1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20 #include "ar9003_eeprom.h"
21 #include "ar9003_mci.h"
22 
23 #define COMP_HDR_LEN 4
24 #define COMP_CKSUM_LEN 2
25 
26 #define LE16(x) __constant_cpu_to_le16(x)
27 #define LE32(x) __constant_cpu_to_le32(x)
28 
29 /* Local defines to distinguish between extension and control CTL's */
30 #define EXT_ADDITIVE (0x8000)
31 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
32 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
33 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
34 
35 #define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
36 #define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
37 
38 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
39 
40 #define EEPROM_DATA_LEN_9485	1088
41 
42 static int ar9003_hw_power_interpolate(int32_t x,
43 				       int32_t *px, int32_t *py, u_int16_t np);
44 
45 static const struct ar9300_eeprom ar9300_default = {
46 	.eepromVersion = 2,
47 	.templateVersion = 2,
48 	.macAddr = {0, 2, 3, 4, 5, 6},
49 	.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
50 		     0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
51 	.baseEepHeader = {
52 		.regDmn = { LE16(0), LE16(0x1f) },
53 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
54 		.opCapFlags = {
55 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
56 			.eepMisc = 0,
57 		},
58 		.rfSilent = 0,
59 		.blueToothOptions = 0,
60 		.deviceCap = 0,
61 		.deviceType = 5, /* takes lower byte in eeprom location */
62 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
63 		.params_for_tuning_caps = {0, 0},
64 		.featureEnable = 0x0c,
65 		 /*
66 		  * bit0 - enable tx temp comp - disabled
67 		  * bit1 - enable tx volt comp - disabled
68 		  * bit2 - enable fastClock - enabled
69 		  * bit3 - enable doubling - enabled
70 		  * bit4 - enable internal regulator - disabled
71 		  * bit5 - enable pa predistortion - disabled
72 		  */
73 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
74 		.eepromWriteEnableGpio = 3,
75 		.wlanDisableGpio = 0,
76 		.wlanLedGpio = 8,
77 		.rxBandSelectGpio = 0xff,
78 		.txrxgain = 0,
79 		.swreg = 0,
80 	 },
81 	.modalHeader2G = {
82 	/* ar9300_modal_eep_header  2g */
83 		/* 4 idle,t1,t2,b(4 bits per setting) */
84 		.antCtrlCommon = LE32(0x110),
85 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
86 		.antCtrlCommon2 = LE32(0x22222),
87 
88 		/*
89 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
90 		 * rx1, rx12, b (2 bits each)
91 		 */
92 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
93 
94 		/*
95 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
96 		 * for ar9280 (0xa20c/b20c 5:0)
97 		 */
98 		.xatten1DB = {0, 0, 0},
99 
100 		/*
101 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
102 		 * for ar9280 (0xa20c/b20c 16:12
103 		 */
104 		.xatten1Margin = {0, 0, 0},
105 		.tempSlope = 36,
106 		.voltSlope = 0,
107 
108 		/*
109 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
110 		 * channels in usual fbin coding format
111 		 */
112 		.spurChans = {0, 0, 0, 0, 0},
113 
114 		/*
115 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
116 		 * if the register is per chain
117 		 */
118 		.noiseFloorThreshCh = {-1, 0, 0},
119 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
120 		.quick_drop = 0,
121 		.xpaBiasLvl = 0,
122 		.txFrameToDataStart = 0x0e,
123 		.txFrameToPaOn = 0x0e,
124 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
125 		.antennaGain = 0,
126 		.switchSettling = 0x2c,
127 		.adcDesiredSize = -30,
128 		.txEndToXpaOff = 0,
129 		.txEndToRxOn = 0x2,
130 		.txFrameToXpaOn = 0xe,
131 		.thresh62 = 28,
132 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
133 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
134 		.xlna_bias_strength = 0,
135 		.futureModal = {
136 			0, 0, 0, 0, 0, 0, 0,
137 		},
138 	 },
139 	.base_ext1 = {
140 		.ant_div_control = 0,
141 		.future = {0, 0, 0},
142 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
143 	},
144 	.calFreqPier2G = {
145 		FREQ2FBIN(2412, 1),
146 		FREQ2FBIN(2437, 1),
147 		FREQ2FBIN(2472, 1),
148 	 },
149 	/* ar9300_cal_data_per_freq_op_loop 2g */
150 	.calPierData2G = {
151 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
152 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
153 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
154 	 },
155 	.calTarget_freqbin_Cck = {
156 		FREQ2FBIN(2412, 1),
157 		FREQ2FBIN(2484, 1),
158 	 },
159 	.calTarget_freqbin_2G = {
160 		FREQ2FBIN(2412, 1),
161 		FREQ2FBIN(2437, 1),
162 		FREQ2FBIN(2472, 1)
163 	 },
164 	.calTarget_freqbin_2GHT20 = {
165 		FREQ2FBIN(2412, 1),
166 		FREQ2FBIN(2437, 1),
167 		FREQ2FBIN(2472, 1)
168 	 },
169 	.calTarget_freqbin_2GHT40 = {
170 		FREQ2FBIN(2412, 1),
171 		FREQ2FBIN(2437, 1),
172 		FREQ2FBIN(2472, 1)
173 	 },
174 	.calTargetPowerCck = {
175 		 /* 1L-5L,5S,11L,11S */
176 		 { {36, 36, 36, 36} },
177 		 { {36, 36, 36, 36} },
178 	},
179 	.calTargetPower2G = {
180 		 /* 6-24,36,48,54 */
181 		 { {32, 32, 28, 24} },
182 		 { {32, 32, 28, 24} },
183 		 { {32, 32, 28, 24} },
184 	},
185 	.calTargetPower2GHT20 = {
186 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
187 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
188 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
189 	},
190 	.calTargetPower2GHT40 = {
191 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
192 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
193 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
194 	},
195 	.ctlIndex_2G =  {
196 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
197 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
198 	},
199 	.ctl_freqbin_2G = {
200 		{
201 			FREQ2FBIN(2412, 1),
202 			FREQ2FBIN(2417, 1),
203 			FREQ2FBIN(2457, 1),
204 			FREQ2FBIN(2462, 1)
205 		},
206 		{
207 			FREQ2FBIN(2412, 1),
208 			FREQ2FBIN(2417, 1),
209 			FREQ2FBIN(2462, 1),
210 			0xFF,
211 		},
212 
213 		{
214 			FREQ2FBIN(2412, 1),
215 			FREQ2FBIN(2417, 1),
216 			FREQ2FBIN(2462, 1),
217 			0xFF,
218 		},
219 		{
220 			FREQ2FBIN(2422, 1),
221 			FREQ2FBIN(2427, 1),
222 			FREQ2FBIN(2447, 1),
223 			FREQ2FBIN(2452, 1)
224 		},
225 
226 		{
227 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
228 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
229 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
230 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
231 		},
232 
233 		{
234 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
235 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
236 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
237 			0,
238 		},
239 
240 		{
241 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
242 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
243 			FREQ2FBIN(2472, 1),
244 			0,
245 		},
246 
247 		{
248 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
249 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
250 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
251 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
252 		},
253 
254 		{
255 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
256 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
257 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
258 		},
259 
260 		{
261 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
262 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
263 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
264 			0
265 		},
266 
267 		{
268 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
269 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
270 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
271 			0
272 		},
273 
274 		{
275 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
276 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
277 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
278 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
279 		}
280 	 },
281 	.ctlPowerData_2G = {
282 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
283 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
284 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
285 
286 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
287 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
288 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
289 
290 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
291 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
292 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
293 
294 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
295 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
296 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
297 	 },
298 	.modalHeader5G = {
299 		/* 4 idle,t1,t2,b (4 bits per setting) */
300 		.antCtrlCommon = LE32(0x110),
301 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
302 		.antCtrlCommon2 = LE32(0x22222),
303 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
304 		.antCtrlChain = {
305 			LE16(0x000), LE16(0x000), LE16(0x000),
306 		},
307 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
308 		.xatten1DB = {0, 0, 0},
309 
310 		/*
311 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
312 		 * for merlin (0xa20c/b20c 16:12
313 		 */
314 		.xatten1Margin = {0, 0, 0},
315 		.tempSlope = 68,
316 		.voltSlope = 0,
317 		/* spurChans spur channels in usual fbin coding format */
318 		.spurChans = {0, 0, 0, 0, 0},
319 		/* noiseFloorThreshCh Check if the register is per chain */
320 		.noiseFloorThreshCh = {-1, 0, 0},
321 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
322 		.quick_drop = 0,
323 		.xpaBiasLvl = 0,
324 		.txFrameToDataStart = 0x0e,
325 		.txFrameToPaOn = 0x0e,
326 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
327 		.antennaGain = 0,
328 		.switchSettling = 0x2d,
329 		.adcDesiredSize = -30,
330 		.txEndToXpaOff = 0,
331 		.txEndToRxOn = 0x2,
332 		.txFrameToXpaOn = 0xe,
333 		.thresh62 = 28,
334 		.papdRateMaskHt20 = LE32(0x0c80c080),
335 		.papdRateMaskHt40 = LE32(0x0080c080),
336 		.xlna_bias_strength = 0,
337 		.futureModal = {
338 			0, 0, 0, 0, 0, 0, 0,
339 		},
340 	 },
341 	.base_ext2 = {
342 		.tempSlopeLow = 0,
343 		.tempSlopeHigh = 0,
344 		.xatten1DBLow = {0, 0, 0},
345 		.xatten1MarginLow = {0, 0, 0},
346 		.xatten1DBHigh = {0, 0, 0},
347 		.xatten1MarginHigh = {0, 0, 0}
348 	},
349 	.calFreqPier5G = {
350 		FREQ2FBIN(5180, 0),
351 		FREQ2FBIN(5220, 0),
352 		FREQ2FBIN(5320, 0),
353 		FREQ2FBIN(5400, 0),
354 		FREQ2FBIN(5500, 0),
355 		FREQ2FBIN(5600, 0),
356 		FREQ2FBIN(5725, 0),
357 		FREQ2FBIN(5825, 0)
358 	},
359 	.calPierData5G = {
360 			{
361 				{0, 0, 0, 0, 0},
362 				{0, 0, 0, 0, 0},
363 				{0, 0, 0, 0, 0},
364 				{0, 0, 0, 0, 0},
365 				{0, 0, 0, 0, 0},
366 				{0, 0, 0, 0, 0},
367 				{0, 0, 0, 0, 0},
368 				{0, 0, 0, 0, 0},
369 			},
370 			{
371 				{0, 0, 0, 0, 0},
372 				{0, 0, 0, 0, 0},
373 				{0, 0, 0, 0, 0},
374 				{0, 0, 0, 0, 0},
375 				{0, 0, 0, 0, 0},
376 				{0, 0, 0, 0, 0},
377 				{0, 0, 0, 0, 0},
378 				{0, 0, 0, 0, 0},
379 			},
380 			{
381 				{0, 0, 0, 0, 0},
382 				{0, 0, 0, 0, 0},
383 				{0, 0, 0, 0, 0},
384 				{0, 0, 0, 0, 0},
385 				{0, 0, 0, 0, 0},
386 				{0, 0, 0, 0, 0},
387 				{0, 0, 0, 0, 0},
388 				{0, 0, 0, 0, 0},
389 			},
390 
391 	},
392 	.calTarget_freqbin_5G = {
393 		FREQ2FBIN(5180, 0),
394 		FREQ2FBIN(5220, 0),
395 		FREQ2FBIN(5320, 0),
396 		FREQ2FBIN(5400, 0),
397 		FREQ2FBIN(5500, 0),
398 		FREQ2FBIN(5600, 0),
399 		FREQ2FBIN(5725, 0),
400 		FREQ2FBIN(5825, 0)
401 	},
402 	.calTarget_freqbin_5GHT20 = {
403 		FREQ2FBIN(5180, 0),
404 		FREQ2FBIN(5240, 0),
405 		FREQ2FBIN(5320, 0),
406 		FREQ2FBIN(5500, 0),
407 		FREQ2FBIN(5700, 0),
408 		FREQ2FBIN(5745, 0),
409 		FREQ2FBIN(5725, 0),
410 		FREQ2FBIN(5825, 0)
411 	},
412 	.calTarget_freqbin_5GHT40 = {
413 		FREQ2FBIN(5180, 0),
414 		FREQ2FBIN(5240, 0),
415 		FREQ2FBIN(5320, 0),
416 		FREQ2FBIN(5500, 0),
417 		FREQ2FBIN(5700, 0),
418 		FREQ2FBIN(5745, 0),
419 		FREQ2FBIN(5725, 0),
420 		FREQ2FBIN(5825, 0)
421 	 },
422 	.calTargetPower5G = {
423 		/* 6-24,36,48,54 */
424 		{ {20, 20, 20, 10} },
425 		{ {20, 20, 20, 10} },
426 		{ {20, 20, 20, 10} },
427 		{ {20, 20, 20, 10} },
428 		{ {20, 20, 20, 10} },
429 		{ {20, 20, 20, 10} },
430 		{ {20, 20, 20, 10} },
431 		{ {20, 20, 20, 10} },
432 	 },
433 	.calTargetPower5GHT20 = {
434 		/*
435 		 * 0_8_16,1-3_9-11_17-19,
436 		 * 4,5,6,7,12,13,14,15,20,21,22,23
437 		 */
438 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
439 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
440 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
441 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
442 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
444 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
446 	 },
447 	.calTargetPower5GHT40 =  {
448 		/*
449 		 * 0_8_16,1-3_9-11_17-19,
450 		 * 4,5,6,7,12,13,14,15,20,21,22,23
451 		 */
452 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
453 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
454 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
455 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
456 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
458 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
460 	 },
461 	.ctlIndex_5G =  {
462 		0x10, 0x16, 0x18, 0x40, 0x46,
463 		0x48, 0x30, 0x36, 0x38
464 	},
465 	.ctl_freqbin_5G =  {
466 		{
467 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
468 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
469 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
470 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
471 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
472 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
473 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
474 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
475 		},
476 		{
477 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
478 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
479 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
480 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
481 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
482 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
483 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
484 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
485 		},
486 
487 		{
488 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
489 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
490 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
491 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
492 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
493 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
494 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
495 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
496 		},
497 
498 		{
499 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
500 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
501 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
502 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
503 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
504 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
505 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
506 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
507 		},
508 
509 		{
510 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
511 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
512 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
513 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
514 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
515 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
516 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
517 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
518 		},
519 
520 		{
521 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
522 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
523 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
524 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
525 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
526 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
527 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
528 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
529 		},
530 
531 		{
532 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
533 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
534 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
535 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
536 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
537 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
538 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
539 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
540 		},
541 
542 		{
543 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
544 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
545 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
546 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
547 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
548 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
549 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
550 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
551 		},
552 
553 		{
554 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
555 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
556 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
557 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
558 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
559 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
560 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
561 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
562 		}
563 	 },
564 	.ctlPowerData_5G = {
565 		{
566 			{
567 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
