				{0, 0, 0, 0, 0},
938 				{0, 0, 0, 0, 0},
939 				{0, 0, 0, 0, 0},
940 				{0, 0, 0, 0, 0},
941 				{0, 0, 0, 0, 0},
942 				{0, 0, 0, 0, 0},
943 				{0, 0, 0, 0, 0},
944 				{0, 0, 0, 0, 0},
945 			},
946 			{
947 				{0, 0, 0, 0, 0},
948 				{0, 0, 0, 0, 0},
949 				{0, 0, 0, 0, 0},
950 				{0, 0, 0, 0, 0},
951 				{0, 0, 0, 0, 0},
952 				{0, 0, 0, 0, 0},
953 				{0, 0, 0, 0, 0},
954 				{0, 0, 0, 0, 0},
955 			},
956 			{
957 				{0, 0, 0, 0, 0},
958 				{0, 0, 0, 0, 0},
959 				{0, 0, 0, 0, 0},
960 				{0, 0, 0, 0, 0},
961 				{0, 0, 0, 0, 0},
962 				{0, 0, 0, 0, 0},
963 				{0, 0, 0, 0, 0},
964 				{0, 0, 0, 0, 0},
965 			},
966 
967 	},
968 	.calTarget_freqbin_5G = {
969 		FREQ2FBIN(5180, 0),
970 		FREQ2FBIN(5220, 0),
971 		FREQ2FBIN(5320, 0),
972 		FREQ2FBIN(5400, 0),
973 		FREQ2FBIN(5500, 0),
974 		FREQ2FBIN(5600, 0),
975 		FREQ2FBIN(5745, 0),
976 		FREQ2FBIN(5785, 0)
977 	},
978 	.calTarget_freqbin_5GHT20 = {
979 		FREQ2FBIN(5180, 0),
980 		FREQ2FBIN(5240, 0),
981 		FREQ2FBIN(5320, 0),
982 		FREQ2FBIN(5400, 0),
983 		FREQ2FBIN(5500, 0),
984 		FREQ2FBIN(5700, 0),
985 		FREQ2FBIN(5745, 0),
986 		FREQ2FBIN(5825, 0)
987 	},
988 	.calTarget_freqbin_5GHT40 = {
989 		FREQ2FBIN(5190, 0),
990 		FREQ2FBIN(5230, 0),
991 		FREQ2FBIN(5320, 0),
992 		FREQ2FBIN(5410, 0),
993 		FREQ2FBIN(5510, 0),
994 		FREQ2FBIN(5670, 0),
995 		FREQ2FBIN(5755, 0),
996 		FREQ2FBIN(5825, 0)
997 	 },
998 	.calTargetPower5G = {
999 		/* 6-24,36,48,54 */
1000 		{ {42, 40, 40, 34} },
1001 		{ {42, 40, 40, 34} },
1002 		{ {42, 40, 40, 34} },
1003 		{ {42, 40, 40, 34} },
1004 		{ {42, 40, 40, 34} },
1005 		{ {42, 40, 40, 34} },
1006 		{ {42, 40, 40, 34} },
1007 		{ {42, 40, 40, 34} },
1008 	 },
1009 	.calTargetPower5GHT20 = {
1010 		/*
1011 		 * 0_8_16,1-3_9-11_17-19,
1012 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1013 		 */
1014 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1015 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1016 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1017 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1018 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1019 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1020 		{ {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1021 		{ {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1022 	 },
1023 	.calTargetPower5GHT40 =  {
1024 		/*
1025 		 * 0_8_16,1-3_9-11_17-19,
1026 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1027 		 */
1028 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1029 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1030 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1031 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1032 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1033 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1034 		{ {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1035 		{ {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1036 	 },
1037 	.ctlIndex_5G =  {
1038 		0x10, 0x16, 0x18, 0x40, 0x46,
1039 		0x48, 0x30, 0x36, 0x38
1040 	},
1041 	.ctl_freqbin_5G =  {
1042 		{
1043 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1044 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1045 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1046 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1047 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1048 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1049 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1050 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1051 		},
1052 		{
1053 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1054 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1055 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1056 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1057 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1058 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1059 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1060 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1061 		},
1062 
1063 		{
1064 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1065 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1066 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1067 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1068 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1069 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1070 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1071 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1072 		},
1073 
1074 		{
1075 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1076 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1077 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1078 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1079 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1080 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1081 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1082 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1083 		},
1084 
1085 		{
1086 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1087 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1088 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1089 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1090 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1091 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1092 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1093 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1094 		},
1095 
1096 		{
1097 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1098 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1099 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1100 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1101 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1102 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1103 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1104 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1105 		},
1106 
1107 		{
1108 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1109 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1110 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1111 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1112 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1113 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1114 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1115 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1116 		},
1117 
1118 		{
1119 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1120 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1121 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1122 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1123 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1124 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1125 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1126 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1127 		},
1128 
1129 		{
1130 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1131 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1132 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1133 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1134 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1135 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1136 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1137 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1138 		}
1139 	 },
1140 	.ctlPowerData_5G = {
1141 		{
1142 			{
1143 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1144 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1145 			}
1146 		},
1147 		{
1148 			{
1149 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1150 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1151 			}
1152 		},
1153 		{
1154 			{
1155 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1156 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1157 			}
1158 		},
1159 		{
1160 			{
1161 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1162 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1163 			}
1164 		},
1165 		{
1166 			{
1167 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1168 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1169 			}
1170 		},
1171 		{
1172 			{
1173 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1174 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1175 			}
1176 		},
1177 		{
1178 			{
1179 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1180 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1181 			}
1182 		},
1183 		{
1184 			{
1185 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1186 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1187 			}
1188 		},
1189 		{
1190 			{
1191 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1192 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1193 			}
1194 		},
1195 	 }
1196 };
1197 
1198 
1199 static const struct ar9300_eeprom ar9300_h112 = {
1200 	.eepromVersion = 2,
1201 	.templateVersion = 3,
1202 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1203 	.custData = {"h112-241-f0000"},
1204 	.baseEepHeader = {
1205 		.regDmn = { LE16(0), LE16(0x1f) },
1206 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1207 		.opCapFlags = {
1208 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1209 			.eepMisc = 0,
1210 		},
1211 		.rfSilent = 0,
1212 		.blueToothOptions = 0,
1213 		.deviceCap = 0,
1214 		.deviceType = 5, /* takes lower byte in eeprom location */
1215 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1216 		.params_for_tuning_caps = {0, 0},
1217 		.featureEnable = 0x0d,
1218 		/*
1219 		 * bit0 - enable tx temp comp - disabled
1220 		 * bit1 - enable tx volt comp - disabled
1221 		 * bit2 - enable fastClock - enabled
1222 		 * bit3 - enable doubling - enabled
1223 		 * bit4 - enable internal regulator - disabled
1224 		 * bit5 - enable pa predistortion - disabled
1225 		 */
1226 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1227 		.eepromWriteEnableGpio = 6,
1228 		.wlanDisableGpio = 0,
1229 		.wlanLedGpio = 8,
1230 		.rxBandSelectGpio = 0xff,
1231 		.txrxgain = 0x10,
1232 		.swreg = 0,
1233 	},
1234 	.modalHeader2G = {
1235 		/* ar9300_modal_eep_header  2g */
1236 		/* 4 idle,t1,t2,b(4 bits per setting) */
1237 		.antCtrlCommon = LE32(0x110),
1238 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1239 		.antCtrlCommon2 = LE32(0x44444),
1240 
1241 		/*
1242 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1243 		 * rx1, rx12, b (2 bits each)
1244 		 */
1245 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1246 
1247 		/*
1248 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
1249 		 * for ar9280 (0xa20c/b20c 5:0)
1250 		 */
1251 		.xatten1DB = {0, 0, 0},
1252 
1253 		/*
1254 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1255 		 * for ar9280 (0xa20c/b20c 16:12
1256 		 */
1257 		.xatten1Margin = {0, 0, 0},
1258 		.tempSlope = 25,
1259 		.voltSlope = 0,
1260 
1261 		/*
1262 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1263 		 * channels in usual fbin coding format
1264 		 */
1265 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1266 
1267 		/*
1268 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1269 		 * if the register is per chain
1270 		 */
1271 		.noiseFloorThreshCh = {-1, 0, 0},
1272 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1273 		.quick_drop = 0,
1274 		.xpaBiasLvl = 0,
1275 		.txFrameToDataStart = 0x0e,
1276 		.txFrameToPaOn = 0x0e,
1277 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1278 		.antennaGain = 0,
1279 		.switchSettling = 0x2c,
1280 		.adcDesiredSize = -30,
1281 		.txEndToXpaOff = 0,
1282 		.txEndToRxOn = 0x2,
1283 		.txFrameToXpaOn = 0xe,
1284 		.thresh62 = 28,
1285 		.papdRateMaskHt20 = LE32(0x0c80c080),
1286 		.papdRateMaskHt40 = LE32(0x0080c080),
1287 		.xlna_bias_strength = 0,
1288 		.futureModal = {
1289 			0, 0, 0, 0, 0, 0, 0,
1290 		},
1291 	},
1292 	.base_ext1 = {
1293 		.ant_div_control = 0,
1294 		.future = {0, 0, 0},
1295 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1296 	},
1297 	.calFreqPier2G = {
1298 		FREQ2FBIN(2412, 1),
1299 		FREQ2FBIN(2437, 1),
1300 		FREQ2FBIN(2462, 1),
1301 	},
1302 	/* ar9300_cal_data_per_freq_op_loop 2g */
1303 	.calPierData2G = {
1304 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1305 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1306 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1307 	},
1308 	.calTarget_freqbin_Cck = {
1309 		FREQ2FBIN(2412, 1),
1310 		FREQ2FBIN(2472, 1),
1311 	},
1312 	.calTarget_freqbin_2G = {
1313 		FREQ2FBIN(2412, 1),
1314 		FREQ2FBIN(2437, 1),
1315 		FREQ2FBIN(2472, 1)
1316 	},
1317 	.calTarget_freqbin_2GHT20 = {
1318 		FREQ2FBIN(2412, 1),
1319 		FREQ2FBIN(2437, 1),
1320 		FREQ2FBIN(2472, 1)
1321 	},
1322 	.calTarget_freqbin_2GHT40 = {
1323 		FREQ2FBIN(2412, 1),
1324 		FREQ2FBIN(2437, 1),
1325 		FREQ2FBIN(2472, 1)
1326 	},
1327 	.calTargetPowerCck = {
1328 		/* 1L-5L,5S,11L,11S */
1329 		{ {34, 34, 34, 34} },
1330 		{ {34, 34, 34, 34} },
1331 	},
1332 	.calTargetPower2G = {
1333 		/* 6-24,36,48,54 */
1334 		{ {34, 34, 32, 32} },
1335 		{ {34, 34, 32, 32} },
1336 		{ {34, 34, 32, 32} },
1337 	},
1338 	.calTargetPower2GHT20 = {
1339 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1340 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1341 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1342 	},
1343 	.calTargetPower2GHT40 = {
1344 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1345 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1346 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1347 	},
1348 	.ctlIndex_2G =  {
1349 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1350 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1351 	},
1352 	.ctl_freqbin_2G = {
1353 		{
1354 			FREQ2FBIN(2412, 1),
1355 			FREQ2FBIN(2417, 1),
1356 			FREQ2FBIN(2457, 1),
1357 			FREQ2FBIN(2462, 1)
1358 		},
1359 		{
1360 			FREQ2FBIN(2412, 1),
1361 			FREQ2FBIN(2417, 1),
1362 			FREQ2FBIN(2462, 1),
1363 			0xFF,
1364 		},
1365 
1366 		{
1367 			FREQ2FBIN(2412, 1),
1368 			FREQ2FBIN(2417, 1),
1369 			FREQ2FBIN(2462, 1),
1370 			0xFF,
1371 		},
1372 		{
1373 			FREQ2FBIN(2422, 1),
1374 			FREQ2FBIN(2427, 1),
1375 			FREQ2FBIN(2447, 1),
1376 			FREQ2FBIN(2452, 1)
1377 		},
1378 
1379 		{
1380 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1381 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1382 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1383 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1384 		},
1385 
1386 		{
1387 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1388 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1389 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1390 			0,
1391 		},
1392 
1393 		{
1394 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1395 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1396 			FREQ2FBIN(2472, 1),
1397 			0,
1398 		},
1399 
1400 		{
1401 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1402 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1403 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1404 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1405 		},
1406 
1407 		{
1408 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1409 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1410 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1411 		},
1412 
1413 		{
1414 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1415 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1416 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1417 			0
1418 		},
1419 
1420 		{
1421 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1422 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1423 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1424 			0
1425 		},
1426 
1427 		{
1428 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1429 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1430 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1431 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1432 		}
1433 	},
1434 	.ctlPowerData_2G = {
1435 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1436 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1437 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1438 
1439 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1440 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1441 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1442 
1443 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1444 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1445 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1446 
1447 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1448 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1449 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1450 	},
1451 	.modalHeader5G = {
1452 		/* 4 idle,t1,t2,b (4 bits per setting) */
1453 		.antCtrlCommon = LE32(0x220),
1454 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1455 		.antCtrlCommon2 = LE32(0x44444),
1456 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1457 		.antCtrlChain = {
1458 			LE16(0x150), LE16(0x150), LE16(0x150),
1459 		},
1460 		/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1461 		.xatten1DB = {0, 0, 0},
1462 
1463 		/*
1464 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1465 		 * for merlin (0xa20c/b20c 16:12
1466 		 */
1467 		.xatten1Margin = {0, 0, 0},
1468 		.tempSlope = 45,
1469 		.voltSlope = 0,
1470 		/* spurChans spur channels in usual fbin coding format */
1471 		.spurChans = {0, 0, 0, 0, 0},
1472 		/* noiseFloorThreshCh Check if the register is per chain */
1473 		.noiseFloorThreshCh = {-1, 0, 0},
1474 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1475 		.quick_drop = 0,
1476 		.xpaBiasLvl = 0,
1477 		.txFrameToDataStart = 0x0e,
1478 		.txFrameToPaOn = 0x0e,
1479 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1480 		.antennaGain = 0,
1481 		.switchSettling = 0x2d,
1482 		.adcDesiredSize = -30,
1483 		.txEndToXpaOff = 0,
1484 		.txEndToRxOn = 0x2,
1485 		.txFrameToXpaOn = 0xe,
1486 		.thresh62 = 28,
1487 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
1488 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
1489 		.xlna_bias_strength = 0,
1490 		.futureModal = {
1491 			0, 0, 0, 0, 0, 0, 0,
1492 		},
1493 	},
1494 	.base_ext2 = {
1495 		.tempSlopeLow = 40,
1496 		.tempSlopeHigh = 50,
1497 		.xatten1DBLow = {0, 0, 0},
1498 		.xatten1MarginLow = {0, 0, 0},
1499 		.xatten1DBHigh = {0, 0, 0},
1500 		.xatten1MarginHigh = {0, 0, 0}
1501 	},
1502 	.calFreqPier5G = {
1503 		FREQ2FBIN(5180, 0),
1504 		FREQ2FBIN(5220, 0),
1505 		FREQ2FBIN(5320, 0),
1506 		FREQ2FBIN(5400, 0),
1507 		FREQ2FBIN(5500, 0),
1508 		FREQ2FBIN(5600, 0),
1509 		FREQ2FBIN(5700, 0),
1510 		FREQ2FBIN(5785, 0)
1511 	},
1512 	.calPierData5G = {
1513 		{
1514 			{0, 0, 0, 0, 0},
1515 			{0, 0, 0, 0, 0},
1516 			{0, 0, 0, 0, 0},
1517 			{0, 0, 0, 0, 0},
1518 			{0, 0, 0, 0, 0},
1519 			{0, 0, 0, 0, 0},
1520 			{0, 0, 0, 0, 0},
1521 			{0, 0, 0, 0, 0},
1522 		},
1523 		{
1524 			{0, 0, 0, 0, 0},
1525 			{0, 0, 0, 0, 0},
1526 			{0, 0, 0, 0, 0},
1527 			{0, 0, 0, 0, 0},
1528 			{0, 0, 0, 0, 0},
1529 			{0, 0, 0, 0, 0},
1530 			{0, 0, 0, 0, 0},
1531 			{0, 0, 0, 0, 0},
1532 		},
1533 		{
1534 			{0, 0, 0, 0, 0},
1535 			{0, 0, 0, 0, 0},
1536 			{0, 0, 0, 0, 0},
1537 			{0, 0, 0, 0, 0},
1538 			{0, 0, 0, 0, 0},
1539 			{0, 0, 0, 0, 0},
1540 			{0, 0, 0, 0, 0},
1541 			{0, 0, 0, 0, 0},
1542 		},
1543 
1544 	},
1545 	.calTarget_freqbin_5G = {