568 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
569 			}
570 		},
571 		{
572 			{
573 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
574 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
575 			}
576 		},
577 		{
578 			{
579 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
580 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
581 			}
582 		},
583 		{
584 			{
585 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
586 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
587 			}
588 		},
589 		{
590 			{
591 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
592 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
593 			}
594 		},
595 		{
596 			{
597 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
598 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
599 			}
600 		},
601 		{
602 			{
603 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
604 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
605 			}
606 		},
607 		{
608 			{
609 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
610 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
611 			}
612 		},
613 		{
614 			{
615 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
616 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
617 			}
618 		},
619 	 }
620 };
621 
622 static const struct ar9300_eeprom ar9300_x113 = {
623 	.eepromVersion = 2,
624 	.templateVersion = 6,
625 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
626 	.custData = {"x113-023-f0000"},
627 	.baseEepHeader = {
628 		.regDmn = { LE16(0), LE16(0x1f) },
629 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
630 		.opCapFlags = {
631 			.opFlags = AR5416_OPFLAGS_11A,
632 			.eepMisc = 0,
633 		},
634 		.rfSilent = 0,
635 		.blueToothOptions = 0,
636 		.deviceCap = 0,
637 		.deviceType = 5, /* takes lower byte in eeprom location */
638 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
639 		.params_for_tuning_caps = {0, 0},
640 		.featureEnable = 0x0d,
641 		 /*
642 		  * bit0 - enable tx temp comp - disabled
643 		  * bit1 - enable tx volt comp - disabled
644 		  * bit2 - enable fastClock - enabled
645 		  * bit3 - enable doubling - enabled
646 		  * bit4 - enable internal regulator - disabled
647 		  * bit5 - enable pa predistortion - disabled
648 		  */
649 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
650 		.eepromWriteEnableGpio = 6,
651 		.wlanDisableGpio = 0,
652 		.wlanLedGpio = 8,
653 		.rxBandSelectGpio = 0xff,
654 		.txrxgain = 0x21,
655 		.swreg = 0,
656 	 },
657 	.modalHeader2G = {
658 	/* ar9300_modal_eep_header  2g */
659 		/* 4 idle,t1,t2,b(4 bits per setting) */
660 		.antCtrlCommon = LE32(0x110),
661 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
662 		.antCtrlCommon2 = LE32(0x44444),
663 
664 		/*
665 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
666 		 * rx1, rx12, b (2 bits each)
667 		 */
668 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
669 
670 		/*
671 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
672 		 * for ar9280 (0xa20c/b20c 5:0)
673 		 */
674 		.xatten1DB = {0, 0, 0},
675 
676 		/*
677 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
678 		 * for ar9280 (0xa20c/b20c 16:12
679 		 */
680 		.xatten1Margin = {0, 0, 0},
681 		.tempSlope = 25,
682 		.voltSlope = 0,
683 
684 		/*
685 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
686 		 * channels in usual fbin coding format
687 		 */
688 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
689 
690 		/*
691 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
692 		 * if the register is per chain
693 		 */
694 		.noiseFloorThreshCh = {-1, 0, 0},
695 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
696 		.quick_drop = 0,
697 		.xpaBiasLvl = 0,
698 		.txFrameToDataStart = 0x0e,
699 		.txFrameToPaOn = 0x0e,
700 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
701 		.antennaGain = 0,
702 		.switchSettling = 0x2c,
703 		.adcDesiredSize = -30,
704 		.txEndToXpaOff = 0,
705 		.txEndToRxOn = 0x2,
706 		.txFrameToXpaOn = 0xe,
707 		.thresh62 = 28,
708 		.papdRateMaskHt20 = LE32(0x0c80c080),
709 		.papdRateMaskHt40 = LE32(0x0080c080),
710 		.xlna_bias_strength = 0,
711 		.futureModal = {
712 			0, 0, 0, 0, 0, 0, 0,
713 		},
714 	 },
715 	 .base_ext1 = {
716 		.ant_div_control = 0,
717 		.future = {0, 0, 0},
718 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
719 	 },
720 	.calFreqPier2G = {
721 		FREQ2FBIN(2412, 1),
722 		FREQ2FBIN(2437, 1),
723 		FREQ2FBIN(2472, 1),
724 	 },
725 	/* ar9300_cal_data_per_freq_op_loop 2g */
726 	.calPierData2G = {
727 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
728 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
729 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
730 	 },
731 	.calTarget_freqbin_Cck = {
732 		FREQ2FBIN(2412, 1),
733 		FREQ2FBIN(2472, 1),
734 	 },
735 	.calTarget_freqbin_2G = {
736 		FREQ2FBIN(2412, 1),
737 		FREQ2FBIN(2437, 1),
738 		FREQ2FBIN(2472, 1)
739 	 },
740 	.calTarget_freqbin_2GHT20 = {
741 		FREQ2FBIN(2412, 1),
742 		FREQ2FBIN(2437, 1),
743 		FREQ2FBIN(2472, 1)
744 	 },
745 	.calTarget_freqbin_2GHT40 = {
746 		FREQ2FBIN(2412, 1),
747 		FREQ2FBIN(2437, 1),
748 		FREQ2FBIN(2472, 1)
749 	 },
750 	.calTargetPowerCck = {
751 		 /* 1L-5L,5S,11L,11S */
752 		 { {34, 34, 34, 34} },
753 		 { {34, 34, 34, 34} },
754 	},
755 	.calTargetPower2G = {
756 		 /* 6-24,36,48,54 */
757 		 { {34, 34, 32, 32} },
758 		 { {34, 34, 32, 32} },
759 		 { {34, 34, 32, 32} },
760 	},
761 	.calTargetPower2GHT20 = {
762 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
763 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
764 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
765 	},
766 	.calTargetPower2GHT40 = {
767 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
768 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
769 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
770 	},
771 	.ctlIndex_2G =  {
772 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
773 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
774 	},
775 	.ctl_freqbin_2G = {
776 		{
777 			FREQ2FBIN(2412, 1),
778 			FREQ2FBIN(2417, 1),
779 			FREQ2FBIN(2457, 1),
780 			FREQ2FBIN(2462, 1)
781 		},
782 		{
783 			FREQ2FBIN(2412, 1),
784 			FREQ2FBIN(2417, 1),
785 			FREQ2FBIN(2462, 1),
786 			0xFF,
787 		},
788 
789 		{
790 			FREQ2FBIN(2412, 1),
791 			FREQ2FBIN(2417, 1),
792 			FREQ2FBIN(2462, 1),
793 			0xFF,
794 		},
795 		{
796 			FREQ2FBIN(2422, 1),
797 			FREQ2FBIN(2427, 1),
798 			FREQ2FBIN(2447, 1),
799 			FREQ2FBIN(2452, 1)
800 		},
801 
802 		{
803 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
804 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
805 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
806 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
807 		},
808 
809 		{
810 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
811 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
812 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
813 			0,
814 		},
815 
816 		{
817 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
818 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
819 			FREQ2FBIN(2472, 1),
820 			0,
821 		},
822 
823 		{
824 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
825 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
826 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
827 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
828 		},
829 
830 		{
831 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
832 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
833 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
834 		},
835 
836 		{
837 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
838 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
839 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
840 			0
841 		},
842 
843 		{
844 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
845 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
846 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
847 			0
848 		},
849 
850 		{
851 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
852 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
853 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
854 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
855 		}
856 	 },
857 	.ctlPowerData_2G = {
858 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
859 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
860 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
861 
862 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
863 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
864 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
865 
866 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
867 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
868 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
869 
870 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
871 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
872 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
873 	 },
874 	.modalHeader5G = {
875 		/* 4 idle,t1,t2,b (4 bits per setting) */
876 		.antCtrlCommon = LE32(0x220),
877 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
878 		.antCtrlCommon2 = LE32(0x11111),
879 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
880 		.antCtrlChain = {
881 			LE16(0x150), LE16(0x150), LE16(0x150),
882 		},
883 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
884 		.xatten1DB = {0, 0, 0},
885 
886 		/*
887 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
888 		 * for merlin (0xa20c/b20c 16:12
889 		 */
890 		.xatten1Margin = {0, 0, 0},
891 		.tempSlope = 68,
892 		.voltSlope = 0,
893 		/* spurChans spur channels in usual fbin coding format */
894 		.spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
895 		/* noiseFloorThreshCh Check if the register is per chain */
896 		.noiseFloorThreshCh = {-1, 0, 0},
897 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
898 		.quick_drop = 0,
899 		.xpaBiasLvl = 0xf,
900 		.txFrameToDataStart = 0x0e,
901 		.txFrameToPaOn = 0x0e,
902 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
903 		.antennaGain = 0,
904 		.switchSettling = 0x2d,
905 		.adcDesiredSize = -30,
906 		.txEndToXpaOff = 0,
907 		.txEndToRxOn = 0x2,
908 		.txFrameToXpaOn = 0xe,
909 		.thresh62 = 28,
910 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
911 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
912 		.xlna_bias_strength = 0,
913 		.futureModal = {
914 			0, 0, 0, 0, 0, 0, 0,
915 		},
916 	 },
917 	.base_ext2 = {
918 		.tempSlopeLow = 72,
919 		.tempSlopeHigh = 105,
920 		.xatten1DBLow = {0, 0, 0},
921 		.xatten1MarginLow = {0, 0, 0},
922 		.xatten1DBHigh = {0, 0, 0},
923 		.xatten1MarginHigh = {0, 0, 0}
924 	 },
925 	.calFreqPier5G = {
926 		FREQ2FBIN(5180, 0),
927 		FREQ2FBIN(5240, 0),
928 		FREQ2FBIN(5320, 0),
929 		FREQ2FBIN(5400, 0),
930 		FREQ2FBIN(5500, 0),
931 		FREQ2FBIN(5600, 0),
932 		FREQ2FBIN(5745, 0),
933 		FREQ2FBIN(5785, 0)
934 	},
935 	.calPierData5G = {
936 			{
937 				{0, 0, 0, 0, 0},
938 				{0, 0, 0, 0, 0},
939 				{0, 0, 0, 0, 0},
940 				{0, 0, 0, 0, 0},
941 				{0, 0, 0, 0, 0},
942 				{0, 0, 0, 0, 0},
943 				{0, 0, 0, 0, 0},
944 				{0, 0, 0, 0, 0},
945 			},
946 			{
947 				{0, 0, 0, 0, 0},
948 				{0, 0, 0, 0, 0},
949 				{0, 0, 0, 0, 0},
950 				{0, 0, 0, 0, 0},
951 				{0, 0, 0, 0, 0},
952 				{0, 0, 0, 0, 0},
953 				{0, 0, 0, 0, 0},
954 				{0, 0, 0, 0, 0},
955 			},
956 			{
957 				{0, 0, 0, 0, 0},
958 				{0, 0, 0, 0, 0},
959 				{0, 0, 0, 0, 0},
960 				{0, 0, 0, 0, 0},
961 				{0, 0, 0, 0, 0},
962 				{0, 0, 0, 0, 0},
963 				{0, 0, 0, 0, 0},
964 				{0, 0, 0, 0, 0},
965 			},
966 
967 	},
968 	.calTarget_freqbin_5G = {
969 		FREQ2FBIN(5180, 0),
970 		FREQ2FBIN(5220, 0),
971 		FREQ2FBIN(5320, 0),
972 		FREQ2FBIN(5400, 0),
973 		FREQ2FBIN(5500, 0),
974 		FREQ2FBIN(5600, 0),
975 		FREQ2FBIN(5745, 0),
976 		FREQ2FBIN(5785, 0)
977 	},
978 	.calTarget_freqbin_5GHT20 = {
979 		FREQ2FBIN(5180, 0),
980 		FREQ2FBIN(5240, 0),
981 		FREQ2FBIN(5320, 0),
982 		FREQ2FBIN(5400, 0),
983 		FREQ2FBIN(5500, 0),
984 		FREQ2FBIN(5700, 0),
985 		FREQ2FBIN(5745, 0),
986 		FREQ2FBIN(5825, 0)
987 	},
988 	.calTarget_freqbin_5GHT40 = {
989 		FREQ2FBIN(5190, 0),
990 		FREQ2FBIN(5230, 0),
991 		FREQ2FBIN(5320, 0),
992 		FREQ2FBIN(5410, 0),
993 		FREQ2FBIN(5510, 0),
994 		FREQ2FBIN(5670, 0),
995 		FREQ2FBIN(5755, 0),
996 		FREQ2FBIN(5825, 0)
997 	 },
998 	.calTargetPower5G = {
999 		/* 6-24,36,48,54 */
1000 		{ {42, 40, 40, 34} },
1001 		{ {42, 40, 40, 34} },
1002 		{ {42, 40, 40, 34} },
1003 		{ {42, 40, 40, 34} },
1004 		{ {42, 40, 40, 34} },
1005 		{ {42, 40, 40, 34} },
1006 		{ {42, 40, 40, 34} },
1007 		{ {42, 40, 40, 34} },
1008 	 },
1009 	.calTargetPower5GHT20 = {
1010 		/*
1011 		 * 0_8_16,1-3_9-11_17-19,
1012 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1013 		 */
1014 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1015 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1016 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1017 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1018 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1019 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1020 		{ {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1021 		{ {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1022 	 },
1023 	.calTargetPower5GHT40 =  {
1024 		/*
1025 		 * 0_8_16,1-3_9-11_17-19,
1026 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1027 		 */
1028 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1029 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1030 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1031 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1032 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1033 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1034 		{ {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1035 		{ {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1036 	 },
1037 	.ctlIndex_5G =  {
1038 		0x10, 0x16, 0x18, 0x40, 0x46,
1039 		0x48, 0x30, 0x36, 0x38
1040 	},
1041 	.ctl_freqbin_5G =  {
1042 		{
1043 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1044 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1045 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1046 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1047 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1048 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1049 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1050 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1051 		},
1052 		{
1053 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1054 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1055 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1056 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1057 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1058 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1059 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1060 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1061 		},
1062 
1063 		{
1064 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1065 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1066 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1067 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1068 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1069 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1070 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1071 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1072 		},
1073 
1074 		{
1075 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1076 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1077 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1078 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1079 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1080 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1081 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1082 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1083 		},
1084 
1085 		{
1086 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1087 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1088 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1089 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1090 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1091 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1092 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1093 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1094 		},
1095 
1096 		{
1097 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1098 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1099 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1100 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1101 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1102 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1103 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1104 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1105 		},
1106 
1107 		{
1108 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1109 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1110 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1111 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1112 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1113 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1114 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1115 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1116 		},
1117 
1118 		{
1119 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1120 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1121 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1122 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1123 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1124 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1125 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1126 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1127 		},
1128 
1129 		{
1130 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1131 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1132 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1133 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1134 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1135 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1136 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1137 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1138 		}
1139 	 },
1140 	.ctlPowerData_5G = {
1141 		{
1142 			{
1143 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1144 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1145 			}
1146 		},
1147 		{
1148 			{
1149 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1150 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1151 			}
1152 		},
1153 		{
1154 			{
1155 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1156 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1157 			}
1158 		},
1159 		{
1160 			{
1161 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1162 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1163 			}
1164 		},
1165 		{
1166 			{
1167 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1168 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1169 			}
1170 		},
1171 		{
1172 			{
1173 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1174 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1175 			}
1176 		},
1177 		{
1178 			{
1179 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1180 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1181 			}
1182 		},
1183 		{
1184 			{
1185 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1186 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1187 			}
1188 		},
1189 		{
1190 			{
1191 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1192 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1193 			}
1194 		},
1195 	 }
1196 };
1197 
1198 
1199 static const struct ar9300_eeprom ar9300_h112 = {
1200 	.eepromVersion = 2,
1201 	.templateVersion = 3,
1202 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1203 	.custData = {"h112-241-f0000"},
1204 	.baseEepHeader = {
1205 		.regDmn = { LE16(0), LE16(0x1f) },
1206 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1207 		.opCapFlags = {
1208 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1209 			.eepMisc = 0,
1210 		},
1211 		.rfSilent = 0,
1212 		.blueToothOptions = 0,
1213 		.deviceCap = 0,
1214 		.deviceType = 5, /* takes lower byte in eeprom location */
1215 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1216 		.params_for_tuning_caps = {0, 0},
1217 		.featureEnable = 0x0d,
1218 		/*
1219 		 * bit0 - enable tx temp comp - disabled
1220 		 * bit1 - enable tx volt comp - disabled
1221 		 * bit2 - enable fastClock - enabled
1222 		 * bit3 - enable doubling - enabled
1223 		 * bit4 - enable internal regulator - disabled
1224 		 * bit5 - enable pa predistortion - disabled
1225 		 */
1226 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1227 		.eepromWriteEnableGpio = 6,
1228 		.wlanDisableGpio = 0,
1229 		.wlanLedGpio = 8,
1230 		.rxBandSelectGpio = 0xff,
1231 		.txrxgain = 0x10,
1232 		.swreg = 0,
1233 	},
1234 	.modalHeader2G = {
1235 		/* ar9300_modal_eep_header  2g */
1236 		/* 4 idle,t1,t2,b(4 bits per setting) */
1237 		.antCtrlCommon = LE32(0x110),
1238 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1239 		.antCtrlCommon2 = LE32(0x44444),
1240 
1241 		/*
1242 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1243 		 * rx1, rx12, b (2 bits each)
1244 		 */
1245 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1246 
1247 		/*
1248 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
1249 		 * for ar9280 (0xa20c/b20c 5:0)
1250 		 */
1251 		.xatten1DB = {0, 0, 0},
1252 
1253 		/*
1254 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1255 		 * for ar9280 (0xa20c/b20c 16:12
1256 		 */
1257 		.xatten1Margin = {0, 0, 0},
1258 		.tempSlope = 25,
1259 		.voltSlope = 0,
1260 
1261 		/*
1262 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1263 		 * channels in usual fbin coding format
1264 		 */
1265 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1266 
1267 		/*
1268 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1269 		 * if the register is per chain
1270 		 */
1271 		.noiseFloorThreshCh = {-1, 0, 0},
1272 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1273 		.quick_drop = 0,
1274 		.xpaBiasLvl = 0,
1275 		.txFrameToDataStart = 0x0e,
1276 		.txFrameToPaOn = 0x0e,
1277 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1278 		.antennaGain = 0,
1279 		.switchSettling = 0x2c,
1280 		.adcDesiredSize = -30,
1281 		.txEndToXpaOff = 0,
1282 		.txEndToRxOn = 0x2,
1283 		.txFrameToXpaOn = 0xe,
1284 		.thresh62 = 28,
1285 		.papdRateMaskHt20 = LE32(0x0c80c080),
1286 		.papdRateMaskHt40 = LE32(0x0080c080),
1287 		.xlna_bias_strength = 0,
1288 		.futureModal = {
1289 			0, 0, 0, 0, 0, 0, 0,
1290 		},
1291 	},
1292 	.base_ext1 = {
1293 		.ant_div_control = 0,
1294 		.future = {0, 0, 0},
1295 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1296 	},
1297 	.calFreqPier2G = {
1298 		FREQ2FBIN(2412, 1),
1299 		FREQ2FBIN(2437, 1),
1300 		FREQ2FBIN(2462, 1),
1301 	},
1302 	/* ar9300_cal_data_per_freq_op_loop 2g */
1303 	.calPierData2G = {
1304 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1305 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1306 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1307 	},
1308 	.calTarget_freqbin_Cck = {
1309 		FREQ2FBIN(2412, 1),
1310 		FREQ2FBIN(2472, 1),
1311 	},
1312 	.calTarget_freqbin_2G = {
1313 		FREQ2FBIN(2412, 1),
1314 		FREQ2FBIN(2437, 1),
1315 		FREQ2FBIN(2472, 1)
1316 	},
1317 	.calTarget_freqbin_2GHT20 = {
1318 		FREQ2FBIN(2412, 1),
1319 		FREQ2FBIN(2437, 1),
1320 		FREQ2FBIN(2472, 1)
1321 	},
1322 	.calTarget_freqbin_2GHT40 = {
1323 		FREQ2FBIN(2412, 1),
1324 		FREQ2FBIN(2437, 1),
1325 		FREQ2FBIN(2472, 1)
1326 	},
1327 	.calTargetPowerCck = {
1328 		/* 1L-5L,5S,11L,11S */
1329 		{ {34, 34, 34, 34} },
1330 		{ {34, 34, 34, 34} },
1331 	},
1332 	.calTargetPower2G = {
1333 		/* 6-24,36,48,54 */
1334 		{ {34, 34, 32, 32} },
1335 		{ {34, 34, 32, 32} },
1336 		{ {34, 34, 32, 32} },
1337 	},
1338 	.calTargetPower2GHT20 = {
1339 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1340 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1341 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1342 	},
1343 	.calTargetPower2GHT40 = {
1344 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1345 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1346 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1347 	},
1348 	.ctlIndex_2G =  {
1349 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1350 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1351 	},
1352 	.ctl_freqbin_2G = {
1353 		{
1354 			FREQ2FBIN(2412, 1),
1355 			FREQ2FBIN(2417, 1),
1356 			FREQ2FBIN(2457, 1),
1357 			FREQ2FBIN(2462, 1)
1358 		},
1359 		{
1360 			FREQ2FBIN(2412, 1),
1361 			FREQ2FBIN(2417, 1),
1362 			FREQ2FBIN(2462, 1),
1363 			0xFF,
1364 		},
1365 
1366 		{
1367 			FREQ2FBIN(2412, 1),
1368 			FREQ2FBIN(2417, 1),
1369 			FREQ2FBIN(2462, 1),
1370 			0xFF,
1371 		},
1372 		{
1373 			FREQ2FBIN(2422, 1),
1374 			FREQ2FBIN(2427, 1),
1375 			FREQ2FBIN(2447, 1),
1376 			FREQ2FBIN(2452, 1)
1377 		},
1378 
1379 		{
1380 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1381 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1382 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1383 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1384 		},
1385 
1386 		{
1387 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1388 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1389 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1390 			0,
1391 		},
1392 
1393 		{
1394 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1395 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1396 			FREQ2FBIN(2472, 1),
1397 			0,
1398 		},
1399 
1400 		{
1401 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1402 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1403 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1404 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1405 		},
1406 
1407 		{
1408 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1409 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1410 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1411 		},
1412 
1413 		{
1414 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1415 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1416 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1417 			0
1418 		},
1419 
1420 		{
1421 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1422 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1423 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1424 			0
1425 		},
1426 
1427 		{
1428 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1429 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1430 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1431 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1432 		}
1433 	},
1434 	.ctlPowerData_2G = {
1435 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1436 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1437 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1438 
1439 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1440 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1441 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1442 
1443 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1444 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1445 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1446 
1447 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1448 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1449 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1450 	},
1451 	.modalHeader5G = {
1452 		/* 4 idle,t1,t2,b (4 bits per setting) */
1453 		.antCtrlCommon = LE32(0x220),
1454 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1455 		.antCtrlCommon2 = LE32(0x44444),
1456 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1457 		.antCtrlChain = {
1458 			LE16(0x150), LE16(0x150), LE16(0x150),
1459 		},
1460 		/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1461 		.xatten1DB = {0, 0, 0},
1462 
1463 		/*
1464 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1465 		 * for merlin (0xa20c/b20c 16:12
1466 		 */
1467 		.xatten1Margin = {0, 0, 0},
1468 		.tempSlope = 45,
1469 		.voltSlope = 0,
1470 		/* spurChans spur channels in usual fbin coding format */
1471 		.spurChans = {0, 0, 0, 0, 0},
1472 		/* noiseFloorThreshCh Check if the register is per chain */
1473 		.noiseFloorThreshCh = {-1, 0, 0},
1474 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1475 		.quick_drop = 0,
1476 		.xpaBiasLvl = 0,
1477 		.txFrameToDataStart = 0x0e,
1478 		.txFrameToPaOn = 0x0e,
1479 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1480 		.antennaGain = 0,
1481 		.switchSettling = 0x2d,
1482 		.adcDesiredSize = -30,
1483 		.txEndToXpaOff = 0,
1484 		.txEndToRxOn = 0x2,
1485 		.txFrameToXpaOn = 0xe,
1486 		.thresh62 = 28,
1487 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
1488 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
1489 		.xlna_bias_strength = 0,
1490 		.futureModal = {
1491 			0, 0, 0, 0, 0, 0, 0,
1492 		},
1493 	},
1494 	.base_ext2 = {
1495 		.tempSlopeLow = 40,
1496 		.tempSlopeHigh = 50,
1497 		.xatten1DBLow = {0, 0, 0},
1498 		.xatten1MarginLow = {0, 0, 0},
1499 		.xatten1DBHigh = {0, 0, 0},
1500 		.xatten1MarginHigh = {0, 0, 0}
1501 	},
1502 	.calFreqPier5G = {
1503 		FREQ2FBIN(5180, 0),
1504 		FREQ2FBIN(5220, 0),
1505 		FREQ2FBIN(5320, 0),
1506 		FREQ2FBIN(5400, 0),
1507 		FREQ2FBIN(5500, 0),
1508 		FREQ2FBIN(5600, 0),
1509 		FREQ2FBIN(5700, 0),
1510 		FREQ2FBIN(5785, 0)
1511 	},
1512 	.calPierData5G = {
1513 		{
1514 			{0, 0, 0, 0, 0},
1515 			{0, 0, 0, 0, 0},
1516 			{0, 0, 0, 0, 0},
1517 			{0, 0, 0, 0, 0},
1518 			{0, 0, 0, 0, 0},
1519 			{0, 0, 0, 0, 0},
1520 			{0, 0, 0, 0, 0},
1521 			{0, 0, 0, 0, 0},
1522 		},
1523 		{
1524 			{0, 0, 0, 0, 0},
1525 			{0, 0, 0, 0, 0},
1526 			{0, 0, 0, 0, 0},
1527 			{0, 0, 0, 0, 0},
1528 			{0, 0, 0, 0, 0},
1529 			{0, 0, 0, 0, 0},
1530 			{0, 0, 0, 0, 0},
1531 			{0, 0, 0, 0, 0},
1532 		},
1533 		{
1534 			{0, 0, 0, 0, 0},
1535 			{0, 0, 0, 0, 0},
1536 			{0, 0, 0, 0, 0},
1537 			{0, 0, 0, 0, 0},
1538 			{0, 0, 0, 0, 0},
1539 			{0, 0, 0, 0, 0},
1540 			{0, 0, 0, 0, 0},
1541 			{0, 0, 0, 0, 0},
1542 		},
1543 
1544 	},
1545 	.calTarget_freqbin_5G = {
1546 		FREQ2FBIN(5180, 0),
1547 		FREQ2FBIN(5240, 0),
1548 		FREQ2FBIN(5320, 0),
1549 		FREQ2FBIN(5400, 0),
1550 		FREQ2FBIN(5500, 0),
1551 		FREQ2FBIN(5600, 0),
1552 		FREQ2FBIN(5700, 0),
1553 		FREQ2FBIN(5825, 0)
1554 	},
1555 	.calTarget_freqbin_5GHT20 = {
1556 		FREQ2FBIN(5180, 0),
1557 		FREQ2FBIN(5240, 0),
1558 		FREQ2FBIN(5320, 0),
1559 		FREQ2FBIN(5400, 0),
1560 		FREQ2FBIN(5500, 0),
1561 		FREQ2FBIN(5700, 0),
1562 		FREQ2FBIN(5745, 0),
1563 		FREQ2FBIN(5825, 0)
1564 	},
1565 	.calTarget_freqbin_5GHT40 = {
1566 		FREQ2FBIN(5180, 0),
1567 		FREQ2FBIN(5240, 0),
1568 		FREQ2FBIN(5320, 0),
1569 		FREQ2FBIN(5400, 0),
1570 		FREQ2FBIN(5500, 0),
1571 		FREQ2FBIN(5700, 0),
1572 		FREQ2FBIN(5745, 0),
1573 		FREQ2FBIN(5825, 0)
1574 	},
1575 	.calTargetPower5G = {
1576 		/* 6-24,36,48,54 */
1577 		{ {30, 30, 28, 24} },
1578 		{ {30, 30, 28, 24} },
1579 		{ {30, 30, 28, 24} },
1580 		{ {30, 30, 28, 24} },
1581 		{ {30, 30, 28, 24} },
1582 		{ {30, 30, 28, 24} },
1583 		{ {30, 30, 28, 24} },
1584 		{ {30, 30, 28, 24} },
1585 	},
1586 	.calTargetPower5GHT20 = {
1587 		/*
1588 		 * 0_8_16,1-3_9-11_17-19,
1589 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1590 		 */
1591 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1592 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1593 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1594 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1595 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1596 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1597 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1598 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1599 	},
1600 	.calTargetPower5GHT40 =  {
1601 		/*
1602 		 * 0_8_16,1-3_9-11_17-19,
1603 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1604 		 */
1605 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1606 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1607 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1608 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1609 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1610 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1611 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1612 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1613 	},
1614 	.ctlIndex_5G =  {
1615 		0x10, 0x16, 0x18, 0x40, 0x46,
1616 		0x48, 0x30, 0x36, 0x38
1617 	},
1618 	.ctl_freqbin_5G =  {
1619 		{
1620 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1621 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1622 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1623 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1624 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1625 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1626 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1627 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1628 		},
1629 		{
1630 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1631 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1632 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1633 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1634 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1635 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1636 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1637 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1638 		},
1639 
1640 		{
1641 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1642 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1643 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1644 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1645 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1646 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1647 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1648 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1649 		},
1650 
1651 		{
1652 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1653 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1654 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1655 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1656 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1657 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1658 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1659 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1660 		},
1661 
1662 		{
1663 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1664 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1665 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1666 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1667 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1668 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1669 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1670 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1671 		},
1672 
1673 		{