1546 		FREQ2FBIN(5180, 0),
1547 		FREQ2FBIN(5240, 0),
1548 		FREQ2FBIN(5320, 0),
1549 		FREQ2FBIN(5400, 0),
1550 		FREQ2FBIN(5500, 0),
1551 		FREQ2FBIN(5600, 0),
1552 		FREQ2FBIN(5700, 0),
1553 		FREQ2FBIN(5825, 0)
1554 	},
1555 	.calTarget_freqbin_5GHT20 = {
1556 		FREQ2FBIN(5180, 0),
1557 		FREQ2FBIN(5240, 0),
1558 		FREQ2FBIN(5320, 0),
1559 		FREQ2FBIN(5400, 0),
1560 		FREQ2FBIN(5500, 0),
1561 		FREQ2FBIN(5700, 0),
1562 		FREQ2FBIN(5745, 0),
1563 		FREQ2FBIN(5825, 0)
1564 	},
1565 	.calTarget_freqbin_5GHT40 = {
1566 		FREQ2FBIN(5180, 0),
1567 		FREQ2FBIN(5240, 0),
1568 		FREQ2FBIN(5320, 0),
1569 		FREQ2FBIN(5400, 0),
1570 		FREQ2FBIN(5500, 0),
1571 		FREQ2FBIN(5700, 0),
1572 		FREQ2FBIN(5745, 0),
1573 		FREQ2FBIN(5825, 0)
1574 	},
1575 	.calTargetPower5G = {
1576 		/* 6-24,36,48,54 */
1577 		{ {30, 30, 28, 24} },
1578 		{ {30, 30, 28, 24} },
1579 		{ {30, 30, 28, 24} },
1580 		{ {30, 30, 28, 24} },
1581 		{ {30, 30, 28, 24} },
1582 		{ {30, 30, 28, 24} },
1583 		{ {30, 30, 28, 24} },
1584 		{ {30, 30, 28, 24} },
1585 	},
1586 	.calTargetPower5GHT20 = {
1587 		/*
1588 		 * 0_8_16,1-3_9-11_17-19,
1589 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1590 		 */
1591 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1592 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1593 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1594 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1595 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1596 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1597 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1598 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1599 	},
1600 	.calTargetPower5GHT40 =  {
1601 		/*
1602 		 * 0_8_16,1-3_9-11_17-19,
1603 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1604 		 */
1605 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1606 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1607 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1608 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1609 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1610 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1611 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1612 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1613 	},
1614 	.ctlIndex_5G =  {
1615 		0x10, 0x16, 0x18, 0x40, 0x46,
1616 		0x48, 0x30, 0x36, 0x38
1617 	},
1618 	.ctl_freqbin_5G =  {
1619 		{
1620 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1621 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1622 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1623 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1624 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1625 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1626 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1627 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1628 		},
1629 		{
1630 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1631 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1632 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1633 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1634 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1635 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1636 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1637 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1638 		},
1639 
1640 		{
1641 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1642 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1643 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1644 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1645 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1646 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1647 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1648 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1649 		},
1650 
1651 		{
1652 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1653 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1654 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1655 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1656 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1657 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1658 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1659 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1660 		},
1661 
1662 		{
1663 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1664 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1665 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1666 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1667 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1668 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1669 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1670 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1671 		},
1672 
1673 		{
1674 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1675 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1676 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1677 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1678 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1679 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1680 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1681 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1682 		},
1683 
1684 		{
1685 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1686 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1687 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1688 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1689 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1690 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1691 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1692 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1693 		},
1694 
1695 		{
1696 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1697 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1698 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1699 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1700 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1701 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1702 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1703 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1704 		},
1705 
1706 		{
1707 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1708 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1709 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1710 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1711 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1712 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1713 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1714 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1715 		}
1716 	},
1717 	.ctlPowerData_5G = {
1718 		{
1719 			{
1720 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1721 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1722 			}
1723 		},
1724 		{
1725 			{
1726 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1727 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1728 			}
1729 		},
1730 		{
1731 			{
1732 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1733 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1734 			}
1735 		},
1736 		{
1737 			{
1738 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1739 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1740 			}
1741 		},
1742 		{
1743 			{
1744 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1745 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1746 			}
1747 		},
1748 		{
1749 			{
1750 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1751 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1752 			}
1753 		},
1754 		{
1755 			{
1756 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1757 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1758 			}
1759 		},
1760 		{
1761 			{
1762 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1763 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1764 			}
1765 		},
1766 		{
1767 			{
1768 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1769 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1770 			}
1771 		},
1772 	}
1773 };
1774 
1775 
1776 static const struct ar9300_eeprom ar9300_x112 = {
1777 	.eepromVersion = 2,
1778 	.templateVersion = 5,
1779 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1780 	.custData = {"x112-041-f0000"},
1781 	.baseEepHeader = {
1782 		.regDmn = { LE16(0), LE16(0x1f) },
1783 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1784 		.opCapFlags = {
1785 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1786 			.eepMisc = 0,
1787 		},
1788 		.rfSilent = 0,
1789 		.blueToothOptions = 0,
1790 		.deviceCap = 0,
1791 		.deviceType = 5, /* takes lower byte in eeprom location */
1792 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1793 		.params_for_tuning_caps = {0, 0},
1794 		.featureEnable = 0x0d,
1795 		/*
1796 		 * bit0 - enable tx temp comp - disabled
1797 		 * bit1 - enable tx volt comp - disabled
1798 		 * bit2 - enable fastclock - enabled
1799 		 * bit3 - enable doubling - enabled
1800 		 * bit4 - enable internal regulator - disabled
1801 		 * bit5 - enable pa predistortion - disabled
1802 		 */
1803 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1804 		.eepromWriteEnableGpio = 6,
1805 		.wlanDisableGpio = 0,
1806 		.wlanLedGpio = 8,
1807 		.rxBandSelectGpio = 0xff,
1808 		.txrxgain = 0x0,
1809 		.swreg = 0,
1810 	},
1811 	.modalHeader2G = {
1812 		/* ar9300_modal_eep_header  2g */
1813 		/* 4 idle,t1,t2,b(4 bits per setting) */
1814 		.antCtrlCommon = LE32(0x110),
1815 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1816 		.antCtrlCommon2 = LE32(0x22222),
1817 
1818 		/*
1819 		 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1820 		 * rx1, rx12, b (2 bits each)
1821 		 */
1822 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1823 
1824 		/*
1825 		 * xatten1DB[AR9300_max_chains];  3 xatten1_db
1826 		 * for ar9280 (0xa20c/b20c 5:0)
1827 		 */
1828 		.xatten1DB = {0x1b, 0x1b, 0x1b},
1829 
1830 		/*
1831 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1832 		 * for ar9280 (0xa20c/b20c 16:12
1833 		 */
1834 		.xatten1Margin = {0x15, 0x15, 0x15},
1835 		.tempSlope = 50,
1836 		.voltSlope = 0,
1837 
1838 		/*
1839 		 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1840 		 * channels in usual fbin coding format
1841 		 */
1842 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1843 
1844 		/*
1845 		 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1846 		 * if the register is per chain
1847 		 */
1848 		.noiseFloorThreshCh = {-1, 0, 0},
1849 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1850 		.quick_drop = 0,
1851 		.xpaBiasLvl = 0,
1852 		.txFrameToDataStart = 0x0e,
1853 		.txFrameToPaOn = 0x0e,
1854 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1855 		.antennaGain = 0,
1856 		.switchSettling = 0x2c,
1857 		.adcDesiredSize = -30,
1858 		.txEndToXpaOff = 0,
1859 		.txEndToRxOn = 0x2,
1860 		.txFrameToXpaOn = 0xe,
1861 		.thresh62 = 28,
1862 		.papdRateMaskHt20 = LE32(0x0c80c080),
1863 		.papdRateMaskHt40 = LE32(0x0080c080),
1864 		.xlna_bias_strength = 0,
1865 		.futureModal = {
1866 			0, 0, 0, 0, 0, 0, 0,
1867 		},
1868 	},
1869 	.base_ext1 = {
1870 		.ant_div_control = 0,
1871 		.future = {0, 0, 0},
1872 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1873 	},
1874 	.calFreqPier2G = {
1875 		FREQ2FBIN(2412, 1),
1876 		FREQ2FBIN(2437, 1),
1877 		FREQ2FBIN(2472, 1),
1878 	},
1879 	/* ar9300_cal_data_per_freq_op_loop 2g */
1880 	.calPierData2G = {
1881 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1882 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1883 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1884 	},
1885 	.calTarget_freqbin_Cck = {
1886 		FREQ2FBIN(2412, 1),
1887 		FREQ2FBIN(2472, 1),
1888 	},
1889 	.calTarget_freqbin_2G = {
1890 		FREQ2FBIN(2412, 1),
1891 		FREQ2FBIN(2437, 1),
1892 		FREQ2FBIN(2472, 1)
1893 	},
1894 	.calTarget_freqbin_2GHT20 = {
1895 		FREQ2FBIN(2412, 1),
1896 		FREQ2FBIN(2437, 1),
1897 		FREQ2FBIN(2472, 1)
1898 	},
1899 	.calTarget_freqbin_2GHT40 = {
1900 		FREQ2FBIN(2412, 1),
1901 		FREQ2FBIN(2437, 1),
1902 		FREQ2FBIN(2472, 1)
1903 	},
1904 	.calTargetPowerCck = {
1905 		/* 1L-5L,5S,11L,11s */
1906 		{ {38, 38, 38, 38} },
1907 		{ {38, 38, 38, 38} },
1908 	},
1909 	.calTargetPower2G = {
1910 		/* 6-24,36,48,54 */
1911 		{ {38, 38, 36, 34} },
1912 		{ {38, 38, 36, 34} },
1913 		{ {38, 38, 34, 32} },
1914 	},
1915 	.calTargetPower2GHT20 = {
1916 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1917 		{ {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1918 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1919 	},
1920 	.calTargetPower2GHT40 = {
1921 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1922 		{ {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1923 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1924 	},
1925 	.ctlIndex_2G =  {
1926 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1927 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1928 	},
1929 	.ctl_freqbin_2G = {
1930 		{
1931 			FREQ2FBIN(2412, 1),
1932 			FREQ2FBIN(2417, 1),
1933 			FREQ2FBIN(2457, 1),
1934 			FREQ2FBIN(2462, 1)
1935 		},
1936 		{
1937 			FREQ2FBIN(2412, 1),
1938 			FREQ2FBIN(2417, 1),
1939 			FREQ2FBIN(2462, 1),
1940 			0xFF,
1941 		},
1942 
1943 		{
1944 			FREQ2FBIN(2412, 1),
1945 			FREQ2FBIN(2417, 1),
1946 			FREQ2FBIN(2462, 1),
1947 			0xFF,
1948 		},
1949 		{
1950 			FREQ2FBIN(2422, 1),
1951 			FREQ2FBIN(2427, 1),
1952 			FREQ2FBIN(2447, 1),
1953 			FREQ2FBIN(2452, 1)
1954 		},
1955 
1956 		{
1957 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1958 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1959 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1960 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1961 		},
1962 
1963 		{
1964 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1965 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1966 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1967 			0,
1968 		},
1969 
1970 		{
1971 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1972 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1973 			FREQ2FBIN(2472, 1),
1974 			0,
1975 		},
1976 
1977 		{
1978 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1979 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1980 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1981 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1982 		},
1983 
1984 		{
1985 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1986 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1987 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1988 		},
1989 
1990 		{
1991 			/* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1992 			/* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1993 			/* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1994 			0
1995 		},
1996 
1997 		{
1998 			/* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1999 			/* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2000 			/* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2001 			0
2002 		},
2003 
2004 		{
2005 			/* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2006 			/* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2007 			/* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2008 			/* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2009 		}
2010 	},
2011 	.ctlPowerData_2G = {
2012 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2013 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2014 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2015 
2016 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2017 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2018 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2019 
2020 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2021 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2022 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2023 
2024 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2025 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2026 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2027 	},
2028 	.modalHeader5G = {
2029 		/* 4 idle,t1,t2,b (4 bits per setting) */
2030 		.antCtrlCommon = LE32(0x110),
2031 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2032 		.antCtrlCommon2 = LE32(0x22222),
2033 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2034 		.antCtrlChain = {
2035 			LE16(0x0), LE16(0x0), LE16(0x0),
2036 		},
2037 		/* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2038 		.xatten1DB = {0x13, 0x19, 0x17},
2039 
2040 		/*
2041 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2042 		 * for merlin (0xa20c/b20c 16:12
2043 		 */
2044 		.xatten1Margin = {0x19, 0x19, 0x19},
2045 		.tempSlope = 70,
2046 		.voltSlope = 15,
2047 		/* spurChans spur channels in usual fbin coding format */
2048 		.spurChans = {0, 0, 0, 0, 0},
2049 		/* noiseFloorThreshch check if the register is per chain */
2050 		.noiseFloorThreshCh = {-1, 0, 0},
2051 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2052 		.quick_drop = 0,
2053 		.xpaBiasLvl = 0,
2054 		.txFrameToDataStart = 0x0e,
2055 		.txFrameToPaOn = 0x0e,
2056 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2057 		.antennaGain = 0,
2058 		.switchSettling = 0x2d,
2059 		.adcDesiredSize = -30,
2060 		.txEndToXpaOff = 0,
2061 		.txEndToRxOn = 0x2,
2062 		.txFrameToXpaOn = 0xe,
2063 		.thresh62 = 28,
2064 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2065 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2066 		.xlna_bias_strength = 0,
2067 		.futureModal = {
2068 			0, 0, 0, 0, 0, 0, 0,
2069 		},
2070 	},
2071 	.base_ext2 = {
2072 		.tempSlopeLow = 72,
2073 		.tempSlopeHigh = 105,
2074 		.xatten1DBLow = {0x10, 0x14, 0x10},
2075 		.xatten1MarginLow = {0x19, 0x19 , 0x19},
2076 		.xatten1DBHigh = {0x1d, 0x20, 0x24},
2077 		.xatten1MarginHigh = {0x10, 0x10, 0x10}
2078 	},
2079 	.calFreqPier5G = {
2080 		FREQ2FBIN(5180, 0),
2081 		FREQ2FBIN(5220, 0),
2082 		FREQ2FBIN(5320, 0),
2083 		FREQ2FBIN(5400, 0),
2084 		FREQ2FBIN(5500, 0),
2085 		FREQ2FBIN(5600, 0),
2086 		FREQ2FBIN(5700, 0),
2087 		FREQ2FBIN(5785, 0)
2088 	},
2089 	.calPierData5G = {
2090 		{
2091 			{0, 0, 0, 0, 0},
2092 			{0, 0, 0, 0, 0},
2093 			{0, 0, 0, 0, 0},
2094 			{0, 0, 0, 0, 0},
2095 			{0, 0, 0, 0, 0},
2096 			{0, 0, 0, 0, 0},
2097 			{0, 0, 0, 0, 0},
2098 			{0, 0, 0, 0, 0},
2099 		},
2100 		{
2101 			{0, 0, 0, 0, 0},
2102 			{0, 0, 0, 0, 0},
2103 			{0, 0, 0, 0, 0},
2104 			{0, 0, 0, 0, 0},
2105 			{0, 0, 0, 0, 0},
2106 			{0, 0, 0, 0, 0},
2107 			{0, 0, 0, 0, 0},
2108 			{0, 0, 0, 0, 0},
2109 		},
2110 		{
2111 			{0, 0, 0, 0, 0},
2112 			{0, 0, 0, 0, 0},
2113 			{0, 0, 0, 0, 0},
2114 			{0, 0, 0, 0, 0},
2115 			{0, 0, 0, 0, 0},
2116 			{0, 0, 0, 0, 0},
2117 			{0, 0, 0, 0, 0},
2118 			{0, 0, 0, 0, 0},
2119 		},
2120 
2121 	},
2122 	.calTarget_freqbin_5G = {
2123 		FREQ2FBIN(5180, 0),
2124 		FREQ2FBIN(5220, 0),
2125 		FREQ2FBIN(5320, 0),
2126 		FREQ2FBIN(5400, 0),
2127 		FREQ2FBIN(5500, 0),
2128 		FREQ2FBIN(5600, 0),
2129 		FREQ2FBIN(5725, 0),
2130 		FREQ2FBIN(5825, 0)
2131 	},
2132 	.calTarget_freqbin_5GHT20 = {
2133 		FREQ2FBIN(5180, 0),
2134 		FREQ2FBIN(5220, 0),
2135 		FREQ2FBIN(5320, 0),
2136 		FREQ2FBIN(5400, 0),
2137 		FREQ2FBIN(5500, 0),
2138 		FREQ2FBIN(5600, 0),
2139 		FREQ2FBIN(5725, 0),
2140 		FREQ2FBIN(5825, 0)
2141 	},
2142 	.calTarget_freqbin_5GHT40 = {
2143 		FREQ2FBIN(5180, 0),
2144 		FREQ2FBIN(5220, 0),