1674 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1675 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1676 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1677 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1678 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1679 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1680 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1681 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1682 		},
1683 
1684 		{
1685 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1686 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1687 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1688 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1689 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1690 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1691 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1692 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1693 		},
1694 
1695 		{
1696 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1697 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1698 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1699 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1700 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1701 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1702 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1703 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1704 		},
1705 
1706 		{
1707 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1708 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1709 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1710 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1711 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1712 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1713 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1714 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1715 		}
1716 	},
1717 	.ctlPowerData_5G = {
1718 		{
1719 			{
1720 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1721 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1722 			}
1723 		},
1724 		{
1725 			{
1726 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1727 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1728 			}
1729 		},
1730 		{
1731 			{
1732 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1733 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1734 			}
1735 		},
1736 		{
1737 			{
1738 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1739 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1740 			}
1741 		},
1742 		{
1743 			{
1744 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1745 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1746 			}
1747 		},
1748 		{
1749 			{
1750 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1751 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1752 			}
1753 		},
1754 		{
1755 			{
1756 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1757 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1758 			}
1759 		},
1760 		{
1761 			{
1762 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1763 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1764 			}
1765 		},
1766 		{
1767 			{
1768 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1769 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1770 			}
1771 		},
1772 	}
1773 };
1774 
1775 
1776 static const struct ar9300_eeprom ar9300_x112 = {
1777 	.eepromVersion = 2,
1778 	.templateVersion = 5,
1779 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1780 	.custData = {"x112-041-f0000"},
1781 	.baseEepHeader = {
1782 		.regDmn = { LE16(0), LE16(0x1f) },
1783 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1784 		.opCapFlags = {
1785 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1786 			.eepMisc = 0,
1787 		},
1788 		.rfSilent = 0,
1789 		.blueToothOptions = 0,
1790 		.deviceCap = 0,
1791 		.deviceType = 5, /* takes lower byte in eeprom location */
1792 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1793 		.params_for_tuning_caps = {0, 0},
1794 		.featureEnable = 0x0d,
1795 		/*
1796 		 * bit0 - enable tx temp comp - disabled
1797 		 * bit1 - enable tx volt comp - disabled
1798 		 * bit2 - enable fastclock - enabled
1799 		 * bit3 - enable doubling - enabled
1800 		 * bit4 - enable internal regulator - disabled
1801 		 * bit5 - enable pa predistortion - disabled
1802 		 */
1803 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1804 		.eepromWriteEnableGpio = 6,
1805 		.wlanDisableGpio = 0,
1806 		.wlanLedGpio = 8,
1807 		.rxBandSelectGpio = 0xff,
1808 		.txrxgain = 0x0,
1809 		.swreg = 0,
1810 	},
1811 	.modalHeader2G = {
1812 		/* ar9300_modal_eep_header  2g */
1813 		/* 4 idle,t1,t2,b(4 bits per setting) */
1814 		.antCtrlCommon = LE32(0x110),
1815 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1816 		.antCtrlCommon2 = LE32(0x22222),
1817 
1818 		/*
1819 		 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1820 		 * rx1, rx12, b (2 bits each)
1821 		 */
1822 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1823 
1824 		/*
1825 		 * xatten1DB[AR9300_max_chains];  3 xatten1_db
1826 		 * for ar9280 (0xa20c/b20c 5:0)
1827 		 */
1828 		.xatten1DB = {0x1b, 0x1b, 0x1b},
1829 
1830 		/*
1831 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1832 		 * for ar9280 (0xa20c/b20c 16:12
1833 		 */
1834 		.xatten1Margin = {0x15, 0x15, 0x15},
1835 		.tempSlope = 50,
1836 		.voltSlope = 0,
1837 
1838 		/*
1839 		 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1840 		 * channels in usual fbin coding format
1841 		 */
1842 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1843 
1844 		/*
1845 		 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1846 		 * if the register is per chain
1847 		 */
1848 		.noiseFloorThreshCh = {-1, 0, 0},
1849 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1850 		.quick_drop = 0,
1851 		.xpaBiasLvl = 0,
1852 		.txFrameToDataStart = 0x0e,
1853 		.txFrameToPaOn = 0x0e,
1854 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1855 		.antennaGain = 0,
1856 		.switchSettling = 0x2c,
1857 		.adcDesiredSize = -30,
1858 		.txEndToXpaOff = 0,
1859 		.txEndToRxOn = 0x2,
1860 		.txFrameToXpaOn = 0xe,
1861 		.thresh62 = 28,
1862 		.papdRateMaskHt20 = LE32(0x0c80c080),
1863 		.papdRateMaskHt40 = LE32(0x0080c080),
1864 		.xlna_bias_strength = 0,
1865 		.futureModal = {
1866 			0, 0, 0, 0, 0, 0, 0,
1867 		},
1868 	},
1869 	.base_ext1 = {
1870 		.ant_div_control = 0,
1871 		.future = {0, 0, 0},
1872 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1873 	},
1874 	.calFreqPier2G = {
1875 		FREQ2FBIN(2412, 1),
1876 		FREQ2FBIN(2437, 1),
1877 		FREQ2FBIN(2472, 1),
1878 	},
1879 	/* ar9300_cal_data_per_freq_op_loop 2g */
1880 	.calPierData2G = {
1881 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1882 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1883 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1884 	},
1885 	.calTarget_freqbin_Cck = {
1886 		FREQ2FBIN(2412, 1),
1887 		FREQ2FBIN(2472, 1),
1888 	},
1889 	.calTarget_freqbin_2G = {
1890 		FREQ2FBIN(2412, 1),
1891 		FREQ2FBIN(2437, 1),
1892 		FREQ2FBIN(2472, 1)
1893 	},
1894 	.calTarget_freqbin_2GHT20 = {
1895 		FREQ2FBIN(2412, 1),
1896 		FREQ2FBIN(2437, 1),
1897 		FREQ2FBIN(2472, 1)
1898 	},
1899 	.calTarget_freqbin_2GHT40 = {
1900 		FREQ2FBIN(2412, 1),
1901 		FREQ2FBIN(2437, 1),
1902 		FREQ2FBIN(2472, 1)
1903 	},
1904 	.calTargetPowerCck = {
1905 		/* 1L-5L,5S,11L,11s */
1906 		{ {38, 38, 38, 38} },
1907 		{ {38, 38, 38, 38} },
1908 	},
1909 	.calTargetPower2G = {
1910 		/* 6-24,36,48,54 */
1911 		{ {38, 38, 36, 34} },
1912 		{ {38, 38, 36, 34} },
1913 		{ {38, 38, 34, 32} },
1914 	},
1915 	.calTargetPower2GHT20 = {
1916 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1917 		{ {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1918 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1919 	},
1920 	.calTargetPower2GHT40 = {
1921 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1922 		{ {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1923 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1924 	},
1925 	.ctlIndex_2G =  {
1926 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1927 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1928 	},
1929 	.ctl_freqbin_2G = {
1930 		{
1931 			FREQ2FBIN(2412, 1),
1932 			FREQ2FBIN(2417, 1),
1933 			FREQ2FBIN(2457, 1),
1934 			FREQ2FBIN(2462, 1)
1935 		},
1936 		{
1937 			FREQ2FBIN(2412, 1),
1938 			FREQ2FBIN(2417, 1),
1939 			FREQ2FBIN(2462, 1),
1940 			0xFF,
1941 		},
1942 
1943 		{
1944 			FREQ2FBIN(2412, 1),
1945 			FREQ2FBIN(2417, 1),
1946 			FREQ2FBIN(2462, 1),
1947 			0xFF,
1948 		},
1949 		{
1950 			FREQ2FBIN(2422, 1),
1951 			FREQ2FBIN(2427, 1),
1952 			FREQ2FBIN(2447, 1),
1953 			FREQ2FBIN(2452, 1)
1954 		},
1955 
1956 		{
1957 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1958 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1959 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1960 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1961 		},
1962 
1963 		{
1964 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1965 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1966 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1967 			0,
1968 		},
1969 
1970 		{
1971 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1972 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1973 			FREQ2FBIN(2472, 1),
1974 			0,
1975 		},
1976 
1977 		{
1978 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1979 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1980 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1981 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1982 		},
1983 
1984 		{
1985 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1986 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1987 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1988 		},
1989 
1990 		{
1991 			/* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1992 			/* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1993 			/* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1994 			0
1995 		},
1996 
1997 		{
1998 			/* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1999 			/* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2000 			/* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2001 			0
2002 		},
2003 
2004 		{
2005 			/* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2006 			/* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2007 			/* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2008 			/* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2009 		}
2010 	},
2011 	.ctlPowerData_2G = {
2012 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2013 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2014 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2015 
2016 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2017 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2018 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2019 
2020 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2021 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2022 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2023 
2024 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2025 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2026 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2027 	},
2028 	.modalHeader5G = {
2029 		/* 4 idle,t1,t2,b (4 bits per setting) */
2030 		.antCtrlCommon = LE32(0x110),
2031 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2032 		.antCtrlCommon2 = LE32(0x22222),
2033 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2034 		.antCtrlChain = {
2035 			LE16(0x0), LE16(0x0), LE16(0x0),
2036 		},
2037 		/* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2038 		.xatten1DB = {0x13, 0x19, 0x17},
2039 
2040 		/*
2041 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2042 		 * for merlin (0xa20c/b20c 16:12
2043 		 */
2044 		.xatten1Margin = {0x19, 0x19, 0x19},
2045 		.tempSlope = 70,
2046 		.voltSlope = 15,
2047 		/* spurChans spur channels in usual fbin coding format */
2048 		.spurChans = {0, 0, 0, 0, 0},
2049 		/* noiseFloorThreshch check if the register is per chain */
2050 		.noiseFloorThreshCh = {-1, 0, 0},
2051 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2052 		.quick_drop = 0,
2053 		.xpaBiasLvl = 0,
2054 		.txFrameToDataStart = 0x0e,
2055 		.txFrameToPaOn = 0x0e,
2056 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2057 		.antennaGain = 0,
2058 		.switchSettling = 0x2d,
2059 		.adcDesiredSize = -30,
2060 		.txEndToXpaOff = 0,
2061 		.txEndToRxOn = 0x2,
2062 		.txFrameToXpaOn = 0xe,
2063 		.thresh62 = 28,
2064 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2065 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2066 		.xlna_bias_strength = 0,
2067 		.futureModal = {
2068 			0, 0, 0, 0, 0, 0, 0,
2069 		},
2070 	},
2071 	.base_ext2 = {
2072 		.tempSlopeLow = 72,
2073 		.tempSlopeHigh = 105,
2074 		.xatten1DBLow = {0x10, 0x14, 0x10},
2075 		.xatten1MarginLow = {0x19, 0x19 , 0x19},
2076 		.xatten1DBHigh = {0x1d, 0x20, 0x24},
2077 		.xatten1MarginHigh = {0x10, 0x10, 0x10}
2078 	},
2079 	.calFreqPier5G = {
2080 		FREQ2FBIN(5180, 0),
2081 		FREQ2FBIN(5220, 0),
2082 		FREQ2FBIN(5320, 0),
2083 		FREQ2FBIN(5400, 0),
2084 		FREQ2FBIN(5500, 0),
2085 		FREQ2FBIN(5600, 0),
2086 		FREQ2FBIN(5700, 0),
2087 		FREQ2FBIN(5785, 0)
2088 	},
2089 	.calPierData5G = {
2090 		{
2091 			{0, 0, 0, 0, 0},
2092 			{0, 0, 0, 0, 0},
2093 			{0, 0, 0, 0, 0},
2094 			{0, 0, 0, 0, 0},
2095 			{0, 0, 0, 0, 0},
2096 			{0, 0, 0, 0, 0},
2097 			{0, 0, 0, 0, 0},
2098 			{0, 0, 0, 0, 0},
2099 		},
2100 		{
2101 			{0, 0, 0, 0, 0},
2102 			{0, 0, 0, 0, 0},
2103 			{0, 0, 0, 0, 0},
2104 			{0, 0, 0, 0, 0},
2105 			{0, 0, 0, 0, 0},
2106 			{0, 0, 0, 0, 0},
2107 			{0, 0, 0, 0, 0},
2108 			{0, 0, 0, 0, 0},
2109 		},
2110 		{
2111 			{0, 0, 0, 0, 0},
2112 			{0, 0, 0, 0, 0},
2113 			{0, 0, 0, 0, 0},
2114 			{0, 0, 0, 0, 0},
2115 			{0, 0, 0, 0, 0},
2116 			{0, 0, 0, 0, 0},
2117 			{0, 0, 0, 0, 0},
2118 			{0, 0, 0, 0, 0},
2119 		},
2120 
2121 	},
2122 	.calTarget_freqbin_5G = {
2123 		FREQ2FBIN(5180, 0),
2124 		FREQ2FBIN(5220, 0),
2125 		FREQ2FBIN(5320, 0),
2126 		FREQ2FBIN(5400, 0),
2127 		FREQ2FBIN(5500, 0),
2128 		FREQ2FBIN(5600, 0),
2129 		FREQ2FBIN(5725, 0),
2130 		FREQ2FBIN(5825, 0)
2131 	},
2132 	.calTarget_freqbin_5GHT20 = {
2133 		FREQ2FBIN(5180, 0),
2134 		FREQ2FBIN(5220, 0),
2135 		FREQ2FBIN(5320, 0),
2136 		FREQ2FBIN(5400, 0),
2137 		FREQ2FBIN(5500, 0),
2138 		FREQ2FBIN(5600, 0),
2139 		FREQ2FBIN(5725, 0),
2140 		FREQ2FBIN(5825, 0)
2141 	},
2142 	.calTarget_freqbin_5GHT40 = {
2143 		FREQ2FBIN(5180, 0),
2144 		FREQ2FBIN(5220, 0),
2145 		FREQ2FBIN(5320, 0),
2146 		FREQ2FBIN(5400, 0),
2147 		FREQ2FBIN(5500, 0),
2148 		FREQ2FBIN(5600, 0),
2149 		FREQ2FBIN(5725, 0),
2150 		FREQ2FBIN(5825, 0)
2151 	},
2152 	.calTargetPower5G = {
2153 		/* 6-24,36,48,54 */
2154 		{ {32, 32, 28, 26} },
2155 		{ {32, 32, 28, 26} },
2156 		{ {32, 32, 28, 26} },
2157 		{ {32, 32, 26, 24} },
2158 		{ {32, 32, 26, 24} },
2159 		{ {32, 32, 24, 22} },
2160 		{ {30, 30, 24, 22} },
2161 		{ {30, 30, 24, 22} },
2162 	},
2163 	.calTargetPower5GHT20 = {
2164 		/*
2165 		 * 0_8_16,1-3_9-11_17-19,
2166 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2167 		 */
2168 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2169 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2170 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2171 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2172 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2173 		{ {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2174 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2175 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2176 	},
2177 	.calTargetPower5GHT40 =  {
2178 		/*
2179 		 * 0_8_16,1-3_9-11_17-19,
2180 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2181 		 */
2182 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2183 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2184 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2185 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2186 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2187 		{ {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2188 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2189 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2190 	},
2191 	.ctlIndex_5G =  {
2192 		0x10, 0x16, 0x18, 0x40, 0x46,
2193 		0x48, 0x30, 0x36, 0x38
2194 	},
2195 	.ctl_freqbin_5G =  {
2196 		{
2197 			/* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2198 			/* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2199 			/* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2200 			/* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2201 			/* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2202 			/* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2203 			/* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2204 			/* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2205 		},
2206 		{
2207 			/* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2208 			/* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2209 			/* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2210 			/* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2211 			/* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2212 			/* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2213 			/* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2214 			/* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2215 		},
2216 
2217 		{
2218 			/* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2219 			/* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2220 			/* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2221 			/* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2222 			/* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2223 			/* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2224 			/* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2225 			/* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2226 		},