2145 		FREQ2FBIN(5320, 0),
2146 		FREQ2FBIN(5400, 0),
2147 		FREQ2FBIN(5500, 0),
2148 		FREQ2FBIN(5600, 0),
2149 		FREQ2FBIN(5725, 0),
2150 		FREQ2FBIN(5825, 0)
2151 	},
2152 	.calTargetPower5G = {
2153 		/* 6-24,36,48,54 */
2154 		{ {32, 32, 28, 26} },
2155 		{ {32, 32, 28, 26} },
2156 		{ {32, 32, 28, 26} },
2157 		{ {32, 32, 26, 24} },
2158 		{ {32, 32, 26, 24} },
2159 		{ {32, 32, 24, 22} },
2160 		{ {30, 30, 24, 22} },
2161 		{ {30, 30, 24, 22} },
2162 	},
2163 	.calTargetPower5GHT20 = {
2164 		/*
2165 		 * 0_8_16,1-3_9-11_17-19,
2166 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2167 		 */
2168 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2169 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2170 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2171 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2172 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2173 		{ {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2174 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2175 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2176 	},
2177 	.calTargetPower5GHT40 =  {
2178 		/*
2179 		 * 0_8_16,1-3_9-11_17-19,
2180 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2181 		 */
2182 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2183 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2184 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2185 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2186 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2187 		{ {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2188 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2189 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2190 	},
2191 	.ctlIndex_5G =  {
2192 		0x10, 0x16, 0x18, 0x40, 0x46,
2193 		0x48, 0x30, 0x36, 0x38
2194 	},
2195 	.ctl_freqbin_5G =  {
2196 		{
2197 			/* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2198 			/* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2199 			/* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2200 			/* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2201 			/* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2202 			/* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2203 			/* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2204 			/* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2205 		},
2206 		{
2207 			/* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2208 			/* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2209 			/* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2210 			/* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2211 			/* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2212 			/* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2213 			/* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2214 			/* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2215 		},
2216 
2217 		{
2218 			/* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2219 			/* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2220 			/* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2221 			/* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2222 			/* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2223 			/* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2224 			/* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2225 			/* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2226 		},
2227 
2228 		{
2229 			/* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2230 			/* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2231 			/* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2232 			/* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2233 			/* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2234 			/* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2235 			/* Data[3].ctledges[6].bchannel */ 0xFF,
2236 			/* Data[3].ctledges[7].bchannel */ 0xFF,
2237 		},
2238 
2239 		{
2240 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2241 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2242 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2243 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2244 			/* Data[4].ctledges[4].bchannel */ 0xFF,
2245 			/* Data[4].ctledges[5].bchannel */ 0xFF,
2246 			/* Data[4].ctledges[6].bchannel */ 0xFF,
2247 			/* Data[4].ctledges[7].bchannel */ 0xFF,
2248 		},
2249 
2250 		{
2251 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2252 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2253 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2254 			/* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2255 			/* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2256 			/* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2257 			/* Data[5].ctledges[6].bchannel */ 0xFF,
2258 			/* Data[5].ctledges[7].bchannel */ 0xFF
2259 		},
2260 
2261 		{
2262 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2263 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2264 			/* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2265 			/* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2266 			/* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2267 			/* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2268 			/* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2269 			/* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2270 		},
2271 
2272 		{
2273 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2274 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2275 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2276 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2277 			/* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2278 			/* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2279 			/* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2280 			/* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2281 		},
2282 
2283 		{
2284 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2285 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2286 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2287 			/* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2288 			/* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2289 			/* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2290 			/* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2291 			/* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2292 		}
2293 	},
2294 	.ctlPowerData_5G = {
2295 		{
2296 			{
2297 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2298 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2299 			}
2300 		},
2301 		{
2302 			{
2303 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2304 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2305 			}
2306 		},
2307 		{
2308 			{
2309 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2310 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2311 			}
2312 		},
2313 		{
2314 			{
2315 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2316 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2317 			}
2318 		},
2319 		{
2320 			{
2321 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2322 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2323 			}
2324 		},
2325 		{
2326 			{
2327 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2328 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2329 			}
2330 		},
2331 		{
2332 			{
2333 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2334 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2335 			}
2336 		},
2337 		{
2338 			{
2339 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2340 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2341 			}
2342 		},
2343 		{
2344 			{
2345 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2346 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2347 			}
2348 		},
2349 	}
2350 };
2351 
2352 static const struct ar9300_eeprom ar9300_h116 = {
2353 	.eepromVersion = 2,
2354 	.templateVersion = 4,
2355 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2356 	.custData = {"h116-041-f0000"},
2357 	.baseEepHeader = {
2358 		.regDmn = { LE16(0), LE16(0x1f) },
2359 		.txrxMask =  0x33, /* 4 bits tx and 4 bits rx */
2360 		.opCapFlags = {
2361 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2362 			.eepMisc = 0,
2363 		},
2364 		.rfSilent = 0,
2365 		.blueToothOptions = 0,
2366 		.deviceCap = 0,
2367 		.deviceType = 5, /* takes lower byte in eeprom location */
2368 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2369 		.params_for_tuning_caps = {0, 0},
2370 		.featureEnable = 0x0d,
2371 		 /*
2372 		  * bit0 - enable tx temp comp - disabled
2373 		  * bit1 - enable tx volt comp - disabled
2374 		  * bit2 - enable fastClock - enabled
2375 		  * bit3 - enable doubling - enabled
2376 		  * bit4 - enable internal regulator - disabled
2377 		  * bit5 - enable pa predistortion - disabled
2378 		  */
2379 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
2380 		.eepromWriteEnableGpio = 6,
2381 		.wlanDisableGpio = 0,
2382 		.wlanLedGpio = 8,
2383 		.rxBandSelectGpio = 0xff,
2384 		.txrxgain = 0x10,
2385 		.swreg = 0,
2386 	 },
2387 	.modalHeader2G = {
2388 	/* ar9300_modal_eep_header  2g */
2389 		/* 4 idle,t1,t2,b(4 bits per setting) */
2390 		.antCtrlCommon = LE32(0x110),
2391 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2392 		.antCtrlCommon2 = LE32(0x44444),
2393 
2394 		/*
2395 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2396 		 * rx1, rx12, b (2 bits each)
2397 		 */
2398 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2399 
2400 		/*
2401 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
2402 		 * for ar9280 (0xa20c/b20c 5:0)
2403 		 */
2404 		.xatten1DB = {0x1f, 0x1f, 0x1f},
2405 
2406 		/*
2407 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2408 		 * for ar9280 (0xa20c/b20c 16:12
2409 		 */
2410 		.xatten1Margin = {0x12, 0x12, 0x12},
2411 		.tempSlope = 25,
2412 		.voltSlope = 0,
2413 
2414 		/*
2415 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2416 		 * channels in usual fbin coding format
2417 		 */
2418 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2419 
2420 		/*
2421 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2422 		 * if the register is per chain
2423 		 */
2424 		.noiseFloorThreshCh = {-1, 0, 0},
2425 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2426 		.quick_drop = 0,
2427 		.xpaBiasLvl = 0,
2428 		.txFrameToDataStart = 0x0e,
2429 		.txFrameToPaOn = 0x0e,
2430 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2431 		.antennaGain = 0,
2432 		.switchSettling = 0x2c,
2433 		.adcDesiredSize = -30,
2434 		.txEndToXpaOff = 0,
2435 		.txEndToRxOn = 0x2,
2436 		.txFrameToXpaOn = 0xe,
2437 		.thresh62 = 28,
2438 		.papdRateMaskHt20 = LE32(0x0c80C080),
2439 		.papdRateMaskHt40 = LE32(0x0080C080),
2440 		.xlna_bias_strength = 0,
2441 		.futureModal = {
2442 			0, 0, 0, 0, 0, 0, 0,
2443 		},
2444 	 },
2445 	 .base_ext1 = {
2446 		.ant_div_control = 0,
2447 		.future = {0, 0, 0},
2448 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
2449 	 },
2450 	.calFreqPier2G = {
2451 		FREQ2FBIN(2412, 1),
2452 		FREQ2FBIN(2437, 1),
2453 		FREQ2FBIN(2462, 1),
2454 	 },
2455 	/* ar9300_cal_data_per_freq_op_loop 2g */
2456 	.calPierData2G = {
2457 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2458 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2459 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2460 	 },
2461 	.calTarget_freqbin_Cck = {
2462 		FREQ2FBIN(2412, 1),
2463 		FREQ2FBIN(2472, 1),
2464 	 },
2465 	.calTarget_freqbin_2G = {
2466 		FREQ2FBIN(2412, 1),
2467 		FREQ2FBIN(2437, 1),
2468 		FREQ2FBIN(2472, 1)
2469 	 },
2470 	.calTarget_freqbin_2GHT20 = {
2471 		FREQ2FBIN(2412, 1),
2472 		FREQ2FBIN(2437, 1),
2473 		FREQ2FBIN(2472, 1)
2474 	 },
2475 	.calTarget_freqbin_2GHT40 = {
2476 		FREQ2FBIN(2412, 1),
2477 		FREQ2FBIN(2437, 1),
2478 		FREQ2FBIN(2472, 1)
2479 	 },
2480 	.calTargetPowerCck = {
2481 		 /* 1L-5L,5S,11L,11S */
2482 		 { {34, 34, 34, 34} },
2483 		 { {34, 34, 34, 34} },
2484 	},
2485 	.calTargetPower2G = {
2486 		 /* 6-24,36,48,54 */
2487 		 { {34, 34, 32, 32} },
2488 		 { {34, 34, 32, 32} },
2489 		 { {34, 34, 32, 32} },
2490 	},
2491 	.calTargetPower2GHT20 = {
2492 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2493 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2494 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2495 	},
2496 	.calTargetPower2GHT40 = {
2497 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2498 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2499 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2500 	},
2501 	.ctlIndex_2G =  {
2502 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2503 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2504 	},
2505 	.ctl_freqbin_2G = {
2506 		{
2507 			FREQ2FBIN(2412, 1),
2508 			FREQ2FBIN(2417, 1),
2509 			FREQ2FBIN(2457, 1),
2510 			FREQ2FBIN(2462, 1)
2511 		},
2512 		{
2513 			FREQ2FBIN(2412, 1),
2514 			FREQ2FBIN(2417, 1),
2515 			FREQ2FBIN(2462, 1),
2516 			0xFF,
2517 		},
2518 
2519 		{
2520 			FREQ2FBIN(2412, 1),
2521 			FREQ2FBIN(2417, 1),
2522 			FREQ2FBIN(2462, 1),
2523 			0xFF,
2524 		},
2525 		{
2526 			FREQ2FBIN(2422, 1),
2527 			FREQ2FBIN(2427, 1),
2528 			FREQ2FBIN(2447, 1),
2529 			FREQ2FBIN(2452, 1)
2530 		},
2531 
2532 		{
2533 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2534 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2535 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2536 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2537 		},
2538 
2539 		{
2540 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2541 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2542 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2543 			0,
2544 		},
2545 
2546 		{
2547 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2548 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2549 			FREQ2FBIN(2472, 1),
2550 			0,
2551 		},
2552 
2553 		{
2554 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2555 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2556 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2557 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2558 		},
2559 
2560 		{
2561 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2562 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2563 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2564 		},
2565 
2566 		{
2567 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2568 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2569 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2570 			0
2571 		},
2572 
2573 		{
2574 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2575 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2576 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2577 			0
2578 		},
2579 
2580 		{
2581 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2582 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2583 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2584 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2585 		}
2586 	 },
2587 	.ctlPowerData_2G = {
2588 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2589 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2590 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2591 
2592 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2593 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2594 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2595 
2596 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2597 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2598 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2599 
2600 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2601 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2602 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2603 	 },
2604 	.modalHeader5G = {
2605 		/* 4 idle,t1,t2,b (4 bits per setting) */
2606 		.antCtrlCommon = LE32(0x220),
2607 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2608 		.antCtrlCommon2 = LE32(0x44444),
2609 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2610 		.antCtrlChain = {
2611 			LE16(0x150), LE16(0x150), LE16(0x150),
2612 		},
2613 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2614 		.xatten1DB = {0x19, 0x19, 0x19},
2615 
2616 		/*
2617 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2618 		 * for merlin (0xa20c/b20c 16:12
2619 		 */
2620 		.xatten1Margin = {0x14, 0x14, 0x14},
2621 		.tempSlope = 70,
2622 		.voltSlope = 0,
2623 		/* spurChans spur channels in usual fbin coding format */
2624 		.spurChans = {0, 0, 0, 0, 0},
2625 		/* noiseFloorThreshCh Check if the register is per chain */
2626 		.noiseFloorThreshCh = {-1, 0, 0},
2627 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2628 		.quick_drop = 0,
2629 		.xpaBiasLvl = 0,
2630 		.txFrameToDataStart = 0x0e,
2631 		.txFrameToPaOn = 0x0e,
2632 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2633 		.antennaGain = 0,
2634 		.switchSettling = 0x2d,
2635 		.adcDesiredSize = -30,
2636 		.txEndToXpaOff = 0,
2637 		.txEndToRxOn = 0x2,
2638 		.txFrameToXpaOn = 0xe,
2639 		.thresh62 = 28,
2640 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2641 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2642 		.xlna_bias_strength = 0,
2643 		.futureModal = {
2644 			0, 0, 0, 0, 0, 0, 0,
2645 		},
2646 	 },
2647 	.base_ext2 = {
2648 		.tempSlopeLow = 35,
2649 		.tempSlopeHigh = 50,
2650 		.xatten1DBLow = {0, 0, 0},
2651 		.xatten1MarginLow = {0, 0, 0},
2652 		.xatten1DBHigh = {0, 0, 0},
2653 		.xatten1MarginHigh = {0, 0, 0}
2654 	 },
2655 	.calFreqPier5G = {
2656 		FREQ2FBIN(5160, 0),
2657 		FREQ2FBIN(5220, 0),
2658 		FREQ2FBIN(5320, 0),
2659 		FREQ2FBIN(5400, 0),
2660 		FREQ2FBIN(5500, 0),
2661 		FREQ2FBIN(5600, 0),
2662 		FREQ2FBIN(5700, 0),
2663 		FREQ2FBIN(5785, 0)
2664 	},
2665 	.calPierData5G = {
2666 			{
2667 				{0, 0, 0, 0, 0},
2668 				{0, 0, 0, 0, 0},
2669 				{0, 0, 0, 0, 0},
2670 				{0, 0, 0, 0, 0},
2671 				{0, 0, 0, 0, 0},
2672 				{0, 0, 0, 0, 0},
2673 				{0, 0, 0, 0, 0},
2674 				{0, 0, 0, 0, 0},
2675 			},
2676 			{
2677 				{0, 0, 0, 0, 0},
2678 				{0, 0, 0, 0, 0},
2679 				{0, 0, 0, 0, 0},
2680 				{0, 0, 0, 0, 0},
2681 				{0, 0, 0, 0, 0},
2682 				{0, 0, 0, 0, 0},
2683 				{0, 0, 0, 0, 0},
2684 				{0, 0, 0, 0, 0},
2685 			},
2686 			{
2687 				{0, 0, 0, 0, 0},
2688 				{0, 0, 0, 0, 0},
2689 				{0, 0, 0, 0, 0},
2690 				{0, 0, 0, 0, 0},
2691 				{0, 0, 0, 0, 0},
2692 				{0, 0, 0, 0, 0},
2693 				{0, 0, 0, 0, 0},
2694 				{0, 0, 0, 0, 0},
2695 			},
2696 
2697 	},
2698 	.calTarget_freqbin_5G = {
2699 		FREQ2FBIN(5180, 0),
2700 		FREQ2FBIN(5240, 0),
2701 		FREQ2FBIN(5320, 0),
2702 		FREQ2FBIN(5400, 0),
2703 		FREQ2FBIN(5500, 0),
2704 		FREQ2FBIN(5600, 0),
2705 		FREQ2FBIN(5700, 0),
2706 		FREQ2FBIN(5825, 0)
2707 	},
2708 	.calTarget_freqbin_5GHT20 = {
2709 		FREQ2FBIN(5180, 0),
2710 		FREQ2FBIN(5240, 0),
2711 		FREQ2FBIN(5320, 0),
2712 		FREQ2FBIN(5400, 0),
2713 		FREQ2FBIN(5500, 0),
2714 		FREQ2FBIN(5700, 0),
2715 		FREQ2FBIN(5745, 0),
2716 		FREQ2FBIN(5825, 0)
2717 	},
2718 	.calTarget_freqbin_5GHT40 = {
2719 		FREQ2FBIN(5180, 0),
2720 		FREQ2FBIN(5240, 0),
2721 		FREQ2FBIN(5320, 0),
2722 		FREQ2FBIN(5400, 0),
2723 		FREQ2FBIN(5500, 0),
2724 		FREQ2FBIN(5700, 0),
2725 		FREQ2FBIN(5745, 0),
2726 		FREQ2FBIN(5825, 0)
2727 	 },
2728 	.calTargetPower5G = {
2729 		/* 6-24,36,48,54 */
2730 		{ {30, 30, 28, 24} },
2731 		{ {30, 30, 28, 24} },
2732 		{ {30, 30, 28, 24} },
2733 		{ {30, 30, 28, 24} },
2734 		{ {30, 30, 28, 24} },
2735 		{ {30, 30, 28, 24} },
2736 		{ {30, 30, 28, 24} },
2737 		{ {30, 30, 28, 24} },
2738 	 },
2739 	.calTargetPower5GHT20 = {
2740 		/*
2741 		 * 0_8_16,1-3_9-11_17-19,
2742 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2743 		 */
2744 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2745 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2746 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2747 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2748 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2749 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2750 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2751 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2752 	 },
2753 	.calTargetPower5GHT40 =  {
2754 		/*
2755 		 * 0_8_16,1-3_9-11_17-19,
2756 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2757 		 */
2758 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2759 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2760 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2761 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2762 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2763 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2764 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2765 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2766 	 },
2767 	.ctlIndex_5G =  {
2768 		0x10, 0x16, 0x18, 0x40, 0x46,
2769 		0x48, 0x30, 0x36, 0x38
2770 	},
2771 	.ctl_freqbin_5G =  {
2772 		{
2773 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2774 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2775 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2776 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2777 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2778 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2779 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2780 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2781 		},
2782 		{
2783 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2784 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2785 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2786 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2787 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2788 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2789 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2790 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2791 		},
2792 
2793 		{
2794 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2795 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2796 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2797 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2798 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2799 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2800 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2801 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2802 		},
2803 
2804 		{
2805 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2806 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2807 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2808 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2809 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2810 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2811 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
2812 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
2813 		},
2814 
2815 		{
2816 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2817 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2818 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2819 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2820 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
2821 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
2822 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
2823 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
2824 		},
2825 
2826 		{
2827 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2828 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2829 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2830 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2831 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2832 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2833 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
2834 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
2835 		},
2836 
2837 		{
2838 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2839 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2840 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2841 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2842 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2843 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2844 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2845 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2846 		},
2847 
2848 		{
2849 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2850 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2851 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2852 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2853 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2854 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2855 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2856 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2857 		},
2858 
2859 		{
2860 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2861 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2862 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2863 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2864 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2865 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2866 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2867 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2868 		}
2869 	 },
2870 	.ctlPowerData_5G = {
2871 		{
2872 			{
2873 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2874 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2875 			}
2876 		},
2877 		{
2878 			{
2879 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2880 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2881 			}
2882 		},
2883 		{
2884 			{
2885 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2886 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2887 			}
2888 		},
2889 		{
2890 			{
2891 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2892 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2893 			}
2894 		},
2895 		{
2896 			{
2897 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2898 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2899 			}
2900 		},
2901 		{
2902 			{
2903 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2904 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2905 			}
2906 		},
2907 		{
2908 			{
2909 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2910 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2911 			}
2912 		},
2913 		{
2914 			{
2915 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2916 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2917 			}
2918 		},
2919 		{
2920 			{
2921 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2922 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2923 			}
2924 		},
2925 	 }
2926 };
2927 
2928 
2929 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2930 	&ar9300_default,
2931 	&ar9300_x112,
2932 	&ar9300_h116,
2933 	&ar9300_h112,
2934 	&ar9300_x113,
2935 };
2936 
2937 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2938 {
2939 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2940 	int it;
2941 
2942 	for (it = 0; it < N_LOOP; it++)
2943 		if (ar9300_eep_templates[it]->templateVersion == id)
2944 			return ar9300_eep_templates[it];
2945 	return NULL;
2946 #undef N_LOOP
2947 }
2948 
2949 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2950 {
2951 	return 0;
2952 }
2953 
2954 static int interpolate(int x, int xa, int xb, int ya, int yb)
2955 {
2956 	int bf, factor, plus;
2957 
2958 	bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2959 	factor = bf / 2;
2960 	plus = bf % 2;
2961 	return ya + factor + plus;
2962 }
2963 
2964 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
2965 				      enum eeprom_param param)
2966 {
2967 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2968 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
2969 
2970 	switch (param) {
2971 	case EEP_MAC_LSW:
2972 		return get_unaligned_be16(eep->macAddr);
2973 	case EEP_MAC_MID:
2974 		return get_unaligned_be16(eep->macAddr + 2);
2975 	case EEP_MAC_MSW:
2976 		return get_unaligned_be16(eep->macAddr + 4);
2977 	case EEP_REG_0:
2978 		return le16_to_cpu(pBase->regDmn[0]);
2979 	case EEP_OP_CAP:
2980 		return pBase->deviceCap;
2981 	case EEP_OP_MODE:
2982 		return pBase->opCapFlags.opFlags;
2983 	case EEP_RF_SILENT:
2984 		return pBase->rfSilent;
2985 	case EEP_TX_MASK:
2986 		return (pBase->txrxMask >> 4) & 0xf;
2987 	case EEP_RX_MASK:
2988 		return pBase->txrxMask & 0xf;
2989 	case EEP_PAPRD:
2990 		return !!(pBase->featureEnable & BIT(5));
2991 	case EEP_CHAIN_MASK_REDUCE:
2992 		return (pBase->miscConfiguration >> 0x3) & 0x1;
2993 	case EEP_ANT_DIV_CTL1:
2994 		if (AR_SREV_9565(ah))
2995 			return AR9300_EEP_ANTDIV_CONTROL_DEFAULT_VALUE;
2996 		else
2997 			return eep->base_ext1.ant_div_control;
2998 	case EEP_ANTENNA_GAIN_5G:
2999 		return eep->modalHeader5G.antennaGain;
3000 	case EEP_ANTENNA_GAIN_2G:
3001 		return eep->modalHeader2G.antennaGain;
3002 	default:
3003 		return 0;
3004 	}
3005 }
3006 
3007 static bool ar9300_eeprom_read_byte(struct ath_hw *ah, int address,
3008 				    u8 *buffer)
3009 {
3010 	u16 val;
3011 
3012 	if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
3013 		return false;
3014 
3015 	*buffer = (val >> (8 * (address % 2))) & 0xff;
3016 	return true;
3017 }
3018 
3019 static bool ar9300_eeprom_read_word(struct ath_hw *ah, int address,
3020 				    u8 *buffer)
3021 {
3022 	u16 val;
3023 
3024 	if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
3025 		return false;
3026 
3027 	buffer[0] = val >> 8;
3028 	buffer[1] = val & 0xff;
3029 
3030 	return true;
3031 }
3032 
3033 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3034 			       int count)
3035 {
3036 	struct ath_common *common = ath9k_hw_common(ah);
3037 	int i;
3038 
3039 	if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3040 		ath_dbg(common, EEPROM, "eeprom address not in range\n");
3041 		return false;
3042 	}
3043 
3044 	/*
3045 	 * Since we're reading the bytes in reverse order from a little-endian
3046 	 * word stream, an even address means we only use the lower half of
3047 	 * the 16-bit word at that address
3048 	 */
3049 	if (address % 2 == 0) {
3050 		if (!ar9300_eeprom_read_byte(ah, address--, buffer++))
3051 			goto error;
3052 
3053 		count--;
3054 	}
3055 
3056 	for (i = 0; i < count / 2; i++) {
3057 		if (!ar9300_eeprom_read_word(ah, address, buffer))
3058 			goto error;
3059 
3060 		address -= 2;
3061 		buffer += 2;
3062 	}
3063 
3064 	if (count % 2)
3065 		if (!ar9300_eeprom_read_byte(ah, address, buffer))
3066 			goto error;
3067 
3068 	return true;
3069 
3070 error:
3071 	ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
3072 		address);
3073 	return false;
3074 }
3075 
3076 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3077 {
3078 	REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3079 
3080 	if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3081 			   AR9300_OTP_STATUS_VALID, 1000))
3082 		return false;
3083 
3084 	*data = REG_READ(ah, AR9300_OTP_READ_DATA);
3085 	return true;
3086 }
3087 
3088 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3089 			    int count)
3090 {
3091 	u32 data;
3092 	int i;
3093 
3094 	for (i = 0; i < count; i++) {
3095 		int offset = 8 * ((address - i) % 4);
3096 		if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3097 			return false;
3098 
3099 		buffer[i] = (data >> offset) & 0xff;
3100 	}
3101 
3102 	return true;
3103 }
3104 
3105 
3106 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3107 				   int *length, int *major, int *minor)
3108 {
3109 	unsigned long value[4];
3110 
3111 	value[0] = best[0];
3112 	value[1] = best[1];
3113 	value[2] = best[2];
3114 	value[3] = best[3];
3115 	*code = ((value[0] >> 5) & 0x0007);
3116 	*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3117 	*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3118 	*major = (value[2] & 0x000f);
3119 	*minor = (value[3] & 0x00ff);
3120 }
3121 
3122 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3123 {
3124 	int it, checksum = 0;
3125 
3126 	for (it = 0; it < dsize; it++) {
3127 		checksum += data[it];
3128 		checksum &= 0xffff;
3129 	}
3130 
3131 	return checksum;
3132 }
3133 
3134 static bool ar9300_uncompress_block(struct ath_hw *ah,
3135 				    u8 *mptr,
3136 				    int mdataSize,
3137 				    u8 *block,
3138 				    int size)
3139 {
3140 	int it;
3141 	int spot;
3142 	int offset;
3143 	int length;
3144 	struct ath_common *common = ath9k_hw_common(ah);
3145 
3146 	spot = 0;
3147 
3148 	for (it = 0; it < size; it += (length+2)) {
3149 		offset = block[it];
3150 		offset &= 0xff;
3151 		spot += offset;
3152 		length = block[it+1];
3153 		length &= 0xff;
3154 
3155 		if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3156 			ath_dbg(common, EEPROM,
3157 				"Restore at %d: spot=%d offset=%d length=%d\n",
3158 				it, spot, offset, length);
3159 			memcpy(&mptr[spot], &block[it+2], length);
3160 			spot += length;
3161 		} else if (length > 0) {
3162 			ath_dbg(common, EEPROM,
3163 				"Bad restore at %d: spot=%d offset=%d length=%d\n",
3164 				it, spot, offset, length);
3165 			return false;
3166 		}
3167 	}
3168 	return true;
3169 }
3170 
3171 static int ar9300_compress_decision(struct ath_hw *ah,
3172 				    int it,
3173 				    int code,
3174 				    int reference,
3175 				    u8 *mptr,
3176 				    u8 *word, int length, int mdata_size)
3177 {
3178 	struct ath_common *common = ath9k_hw_common(ah);
3179 	const struct ar9300_eeprom *eep = NULL;
3180 
3181 	switch (code) {
3182 	case _CompressNone:
3183 		if (length != mdata_size) {
3184 			ath_dbg(common, EEPROM,
3185 				"EEPROM structure size mismatch memory=%d eeprom=%d\n",
3186 				mdata_size, length);
3187 			return -1;
3188 		}
3189 		memcpy(mptr, word + COMP_HDR_LEN, length);
3190 		ath_dbg(common, EEPROM,
3191 			"restored eeprom %d: uncompressed, length %d\n",
3192 			it, length);
3193 		break;
3194 	case _CompressBlock:
3195 		if (reference == 0) {
3196 		} else {
3197 			eep = ar9003_eeprom_struct_find_by_id(reference);
3198 			if (eep == NULL) {
3199 				ath_dbg(common, EEPROM,
3200 					"can't find reference eeprom struct %d\n",
3201 					reference);
3202 				return -1;
3203 			}
3204 			memcpy(mptr, eep, mdata_size);
3205 		}
3206 		ath_dbg(common, EEPROM,
3207 			"restore eeprom %d: block, reference %d, length %d\n",
3208 			it, reference, length);
3209 		ar9300_uncompress_block(ah, mptr, mdata_size,
3210 					(word + COMP_HDR_LEN), length);
3211 		break;
3212 	default:
3213 		ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
3214 		return -1;
3215 	}
3216 	return 0;
3217 }
3218 
3219 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3220 			       int count);
3221 
3222 static bool ar9300_check_header(void *data)
3223 {
3224 	u32 *word = data;
3225 	return !(*word == 0 || *word == ~0);
3226 }
3227 
3228 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3229 				       int base_addr)
3230 {
3231 	u8 header[4];
3232 
3233 	if (!read(ah, base_addr, header, 4))
3234 		return false;
3235 
3236 	return ar9300_check_header(header);
3237 }
3238 
3239 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3240 				       int mdata_size)
3241 {
3242 	u16 *data = (u16 *) mptr;
3243 	int i;
3244 
3245 	for (i = 0; i < mdata_size / 2; i++, data++)
3246 		ath9k_hw_nvram_read(ah, i, data);
3247 
3248 	return 0;
3249 }
3250 /*
3251  * Read the configuration data from the eeprom.
3252  * The data can be put in any specified memory buffer.
3253  *
3254  * Returns -1 on error.
3255  * Returns address of next memory location on success.
3256  */
3257 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3258 					  u8 *mptr, int mdata_size)
3259 {
3260 #define MDEFAULT 15
3261 #define MSTATE 100
3262 	int cptr;
3263 	u8 *word;
3264 	int code;
3265 	int reference, length, major, minor;
3266 	int osize;
3267 	int it;
3268 	u16 checksum, mchecksum;
3269 	struct ath_common *common = ath9k_hw_common(ah);
3270 	struct ar9300_eeprom *eep;
3271 	eeprom_read_op read;
3272 
3273 	if (ath9k_hw_use_flash(ah)) {
3274 		u8 txrx;
3275 
3276 		ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3277 
3278 		/* check if eeprom contains valid data */
3279 		eep = (struct ar9300_eeprom *) mptr;
3280 		txrx = eep->baseEepHeader.txrxMask;
3281 		if (txrx != 0 && txrx != 0xff)
3282 			return 0;
3283 	}
3284 
3285 	word = kzalloc(2048, GFP_KERNEL);
3286 	if (!word)
3287 		return -ENOMEM;
3288 
3289 	memcpy(mptr, &ar9300_default, mdata_size);
3290 
3291 	read = ar9300_read_eeprom;
3292 	if (AR_SREV_9485(ah))
3293 		cptr = AR9300_BASE_ADDR_4K;
3294 	else if (AR_SREV_9330(ah))
3295 		cptr = AR9300_BASE_ADDR_512;
3296 	else
3297 		cptr = AR9300_BASE_ADDR;
3298 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3299 		cptr);
3300 	if (ar9300_check_eeprom_header(ah, read, cptr))
3301 		goto found;
3302 
3303 	cptr = AR9300_BASE_ADDR_512;
3304 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3305 		cptr);
3306 	if (ar9300_check_eeprom_header(ah, read, cptr))
3307 		goto found;
3308 
3309 	read = ar9300_read_otp;
3310 	cptr = AR9300_BASE_ADDR;
3311 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3312 	if (ar9300_check_eeprom_header(ah, read, cptr))
3313 		goto found;
3314 
3315 	cptr = AR9300_BASE_ADDR_512;
3316 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3317 	if (ar9300_check_eeprom_header(ah, read, cptr))
3318 		goto found;
3319 
3320 	goto fail;
3321 
3322 found:
3323 	ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
3324 
3325 	for (it = 0; it < MSTATE; it++) {
3326 		if (!read(ah, cptr, word, COMP_HDR_LEN))
3327 			goto fail;
3328 
3329 		if (!ar9300_check_header(word))
3330 			break;
3331 
3332 		ar9300_comp_hdr_unpack(word, &code, &reference,
3333 				       &length, &major, &minor);
3334 		ath_dbg(common, EEPROM,
3335 			"Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3336 			cptr, code, reference, length, major, minor);
3337 		if ((!AR_SREV_9485(ah) && length >= 1024) ||
3338 		    (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3339 			ath_dbg(common, EEPROM, "Skipping bad header\n");
3340 			cptr -= COMP_HDR_LEN;
3341 			continue;
3342 		}
3343 
3344 		osize = length;
3345 		read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3346 		checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3347 		mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3348 		ath_dbg(common, EEPROM, "checksum %x %x\n",
3349 			checksum, mchecksum);
3350 		if (checksum == mchecksum) {
3351 			ar9300_compress_decision(ah, it, code, reference, mptr,
3352 						 word, length, mdata_size);
3353 		} else {
3354 			ath_dbg(common, EEPROM,
3355 				"skipping block with bad checksum\n");
3356 		}
3357 		cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3358 	}
3359 
3360 	kfree(word);
3361 	return cptr;
3362 
3363 fail:
3364 	kfree(word);
3365 	return -1;
3366 }
3367 
3368 /*
3369  * Restore the configuration structure by reading the eeprom.
3370  * This function destroys any existing in-memory structure
3371  * content.