2227 
2228 		{
2229 			/* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2230 			/* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2231 			/* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2232 			/* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2233 			/* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2234 			/* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2235 			/* Data[3].ctledges[6].bchannel */ 0xFF,
2236 			/* Data[3].ctledges[7].bchannel */ 0xFF,
2237 		},
2238 
2239 		{
2240 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2241 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2242 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2243 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2244 			/* Data[4].ctledges[4].bchannel */ 0xFF,
2245 			/* Data[4].ctledges[5].bchannel */ 0xFF,
2246 			/* Data[4].ctledges[6].bchannel */ 0xFF,
2247 			/* Data[4].ctledges[7].bchannel */ 0xFF,
2248 		},
2249 
2250 		{
2251 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2252 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2253 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2254 			/* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2255 			/* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2256 			/* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2257 			/* Data[5].ctledges[6].bchannel */ 0xFF,
2258 			/* Data[5].ctledges[7].bchannel */ 0xFF
2259 		},
2260 
2261 		{
2262 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2263 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2264 			/* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2265 			/* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2266 			/* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2267 			/* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2268 			/* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2269 			/* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2270 		},
2271 
2272 		{
2273 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2274 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2275 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2276 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2277 			/* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2278 			/* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2279 			/* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2280 			/* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2281 		},
2282 
2283 		{
2284 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2285 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2286 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2287 			/* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2288 			/* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2289 			/* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2290 			/* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2291 			/* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2292 		}
2293 	},
2294 	.ctlPowerData_5G = {
2295 		{
2296 			{
2297 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2298 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2299 			}
2300 		},
2301 		{
2302 			{
2303 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2304 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2305 			}
2306 		},
2307 		{
2308 			{
2309 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2310 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2311 			}
2312 		},
2313 		{
2314 			{
2315 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2316 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2317 			}
2318 		},
2319 		{
2320 			{
2321 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2322 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2323 			}
2324 		},
2325 		{
2326 			{
2327 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2328 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2329 			}
2330 		},
2331 		{
2332 			{
2333 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2334 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2335 			}
2336 		},
2337 		{
2338 			{
2339 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2340 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2341 			}
2342 		},
2343 		{
2344 			{
2345 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2346 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2347 			}
2348 		},
2349 	}
2350 };
2351 
2352 static const struct ar9300_eeprom ar9300_h116 = {
2353 	.eepromVersion = 2,
2354 	.templateVersion = 4,
2355 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2356 	.custData = {"h116-041-f0000"},
2357 	.baseEepHeader = {
2358 		.regDmn = { LE16(0), LE16(0x1f) },
2359 		.txrxMask =  0x33, /* 4 bits tx and 4 bits rx */
2360 		.opCapFlags = {
2361 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2362 			.eepMisc = 0,
2363 		},
2364 		.rfSilent = 0,
2365 		.blueToothOptions = 0,
2366 		.deviceCap = 0,
2367 		.deviceType = 5, /* takes lower byte in eeprom location */
2368 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2369 		.params_for_tuning_caps = {0, 0},
2370 		.featureEnable = 0x0d,
2371 		 /*
2372 		  * bit0 - enable tx temp comp - disabled
2373 		  * bit1 - enable tx volt comp - disabled
2374 		  * bit2 - enable fastClock - enabled
2375 		  * bit3 - enable doubling - enabled
2376 		  * bit4 - enable internal regulator - disabled
2377 		  * bit5 - enable pa predistortion - disabled
2378 		  */
2379 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
2380 		.eepromWriteEnableGpio = 6,
2381 		.wlanDisableGpio = 0,
2382 		.wlanLedGpio = 8,
2383 		.rxBandSelectGpio = 0xff,
2384 		.txrxgain = 0x10,
2385 		.swreg = 0,
2386 	 },
2387 	.modalHeader2G = {
2388 	/* ar9300_modal_eep_header  2g */
2389 		/* 4 idle,t1,t2,b(4 bits per setting) */
2390 		.antCtrlCommon = LE32(0x110),
2391 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2392 		.antCtrlCommon2 = LE32(0x44444),
2393 
2394 		/*
2395 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2396 		 * rx1, rx12, b (2 bits each)
2397 		 */
2398 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2399 
2400 		/*
2401 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
2402 		 * for ar9280 (0xa20c/b20c 5:0)
2403 		 */
2404 		.xatten1DB = {0x1f, 0x1f, 0x1f},
2405 
2406 		/*
2407 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2408 		 * for ar9280 (0xa20c/b20c 16:12
2409 		 */
2410 		.xatten1Margin = {0x12, 0x12, 0x12},
2411 		.tempSlope = 25,
2412 		.voltSlope = 0,
2413 
2414 		/*
2415 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2416 		 * channels in usual fbin coding format
2417 		 */
2418 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2419 
2420 		/*
2421 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2422 		 * if the register is per chain
2423 		 */
2424 		.noiseFloorThreshCh = {-1, 0, 0},
2425 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2426 		.quick_drop = 0,
2427 		.xpaBiasLvl = 0,
2428 		.txFrameToDataStart = 0x0e,
2429 		.txFrameToPaOn = 0x0e,
2430 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2431 		.antennaGain = 0,
2432 		.switchSettling = 0x2c,
2433 		.adcDesiredSize = -30,
2434 		.txEndToXpaOff = 0,
2435 		.txEndToRxOn = 0x2,
2436 		.txFrameToXpaOn = 0xe,
2437 		.thresh62 = 28,
2438 		.papdRateMaskHt20 = LE32(0x0c80C080),
2439 		.papdRateMaskHt40 = LE32(0x0080C080),
2440 		.xlna_bias_strength = 0,
2441 		.futureModal = {
2442 			0, 0, 0, 0, 0, 0, 0,
2443 		},
2444 	 },
2445 	 .base_ext1 = {
2446 		.ant_div_control = 0,
2447 		.future = {0, 0, 0},
2448 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
2449 	 },
2450 	.calFreqPier2G = {
2451 		FREQ2FBIN(2412, 1),
2452 		FREQ2FBIN(2437, 1),
2453 		FREQ2FBIN(2462, 1),
2454 	 },
2455 	/* ar9300_cal_data_per_freq_op_loop 2g */
2456 	.calPierData2G = {
2457 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2458 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2459 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2460 	 },
2461 	.calTarget_freqbin_Cck = {
2462 		FREQ2FBIN(2412, 1),
2463 		FREQ2FBIN(2472, 1),
2464 	 },
2465 	.calTarget_freqbin_2G = {
2466 		FREQ2FBIN(2412, 1),
2467 		FREQ2FBIN(2437, 1),
2468 		FREQ2FBIN(2472, 1)
2469 	 },
2470 	.calTarget_freqbin_2GHT20 = {
2471 		FREQ2FBIN(2412, 1),
2472 		FREQ2FBIN(2437, 1),
2473 		FREQ2FBIN(2472, 1)
2474 	 },
2475 	.calTarget_freqbin_2GHT40 = {
2476 		FREQ2FBIN(2412, 1),
2477 		FREQ2FBIN(2437, 1),
2478 		FREQ2FBIN(2472, 1)
2479 	 },
2480 	.calTargetPowerCck = {
2481 		 /* 1L-5L,5S,11L,11S */
2482 		 { {34, 34, 34, 34} },
2483 		 { {34, 34, 34, 34} },
2484 	},
2485 	.calTargetPower2G = {
2486 		 /* 6-24,36,48,54 */
2487 		 { {34, 34, 32, 32} },
2488 		 { {34, 34, 32, 32} },
2489 		 { {34, 34, 32, 32} },
2490 	},
2491 	.calTargetPower2GHT20 = {
2492 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2493 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2494 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2495 	},
2496 	.calTargetPower2GHT40 = {
2497 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2498 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2499 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2500 	},
2501 	.ctlIndex_2G =  {
2502 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2503 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2504 	},
2505 	.ctl_freqbin_2G = {
2506 		{
2507 			FREQ2FBIN(2412, 1),
2508 			FREQ2FBIN(2417, 1),
2509 			FREQ2FBIN(2457, 1),
2510 			FREQ2FBIN(2462, 1)
2511 		},
2512 		{
2513 			FREQ2FBIN(2412, 1),
2514 			FREQ2FBIN(2417, 1),
2515 			FREQ2FBIN(2462, 1),
2516 			0xFF,
2517 		},
2518 
2519 		{
2520 			FREQ2FBIN(2412, 1),
2521 			FREQ2FBIN(2417, 1),
2522 			FREQ2FBIN(2462, 1),
2523 			0xFF,
2524 		},
2525 		{
2526 			FREQ2FBIN(2422, 1),
2527 			FREQ2FBIN(2427, 1),
2528 			FREQ2FBIN(2447, 1),
2529 			FREQ2FBIN(2452, 1)
2530 		},
2531 
2532 		{
2533 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2534 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2535 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2536 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2537 		},
2538 
2539 		{
2540 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2541 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2542 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2543 			0,
2544 		},
2545 
2546 		{
2547 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2548 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2549 			FREQ2FBIN(2472, 1),
2550 			0,
2551 		},
2552 
2553 		{
2554 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2555 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2556 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2557 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2558 		},
2559 
2560 		{
2561 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2562 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2563 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2564 		},
2565 
2566 		{
2567 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2568 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2569 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2570 			0
2571 		},
2572 
2573 		{
2574 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2575 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2576 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2577 			0
2578 		},
2579 
2580 		{
2581 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2582 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2583 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2584 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2585 		}
2586 	 },
2587 	.ctlPowerData_2G = {
2588 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2589 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2590 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2591 
2592 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2593 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2594 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2595 
2596 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2597 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2598 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2599 
2600 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2601 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2602 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2603 	 },
2604 	.modalHeader5G = {
2605 		/* 4 idle,t1,t2,b (4 bits per setting) */
2606 		.antCtrlCommon = LE32(0x220),
2607 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2608 		.antCtrlCommon2 = LE32(0x44444),
2609 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2610 		.antCtrlChain = {
2611 			LE16(0x150), LE16(0x150), LE16(0x150),
2612 		},
2613 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2614 		.xatten1DB = {0x19, 0x19, 0x19},
2615 
2616 		/*
2617 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2618 		 * for merlin (0xa20c/b20c 16:12
2619 		 */
2620 		.xatten1Margin = {0x14, 0x14, 0x14},
2621 		.tempSlope = 70,
2622 		.voltSlope = 0,
2623 		/* spurChans spur channels in usual fbin coding format */
2624 		.spurChans = {0, 0, 0, 0, 0},
2625 		/* noiseFloorThreshCh Check if the register is per chain */
2626 		.noiseFloorThreshCh = {-1, 0, 0},
2627 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2628 		.quick_drop = 0,
2629 		.xpaBiasLvl = 0,
2630 		.txFrameToDataStart = 0x0e,
2631 		.txFrameToPaOn = 0x0e,
2632 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2633 		.antennaGain = 0,
2634 		.switchSettling = 0x2d,
2635 		.adcDesiredSize = -30,
2636 		.txEndToXpaOff = 0,
2637 		.txEndToRxOn = 0x2,
2638 		.txFrameToXpaOn = 0xe,
2639 		.thresh62 = 28,
2640 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2641 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2642 		.xlna_bias_strength = 0,
2643 		.futureModal = {
2644 			0, 0, 0, 0, 0, 0, 0,
2645 		},
2646 	 },
2647 	.base_ext2 = {
2648 		.tempSlopeLow = 35,
2649 		.tempSlopeHigh = 50,
2650 		.xatten1DBLow = {0, 0, 0},
2651 		.xatten1MarginLow = {0, 0, 0},
2652 		.xatten1DBHigh = {0, 0, 0},
2653 		.xatten1MarginHigh = {0, 0, 0}
2654 	 },
2655 	.calFreqPier5G = {
2656 		FREQ2FBIN(5160, 0),
2657 		FREQ2FBIN(5220, 0),
2658 		FREQ2FBIN(5320, 0),
2659 		FREQ2FBIN(5400, 0),
2660 		FREQ2FBIN(5500, 0),
2661 		FREQ2FBIN(5600, 0),
2662 		FREQ2FBIN(5700, 0),
2663 		FREQ2FBIN(5785, 0)
2664 	},
2665 	.calPierData5G = {
2666 			{
2667 				{0, 0, 0, 0, 0},
2668 				{0, 0, 0, 0, 0},
2669 				{0, 0, 0, 0, 0},
2670 				{0, 0, 0, 0, 0},
2671 				{0, 0, 0, 0, 0},
2672 				{0, 0, 0, 0, 0},
2673 				{0, 0, 0, 0, 0},
2674 				{0, 0, 0, 0, 0},
2675 			},
2676 			{
2677 				{0, 0, 0, 0, 0},
2678 				{0, 0, 0, 0, 0},
2679 				{0, 0, 0, 0, 0},
2680 				{0, 0, 0, 0, 0},
2681 				{0, 0, 0, 0, 0},
2682 				{0, 0, 0, 0, 0},
2683 				{0, 0, 0, 0, 0},
2684 				{0, 0, 0, 0, 0},
2685 			},
2686 			{
2687 				{0, 0, 0, 0, 0},
2688 				{0, 0, 0, 0, 0},
2689 				{0, 0, 0, 0, 0},
2690 				{0, 0, 0, 0, 0},
2691 				{0, 0, 0, 0, 0},
2692 				{0, 0, 0, 0, 0},
2693 				{0, 0, 0, 0, 0},
2694 				{0, 0, 0, 0, 0},
2695 			},
2696 
2697 	},
2698 	.calTarget_freqbin_5G = {
2699 		FREQ2FBIN(5180, 0),
2700 		FREQ2FBIN(5240, 0),
2701 		FREQ2FBIN(5320, 0),
2702 		FREQ2FBIN(5400, 0),
2703 		FREQ2FBIN(5500, 0),
2704 		FREQ2FBIN(5600, 0),
2705 		FREQ2FBIN(5700, 0),
2706 		FREQ2FBIN(5825, 0)
2707 	},
2708 	.calTarget_freqbin_5GHT20 = {
2709 		FREQ2FBIN(5180, 0),
2710 		FREQ2FBIN(5240, 0),
2711 		FREQ2FBIN(5320, 0),
2712 		FREQ2FBIN(5400, 0),
2713 		FREQ2FBIN(5500, 0),
2714 		FREQ2FBIN(5700, 0),
2715 		FREQ2FBIN(5745, 0),
2716 		FREQ2FBIN(5825, 0)
2717 	},
2718 	.calTarget_freqbin_5GHT40 = {
2719 		FREQ2FBIN(5180, 0),
2720 		FREQ2FBIN(5240, 0),
2721 		FREQ2FBIN(5320, 0),
2722 		FREQ2FBIN(5400, 0),
2723 		FREQ2FBIN(5500, 0),
2724 		FREQ2FBIN(5700, 0),
2725 		FREQ2FBIN(5745, 0),
2726 		FREQ2FBIN(5825, 0)
2727 	 },
2728 	.calTargetPower5G = {
2729 		/* 6-24,36,48,54 */
2730 		{ {30, 30, 28, 24} },
2731 		{ {30, 30, 28, 24} },
2732 		{ {30, 30, 28, 24} },
2733 		{ {30, 30, 28, 24} },
2734 		{ {30, 30, 28, 24} },
2735 		{ {30, 30, 28, 24} },
2736 		{ {30, 30, 28, 24} },
2737 		{ {30, 30, 28, 24} },
2738 	 },
2739 	.calTargetPower5GHT20 = {
2740 		/*
2741 		 * 0_8_16,1-3_9-11_17-19,
2742 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2743 		 */
2744 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2745 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2746 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2747 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2748 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2749 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2750 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2751 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2752 	 },
2753 	.calTargetPower5GHT40 =  {
2754 		/*
2755 		 * 0_8_16,1-3_9-11_17-19,
2756 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2757 		 */
2758 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2759 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2760 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2761 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2762 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2763 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2764 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2765 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2766 	 },
2767 	.ctlIndex_5G =  {
2768 		0x10, 0x16, 0x18, 0x40, 0x46,
2769 		0x48, 0x30, 0x36, 0x38
2770 	},
2771 	.ctl_freqbin_5G =  {
2772 		{