3372  */
3373 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3374 {
3375 	u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3376 
3377 	if (ar9300_eeprom_restore_internal(ah, mptr,
3378 			sizeof(struct ar9300_eeprom)) < 0)
3379 		return false;
3380 
3381 	return true;
3382 }
3383 
3384 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
3385 static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
3386 				    struct ar9300_modal_eep_header *modal_hdr)
3387 {
3388 	PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
3389 	PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
3390 	PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
3391 	PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
3392 	PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
3393 	PR_EEP("Ant. Gain", modal_hdr->antennaGain);
3394 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
3395 	PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
3396 	PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
3397 	PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
3398 	PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
3399 	PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
3400 	PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
3401 	PR_EEP("Temp Slope", modal_hdr->tempSlope);
3402 	PR_EEP("Volt Slope", modal_hdr->voltSlope);
3403 	PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
3404 	PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
3405 	PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
3406 	PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
3407 	PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
3408 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
3409 	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
3410 	PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3411 	PR_EEP("Quick Drop", modal_hdr->quick_drop);
3412 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
3413 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
3414 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
3415 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
3416 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
3417 	PR_EEP("txClip", modal_hdr->txClip);
3418 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
3419 
3420 	return len;
3421 }
3422 
3423 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3424 				       u8 *buf, u32 len, u32 size)
3425 {
3426 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3427 	struct ar9300_base_eep_hdr *pBase;
3428 
3429 	if (!dump_base_hdr) {
3430 		len += scnprintf(buf + len, size - len,
3431 				 "%20s :\n", "2GHz modal Header");
3432 		len = ar9003_dump_modal_eeprom(buf, len, size,
3433 						&eep->modalHeader2G);
3434 		len += scnprintf(buf + len, size - len,
3435 				 "%20s :\n", "5GHz modal Header");
3436 		len = ar9003_dump_modal_eeprom(buf, len, size,
3437 						&eep->modalHeader5G);
3438 		goto out;
3439 	}
3440 
3441 	pBase = &eep->baseEepHeader;
3442 
3443 	PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
3444 	PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
3445 	PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
3446 	PR_EEP("TX Mask", (pBase->txrxMask >> 4));
3447 	PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
3448 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
3449 				AR5416_OPFLAGS_11A));
3450 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
3451 				AR5416_OPFLAGS_11G));
3452 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
3453 					AR5416_OPFLAGS_N_2G_HT20));
3454 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
3455 					AR5416_OPFLAGS_N_2G_HT40));
3456 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
3457 					AR5416_OPFLAGS_N_5G_HT20));
3458 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
3459 					AR5416_OPFLAGS_N_5G_HT40));
3460 	PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc & 0x01));
3461 	PR_EEP("RF Silent", pBase->rfSilent);
3462 	PR_EEP("BT option", pBase->blueToothOptions);
3463 	PR_EEP("Device Cap", pBase->deviceCap);
3464 	PR_EEP("Device Type", pBase->deviceType);
3465 	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
3466 	PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
3467 	PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
3468 	PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
3469 	PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
3470 	PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
3471 	PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
3472 	PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
3473 	PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
3474 	PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3475 	PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
3476 	PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
3477 	PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
3478 	PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
3479 	PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
3480 	PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
3481 	PR_EEP("Tx Gain", pBase->txrxgain >> 4);
3482 	PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
3483 	PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
3484 
3485 	len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
3486 			 ah->eeprom.ar9300_eep.macAddr);
3487 out:
3488 	if (len > size)
3489 		len = size;
3490 
3491 	return len;
3492 }
3493 #else
3494 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3495 				       u8 *buf, u32 len, u32 size)
3496 {
3497 	return 0;
3498 }
3499 #endif
3500 
3501 /* XXX: review hardware docs */
3502 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3503 {
3504 	return ah->eeprom.ar9300_eep.eepromVersion;
3505 }
3506 
3507 /* XXX: could be read from the eepromVersion, not sure yet */
3508 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3509 {
3510 	return 0;
3511 }
3512 
3513 static struct ar9300_modal_eep_header *ar9003_modal_header(struct ath_hw *ah,
3514 							   bool is2ghz)
3515 {
3516 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3517 
3518 	if (is2ghz)
3519 		return &eep->modalHeader2G;
3520 	else
3521 		return &eep->modalHeader5G;
3522 }
3523 
3524 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3525 {
3526 	int bias = ar9003_modal_header(ah, is2ghz)->xpaBiasLvl;
3527 
3528 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3529 		REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3530 	else if (AR_SREV_9462(ah) || AR_SREV_9550(ah) || AR_SREV_9565(ah))
3531 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3532 	else {
3533 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3534 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3535 				AR_CH0_THERM_XPABIASLVL_MSB,
3536 				bias >> 2);
3537 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3538 				AR_CH0_THERM_XPASHORT2GND, 1);
3539 	}
3540 }
3541 
3542 static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is2ghz)
3543 {
3544 	return le16_to_cpu(ar9003_modal_header(ah, is2ghz)->switchcomspdt);
3545 }
3546 
3547 u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3548 {
3549 	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon);
3550 }
3551 
3552 u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3553 {
3554 	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon2);
3555 }
3556 
3557 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah, int chain,
3558 					bool is2ghz)
3559 {
3560 	__le16 val = ar9003_modal_header(ah, is2ghz)->antCtrlChain[chain];
3561 	return le16_to_cpu(val);
3562 }
3563 
3564 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3565 {
3566 	struct ath_common *common = ath9k_hw_common(ah);
3567 	struct ath9k_hw_capabilities *pCap = &ah->caps;
3568 	int chain;
3569 	u32 regval, value, gpio;
3570 	static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3571 			AR_PHY_SWITCH_CHAIN_0,
3572 			AR_PHY_SWITCH_CHAIN_1,
3573 			AR_PHY_SWITCH_CHAIN_2,
3574 	};
3575 
3576 	if (AR_SREV_9485(ah) && (ar9003_hw_get_rx_gain_idx(ah) == 0)) {
3577 		if (ah->config.xlna_gpio)
3578 			gpio = ah->config.xlna_gpio;
3579 		else
3580 			gpio = AR9300_EXT_LNA_CTL_GPIO_AR9485;
3581 
3582 		ath9k_hw_cfg_output(ah, gpio,
3583 				    AR_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED);
3584 	}
3585 
3586 	value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3587 
3588 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3589 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3590 				AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3591 	} else if (AR_SREV_9550(ah)) {
3592 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3593 				AR_SWITCH_TABLE_COM_AR9550_ALL, value);
3594 	} else
3595 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3596 			      AR_SWITCH_TABLE_COM_ALL, value);
3597 
3598 
3599 	/*
3600 	 *   AR9462 defines new switch table for BT/WLAN,
3601 	 *       here's new field name in XXX.ref for both 2G and 5G.
3602 	 *   Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3603 	 *   15:12   R/W     SWITCH_TABLE_COM_SPDT_WLAN_RX
3604 	 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3605 	 *
3606 	 *   11:8     R/W     SWITCH_TABLE_COM_SPDT_WLAN_TX
3607 	 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3608 	 *
3609 	 *   7:4 R/W  SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3610 	 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3611 	 */
3612 	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565(ah)) {
3613 		value = ar9003_switch_com_spdt_get(ah, is2ghz);
3614 		REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
3615 				AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3616 		REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE);
3617 	}
3618 
3619 	value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3620 	if (AR_SREV_9485(ah) && common->bt_ant_diversity) {
3621 		value &= ~AR_SWITCH_TABLE_COM2_ALL;
3622 		value |= ah->config.ant_ctrl_comm2g_switch_enable;
3623 
3624 	}
3625 	REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3626 
3627 	if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
3628 		value = ar9003_hw_ant_ctrl_chain_get(ah, 1, is2ghz);
3629 		REG_RMW_FIELD(ah, switch_chain_reg[0],
3630 			      AR_SWITCH_TABLE_ALL, value);
3631 	}
3632 
3633 	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3634 		if ((ah->rxchainmask & BIT(chain)) ||
3635 		    (ah->txchainmask & BIT(chain))) {
3636 			value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3637 							     is2ghz);
3638 			REG_RMW_FIELD(ah, switch_chain_reg[chain],
3639 				      AR_SWITCH_TABLE_ALL, value);
3640 		}
3641 	}
3642 
3643 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
3644 		value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3645 		/*
3646 		 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3647 		 * are the fields present
3648 		 */
3649 		regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3650 		regval &= (~AR_ANT_DIV_CTRL_ALL);
3651 		regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3652 		/* enable_lnadiv */
3653 		regval &= (~AR_PHY_ANT_DIV_LNADIV);
3654 		regval |= ((value >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S;
3655 
3656 		if (AR_SREV_9485(ah) && common->bt_ant_diversity)
3657 			regval |= AR_ANT_DIV_ENABLE;
3658 
3659 		if (AR_SREV_9565(ah)) {
3660 			if (common->bt_ant_diversity) {
3661 				regval |= (1 << AR_PHY_ANT_SW_RX_PROT_S);
3662 
3663 				REG_SET_BIT(ah, AR_PHY_RESTART,
3664 					    AR_PHY_RESTART_ENABLE_DIV_M2FLAG);
3665 
3666 				/* Force WLAN LNA diversity ON */
3667 				REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV,
3668 					    AR_BTCOEX_WL_LNADIV_FORCE_ON);
3669 			} else {
3670 				regval &= ~(1 << AR_PHY_ANT_DIV_LNADIV_S);
3671 				regval &= ~(1 << AR_PHY_ANT_SW_RX_PROT_S);
3672 
3673 				REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL,
3674 					    (1 << AR_PHY_ANT_SW_RX_PROT_S));
3675 
3676 				/* Force WLAN LNA diversity OFF */
3677 				REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV,
3678 					    AR_BTCOEX_WL_LNADIV_FORCE_ON);
3679 			}
3680 		}
3681 
3682 		REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3683 
3684 		/* enable fast_div */
3685 		regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3686 		regval &= (~AR_FAST_DIV_ENABLE);
3687 		regval |= ((value >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S;
3688 
3689 		if ((AR_SREV_9485(ah) || AR_SREV_9565(ah))
3690 		    && common->bt_ant_diversity)
3691 			regval |= AR_FAST_DIV_ENABLE;
3692 
3693 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3694 
3695 		if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
3696 			regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3697 			/*
3698 			 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3699 			 * main_tb, alt_tb
3700 			 */
3701 			regval &= (~(AR_PHY_ANT_DIV_MAIN_LNACONF |
3702 				     AR_PHY_ANT_DIV_ALT_LNACONF |
3703 				     AR_PHY_ANT_DIV_ALT_GAINTB |
3704 				     AR_PHY_ANT_DIV_MAIN_GAINTB));
3705 			/* by default use LNA1 for the main antenna */
3706 			regval |= (ATH_ANT_DIV_COMB_LNA1 <<
3707 				   AR_PHY_ANT_DIV_MAIN_LNACONF_S);
3708 			regval |= (ATH_ANT_DIV_COMB_LNA2 <<
3709 				   AR_PHY_ANT_DIV_ALT_LNACONF_S);
3710 			REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3711 		}
3712 	}
3713 }
3714 
3715 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3716 {
3717 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3718 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3719 	int drive_strength;
3720 	unsigned long reg;
3721 
3722 	drive_strength = pBase->miscConfiguration & BIT(0);
3723 	if (!drive_strength)
3724 		return;
3725 
3726 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3727 	reg &= ~0x00ffffc0;
3728 	reg |= 0x5 << 21;
3729 	reg |= 0x5 << 18;
3730 	reg |= 0x5 << 15;
3731 	reg |= 0x5 << 12;
3732 	reg |= 0x5 << 9;
3733 	reg |= 0x5 << 6;
3734 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3735 
3736 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3737 	reg &= ~0xffffffe0;
3738 	reg |= 0x5 << 29;
3739 	reg |= 0x5 << 26;
3740 	reg |= 0x5 << 23;
3741 	reg |= 0x5 << 20;
3742 	reg |= 0x5 << 17;
3743 	reg |= 0x5 << 14;
3744 	reg |= 0x5 << 11;
3745 	reg |= 0x5 << 8;
3746 	reg |= 0x5 << 5;
3747 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3748 
3749 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3750 	reg &= ~0xff800000;
3751 	reg |= 0x5 << 29;
3752 	reg |= 0x5 << 26;
3753 	reg |= 0x5 << 23;
3754 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3755 }
3756 
3757 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3758 				     struct ath9k_channel *chan)
3759 {
3760 	int f[3], t[3];
3761 	u16 value;
3762 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3763 
3764 	if (chain >= 0 && chain < 3) {
3765 		if (IS_CHAN_2GHZ(chan))
3766 			return eep->modalHeader2G.xatten1DB[chain];
3767 		else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3768 			t[0] = eep->base_ext2.xatten1DBLow[chain];
3769 			f[0] = 5180;
3770 			t[1] = eep->modalHeader5G.xatten1DB[chain];
3771 			f[1] = 5500;
3772 			t[2] = eep->base_ext2.xatten1DBHigh[chain];
3773 			f[2] = 5785;
3774 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3775 							    f, t, 3);
3776 			return value;
3777 		} else
3778 			return eep->modalHeader5G.xatten1DB[chain];
3779 	}
3780 
3781 	return 0;
3782 }
3783 
3784 
3785 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3786 					    struct ath9k_channel *chan)
3787 {
3788 	int f[3], t[3];
3789 	u16 value;
3790 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3791 
3792 	if (chain >= 0 && chain < 3) {
3793 		if (IS_CHAN_2GHZ(chan))
3794 			return eep->modalHeader2G.xatten1Margin[chain];
3795 		else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3796 			t[0] = eep->base_ext2.xatten1MarginLow[chain];
3797 			f[0] = 5180;
3798 			t[1] = eep->modalHeader5G.xatten1Margin[chain];
3799 			f[1] = 5500;
3800 			t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3801 			f[2] = 5785;
3802 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3803 							    f, t, 3);
3804 			return value;
3805 		} else
3806 			return eep->modalHeader5G.xatten1Margin[chain];
3807 	}
3808 
3809 	return 0;
3810 }
3811 
3812 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3813 {
3814 	int i;
3815 	u16 value;
3816 	unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3817 					  AR_PHY_EXT_ATTEN_CTL_1,
3818 					  AR_PHY_EXT_ATTEN_CTL_2,
3819 					 };
3820 
3821 	if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
3822 		value = ar9003_hw_atten_chain_get(ah, 1, chan);
3823 		REG_RMW_FIELD(ah, ext_atten_reg[0],
3824 			      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3825 
3826 		value = ar9003_hw_atten_chain_get_margin(ah, 1, chan);
3827 		REG_RMW_FIELD(ah, ext_atten_reg[0],
3828 			      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3829 			      value);
3830 	}
3831 
3832 	/* Test value. if 0 then attenuation is unused. Don't load anything. */
3833 	for (i = 0; i < 3; i++) {
3834 		if (ah->txchainmask & BIT(i)) {
3835 			value = ar9003_hw_atten_chain_get(ah, i, chan);
3836 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3837 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3838 
3839 			if (AR_SREV_9485(ah) &&
3840 			    (ar9003_hw_get_rx_gain_idx(ah) == 0) &&
3841 			    ah->config.xatten_margin_cfg)
3842 				value = 5;
3843 			else
3844 				value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3845 
3846 			if (ah->config.alt_mingainidx)
3847 				REG_RMW_FIELD(ah, AR_PHY_EXT_ATTEN_CTL_0,
3848 					      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3849 					      value);
3850 
3851 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3852 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3853 				      value);
3854 		}
3855 	}
3856 }
3857 
3858 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3859 {
3860 	int timeout = 100;
3861 
3862 	while (pmu_set != REG_READ(ah, pmu_reg)) {
3863 		if (timeout-- == 0)
3864 			return false;
3865 		REG_WRITE(ah, pmu_reg, pmu_set);
3866 		udelay(10);
3867 	}
3868 
3869 	return true;
3870 }
3871 
3872 void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3873 {
3874 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3875 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3876 	u32 reg_val;
3877 
3878 	if (pBase->featureEnable & BIT(4)) {
3879 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3880 			int reg_pmu_set;
3881 
3882 			reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3883 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3884 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3885 				return;
3886 
3887 			if (AR_SREV_9330(ah)) {
3888 				if (ah->is_clk_25mhz) {
3889 					reg_pmu_set = (3 << 1) | (8 << 4) |
3890 						      (3 << 8) | (1 << 14) |
3891 						      (6 << 17) | (1 << 20) |
3892 						      (3 << 24);
3893 				} else {
3894 					reg_pmu_set = (4 << 1)  | (7 << 4) |
3895 						      (3 << 8)  | (1 << 14) |
3896 						      (6 << 17) | (1 << 20) |
3897 						      (3 << 24);
3898 				}
3899 			} else {
3900 				reg_pmu_set = (5 << 1) | (7 << 4) |
3901 					      (2 << 8) | (2 << 14) |
3902 					      (6 << 17) | (1 << 20) |
3903 					      (3 << 24) | (1 << 28);
3904 			}
3905 
3906 			REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3907 			if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3908 				return;
3909 
3910 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3911 					| (4 << 26);