2773 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2774 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2775 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2776 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2777 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2778 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2779 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2780 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2781 		},
2782 		{
2783 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2784 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2785 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2786 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2787 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2788 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2789 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2790 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2791 		},
2792 
2793 		{
2794 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2795 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2796 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2797 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2798 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2799 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2800 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2801 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2802 		},
2803 
2804 		{
2805 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2806 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2807 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2808 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2809 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2810 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2811 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
2812 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
2813 		},
2814 
2815 		{
2816 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2817 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2818 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2819 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2820 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
2821 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
2822 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
2823 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
2824 		},
2825 
2826 		{
2827 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2828 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2829 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2830 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2831 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2832 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2833 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
2834 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
2835 		},
2836 
2837 		{
2838 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2839 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2840 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2841 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2842 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2843 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2844 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2845 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2846 		},
2847 
2848 		{
2849 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2850 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2851 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2852 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2853 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2854 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2855 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2856 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2857 		},
2858 
2859 		{
2860 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2861 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2862 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2863 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2864 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2865 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2866 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2867 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2868 		}
2869 	 },
2870 	.ctlPowerData_5G = {
2871 		{
2872 			{
2873 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2874 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2875 			}
2876 		},
2877 		{
2878 			{
2879 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2880 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2881 			}
2882 		},
2883 		{
2884 			{
2885 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2886 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2887 			}
2888 		},
2889 		{
2890 			{
2891 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2892 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2893 			}
2894 		},
2895 		{
2896 			{
2897 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2898 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2899 			}
2900 		},
2901 		{
2902 			{
2903 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2904 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2905 			}
2906 		},
2907 		{
2908 			{
2909 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2910 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2911 			}
2912 		},
2913 		{
2914 			{
2915 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2916 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2917 			}
2918 		},
2919 		{
2920 			{
2921 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2922 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2923 			}
2924 		},
2925 	 }
2926 };
2927 
2928 
2929 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2930 	&ar9300_default,
2931 	&ar9300_x112,
2932 	&ar9300_h116,
2933 	&ar9300_h112,
2934 	&ar9300_x113,
2935 };
2936 
2937 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2938 {
2939 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2940 	int it;
2941 
2942 	for (it = 0; it < N_LOOP; it++)
2943 		if (ar9300_eep_templates[it]->templateVersion == id)
2944 			return ar9300_eep_templates[it];
2945 	return NULL;
2946 #undef N_LOOP
2947 }
2948 
2949 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2950 {
2951 	return 0;
2952 }
2953 
2954 static int interpolate(int x, int xa, int xb, int ya, int yb)
2955 {
2956 	int bf, factor, plus;
2957 
2958 	bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2959 	factor = bf / 2;
2960 	plus = bf % 2;
2961 	return ya + factor + plus;
2962 }
2963 
2964 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
2965 				      enum eeprom_param param)
2966 {
2967 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2968 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
2969 
2970 	switch (param) {
2971 	case EEP_MAC_LSW:
2972 		return get_unaligned_be16(eep->macAddr);
2973 	case EEP_MAC_MID:
2974 		return get_unaligned_be16(eep->macAddr + 2);
2975 	case EEP_MAC_MSW:
2976 		return get_unaligned_be16(eep->macAddr + 4);
2977 	case EEP_REG_0:
2978 		return le16_to_cpu(pBase->regDmn[0]);
2979 	case EEP_OP_CAP:
2980 		return pBase->deviceCap;
2981 	case EEP_OP_MODE:
2982 		return pBase->opCapFlags.opFlags;
2983 	case EEP_RF_SILENT:
2984 		return pBase->rfSilent;
2985 	case EEP_TX_MASK:
2986 		return (pBase->txrxMask >> 4) & 0xf;
2987 	case EEP_RX_MASK:
2988 		return pBase->txrxMask & 0xf;
2989 	case EEP_PAPRD:
2990 		return !!(pBase->featureEnable & BIT(5));
2991 	case EEP_CHAIN_MASK_REDUCE:
2992 		return (pBase->miscConfiguration >> 0x3) & 0x1;
2993 	case EEP_ANT_DIV_CTL1:
2994 		return eep->base_ext1.ant_div_control;
2995 	case EEP_ANTENNA_GAIN_5G:
2996 		return eep->modalHeader5G.antennaGain;
2997 	case EEP_ANTENNA_GAIN_2G:
2998 		return eep->modalHeader2G.antennaGain;
2999 	default:
3000 		return 0;
3001 	}
3002 }
3003 
3004 static bool ar9300_eeprom_read_byte(struct ath_hw *ah, int address,
3005 				    u8 *buffer)
3006 {
3007 	u16 val;
3008 
3009 	if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
3010 		return false;
3011 
3012 	*buffer = (val >> (8 * (address % 2))) & 0xff;
3013 	return true;
3014 }
3015 
3016 static bool ar9300_eeprom_read_word(struct ath_hw *ah, int address,
3017 				    u8 *buffer)
3018 {
3019 	u16 val;
3020 
3021 	if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
3022 		return false;
3023 
3024 	buffer[0] = val >> 8;
3025 	buffer[1] = val & 0xff;
3026 
3027 	return true;
3028 }
3029 
3030 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3031 			       int count)
3032 {
3033 	struct ath_common *common = ath9k_hw_common(ah);
3034 	int i;
3035 
3036 	if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3037 		ath_dbg(common, EEPROM, "eeprom address not in range\n");
3038 		return false;
3039 	}
3040 
3041 	/*
3042 	 * Since we're reading the bytes in reverse order from a little-endian
3043 	 * word stream, an even address means we only use the lower half of
3044 	 * the 16-bit word at that address
3045 	 */
3046 	if (address % 2 == 0) {
3047 		if (!ar9300_eeprom_read_byte(ah, address--, buffer++))
3048 			goto error;
3049 
3050 		count--;
3051 	}
3052 
3053 	for (i = 0; i < count / 2; i++) {
3054 		if (!ar9300_eeprom_read_word(ah, address, buffer))
3055 			goto error;
3056 
3057 		address -= 2;
3058 		buffer += 2;
3059 	}
3060 
3061 	if (count % 2)
3062 		if (!ar9300_eeprom_read_byte(ah, address, buffer))
3063 			goto error;
3064 
3065 	return true;
3066 
3067 error:
3068 	ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
3069 		address);
3070 	return false;
3071 }
3072 
3073 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3074 {
3075 	REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3076 
3077 	if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3078 			   AR9300_OTP_STATUS_VALID, 1000))
3079 		return false;
3080 
3081 	*data = REG_READ(ah, AR9300_OTP_READ_DATA);
3082 	return true;
3083 }
3084 
3085 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3086 			    int count)
3087 {
3088 	u32 data;
3089 	int i;
3090 
3091 	for (i = 0; i < count; i++) {
3092 		int offset = 8 * ((address - i) % 4);
3093 		if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3094 			return false;
3095 
3096 		buffer[i] = (data >> offset) & 0xff;
3097 	}
3098 
3099 	return true;
3100 }
3101 
3102 
3103 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3104 				   int *length, int *major, int *minor)
3105 {
3106 	unsigned long value[4];
3107 
3108 	value[0] = best[0];
3109 	value[1] = best[1];
3110 	value[2] = best[2];
3111 	value[3] = best[3];
3112 	*code = ((value[0] >> 5) & 0x0007);
3113 	*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3114 	*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3115 	*major = (value[2] & 0x000f);
3116 	*minor = (value[3] & 0x00ff);
3117 }
3118 
3119 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3120 {
3121 	int it, checksum = 0;
3122 
3123 	for (it = 0; it < dsize; it++) {
3124 		checksum += data[it];
3125 		checksum &= 0xffff;
3126 	}
3127 
3128 	return checksum;
3129 }
3130 
3131 static bool ar9300_uncompress_block(struct ath_hw *ah,
3132 				    u8 *mptr,
3133 				    int mdataSize,
3134 				    u8 *block,
3135 				    int size)
3136 {
3137 	int it;
3138 	int spot;
3139 	int offset;
3140 	int length;
3141 	struct ath_common *common = ath9k_hw_common(ah);
3142 
3143 	spot = 0;
3144 
3145 	for (it = 0; it < size; it += (length+2)) {
3146 		offset = block[it];
3147 		offset &= 0xff;
3148 		spot += offset;
3149 		length = block[it+1];
3150 		length &= 0xff;
3151 
3152 		if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3153 			ath_dbg(common, EEPROM,
3154 				"Restore at %d: spot=%d offset=%d length=%d\n",
3155 				it, spot, offset, length);
3156 			memcpy(&mptr[spot], &block[it+2], length);
3157 			spot += length;
3158 		} else if (length > 0) {
3159 			ath_dbg(common, EEPROM,
3160 				"Bad restore at %d: spot=%d offset=%d length=%d\n",
3161 				it, spot, offset, length);
3162 			return false;
3163 		}
3164 	}
3165 	return true;
3166 }
3167 
3168 static int ar9300_compress_decision(struct ath_hw *ah,
3169 				    int it,
3170 				    int code,
3171 				    int reference,
3172 				    u8 *mptr,
3173 				    u8 *word, int length, int mdata_size)
3174 {
3175 	struct ath_common *common = ath9k_hw_common(ah);
3176 	const struct ar9300_eeprom *eep = NULL;
3177 
3178 	switch (code) {
3179 	case _CompressNone:
3180 		if (length != mdata_size) {
3181 			ath_dbg(common, EEPROM,
3182 				"EEPROM structure size mismatch memory=%d eeprom=%d\n",
3183 				mdata_size, length);
3184 			return -1;
3185 		}
3186 		memcpy(mptr, word + COMP_HDR_LEN, length);
3187 		ath_dbg(common, EEPROM,
3188 			"restored eeprom %d: uncompressed, length %d\n",
3189 			it, length);
3190 		break;
3191 	case _CompressBlock:
3192 		if (reference == 0) {
3193 		} else {
3194 			eep = ar9003_eeprom_struct_find_by_id(reference);
3195 			if (eep == NULL) {
3196 				ath_dbg(common, EEPROM,
3197 					"can't find reference eeprom struct %d\n",
3198 					reference);
3199 				return -1;
3200 			}
3201 			memcpy(mptr, eep, mdata_size);
3202 		}
3203 		ath_dbg(common, EEPROM,
3204 			"restore eeprom %d: block, reference %d, length %d\n",
3205 			it, reference, length);
3206 		ar9300_uncompress_block(ah, mptr, mdata_size,
3207 					(word + COMP_HDR_LEN), length);
3208 		break;
3209 	default:
3210 		ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
3211 		return -1;
3212 	}
3213 	return 0;
3214 }
3215 
3216 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3217 			       int count);
3218 
3219 static bool ar9300_check_header(void *data)
3220 {
3221 	u32 *word = data;
3222 	return !(*word == 0 || *word == ~0);
3223 }
3224 
3225 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3226 				       int base_addr)
3227 {
3228 	u8 header[4];
3229 
3230 	if (!read(ah, base_addr, header, 4))
3231 		return false;
3232 
3233 	return ar9300_check_header(header);
3234 }
3235 
3236 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3237 				       int mdata_size)
3238 {
3239 	u16 *data = (u16 *) mptr;
3240 	int i;
3241 
3242 	for (i = 0; i < mdata_size / 2; i++, data++)
3243 		ath9k_hw_nvram_read(ah, i, data);
3244 
3245 	return 0;
3246 }
3247 /*
3248  * Read the configuration data from the eeprom.
3249  * The data can be put in any specified memory buffer.
3250  *
3251  * Returns -1 on error.
3252  * Returns address of next memory location on success.
3253  */
3254 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3255 					  u8 *mptr, int mdata_size)
3256 {
3257 #define MDEFAULT 15
3258 #define MSTATE 100
3259 	int cptr;
3260 	u8 *word;
3261 	int code;
3262 	int reference, length, major, minor;
3263 	int osize;
3264 	int it;
3265 	u16 checksum, mchecksum;
3266 	struct ath_common *common = ath9k_hw_common(ah);
3267 	struct ar9300_eeprom *eep;
3268 	eeprom_read_op read;
3269 
3270 	if (ath9k_hw_use_flash(ah)) {
3271 		u8 txrx;
3272 
3273 		ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3274 
3275 		/* check if eeprom contains valid data */
3276 		eep = (struct ar9300_eeprom *) mptr;
3277 		txrx = eep->baseEepHeader.txrxMask;
3278 		if (txrx != 0 && txrx != 0xff)
3279 			return 0;
3280 	}
3281 
3282 	word = kzalloc(2048, GFP_KERNEL);
3283 	if (!word)
3284 		return -ENOMEM;
3285 
3286 	memcpy(mptr, &ar9300_default, mdata_size);
3287 
3288 	read = ar9300_read_eeprom;
3289 	if (AR_SREV_9485(ah))
3290 		cptr = AR9300_BASE_ADDR_4K;
3291 	else if (AR_SREV_9330(ah))
3292 		cptr = AR9300_BASE_ADDR_512;
3293 	else
3294 		cptr = AR9300_BASE_ADDR;
3295 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3296 		cptr);
3297 	if (ar9300_check_eeprom_header(ah, read, cptr))
3298 		goto found;
3299 
3300 	cptr = AR9300_BASE_ADDR_512;
3301 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3302 		cptr);
3303 	if (ar9300_check_eeprom_header(ah, read, cptr))
3304 		goto found;
3305 
3306 	read = ar9300_read_otp;
3307 	cptr = AR9300_BASE_ADDR;
3308 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3309 	if (ar9300_check_eeprom_header(ah, read, cptr))
3310 		goto found;
3311 
3312 	cptr = AR9300_BASE_ADDR_512;
3313 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3314 	if (ar9300_check_eeprom_header(ah, read, cptr))
3315 		goto found;
3316 
3317 	goto fail;
3318 
3319 found:
3320 	ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
3321 
3322 	for (it = 0; it < MSTATE; it++) {
3323 		if (!read(ah, cptr, word, COMP_HDR_LEN))
3324 			goto fail;
3325 
3326 		if (!ar9300_check_header(word))
3327 			break;
3328 
3329 		ar9300_comp_hdr_unpack(word, &code, &reference,
3330 				       &length, &major, &minor);
3331 		ath_dbg(common, EEPROM,
3332 			"Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3333 			cptr, code, reference, length, major, minor);
3334 		if ((!AR_SREV_9485(ah) && length >= 1024) ||
3335 		    (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3336 			ath_dbg(common, EEPROM, "Skipping bad header\n");
3337 			cptr -= COMP_HDR_LEN;
3338 			continue;
3339 		}
3340 
3341 		osize = length;
3342 		read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3343 		checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3344 		mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3345 		ath_dbg(common, EEPROM, "checksum %x %x\n",
3346 			checksum, mchecksum);
3347 		if (checksum == mchecksum) {
3348 			ar9300_compress_decision(ah, it, code, reference, mptr,
3349 						 word, length, mdata_size);
3350 		} else {
3351 			ath_dbg(common, EEPROM,
3352 				"skipping block with bad checksum\n");
3353 		}
3354 		cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3355 	}
3356 
3357 	kfree(word);
3358 	return cptr;
3359 
3360 fail:
3361 	kfree(word);
3362 	return -1;
3363 }
3364 
3365 /*
3366  * Restore the configuration structure by reading the eeprom.
3367  * This function destroys any existing in-memory structure
3368  * content.
3369  */
3370 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3371 {
3372 	u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3373 
3374 	if (ar9300_eeprom_restore_internal(ah, mptr,
3375 			sizeof(struct ar9300_eeprom)) < 0)
3376 		return false;
3377 
3378 	return true;
3379 }
3380 
3381 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
3382 static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
3383 				    struct ar9300_modal_eep_header *modal_hdr)
3384 {
3385 	PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
3386 	PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
3387 	PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
3388 	PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
3389 	PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
3390 	PR_EEP("Ant. Gain", modal_hdr->antennaGain);
3391 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
3392 	PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
3393 	PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
3394 	PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
3395 	PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
3396 	PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
3397 	PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
3398 	PR_EEP("Temp Slope", modal_hdr->tempSlope);
3399 	PR_EEP("Volt Slope", modal_hdr->voltSlope);
3400 	PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
3401 	PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
3402 	PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
3403 	PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
3404 	PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
3405 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
3406 	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
3407 	PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3408 	PR_EEP("Quick Drop", modal_hdr->quick_drop);
3409 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
3410 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
3411 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
3412 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
3413 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
3414 	PR_EEP("txClip", modal_hdr->txClip);
3415 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
3416 
3417 	return len;
3418 }
3419 
3420 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3421 				       u8 *buf, u32 len, u32 size)
3422 {
3423 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3424 	struct ar9300_base_eep_hdr *pBase;
3425 
3426 	if (!dump_base_hdr) {
3427 		len += snprintf(buf + len, size - len,
3428 				"%20s :\n", "2GHz modal Header");
3429 		len = ar9003_dump_modal_eeprom(buf, len, size,
3430 						&eep->modalHeader2G);
3431 		len += snprintf(buf + len, size - len,
3432 				"%20s :\n", "5GHz modal Header");
3433 		len = ar9003_dump_modal_eeprom(buf, len, size,
3434 						&eep->modalHeader5G);
3435 		goto out;
3436 	}
3437 
3438 	pBase = &eep->baseEepHeader;
3439 
3440 	PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
3441 	PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
3442 	PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
3443 	PR_EEP("TX Mask", (pBase->txrxMask >> 4));
3444 	PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
3445 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
3446 				AR5416_OPFLAGS_11A));
3447 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
3448 				AR5416_OPFLAGS_11G));
3449 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
3450 					AR5416_OPFLAGS_N_2G_HT20));
3451 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
3452 					AR5416_OPFLAGS_N_2G_HT40));
3453 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
3454 					AR5416_OPFLAGS_N_5G_HT20));
3455 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
3456 					AR5416_OPFLAGS_N_5G_HT40));
3457 	PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc & 0x01));
3458 	PR_EEP("RF Silent", pBase->rfSilent);
3459 	PR_EEP("BT option", pBase->blueToothOptions);
3460 	PR_EEP("Device Cap", pBase->deviceCap);
3461 	PR_EEP("Device Type", pBase->deviceType);
3462 	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
3463 	PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
3464 	PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
3465 	PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
3466 	PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
3467 	PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
3468 	PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
3469 	PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
3470 	PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
3471 	PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3472 	PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
3473 	PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
3474 	PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
3475 	PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
3476 	PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
3477 	PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
3478 	PR_EEP("Tx Gain", pBase->txrxgain >> 4);
3479 	PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
3480 	PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
3481 
3482 	len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
3483 			ah->eeprom.ar9300_eep.macAddr);
3484 out:
3485 	if (len > size)
3486 		len = size;
3487 
3488 	return len;
3489 }
3490 #else
3491 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3492 				       u8 *buf, u32 len, u32 size)
3493 {
3494 	return 0;
3495 }
3496 #endif
3497 
3498 /* XXX: review hardware docs */
3499 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3500 {
3501 	return ah->eeprom.ar9300_eep.eepromVersion;
3502 }
3503 
3504 /* XXX: could be read from the eepromVersion, not sure yet */
3505 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3506 {
3507 	return 0;
3508 }
3509 
3510 static struct ar9300_modal_eep_header *ar9003_modal_header(struct ath_hw *ah,
3511 							   bool is2ghz)
3512 {
3513 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3514 
3515 	if (is2ghz)
3516 		return &eep->modalHeader2G;
3517 	else
3518 		return &eep->modalHeader5G;
3519 }
3520 
3521 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3522 {
3523 	int bias = ar9003_modal_header(ah, is2ghz)->xpaBiasLvl;
3524 
3525 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3526 		REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3527 	else if (AR_SREV_9462(ah) || AR_SREV_9550(ah) || AR_SREV_9565(ah))
3528 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3529 	else {
3530 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3531 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3532 				AR_CH0_THERM_XPABIASLVL_MSB,
3533 				bias >> 2);
3534 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3535 				AR_CH0_THERM_XPASHORT2GND, 1);
3536 	}
3537 }
3538 
3539 static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is2ghz)
3540 {
3541 	return le16_to_cpu(ar9003_modal_header(ah, is2ghz)->switchcomspdt);
3542 }
3543 
3544 
3545 static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3546 {
3547 	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon);
3548 }
3549 
3550 static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3551 {
3552 	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon2);
3553 }
3554 
3555 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah, int chain,
3556 					bool is2ghz)
3557 {
3558 	__le16 val = ar9003_modal_header(ah, is2ghz)->antCtrlChain[chain];
3559 	return le16_to_cpu(val);
3560 }
3561 
3562 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3563 {
3564 	struct ath9k_hw_capabilities *pCap = &ah->caps;
3565 	int chain;
3566 	u32 regval, value, gpio;
3567 	static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3568 			AR_PHY_SWITCH_CHAIN_0,
3569 			AR_PHY_SWITCH_CHAIN_1,
3570 			AR_PHY_SWITCH_CHAIN_2,
3571 	};
3572 
3573 	if (AR_SREV_9485(ah) && (ar9003_hw_get_rx_gain_idx(ah) == 0)) {
3574 		if (ah->config.xlna_gpio)
3575 			gpio = ah->config.xlna_gpio;
3576 		else
3577 			gpio = AR9300_EXT_LNA_CTL_GPIO_AR9485;
3578 
3579 		ath9k_hw_cfg_output(ah, gpio,
3580 				    AR_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED);
3581 	}
3582 
3583 	value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3584 
3585 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3586 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3587 				AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3588 	} else if (AR_SREV_9550(ah)) {
3589 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3590 				AR_SWITCH_TABLE_COM_AR9550_ALL, value);
3591 	} else
3592 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3593 			      AR_SWITCH_TABLE_COM_ALL, value);
3594 
3595 
3596 	/*
3597 	 *   AR9462 defines new switch table for BT/WLAN,
3598 	 *       here's new field name in XXX.ref for both 2G and 5G.
3599 	 *   Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3600 	 *   15:12   R/W     SWITCH_TABLE_COM_SPDT_WLAN_RX
3601 	 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3602 	 *
3603 	 *   11:8     R/W     SWITCH_TABLE_COM_SPDT_WLAN_TX
3604 	 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3605 	 *
3606 	 *   7:4 R/W  SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3607 	 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3608 	 */
3609 	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565(ah)) {
3610 		value = ar9003_switch_com_spdt_get(ah, is2ghz);
3611 		REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
3612 				AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3613 		REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE);
3614 	}
3615 
3616 	value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3617 	REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3618 
3619 	if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
3620 		value = ar9003_hw_ant_ctrl_chain_get(ah, 1, is2ghz);
3621 		REG_RMW_FIELD(ah, switch_chain_reg[0],
3622 			      AR_SWITCH_TABLE_ALL, value);
3623 	}
3624 
3625 	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3626 		if ((ah->rxchainmask & BIT(chain)) ||
3627 		    (ah->txchainmask & BIT(chain))) {
3628 			value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3629 							     is2ghz);
3630 			REG_RMW_FIELD(ah, switch_chain_reg[chain],
3631 				      AR_SWITCH_TABLE_ALL, value);
3632 		}
3633 	}
3634 
3635 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
3636 		value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3637 		/*
3638 		 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3639 		 * are the fields present
3640 		 */
3641 		regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3642 		regval &= (~AR_ANT_DIV_CTRL_ALL);
3643 		regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3644 		/* enable_lnadiv */
3645 		regval &= (~AR_PHY_ANT_DIV_LNADIV);
3646 		regval |= ((value >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S;
3647 
3648 		if (AR_SREV_9565(ah)) {
3649 			if (ah->shared_chain_lnadiv) {
3650 				regval |= (1 << AR_PHY_ANT_SW_RX_PROT_S);
3651 			} else {
3652 				regval &= ~(1 << AR_PHY_ANT_DIV_LNADIV_S);
3653 				regval &= ~(1 << AR_PHY_ANT_SW_RX_PROT_S);
3654 			}
3655 		}
3656 
3657 		REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3658 
3659 		/*enable fast_div */
3660 		regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3661 		regval &= (~AR_FAST_DIV_ENABLE);
3662 		regval |= ((value >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S;
3663 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3664 
3665 		if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
3666 			regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3667 			/*
3668 			 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3669 			 * main_tb, alt_tb
3670 			 */
3671 			regval &= (~(AR_PHY_ANT_DIV_MAIN_LNACONF |
3672 				     AR_PHY_ANT_DIV_ALT_LNACONF |
3673 				     AR_PHY_ANT_DIV_ALT_GAINTB |
3674 				     AR_PHY_ANT_DIV_MAIN_GAINTB));
3675 			/* by default use LNA1 for the main antenna */
3676 			regval |= (AR_PHY_ANT_DIV_LNA1 <<
3677 				   AR_PHY_ANT_DIV_MAIN_LNACONF_S);
3678 			regval |= (AR_PHY_ANT_DIV_LNA2 <<
3679 				   AR_PHY_ANT_DIV_ALT_LNACONF_S);
3680 			REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3681 		}
3682 	}
3683 }
3684 
3685 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3686 {
3687 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3688 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3689 	int drive_strength;
3690 	unsigned long reg;
3691 
3692 	drive_strength = pBase->miscConfiguration & BIT(0);
3693 	if (!drive_strength)
3694 		return;
3695 
3696 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3697 	reg &= ~0x00ffffc0;
3698 	reg |= 0x5 << 21;
3699 	reg |= 0x5 << 18;
3700 	reg |= 0x5 << 15;
3701 	reg |= 0x5 << 12;
3702 	reg |= 0x5 << 9;
3703 	reg |= 0x5 << 6;
3704 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3705 
3706 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3707 	reg &= ~0xffffffe0;
3708 	reg |= 0x5 << 29;
3709 	reg |= 0x5 << 26;
3710 	reg |= 0x5 << 23;
3711 	reg |= 0x5 << 20;
3712 	reg |= 0x5 << 17;
3713 	reg |= 0x5 << 14;
3714 	reg |= 0x5 << 11;
3715 	reg |= 0x5 << 8;
3716 	reg |= 0x5 << 5;
3717 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3718 
3719 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3720 	reg &= ~0xff800000;
3721 	reg |= 0x5 << 29;
3722 	reg |= 0x5 << 26;
3723 	reg |= 0x5 << 23;
3724 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3725 }
3726 
3727 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3728 				     struct ath9k_channel *chan)
3729 {
3730 	int f[3], t[3];
3731 	u16 value;
3732 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3733 
3734 	if (chain >= 0 && chain < 3) {
3735 		if (IS_CHAN_2GHZ(chan))
3736 			return eep->modalHeader2G.xatten1DB[chain];
3737 		else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3738 			t[0] = eep->base_ext2.xatten1DBLow[chain];
3739 			f[0] = 5180;
3740 			t[1] = eep->modalHeader5G.xatten1DB[chain];
3741 			f[1] = 5500;
3742 			t[2] = eep->base_ext2.xatten1DBHigh[chain];
3743 			f[2] = 5785;
3744 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3745 							    f, t, 3);
3746 			return value;
3747 		} else
3748 			return eep->modalHeader5G.xatten1DB[chain];
3749 	}
3750 
3751 	return 0;
3752 }
3753 
3754 
3755 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3756 					    struct ath9k_channel *chan)
3757 {
3758 	int f[3], t[3];
3759 	u16 value;
3760 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3761 
3762 	if (chain >= 0 && chain < 3) {
3763 		if (IS_CHAN_2GHZ(chan))
3764 			return eep->modalHeader2G.xatten1Margin[chain];
3765 		else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3766 			t[0] = eep->base_ext2.xatten1MarginLow[chain];
3767 			f[0] = 5180;
3768 			t[1] = eep->modalHeader5G.xatten1Margin[chain];
3769 			f[1] = 5500;
3770 			t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3771 			f[2] = 5785;
3772 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3773 							    f, t, 3);
3774 			return value;
3775 		} else
3776 			return eep->modalHeader5G.xatten1Margin[chain];
3777 	}
3778 
3779 	return 0;
3780 }
3781 
3782 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3783 {
3784 	int i;
3785 	u16 value;
3786 	unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3787 					  AR_PHY_EXT_ATTEN_CTL_1,
3788 					  AR_PHY_EXT_ATTEN_CTL_2,
3789 					 };
3790 
3791 	if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
3792 		value = ar9003_hw_atten_chain_get(ah, 1, chan);
3793 		REG_RMW_FIELD(ah, ext_atten_reg[0],
3794 			      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3795 
3796 		value = ar9003_hw_atten_chain_get_margin(ah, 1, chan);
3797 		REG_RMW_FIELD(ah, ext_atten_reg[0],
3798 			      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3799 			      value);
3800 	}
3801 
3802 	/* Test value. if 0 then attenuation is unused. Don't load anything. */
3803 	for (i = 0; i < 3; i++) {
3804 		if (ah->txchainmask & BIT(i)) {
3805 			value = ar9003_hw_atten_chain_get(ah, i, chan);
3806 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3807 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3808 
3809 			if (AR_SREV_9485(ah) &&
3810 			    (ar9003_hw_get_rx_gain_idx(ah) == 0) &&
3811 			    ah->config.xatten_margin_cfg)
3812 				value = 5;
3813 			else
3814 				value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3815 
3816 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3817 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3818 				      value);
3819 		}
3820 	}
3821 }
3822 
3823 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3824 {
3825 	int timeout = 100;
3826 
3827 	while (pmu_set != REG_READ(ah, pmu_reg)) {
3828 		if (timeout-- == 0)
3829 			return false;
3830 		REG_WRITE(ah, pmu_reg, pmu_set);
3831 		udelay(10);
3832 	}
3833 
3834 	return true;
3835 }
3836 
3837 void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3838 {
3839 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3840 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3841 	u32 reg_val;
3842 
3843 	if (pBase->featureEnable & BIT(4)) {
3844 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3845 			int reg_pmu_set;
3846 
3847 			reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3848 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3849 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3850 				return;
3851 
3852 			if (AR_SREV_9330(ah)) {
3853 				if (ah->is_clk_25mhz) {
3854 					reg_pmu_set = (3 << 1) | (8 << 4) |
3855 						      (3 << 8) | (1 << 14) |
3856 						      (6 << 17) | (1 << 20) |
3857 						      (3 << 24);
3858 				} else {
3859 					reg_pmu_set = (4 << 1)  | (7 << 4) |
3860 						      (3 << 8)  | (1 << 14) |
3861 						      (6 << 17) | (1 << 20) |
3862 						      (3 << 24);
3863 				}
3864 			} else {
3865 				reg_pmu_set = (5 << 1) | (7 << 4) |
3866 					      (2 << 8) | (2 << 14) |
3867 					      (6 << 17) | (1 << 20) |
3868 					      (3 << 24) | (1 << 28);
3869 			}
3870 
3871 			REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3872 			if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3873 				return;
3874 
3875 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3876 					| (4 << 26);
3877 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3878 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3879 				return;
3880 
3881 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3882 					| (1 << 21);
3883 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3884 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3885 				return;
3886 		} else if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3887 			reg_val = le32_to_cpu(pBase->swreg);
3888 			REG_WRITE(ah, AR_PHY_PMU1, reg_val);
3889 		} else {
3890 			/* Internal regulator is ON. Write swreg register. */
3891 			reg_val = le32_to_cpu(pBase->swreg);
3892 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3893 				  REG_READ(ah, AR_RTC_REG_CONTROL1) &
3894 				  (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3895 			REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
3896 			/* Set REG_CONTROL1.SWREG_PROGRAM */
3897 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3898 				  REG_READ(ah,
3899 					   AR_RTC_REG_CONTROL1) |
3900 					   AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3901 		}
3902 	} else {
3903 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3904 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3905 			while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3906 						AR_PHY_PMU2_PGM))
3907 				udelay(10);
3908 
3909 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3910 			while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3911 						AR_PHY_PMU1_PWD))
3912 				udelay(10);
3913 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3914 			while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3915 						AR_PHY_PMU2_PGM))
3916 				udelay(10);
3917 		} else if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
3918 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3919 		else {
3920 			reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
3921 				AR_RTC_FORCE_SWREG_PRD;
3922 			REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
3923 		}
3924 	}
3925 
3926 }
3927 
3928 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3929 {
3930 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3931 	u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3932 
3933 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3934 		return;
3935 
3936 	if (eep->baseEepHeader.featureEnable & 0x40) {
3937 		tuning_caps_param &= 0x7f;
3938 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3939 			      tuning_caps_param);
3940 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3941 			      tuning_caps_param);
3942 	}
3943 }
3944 
3945 static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
3946 {
3947 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3948 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3949 	int quick_drop;
3950 	s32 t[3], f[3] = {5180, 5500, 5785};
3951 
3952 	if (!(pBase->miscConfiguration & BIT(1)))
3953 		return;
3954 
3955 	if (freq < 4000)
3956 		quick_drop = eep->modalHeader2G.quick_drop;
3957 	else {
3958 		t[0] = eep->base_ext1.quick_drop_low;
3959 		t[1] = eep->modalHeader5G.quick_drop;
3960 		t[2] = eep->base_ext1.quick_drop_high;
3961 		quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
3962 	}
3963 	REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
3964 }
3965 
3966 static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, bool is2ghz)
3967 {
3968 	u32 value;
3969 
3970 	value = ar9003_modal_header(ah, is2ghz)->txEndToXpaOff;
3971 
3972 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3973 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
3974 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3975 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
3976 }
3977 
3978 static void ar9003_hw_xpa_timing_control_apply(struct ath_hw *ah, bool is2ghz)
3979 {
3980 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3981 	u8 xpa_ctl;
3982 
3983 	if (!(eep->baseEepHeader.featureEnable & 0x80))
3984 		return;
3985 
3986 	if (!AR_SREV_9300(ah) && !AR_SREV_9340(ah) && !AR_SREV_9580(ah))
3987 		return;
3988 
3989 	xpa_ctl = ar9003_modal_header(ah, is2ghz)->txFrameToXpaOn;
3990 	if (is2ghz)
3991 		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3992 			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON, xpa_ctl);
3993 	else
3994 		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3995 			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON, xpa_ctl);
3996 }
3997 
3998 static void ar9003_hw_xlna_bias_strength_apply(struct ath_hw *ah, bool is2ghz)
3999 {
4000 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4001 	u8 bias;
4002 
4003 	if (!(eep->baseEepHeader.featureEnable & 0x40))
4004 		return;
4005 
4006 	if (!AR_SREV_9300(ah))
4007 		return;
4008 
4009 	bias = ar9003_modal_header(ah, is2ghz)->xlna_bias_strength;
4010 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4011 		      bias & 0x3);
4012 	bias >>= 2;
4013 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4014 		      bias & 0x3);
4015 	bias >>= 2;
4016 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4017 		      bias & 0x3);
4018 }
4019 
4020 static int ar9003_hw_get_thermometer(struct ath_hw *ah)
4021 {
4022 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4023 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
4024 	int thermometer =  (pBase->miscConfiguration >> 1) & 0x3;
4025 
4026 	return --thermometer;
4027 }
4028 
4029 static void ar9003_hw_thermometer_apply(struct ath_hw *ah)
4030 {
4031 	int thermometer = ar9003_hw_get_thermometer(ah);
4032 	u8 therm_on = (thermometer < 0) ? 0 : 1;
4033 
4034 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4035 		      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4036 	if (ah->caps.tx_chainmask & BIT(1))
4037 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4038 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4039 	if (ah->caps.tx_chainmask & BIT(2))
4040 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4041 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4042 
4043 	therm_on = (thermometer < 0) ? 0 : (thermometer == 0);
4044 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4045 		      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4046 	if (ah->caps.tx_chainmask & BIT(1)) {
4047 		therm_on = (thermometer < 0) ? 0 : (thermometer == 1);
4048 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4049 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4050 	}
4051 	if (ah->caps.tx_chainmask & BIT(2)) {
4052 		therm_on = (thermometer < 0) ? 0 : (thermometer == 2);
4053 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4054 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4055 	}
4056 }
4057 
4058 static void ar9003_hw_thermo_cal_apply(struct ath_hw *ah)
4059 {
4060 	u32 data, ko, kg;
4061 
4062 	if (!AR_SREV_9462_20_OR_LATER(ah))
4063 		return;
4064 
4065 	ar9300_otp_read_word(ah, 1, &data);
4066 	ko = data & 0xff;
4067 	kg = (data >> 8) & 0xff;
4068 	if (ko || kg) {
4069 		REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4070 			      AR_PHY_BB_THERM_ADC_3_THERM_ADC_OFFSET, ko);
4071 		REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4072 			      AR_PHY_BB_THERM_ADC_3_THERM_ADC_SCALE_GAIN,
4073 			      kg + 256);
4074 	}
4075 }
4076 
4077 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
4078 					     struct ath9k_channel *chan)
4079 {
4080 	bool is2ghz = IS_CHAN_2GHZ(chan);
4081 	ar9003_hw_xpa_timing_control_apply(ah, is2ghz);
4082 	ar9003_hw_xpa_bias_level_apply(ah, is2ghz);
4083 	ar9003_hw_ant_ctrl_apply(ah, is2ghz);
4084 	ar9003_hw_drive_strength_apply(ah);
4085 	ar9003_hw_xlna_bias_strength_apply(ah, is2ghz);
4086 	ar9003_hw_atten_apply(ah, chan);
4087 	ar9003_hw_quick_drop_apply(ah, chan->channel);
4088 	if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) && !AR_SREV_9550(ah))
4089 		ar9003_hw_internal_regulator_apply(ah);
4090 	ar9003_hw_apply_tuning_caps(ah);
4091 	ar9003_hw_txend_to_xpa_off_apply(ah, is2ghz);
4092 	ar9003_hw_thermometer_apply(ah);
4093 	ar9003_hw_thermo_cal_apply(ah);
4094 }
4095 
4096 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
4097 				      struct ath9k_channel *chan)
4098 {
4099 }
4100 
4101 /*
4102  * Returns the interpolated y value corresponding to the specified x value
4103  * from the np ordered pairs of data (px,py).