3912 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3913 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3914 				return;
3915 
3916 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3917 					| (1 << 21);
3918 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3919 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3920 				return;
3921 		} else if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3922 			reg_val = le32_to_cpu(pBase->swreg);
3923 			REG_WRITE(ah, AR_PHY_PMU1, reg_val);
3924 		} else {
3925 			/* Internal regulator is ON. Write swreg register. */
3926 			reg_val = le32_to_cpu(pBase->swreg);
3927 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3928 				  REG_READ(ah, AR_RTC_REG_CONTROL1) &
3929 				  (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3930 			REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
3931 			/* Set REG_CONTROL1.SWREG_PROGRAM */
3932 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3933 				  REG_READ(ah,
3934 					   AR_RTC_REG_CONTROL1) |
3935 					   AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3936 		}
3937 	} else {
3938 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3939 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3940 			while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3941 						AR_PHY_PMU2_PGM))
3942 				udelay(10);
3943 
3944 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3945 			while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3946 						AR_PHY_PMU1_PWD))
3947 				udelay(10);
3948 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3949 			while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3950 						AR_PHY_PMU2_PGM))
3951 				udelay(10);
3952 		} else if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
3953 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3954 		else {
3955 			reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
3956 				AR_RTC_FORCE_SWREG_PRD;
3957 			REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
3958 		}
3959 	}
3960 
3961 }
3962 
3963 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3964 {
3965 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3966 	u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3967 
3968 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3969 		return;
3970 
3971 	if (eep->baseEepHeader.featureEnable & 0x40) {
3972 		tuning_caps_param &= 0x7f;
3973 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3974 			      tuning_caps_param);
3975 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3976 			      tuning_caps_param);
3977 	}
3978 }
3979 
3980 static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
3981 {
3982 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3983 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3984 	int quick_drop;
3985 	s32 t[3], f[3] = {5180, 5500, 5785};
3986 
3987 	if (!(pBase->miscConfiguration & BIT(4)))
3988 		return;
3989 
3990 	if (AR_SREV_9300(ah) || AR_SREV_9580(ah) || AR_SREV_9340(ah)) {
3991 		if (freq < 4000) {
3992 			quick_drop = eep->modalHeader2G.quick_drop;
3993 		} else {
3994 			t[0] = eep->base_ext1.quick_drop_low;
3995 			t[1] = eep->modalHeader5G.quick_drop;
3996 			t[2] = eep->base_ext1.quick_drop_high;
3997 			quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
3998 		}
3999 		REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
4000 	}
4001 }
4002 
4003 static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, bool is2ghz)
4004 {
4005 	u32 value;
4006 
4007 	value = ar9003_modal_header(ah, is2ghz)->txEndToXpaOff;
4008 
4009 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4010 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
4011 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4012 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
4013 }
4014 
4015 static void ar9003_hw_xpa_timing_control_apply(struct ath_hw *ah, bool is2ghz)
4016 {
4017 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4018 	u8 xpa_ctl;
4019 
4020 	if (!(eep->baseEepHeader.featureEnable & 0x80))
4021 		return;
4022 
4023 	if (!AR_SREV_9300(ah) && !AR_SREV_9340(ah) && !AR_SREV_9580(ah))
4024 		return;
4025 
4026 	xpa_ctl = ar9003_modal_header(ah, is2ghz)->txFrameToXpaOn;
4027 	if (is2ghz)
4028 		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4029 			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON, xpa_ctl);
4030 	else
4031 		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4032 			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON, xpa_ctl);
4033 }
4034 
4035 static void ar9003_hw_xlna_bias_strength_apply(struct ath_hw *ah, bool is2ghz)
4036 {
4037 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4038 	u8 bias;
4039 
4040 	if (!(eep->baseEepHeader.miscConfiguration & 0x40))
4041 		return;
4042 
4043 	if (!AR_SREV_9300(ah))
4044 		return;
4045 
4046 	bias = ar9003_modal_header(ah, is2ghz)->xlna_bias_strength;
4047 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4048 		      bias & 0x3);
4049 	bias >>= 2;
4050 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4051 		      bias & 0x3);
4052 	bias >>= 2;
4053 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4054 		      bias & 0x3);
4055 }
4056 
4057 static int ar9003_hw_get_thermometer(struct ath_hw *ah)
4058 {
4059 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4060 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
4061 	int thermometer =  (pBase->miscConfiguration >> 1) & 0x3;
4062 
4063 	return --thermometer;
4064 }
4065 
4066 static void ar9003_hw_thermometer_apply(struct ath_hw *ah)
4067 {
4068 	int thermometer = ar9003_hw_get_thermometer(ah);
4069 	u8 therm_on = (thermometer < 0) ? 0 : 1;
4070 
4071 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4072 		      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4073 	if (ah->caps.tx_chainmask & BIT(1))
4074 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4075 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4076 	if (ah->caps.tx_chainmask & BIT(2))
4077 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4078 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4079 
4080 	therm_on = (thermometer < 0) ? 0 : (thermometer == 0);
4081 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4082 		      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4083 	if (ah->caps.tx_chainmask & BIT(1)) {
4084 		therm_on = (thermometer < 0) ? 0 : (thermometer == 1);
4085 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4086 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4087 	}
4088 	if (ah->caps.tx_chainmask & BIT(2)) {
4089 		therm_on = (thermometer < 0) ? 0 : (thermometer == 2);
4090 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4091 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4092 	}
4093 }
4094 
4095 static void ar9003_hw_thermo_cal_apply(struct ath_hw *ah)
4096 {
4097 	u32 data, ko, kg;
4098 
4099 	if (!AR_SREV_9462_20_OR_LATER(ah))
4100 		return;
4101 
4102 	ar9300_otp_read_word(ah, 1, &data);
4103 	ko = data & 0xff;
4104 	kg = (data >> 8) & 0xff;
4105 	if (ko || kg) {
4106 		REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4107 			      AR_PHY_BB_THERM_ADC_3_THERM_ADC_OFFSET, ko);
4108 		REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4109 			      AR_PHY_BB_THERM_ADC_3_THERM_ADC_SCALE_GAIN,
4110 			      kg + 256);
4111 	}
4112 }
4113 
4114 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
4115 					     struct ath9k_channel *chan)
4116 {
4117 	bool is2ghz = IS_CHAN_2GHZ(chan);
4118 	ar9003_hw_xpa_timing_control_apply(ah, is2ghz);
4119 	ar9003_hw_xpa_bias_level_apply(ah, is2ghz);
4120 	ar9003_hw_ant_ctrl_apply(ah, is2ghz);
4121 	ar9003_hw_drive_strength_apply(ah);
4122 	ar9003_hw_xlna_bias_strength_apply(ah, is2ghz);
4123 	ar9003_hw_atten_apply(ah, chan);
4124 	ar9003_hw_quick_drop_apply(ah, chan->channel);
4125 	if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) && !AR_SREV_9550(ah))
4126 		ar9003_hw_internal_regulator_apply(ah);
4127 	ar9003_hw_apply_tuning_caps(ah);
4128 	ar9003_hw_txend_to_xpa_off_apply(ah, is2ghz);
4129 	ar9003_hw_thermometer_apply(ah);
4130 	ar9003_hw_thermo_cal_apply(ah);
4131 }
4132 
4133 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
4134 				      struct ath9k_channel *chan)
4135 {
4136 }
4137 
4138 /*
4139  * Returns the interpolated y value corresponding to the specified x value
4140  * from the np ordered pairs of data (px,py).
4141  * The pairs do not have to be in any order.
4142  * If the specified x value is less than any of the px,
4143  * the returned y value is equal to the py for the lowest px.
4144  * If the specified x value is greater than any of the px,
4145  * the returned y value is equal to the py for the highest px.
4146  */
4147 static int ar9003_hw_power_interpolate(int32_t x,
4148 				       int32_t *px, int32_t *py, u_int16_t np)
4149 {
4150 	int ip = 0;
4151 	int lx = 0, ly = 0, lhave = 0;
4152 	int hx = 0, hy = 0, hhave = 0;
4153 	int dx = 0;
4154 	int y = 0;
4155 
4156 	lhave = 0;
4157 	hhave = 0;
4158 
4159 	/* identify best lower and higher x calibration measurement */
4160 	for (ip = 0; ip < np; ip++) {
4161 		dx = x - px[ip];
4162 
4163 		/* this measurement is higher than our desired x */
4164 		if (dx <= 0) {
4165 			if (!hhave || dx > (x - hx)) {
4166 				/* new best higher x measurement */
4167 				hx = px[ip];
4168 				hy = py[ip];
4169 				hhave = 1;
4170 			}
4171 		}
4172 		/* this measurement is lower than our desired x */
4173 		if (dx >= 0) {
4174 			if (!lhave || dx < (x - lx)) {
4175 				/* new best lower x measurement */
4176 				lx = px[ip];
4177 				ly = py[ip];
4178 				lhave = 1;
4179 			}
4180 		}
4181 	}
4182 
4183 	/* the low x is good */
4184 	if (lhave) {
4185 		/* so is the high x */
4186 		if (hhave) {
4187 			/* they're the same, so just pick one */
4188 			if (hx == lx)
4189 				y = ly;
4190 			else	/* interpolate  */
4191 				y = interpolate(x, lx, hx, ly, hy);
4192 		} else		/* only low is good, use it */
4193 			y = ly;
4194 	} else if (hhave)	/* only high is good, use it */
4195 		y = hy;
4196 	else /* nothing is good,this should never happen unless np=0, ???? */
4197 		y = -(1 << 30);
4198 	return y;
4199 }
4200 
4201 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
4202 				       u16 rateIndex, u16 freq, bool is2GHz)
4203 {
4204 	u16 numPiers, i;
4205 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4206 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4207 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4208 	struct cal_tgt_pow_legacy *pEepromTargetPwr;
4209 	u8 *pFreqBin;
4210 
4211 	if (is2GHz) {
4212 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4213 		pEepromTargetPwr = eep->calTargetPower2G;
4214 		pFreqBin = eep->calTarget_freqbin_2G;
4215 	} else {
4216 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4217 		pEepromTargetPwr = eep->calTargetPower5G;
4218 		pFreqBin = eep->calTarget_freqbin_5G;
4219 	}
4220 
4221 	/*
4222 	 * create array of channels and targetpower from
4223 	 * targetpower piers stored on eeprom
4224 	 */
4225 	for (i = 0; i < numPiers; i++) {
4226 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4227 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4228 	}
4229 
4230 	/* interpolate to get target power for given frequency */
4231 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4232 						 freqArray,
4233 						 targetPowerArray, numPiers);
4234 }
4235 
4236 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
4237 					    u16 rateIndex,
4238 					    u16 freq, bool is2GHz)
4239 {
4240 	u16 numPiers, i;
4241 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4242 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4243 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4244 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4245 	u8 *pFreqBin;
4246 
4247 	if (is2GHz) {
4248 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4249 		pEepromTargetPwr = eep->calTargetPower2GHT20;
4250 		pFreqBin = eep->calTarget_freqbin_2GHT20;
4251 	} else {
4252 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4253 		pEepromTargetPwr = eep->calTargetPower5GHT20;
4254 		pFreqBin = eep->calTarget_freqbin_5GHT20;
4255 	}
4256 
4257 	/*
4258 	 * create array of channels and targetpower
4259 	 * from targetpower piers stored on eeprom
4260 	 */
4261 	for (i = 0; i < numPiers; i++) {
4262 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4263 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4264 	}
4265 
4266 	/* interpolate to get target power for given frequency */
4267 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4268 						 freqArray,
4269 						 targetPowerArray, numPiers);
4270 }
4271 
4272 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
4273 					    u16 rateIndex,
4274 					    u16 freq, bool is2GHz)
4275 {
4276 	u16 numPiers, i;
4277 	s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
4278 	s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
4279 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4280 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4281 	u8 *pFreqBin;
4282 
4283 	if (is2GHz) {
4284 		numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
4285 		pEepromTargetPwr = eep->calTargetPower2GHT40;
4286 		pFreqBin = eep->calTarget_freqbin_2GHT40;
4287 	} else {
4288 		numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
4289 		pEepromTargetPwr = eep->calTargetPower5GHT40;
4290 		pFreqBin = eep->calTarget_freqbin_5GHT40;
4291 	}
4292 
4293 	/*
4294 	 * create array of channels and targetpower from
4295 	 * targetpower piers stored on eeprom
4296 	 */
4297 	for (i = 0; i < numPiers; i++) {
4298 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4299 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4300 	}
4301 
4302 	/* interpolate to get target power for given frequency */
4303 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4304 						 freqArray,
4305 						 targetPowerArray, numPiers);
4306 }
4307 
4308 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
4309 					   u16 rateIndex, u16 freq)
4310 {
4311 	u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4312 	s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4313 	s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4314 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4315 	struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4316 	u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4317 
4318 	/*
4319 	 * create array of channels and targetpower from
4320 	 * targetpower piers stored on eeprom
4321 	 */
4322 	for (i = 0; i < numPiers; i++) {
4323 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], 1);
4324 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4325 	}
4326 
4327 	/* interpolate to get target power for given frequency */
4328 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4329 						 freqArray,
4330 						 targetPowerArray, numPiers);
4331 }
4332 
4333 /* Set tx power registers to array of values passed in */
4334 static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4335 {
4336 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
4337 	/* make sure forced gain is not set */
4338 	REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4339 
4340 	/* Write the OFDM power per rate set */
4341 
4342 	/* 6 (LSB), 9, 12, 18 (MSB) */
4343 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4344 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4345 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4346 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4347 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4348 
4349 	/* 24 (LSB), 36, 48, 54 (MSB) */
4350 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4351 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4352 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4353 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4354 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4355 
4356 	/* Write the CCK power per rate set */
4357 
4358 	/* 1L (LSB), reserved, 2L, 2S (MSB) */
4359 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4360 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4361 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4362 		  /* POW_SM(txPowerTimes2,  8) | this is reserved for AR9003 */
4363 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4364 
4365 	/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4366 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4367 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4368 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4369 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4370 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4371 	    );
4372 
4373         /* Write the power for duplicated frames - HT40 */
4374 
4375         /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4376 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4377 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4378 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4379 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24],  8) |
4380 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L],  0)
4381 	    );
4382 
4383 	/* Write the HT20 power per rate set */
4384 
4385 	/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4386 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4387 		  POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4388 		  POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4389 		  POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4390 		  POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4391 	    );
4392 
4393 	/* 6 (LSB), 7, 12, 13 (MSB) */
4394 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4395 		  POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4396 		  POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4397 		  POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4398 		  POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4399 	    );
4400 
4401 	/* 14 (LSB), 15, 20, 21 */
4402 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4403 		  POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4404 		  POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4405 		  POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4406 		  POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4407 	    );
4408 
4409 	/* Mixed HT20 and HT40 rates */
4410 
4411 	/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4412 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4413 		  POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4414 		  POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4415 		  POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4416 		  POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4417 	    );
4418 
4419 	/*
4420 	 * Write the HT40 power per rate set
4421 	 * correct PAR difference between HT40 and HT20/LEGACY
4422 	 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4423 	 */
4424 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4425 		  POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4426 		  POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4427 		  POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4428 		  POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4429 	    );
4430 
4431 	/* 6 (LSB), 7, 12, 13 (MSB) */
4432 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4433 		  POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4434 		  POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4435 		  POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4436 		  POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4437 	    );
4438 
4439 	/* 14 (LSB), 15, 20, 21 */
4440 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4441 		  POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4442 		  POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4443 		  POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4444 		  POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4445 	    );
4446 
4447 	return 0;
4448 #undef POW_SM
4449 }
4450 
4451 static void ar9003_hw_get_legacy_target_powers(struct ath_hw *ah, u16 freq,
4452 					       u8 *targetPowerValT2,
4453 					       bool is2GHz)
4454 {
4455 	targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4456 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4457 					 is2GHz);
4458 	targetPowerValT2[ALL_TARGET_LEGACY_36] =
4459 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4460 					 is2GHz);
4461 	targetPowerValT2[ALL_TARGET_LEGACY_48] =
4462 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4463 					 is2GHz);
4464 	targetPowerValT2[ALL_TARGET_LEGACY_54] =
4465 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4466 					 is2GHz);
4467 }
4468 
4469 static void ar9003_hw_get_cck_target_powers(struct ath_hw *ah, u16 freq,
4470 					    u8 *targetPowerValT2)
4471 {
4472 	targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4473 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4474 					     freq);
4475 	targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4476 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4477 	targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4478 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4479 	targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4480 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4481 }
4482 
4483 static void ar9003_hw_get_ht20_target_powers(struct ath_hw *ah, u16 freq,
4484 					     u8 *targetPowerValT2, bool is2GHz)
4485 {
4486 	targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4487 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4488 					      is2GHz);
4489 	targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4490 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4491 					      freq, is2GHz);
4492 	targetPowerValT2[ALL_TARGET_HT20_4] =
4493 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4494 					      is2GHz);
4495 	targetPowerValT2[ALL_TARGET_HT20_5] =
4496 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4497 					      is2GHz);
4498 	targetPowerValT2[ALL_TARGET_HT20_6] =
4499 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4500 					      is2GHz);
4501 	targetPowerValT2[ALL_TARGET_HT20_7] =
4502 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4503 					      is2GHz);
4504 	targetPowerValT2[ALL_TARGET_HT20_12] =
4505 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4506 					      is2GHz);
4507 	targetPowerValT2[ALL_TARGET_HT20_13] =
4508 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4509 					      is2GHz);
4510 	targetPowerValT2[ALL_TARGET_HT20_14] =
4511 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4512 					      is2GHz);
4513 	targetPowerValT2[ALL_TARGET_HT20_15] =
4514 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4515 					      is2GHz);
4516 	targetPowerValT2[ALL_TARGET_HT20_20] =
4517 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4518 					      is2GHz);
4519 	targetPowerValT2[ALL_TARGET_HT20_21] =
4520 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4521 					      is2GHz);
4522 	targetPowerValT2[ALL_TARGET_HT20_22] =
4523 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4524 					      is2GHz);
4525 	targetPowerValT2[ALL_TARGET_HT20_23] =
4526 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4527 					      is2GHz);
4528 }
4529 
4530 static void ar9003_hw_get_ht40_target_powers(struct ath_hw *ah,
4531 						   u16 freq,
4532 						   u8 *targetPowerValT2,
4533 						   bool is2GHz)
4534 {
4535 	/* XXX: hard code for now, need to get from eeprom struct */
4536 	u8 ht40PowerIncForPdadc = 0;
4537 
4538 	targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4539 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4540 					      is2GHz) + ht40PowerIncForPdadc;
4541 	targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4542 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4543 					      freq,
4544 					      is2GHz) + ht40PowerIncForPdadc;
4545 	targetPowerValT2[ALL_TARGET_HT40_4] =
4546 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4547 					      is2GHz) + ht40PowerIncForPdadc;
4548 	targetPowerValT2[ALL_TARGET_HT40_5] =
4549 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4550 					      is2GHz) + ht40PowerIncForPdadc;
4551 	targetPowerValT2[ALL_TARGET_HT40_6] =
4552 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4553 					      is2GHz) + ht40PowerIncForPdadc;
4554 	targetPowerValT2[ALL_TARGET_HT40_7] =
4555 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4556 					      is2GHz) + ht40PowerIncForPdadc;
4557 	targetPowerValT2[ALL_TARGET_HT40_12] =
4558 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4559 					      is2GHz) + ht40PowerIncForPdadc;
4560 	targetPowerValT2[ALL_TARGET_HT40_13] =
4561 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4562 					      is2GHz) + ht40PowerIncForPdadc;
4563 	targetPowerValT2[ALL_TARGET_HT40_14] =
4564 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4565 					      is2GHz) + ht40PowerIncForPdadc;
4566 	targetPowerValT2[ALL_TARGET_HT40_15] =
4567 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4568 					      is2GHz) + ht40PowerIncForPdadc;
4569 	targetPowerValT2[ALL_TARGET_HT40_20] =
4570 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4571 					      is2GHz) + ht40PowerIncForPdadc;
4572 	targetPowerValT2[ALL_TARGET_HT40_21] =
4573 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4574 					      is2GHz) + ht40PowerIncForPdadc;
4575 	targetPowerValT2[ALL_TARGET_HT40_22] =
4576 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4577 					      is2GHz) + ht40PowerIncForPdadc;
4578 	targetPowerValT2[ALL_TARGET_HT40_23] =
4579 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4580 					      is2GHz) + ht40PowerIncForPdadc;
4581 }
4582 
4583 static void ar9003_hw_get_target_power_eeprom(struct ath_hw *ah,
4584 					      struct ath9k_channel *chan,
4585 					      u8 *targetPowerValT2)
4586 {
4587 	bool is2GHz = IS_CHAN_2GHZ(chan);
4588 	unsigned int i = 0;
4589 	struct ath_common *common = ath9k_hw_common(ah);
4590 	u16 freq = chan->channel;
4591 
4592 	if (is2GHz)
4593 		ar9003_hw_get_cck_target_powers(ah, freq, targetPowerValT2);
4594 
4595 	ar9003_hw_get_legacy_target_powers(ah, freq, targetPowerValT2, is2GHz);
4596 	ar9003_hw_get_ht20_target_powers(ah, freq, targetPowerValT2, is2GHz);
4597 
4598 	if (IS_CHAN_HT40(chan))
4599 		ar9003_hw_get_ht40_target_powers(ah, freq, targetPowerValT2,
4600 						 is2GHz);
4601 
4602 	for (i = 0; i < ar9300RateSize; i++) {
4603 		ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
4604 			i, targetPowerValT2[i]);
4605 	}
4606 }
4607 
4608 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4609 				  int mode,
4610 				  int ipier,
4611 				  int ichain,
4612 				  int *pfrequency,
4613 				  int *pcorrection,
4614 				  int *ptemperature, int *pvoltage)
4615 {
4616 	u8 *pCalPier;
4617 	struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4618 	int is2GHz;
4619 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4620 	struct ath_common *common = ath9k_hw_common(ah);
4621 
4622 	if (ichain >= AR9300_MAX_CHAINS) {
4623 		ath_dbg(common, EEPROM,
4624 			"Invalid chain index, must be less than %d\n",
4625 			AR9300_MAX_CHAINS);
4626 		return -1;
4627 	}
4628 
4629 	if (mode) {		/* 5GHz */
4630 		if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4631 			ath_dbg(common, EEPROM,
4632 				"Invalid 5GHz cal pier index, must be less than %d\n",
4633 				AR9300_NUM_5G_CAL_PIERS);
4634 			return -1;
4635 		}
4636 		pCalPier = &(eep->calFreqPier5G[ipier]);
4637 		pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4638 		is2GHz = 0;
4639 	} else {
4640 		if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4641 			ath_dbg(common, EEPROM,
4642 				"Invalid 2GHz cal pier index, must be less than %d\n",
4643 				AR9300_NUM_2G_CAL_PIERS);
4644 			return -1;
4645 		}
4646 
4647 		pCalPier = &(eep->calFreqPier2G[ipier]);
4648 		pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4649 		is2GHz = 1;
4650 	}
4651 
4652 	*pfrequency = ath9k_hw_fbin2freq(*pCalPier, is2GHz);
4653 	*pcorrection = pCalPierStruct->refPower;
4654 	*ptemperature = pCalPierStruct->tempMeas;
4655 	*pvoltage = pCalPierStruct->voltMeas;
4656 
4657 	return 0;
4658 }
4659 
4660 static void ar9003_hw_power_control_override(struct ath_hw *ah,
4661 					     int frequency,
4662 					     int *correction,
4663 					     int *voltage, int *temperature)
4664 {
4665 	int temp_slope = 0, temp_slope1 = 0, temp_slope2 = 0;
4666 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4667 	int f[8], t[8], t1[3], t2[3], i;
4668 
4669 	REG_RMW(ah, AR_PHY_TPC_11_B0,
4670 		(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4671 		AR_PHY_TPC_OLPC_GAIN_DELTA);
4672 	if (ah->caps.tx_chainmask & BIT(1))
4673 		REG_RMW(ah, AR_PHY_TPC_11_B1,
4674 			(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4675 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4676 	if (ah->caps.tx_chainmask & BIT(2))
4677 		REG_RMW(ah, AR_PHY_TPC_11_B2,
4678 			(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4679 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4680 
4681 	/* enable open loop power control on chip */
4682 	REG_RMW(ah, AR_PHY_TPC_6_B0,
4683 		(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4684 		AR_PHY_TPC_6_ERROR_EST_MODE);
4685 	if (ah->caps.tx_chainmask & BIT(1))
4686 		REG_RMW(ah, AR_PHY_TPC_6_B1,
4687 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4688 			AR_PHY_TPC_6_ERROR_EST_MODE);
4689 	if (ah->caps.tx_chainmask & BIT(2))
4690 		REG_RMW(ah, AR_PHY_TPC_6_B2,
4691 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4692 			AR_PHY_TPC_6_ERROR_EST_MODE);
4693 
4694 	/*
4695 	 * enable temperature compensation
4696 	 * Need to use register names
4697 	 */
4698 	if (frequency < 4000) {
4699 		temp_slope = eep->modalHeader2G.tempSlope;
4700 	} else {
4701 		if (AR_SREV_9550(ah)) {
4702 			t[0] = eep->base_ext1.tempslopextension[2];
4703 			t1[0] = eep->base_ext1.tempslopextension[3];
4704 			t2[0] = eep->base_ext1.tempslopextension[4];
4705 			f[0] = 5180;
4706 
4707 			t[1] = eep->modalHeader5G.tempSlope;
4708 			t1[1] = eep->base_ext1.tempslopextension[0];
4709 			t2[1] = eep->base_ext1.tempslopextension[1];
4710 			f[1] = 5500;
4711 
4712 			t[2] = eep->base_ext1.tempslopextension[5];
4713 			t1[2] = eep->base_ext1.tempslopextension[6];
4714 			t2[2] = eep->base_ext1.tempslopextension[7];
4715 			f[2] = 5785;
4716 
4717 			temp_slope = ar9003_hw_power_interpolate(frequency,
4718 								 f, t, 3);
4719 			temp_slope1 = ar9003_hw_power_interpolate(frequency,
4720 								   f, t1, 3);
4721 			temp_slope2 = ar9003_hw_power_interpolate(frequency,
4722 								   f, t2, 3);
4723 
4724 			goto tempslope;
4725 		}
4726 
4727 		if ((eep->baseEepHeader.miscConfiguration & 0x20) != 0) {
4728 			for (i = 0; i < 8; i++) {
4729 				t[i] = eep->base_ext1.tempslopextension[i];
4730 				f[i] = FBIN2FREQ(eep->calFreqPier5G[i], 0);
4731 			}
4732 			temp_slope = ar9003_hw_power_interpolate((s32) frequency,
4733 								 f, t, 8);
4734 		} else if (eep->base_ext2.tempSlopeLow != 0) {
4735 			t[0] = eep->base_ext2.tempSlopeLow;
4736 			f[0] = 5180;
4737 			t[1] = eep->modalHeader5G.tempSlope;
4738 			f[1] = 5500;
4739 			t[2] = eep->base_ext2.tempSlopeHigh;
4740 			f[2] = 5785;
4741 			temp_slope = ar9003_hw_power_interpolate((s32) frequency,
4742 								 f, t, 3);
4743 		} else {
4744 			temp_slope = eep->modalHeader5G.tempSlope;
4745 		}
4746 	}
4747 
4748 tempslope:
4749 	if (AR_SREV_9550(ah)) {
4750 		/*
4751 		 * AR955x has tempSlope register for each chain.
4752 		 * Check whether temp_compensation feature is enabled or not.
4753 		 */
4754 		if (eep->baseEepHeader.featureEnable & 0x1) {
4755 			if (frequency < 4000) {
4756 				REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4757 					      AR_PHY_TPC_19_ALPHA_THERM,
4758 					      eep->base_ext2.tempSlopeLow);
4759 				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4760 					      AR_PHY_TPC_19_ALPHA_THERM,
4761 					      temp_slope);
4762 				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4763 					      AR_PHY_TPC_19_ALPHA_THERM,
4764 					      eep->base_ext2.tempSlopeHigh);
4765 			} else {
4766 				REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4767 					      AR_PHY_TPC_19_ALPHA_THERM,
4768 					      temp_slope);
4769 				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4770 					      AR_PHY_TPC_19_ALPHA_THERM,
4771 					      temp_slope1);
4772 				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4773 					      AR_PHY_TPC_19_ALPHA_THERM,
4774 					      temp_slope2);
4775 			}
4776 		} else {
4777 			/*
4778 			 * If temp compensation is not enabled,
4779 			 * set all registers to 0.
4780 			 */
4781 			REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4782 				      AR_PHY_TPC_19_ALPHA_THERM, 0);
4783 			REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4784 				      AR_PHY_TPC_19_ALPHA_THERM, 0);
4785 			REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4786 				      AR_PHY_TPC_19_ALPHA_THERM, 0);
4787 		}
4788 	} else {
4789 		REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4790 			      AR_PHY_TPC_19_ALPHA_THERM, temp_slope);
4791 	}
4792 
4793 	if (AR_SREV_9462_20_OR_LATER(ah))
4794 		REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4795 			      AR_PHY_TPC_19_B1_ALPHA_THERM, temp_slope);
4796 
4797 
4798 	REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4799 		      temperature[0]);
4800 }
4801 
4802 /* Apply the recorded correction values. */
4803 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4804 {
4805 	int ichain, ipier, npier;
4806 	int mode;
4807 	int lfrequency[AR9300_MAX_CHAINS],
4808 	    lcorrection[AR9300_MAX_CHAINS],
4809 	    ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4810 	int hfrequency[AR9300_MAX_CHAINS],
4811 	    hcorrection[AR9300_MAX_CHAINS],
4812 	    htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4813 	int fdiff;
4814 	int correction[AR9300_MAX_CHAINS],
4815 	    voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4816 	int pfrequency, pcorrection, ptemperature, pvoltage;
4817 	struct ath_common *common = ath9k_hw_common(ah);
4818 
4819 	mode = (frequency >= 4000);
4820 	if (mode)
4821 		npier = AR9300_NUM_5G_CAL_PIERS;
4822 	else
4823 		npier = AR9300_NUM_2G_CAL_PIERS;
4824 
4825 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4826 		lfrequency[ichain] = 0;
4827 		hfrequency[ichain] = 100000;
4828 	}
4829 	/* identify best lower and higher frequency calibration measurement */
4830 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4831 		for (ipier = 0; ipier < npier; ipier++) {
4832 			if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4833 						    &pfrequency, &pcorrection,
4834 						    &ptemperature, &pvoltage)) {
4835 				fdiff = frequency - pfrequency;
4836 
4837 				/*
4838 				 * this measurement is higher than
4839 				 * our desired frequency
4840 				 */
4841 				if (fdiff <= 0) {
4842 					if (hfrequency[ichain] <= 0 ||
4843 					    hfrequency[ichain] >= 100000 ||
4844 					    fdiff >
4845 					    (frequency - hfrequency[ichain])) {
4846 						/*
4847 						 * new best higher
4848 						 * frequency measurement
4849 						 */
4850 						hfrequency[ichain] = pfrequency;
4851 						hcorrection[ichain] =
4852 						    pcorrection;
4853 						htemperature[ichain] =
4854 						    ptemperature;
4855 						hvoltage[ichain] = pvoltage;
4856 					}
4857 				}
4858 				if (fdiff >= 0) {
4859 					if (lfrequency[ichain] <= 0
4860 					    || fdiff <
4861 					    (frequency - lfrequency[ichain])) {
4862 						/*
4863 						 * new best lower
4864 						 * frequency measurement
4865 						 */
4866 						lfrequency[ichain] = pfrequency;
4867 						lcorrection[ichain] =
4868 						    pcorrection;
4869 						ltemperature[ichain] =
4870 						    ptemperature;
4871 						lvoltage[ichain] = pvoltage;
4872 					}
4873 				}
4874 			}
4875 		}
4876 	}
4877 
4878 	/* interpolate  */
4879 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4880 		ath_dbg(common, EEPROM, "ch=%d f=%d low=%d %d h=%d %d\n",
4881 			ichain, frequency, lfrequency[ichain],
4882 			lcorrection[ichain], hfrequency[ichain],
4883 			hcorrection[ichain]);
4884 		/* they're the same, so just pick one */
4885 		if (hfrequency[ichain] == lfrequency[ichain]) {
4886 			correction[ichain] = lcorrection[ichain];
4887 			voltage[ichain] = lvoltage[ichain];
4888 			temperature[ichain] = ltemperature[ichain];
4889 		}
4890 		/* the low frequency is good */
4891 		else if (frequency - lfrequency[ichain] < 1000) {
4892 			/* so is the high frequency, interpolate */
4893 			if (hfrequency[ichain] - frequency < 1000) {
4894 
4895 				correction[ichain] = interpolate(frequency,
4896 						lfrequency[ichain],
4897 						hfrequency[ichain],
4898 						lcorrection[ichain],
4899 						hcorrection[ichain]);
4900 
4901 				temperature[ichain] = interpolate(frequency,
4902 						lfrequency[ichain],
4903 						hfrequency[ichain],
4904 						ltemperature[ichain],
4905 						htemperature[ichain]);
4906 
4907 				voltage[ichain] = interpolate(frequency,
4908 						lfrequency[ichain],
4909 						hfrequency[ichain],
4910 						lvoltage[ichain],
4911 						hvoltage[ichain]);
4912 			}
4913 			/* only low is good, use it */
4914 			else {
4915 				correction[ichain] = lcorrection[ichain];
4916 				temperature[ichain] = ltemperature[ichain];
4917 				voltage[ichain] = lvoltage[ichain];
4918 			}
4919 		}
4920 		/* only high is good, use it */
4921 		else if (hfrequency[ichain] - frequency < 1000) {
4922 			correction[ichain] = hcorrection[ichain];
4923 			temperature[ichain] = htemperature[ichain];
4924 			voltage[ichain] = hvoltage[ichain];
4925 		} else {	/* nothing is good, presume 0???? */
4926 			correction[ichain] = 0;
4927 			temperature[ichain] = 0;
4928 			voltage[ichain] = 0;
4929 		}
4930 	}
4931 
4932 	ar9003_hw_power_control_override(ah, frequency, correction, voltage,
4933 					 temperature);
4934 
4935 	ath_dbg(common, EEPROM,
4936 		"for frequency=%d, calibration correction = %d %d %d\n",
4937 		frequency, correction[0], correction[1], correction[2]);
4938 
4939 	return 0;
4940 }
4941 
4942 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
4943 					   int idx,
4944 					   int edge,
4945 					   bool is2GHz)
4946 {
4947 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4948 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4949 
4950 	if (is2GHz)
4951 		return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
4952 	else
4953 		return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
4954 }
4955 
4956 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
4957 					     int idx,
4958 					     unsigned int edge,
4959 					     u16 freq,
4960 					     bool is2GHz)
4961 {
4962 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4963 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4964 
4965 	u8 *ctl_freqbin = is2GHz ?
4966 		&eep->ctl_freqbin_2G[idx][0] :
4967 		&eep->ctl_freqbin_5G[idx][0];
4968 
4969 	if (is2GHz) {
4970 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
4971 		    CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
4972 			return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
4973 	} else {
4974 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
4975 		    CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
4976 			return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
4977 	}
4978 
4979 	return MAX_RATE_POWER;
4980 }
4981 
4982 /*
4983  * Find the maximum conformance test limit for the given channel and CTL info
4984  */
4985 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
4986 					u16 freq, int idx, bool is2GHz)
4987 {
4988 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
4989 	u8 *ctl_freqbin = is2GHz ?
4990 		&eep->ctl_freqbin_2G[idx][0] :
4991 		&eep->ctl_freqbin_5G[idx][0];
4992 	u16 num_edges = is2GHz ?
4993 		AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
4994 	unsigned int edge;
4995 
4996 	/* Get the edge power */
4997 	for (edge = 0;
4998 	     (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
4999 	     edge++) {
5000 		/*
5001 		 * If there's an exact channel match or an inband flag set
5002 		 * on the lower channel use the given rdEdgePower
5003 		 */
5004 		if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
5005 			twiceMaxEdgePower =
5006 				ar9003_hw_get_direct_edge_power(eep, idx,
5007 								edge, is2GHz);
5008 			break;
5009 		} else if ((edge > 0) &&
5010 			   (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
5011 						      is2GHz))) {
5012 			twiceMaxEdgePower =
5013 				ar9003_hw_get_indirect_edge_power(eep, idx,
5014 								  edge, freq,
5015 								  is2GHz);
5016 			/*
5017 			 * Leave loop - no more affecting edges possible in
5018 			 * this monotonic increasing list
5019 			 */
5020 			break;
5021 		}
5022 	}
5023 	return twiceMaxEdgePower;
5024 }
5025 
5026 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
5027 					       struct ath9k_channel *chan,
5028 					       u8 *pPwrArray, u16 cfgCtl,
5029 					       u8 antenna_reduction,
5030 					       u16 powerLimit)
5031 {
5032 	struct ath_common *common = ath9k_hw_common(ah);
5033 	struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
5034 	u16 twiceMaxEdgePower;
5035 	int i;
5036 	u16 scaledPower = 0, minCtlPower;
5037 	static const u16 ctlModesFor11a[] = {
5038 		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
5039 	};
5040 	static const u16 ctlModesFor11g[] = {
5041 		CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
5042 		CTL_11G_EXT, CTL_2GHT40
5043 	};
5044 	u16 numCtlModes;
5045 	const u16 *pCtlMode;
5046 	u16 ctlMode, freq;
5047 	struct chan_centers centers;
5048 	u8 *ctlIndex;
5049 	u8 ctlNum;
5050 	u16 twiceMinEdgePower;
5051 	bool is2ghz = IS_CHAN_2GHZ(chan);
5052 
5053 	ath9k_hw_get_channel_centers(ah, chan, &centers);
5054 	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
5055 						antenna_reduction);
5056 
5057 	if (is2ghz) {
5058 		/* Setup for CTL modes */
5059 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
5060 		numCtlModes =
5061 			ARRAY_SIZE(ctlModesFor11g) -
5062 				   SUB_NUM_CTL_MODES_AT_2G_40;
5063 		pCtlMode = ctlModesFor11g;
5064 		if (IS_CHAN_HT40(chan))
5065 			/* All 2G CTL's */
5066 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
5067 	} else {
5068 		/* Setup for CTL modes */
5069 		/* CTL_11A, CTL_5GHT20 */
5070 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
5071 					 SUB_NUM_CTL_MODES_AT_5G_40;
5072 		pCtlMode = ctlModesFor11a;
5073 		if (IS_CHAN_HT40(chan))
5074 			/* All 5G CTL's */
5075 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
5076 	}
5077 
5078 	/*
5079 	 * For MIMO, need to apply regulatory caps individually across
5080 	 * dynamically running modes: CCK, OFDM, HT20, HT40
5081 	 *
5082 	 * The outer loop walks through each possible applicable runtime mode.
5083 	 * The inner loop walks through each ctlIndex entry in EEPROM.
5084 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
5085 	 */
5086 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
5087 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
5088 			(pCtlMode[ctlMode] == CTL_2GHT40);
5089 		if (isHt40CtlMode)
5090 			freq = centers.synth_center;
5091 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
5092 			freq = centers.ext_center;
5093 		else
5094 			freq = centers.ctl_center;
5095 
5096 		ath_dbg(common, REGULATORY,
5097 			"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
5098 			ctlMode, numCtlModes, isHt40CtlMode,
5099 			(pCtlMode[ctlMode] & EXT_ADDITIVE));
5100 
5101 		/* walk through each CTL index stored in EEPROM */
5102 		if (is2ghz) {
5103 			ctlIndex = pEepData->ctlIndex_2G;
5104 			ctlNum = AR9300_NUM_CTLS_2G;
5105 		} else {
5106 			ctlIndex = pEepData->ctlIndex_5G;
5107 			ctlNum = AR9300_NUM_CTLS_5G;
5108 		}
5109 
5110 		twiceMaxEdgePower = MAX_RATE_POWER;
5111 		for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
5112 			ath_dbg(common, REGULATORY,
5113 				"LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
5114 				i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
5115 				chan->channel);
5116 
5117 			/*
5118 			 * compare test group from regulatory
5119 			 * channel list with test mode from pCtlMode
5120 			 * list
5121 			 */
5122 			if ((((cfgCtl & ~CTL_MODE_M) |
5123 			       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
5124 				ctlIndex[i]) ||
5125 			    (((cfgCtl & ~CTL_MODE_M) |
5126 			       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
5127 			     ((ctlIndex[i] & CTL_MODE_M) |
5128 			       SD_NO_CTL))) {
5129 				twiceMinEdgePower =
5130 				  ar9003_hw_get_max_edge_power(pEepData,
5131 							       freq, i,
5132 							       is2ghz);
5133 
5134 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
5135 					/*
5136 					 * Find the minimum of all CTL
5137 					 * edge powers that apply to
5138 					 * this channel
5139 					 */
5140 					twiceMaxEdgePower =
5141 						min(twiceMaxEdgePower,
5142 						    twiceMinEdgePower);
5143 				else {
5144 					/* specific */
5145 					twiceMaxEdgePower = twiceMinEdgePower;
5146 					break;
5147 				}
5148 			}
5149 		}
5150 
5151 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
5152 
5153 		ath_dbg(common, REGULATORY,
5154 			"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
5155 			ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
5156 			scaledPower, minCtlPower);
5157 
5158 		/* Apply ctl mode to correct target power set */
5159 		switch (pCtlMode[ctlMode]) {
5160 		case CTL_11B:
5161 			for (i = ALL_TARGET_LEGACY_1L_5L;
5162 			     i <= ALL_TARGET_LEGACY_11S; i++)
5163 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5164 						       minCtlPower);
5165 			break;
5166 		case CTL_11A:
5167 		case CTL_11G:
5168 			for (i = ALL_TARGET_LEGACY_6_24;
5169 			     i <= ALL_TARGET_LEGACY_54; i++)
5170 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5171 						       minCtlPower);
5172 			break;
5173 		case CTL_5GHT20:
5174 		case CTL_2GHT20:
5175 			for (i = ALL_TARGET_HT20_0_8_16;
5176 			     i <= ALL_TARGET_HT20_23; i++) {
5177 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5178 						       minCtlPower);
5179 				if (ath9k_hw_mci_is_enabled(ah))
5180 					pPwrArray[i] =
5181 						(u8)min((u16)pPwrArray[i],
5182 						ar9003_mci_get_max_txpower(ah,
5183 							pCtlMode[ctlMode]));
5184 			}
5185 			break;
5186 		case CTL_5GHT40:
5187 		case CTL_2GHT40:
5188 			for (i = ALL_TARGET_HT40_0_8_16;
5189 			     i <= ALL_TARGET_HT40_23; i++) {
5190 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5191 						       minCtlPower);
5192 				if (ath9k_hw_mci_is_enabled(ah))
5193 					pPwrArray[i] =
5194 						(u8)min((u16)pPwrArray[i],
5195 						ar9003_mci_get_max_txpower(ah,
5196 							pCtlMode[ctlMode]));
5197 			}
5198 			break;
5199 		default:
5200 			break;
5201 		}
5202 	} /* end ctl mode checking */
5203 }
5204 
5205 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
5206 {
5207 	u8 mod_idx = mcs_idx % 8;
5208 
5209 	if (mod_idx <= 3)
5210 		return mod_idx ? (base_pwridx + 1) : base_pwridx;
5211 	else
5212 		return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
5213 }
5214 
5215 static void ar9003_paprd_set_txpower(struct ath_hw *ah,
5216 				     struct ath9k_channel *chan,
5217 				     u8 *targetPowerValT2)
5218 {
5219 	int i;
5220 
5221 	if (!ar9003_is_paprd_enabled(ah))
5222 		return;
5223 
5224 	if (IS_CHAN_HT40(chan))
5225 		i = ALL_TARGET_HT40_7;
5226 	else
5227 		i = ALL_TARGET_HT20_7;
5228 
5229 	if (IS_CHAN_2GHZ(chan)) {
5230 		if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) &&
5231 		    !AR_SREV_9462(ah) && !AR_SREV_9565(ah)) {
5232 			if (IS_CHAN_HT40(chan))
5233 				i = ALL_TARGET_HT40_0_8_16;
5234 			else
5235 				i = ALL_TARGET_HT20_0_8_16;
5236 		}
5237 	}
5238 
5239 	ah->paprd_target_power = targetPowerValT2[i];
5240 }
5241 
5242 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
5243 					struct ath9k_channel *chan, u16 cfgCtl,
5244 					u8 twiceAntennaReduction,
5245 					u8 powerLimit, bool test)
5246 {
5247 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
5248 	struct ath_common *common = ath9k_hw_common(ah);
5249 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5250 	struct ar9300_modal_eep_header *modal_hdr;
5251 	u8 targetPowerValT2[ar9300RateSize];
5252 	u8 target_power_val_t2_eep[ar9300RateSize];
5253 	unsigned int i = 0, paprd_scale_factor = 0;
5254 	u8 pwr_idx, min_pwridx = 0;
5255 
5256 	memset(targetPowerValT2, 0 , sizeof(targetPowerValT2));
5257 
5258 	/*
5259 	 * Get target powers from EEPROM - our baseline for TX Power
5260 	 */
5261 	ar9003_hw_get_target_power_eeprom(ah, chan, targetPowerValT2);
5262 
5263 	if (ar9003_is_paprd_enabled(ah)) {
5264 		if (IS_CHAN_2GHZ(chan))
5265 			modal_hdr = &eep->modalHeader2G;
5266 		else
5267 			modal_hdr = &eep->modalHeader5G;
5268 
5269 		ah->paprd_ratemask =
5270 			le32_to_cpu(modal_hdr->papdRateMaskHt20) &
5271 			AR9300_PAPRD_RATE_MASK;
5272 
5273 		ah->paprd_ratemask_ht40 =
5274 			le32_to_cpu(modal_hdr->papdRateMaskHt40) &
5275 			AR9300_PAPRD_RATE_MASK;
5276 
5277 		paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
5278 		min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
5279 						  ALL_TARGET_HT20_0_8_16;
5280 
5281 		if (!ah->paprd_table_write_done) {
5282 			memcpy(target_power_val_t2_eep, targetPowerValT2,
5283 			       sizeof(targetPowerValT2));
5284 			for (i = 0; i < 24; i++) {
5285 				pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
5286 				if (ah->paprd_ratemask & (1 << i)) {
5287 					if (targetPowerValT2[pwr_idx] &&
5288 					    targetPowerValT2[pwr_idx] ==
5289 					    target_power_val_t2_eep[pwr_idx])
5290 						targetPowerValT2[pwr_idx] -=
5291 							paprd_scale_factor;
5292 				}
5293 			}
5294 		}
5295 		memcpy(target_power_val_t2_eep, targetPowerValT2,
5296 		       sizeof(targetPowerValT2));
5297 	}
5298 
5299 	ar9003_hw_set_power_per_rate_table(ah, chan,
5300 					   targetPowerValT2, cfgCtl,
5301 					   twiceAntennaReduction,
5302 					   powerLimit);
5303 
5304 	if (ar9003_is_paprd_enabled(ah)) {
5305 		for (i = 0; i < ar9300RateSize; i++) {
5306 			if ((ah->paprd_ratemask & (1 << i)) &&
5307 			    (abs(targetPowerValT2[i] -
5308 				target_power_val_t2_eep[i]) >
5309 			    paprd_scale_factor)) {
5310 				ah->paprd_ratemask &= ~(1 << i);
5311 				ath_dbg(common, EEPROM,
5312 					"paprd disabled for mcs %d\n", i);
5313 			}
5314 		}
5315 	}
5316 
5317 	regulatory->max_power_level = 0;
5318 	for (i = 0; i < ar9300RateSize; i++) {
5319 		if (targetPowerValT2[i] > regulatory->max_power_level)
5320 			regulatory->max_power_level = targetPowerValT2[i];
5321 	}
5322 
5323 	ath9k_hw_update_regulatory_maxpower(ah);
5324 
5325 	if (test)
5326 		return;
5327 
5328 	for (i = 0; i < ar9300RateSize; i++) {
5329 		ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
5330 			i, targetPowerValT2[i]);
5331 	}
5332 
5333 	/* Write target power array to registers */
5334 	ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5335 	ar9003_hw_calibration_apply(ah, chan->channel);
5336 	ar9003_paprd_set_txpower(ah, chan, targetPowerValT2);
5337 }
5338 
5339 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
5340 					    u16 i, bool is2GHz)
5341 {
5342 	return AR_NO_SPUR;
5343 }
5344 
5345 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
5346 {
5347 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5348 
5349 	return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
5350 }
5351 
5352 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
5353 {
5354 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5355 
5356 	return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
5357 }
5358 
5359 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is2ghz)
5360 {
5361 	return ar9003_modal_header(ah, is2ghz)->spurChans;
5362 }
5363 
5364 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
5365 					   struct ath9k_channel *chan)
5366 {
5367 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5368 
5369 	if (IS_CHAN_2GHZ(chan))
5370 		return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5371 			  AR9300_PAPRD_SCALE_1);
5372 	else {
5373 		if (chan->channel >= 5700)
5374 		return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5375 			  AR9300_PAPRD_SCALE_1);
5376 		else if (chan->channel >= 5400)
5377 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5378 				   AR9300_PAPRD_SCALE_2);
5379 		else
5380 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5381 				  AR9300_PAPRD_SCALE_1);
5382 	}
5383 }
5384 
5385 const struct eeprom_ops eep_ar9300_ops = {
5386 	.check_eeprom = ath9k_hw_ar9300_check_eeprom,
5387 	.get_eeprom = ath9k_hw_ar9300_get_eeprom,
5388 	.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5389 	.dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5390 	.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5391 	.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5392 	.set_board_values = ath9k_hw_ar9300_set_board_values,
5393 	.set_addac = ath9k_hw_ar9300_set_addac,
5394 	.set_txpower = ath9k_hw_ar9300_set_txpower,
5395 	.get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5396 };
5397