4104  * The pairs do not have to be in any order.
4105  * If the specified x value is less than any of the px,
4106  * the returned y value is equal to the py for the lowest px.
4107  * If the specified x value is greater than any of the px,
4108  * the returned y value is equal to the py for the highest px.
4109  */
4110 static int ar9003_hw_power_interpolate(int32_t x,
4111 				       int32_t *px, int32_t *py, u_int16_t np)
4112 {
4113 	int ip = 0;
4114 	int lx = 0, ly = 0, lhave = 0;
4115 	int hx = 0, hy = 0, hhave = 0;
4116 	int dx = 0;
4117 	int y = 0;
4118 
4119 	lhave = 0;
4120 	hhave = 0;
4121 
4122 	/* identify best lower and higher x calibration measurement */
4123 	for (ip = 0; ip < np; ip++) {
4124 		dx = x - px[ip];
4125 
4126 		/* this measurement is higher than our desired x */
4127 		if (dx <= 0) {
4128 			if (!hhave || dx > (x - hx)) {
4129 				/* new best higher x measurement */
4130 				hx = px[ip];
4131 				hy = py[ip];
4132 				hhave = 1;
4133 			}
4134 		}
4135 		/* this measurement is lower than our desired x */
4136 		if (dx >= 0) {
4137 			if (!lhave || dx < (x - lx)) {
4138 				/* new best lower x measurement */
4139 				lx = px[ip];
4140 				ly = py[ip];
4141 				lhave = 1;
4142 			}
4143 		}
4144 	}
4145 
4146 	/* the low x is good */
4147 	if (lhave) {
4148 		/* so is the high x */
4149 		if (hhave) {
4150 			/* they're the same, so just pick one */
4151 			if (hx == lx)
4152 				y = ly;
4153 			else	/* interpolate  */
4154 				y = interpolate(x, lx, hx, ly, hy);
4155 		} else		/* only low is good, use it */
4156 			y = ly;
4157 	} else if (hhave)	/* only high is good, use it */
4158 		y = hy;
4159 	else /* nothing is good,this should never happen unless np=0, ???? */
4160 		y = -(1 << 30);
4161 	return y;
4162 }
4163 
4164 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
4165 				       u16 rateIndex, u16 freq, bool is2GHz)
4166 {
4167 	u16 numPiers, i;
4168 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4169 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4170 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4171 	struct cal_tgt_pow_legacy *pEepromTargetPwr;
4172 	u8 *pFreqBin;
4173 
4174 	if (is2GHz) {
4175 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4176 		pEepromTargetPwr = eep->calTargetPower2G;
4177 		pFreqBin = eep->calTarget_freqbin_2G;
4178 	} else {
4179 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4180 		pEepromTargetPwr = eep->calTargetPower5G;
4181 		pFreqBin = eep->calTarget_freqbin_5G;
4182 	}
4183 
4184 	/*
4185 	 * create array of channels and targetpower from
4186 	 * targetpower piers stored on eeprom
4187 	 */
4188 	for (i = 0; i < numPiers; i++) {
4189 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4190 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4191 	}
4192 
4193 	/* interpolate to get target power for given frequency */
4194 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4195 						 freqArray,
4196 						 targetPowerArray, numPiers);
4197 }
4198 
4199 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
4200 					    u16 rateIndex,
4201 					    u16 freq, bool is2GHz)
4202 {
4203 	u16 numPiers, i;
4204 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4205 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4206 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4207 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4208 	u8 *pFreqBin;
4209 
4210 	if (is2GHz) {
4211 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4212 		pEepromTargetPwr = eep->calTargetPower2GHT20;
4213 		pFreqBin = eep->calTarget_freqbin_2GHT20;
4214 	} else {
4215 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4216 		pEepromTargetPwr = eep->calTargetPower5GHT20;
4217 		pFreqBin = eep->calTarget_freqbin_5GHT20;
4218 	}
4219 
4220 	/*
4221 	 * create array of channels and targetpower
4222 	 * from targetpower piers stored on eeprom
4223 	 */
4224 	for (i = 0; i < numPiers; i++) {
4225 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4226 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4227 	}
4228 
4229 	/* interpolate to get target power for given frequency */
4230 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4231 						 freqArray,
4232 						 targetPowerArray, numPiers);
4233 }
4234 
4235 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
4236 					    u16 rateIndex,
4237 					    u16 freq, bool is2GHz)
4238 {
4239 	u16 numPiers, i;
4240 	s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
4241 	s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
4242 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4243 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4244 	u8 *pFreqBin;
4245 
4246 	if (is2GHz) {
4247 		numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
4248 		pEepromTargetPwr = eep->calTargetPower2GHT40;
4249 		pFreqBin = eep->calTarget_freqbin_2GHT40;
4250 	} else {
4251 		numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
4252 		pEepromTargetPwr = eep->calTargetPower5GHT40;
4253 		pFreqBin = eep->calTarget_freqbin_5GHT40;
4254 	}
4255 
4256 	/*
4257 	 * create array of channels and targetpower from
4258 	 * targetpower piers stored on eeprom
4259 	 */
4260 	for (i = 0; i < numPiers; i++) {
4261 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4262 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4263 	}
4264 
4265 	/* interpolate to get target power for given frequency */
4266 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4267 						 freqArray,
4268 						 targetPowerArray, numPiers);
4269 }
4270 
4271 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
4272 					   u16 rateIndex, u16 freq)
4273 {
4274 	u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4275 	s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4276 	s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4277 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4278 	struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4279 	u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4280 
4281 	/*
4282 	 * create array of channels and targetpower from
4283 	 * targetpower piers stored on eeprom
4284 	 */
4285 	for (i = 0; i < numPiers; i++) {
4286 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], 1);
4287 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4288 	}
4289 
4290 	/* interpolate to get target power for given frequency */
4291 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4292 						 freqArray,
4293 						 targetPowerArray, numPiers);
4294 }
4295 
4296 /* Set tx power registers to array of values passed in */
4297 static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4298 {
4299 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
4300 	/* make sure forced gain is not set */
4301 	REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4302 
4303 	/* Write the OFDM power per rate set */
4304 
4305 	/* 6 (LSB), 9, 12, 18 (MSB) */
4306 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4307 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4308 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4309 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4310 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4311 
4312 	/* 24 (LSB), 36, 48, 54 (MSB) */
4313 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4314 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4315 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4316 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4317 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4318 
4319 	/* Write the CCK power per rate set */
4320 
4321 	/* 1L (LSB), reserved, 2L, 2S (MSB) */
4322 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4323 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4324 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4325 		  /* POW_SM(txPowerTimes2,  8) | this is reserved for AR9003 */
4326 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4327 
4328 	/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4329 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4330 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4331 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4332 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4333 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4334 	    );
4335 
4336         /* Write the power for duplicated frames - HT40 */
4337 
4338         /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4339 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4340 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4341 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4342 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24],  8) |
4343 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L],  0)
4344 	    );
4345 
4346 	/* Write the HT20 power per rate set */
4347 
4348 	/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4349 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4350 		  POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4351 		  POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4352 		  POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4353 		  POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4354 	    );
4355 
4356 	/* 6 (LSB), 7, 12, 13 (MSB) */
4357 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4358 		  POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4359 		  POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4360 		  POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4361 		  POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4362 	    );
4363 
4364 	/* 14 (LSB), 15, 20, 21 */
4365 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4366 		  POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4367 		  POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4368 		  POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4369 		  POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4370 	    );
4371 
4372 	/* Mixed HT20 and HT40 rates */
4373 
4374 	/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4375 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4376 		  POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4377 		  POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4378 		  POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4379 		  POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4380 	    );
4381 
4382 	/*
4383 	 * Write the HT40 power per rate set
4384 	 * correct PAR difference between HT40 and HT20/LEGACY
4385 	 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4386 	 */
4387 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4388 		  POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4389 		  POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4390 		  POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4391 		  POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4392 	    );
4393 
4394 	/* 6 (LSB), 7, 12, 13 (MSB) */
4395 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4396 		  POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4397 		  POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4398 		  POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4399 		  POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4400 	    );
4401 
4402 	/* 14 (LSB), 15, 20, 21 */
4403 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4404 		  POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4405 		  POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4406 		  POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4407 		  POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4408 	    );
4409 
4410 	return 0;
4411 #undef POW_SM
4412 }
4413 
4414 static void ar9003_hw_get_legacy_target_powers(struct ath_hw *ah, u16 freq,
4415 					       u8 *targetPowerValT2,
4416 					       bool is2GHz)
4417 {
4418 	targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4419 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4420 					 is2GHz);
4421 	targetPowerValT2[ALL_TARGET_LEGACY_36] =
4422 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4423 					 is2GHz);
4424 	targetPowerValT2[ALL_TARGET_LEGACY_48] =
4425 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4426 					 is2GHz);
4427 	targetPowerValT2[ALL_TARGET_LEGACY_54] =
4428 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4429 					 is2GHz);
4430 }
4431 
4432 static void ar9003_hw_get_cck_target_powers(struct ath_hw *ah, u16 freq,
4433 					    u8 *targetPowerValT2)
4434 {
4435 	targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4436 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4437 					     freq);
4438 	targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4439 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4440 	targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4441 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4442 	targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4443 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4444 }
4445 
4446 static void ar9003_hw_get_ht20_target_powers(struct ath_hw *ah, u16 freq,
4447 					     u8 *targetPowerValT2, bool is2GHz)
4448 {
4449 	targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4450 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4451 					      is2GHz);
4452 	targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4453 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4454 					      freq, is2GHz);
4455 	targetPowerValT2[ALL_TARGET_HT20_4] =
4456 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4457 					      is2GHz);
4458 	targetPowerValT2[ALL_TARGET_HT20_5] =
4459 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4460 					      is2GHz);
4461 	targetPowerValT2[ALL_TARGET_HT20_6] =
4462 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4463 					      is2GHz);
4464 	targetPowerValT2[ALL_TARGET_HT20_7] =
4465 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4466 					      is2GHz);
4467 	targetPowerValT2[ALL_TARGET_HT20_12] =
4468 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4469 					      is2GHz);
4470 	targetPowerValT2[ALL_TARGET_HT20_13] =
4471 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4472 					      is2GHz);
4473 	targetPowerValT2[ALL_TARGET_HT20_14] =
4474 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4475 					      is2GHz);
4476 	targetPowerValT2[ALL_TARGET_HT20_15] =
4477 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4478 					      is2GHz);
4479 	targetPowerValT2[ALL_TARGET_HT20_20] =
4480 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4481 					      is2GHz);
4482 	targetPowerValT2[ALL_TARGET_HT20_21] =
4483 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4484 					      is2GHz);
4485 	targetPowerValT2[ALL_TARGET_HT20_22] =
4486 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4487 					      is2GHz);
4488 	targetPowerValT2[ALL_TARGET_HT20_23] =
4489 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4490 					      is2GHz);
4491 }
4492 
4493 static void ar9003_hw_get_ht40_target_powers(struct ath_hw *ah,
4494 						   u16 freq,
4495 						   u8 *targetPowerValT2,
4496 						   bool is2GHz)
4497 {
4498 	/* XXX: hard code for now, need to get from eeprom struct */
4499 	u8 ht40PowerIncForPdadc = 0;
4500 
4501 	targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4502 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4503 					      is2GHz) + ht40PowerIncForPdadc;
4504 	targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4505 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4506 					      freq,
4507 					      is2GHz) + ht40PowerIncForPdadc;
4508 	targetPowerValT2[ALL_TARGET_HT40_4] =
4509 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4510 					      is2GHz) + ht40PowerIncForPdadc;
4511 	targetPowerValT2[ALL_TARGET_HT40_5] =
4512 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4513 					      is2GHz) + ht40PowerIncForPdadc;
4514 	targetPowerValT2[ALL_TARGET_HT40_6] =
4515 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4516 					      is2GHz) + ht40PowerIncForPdadc;
4517 	targetPowerValT2[ALL_TARGET_HT40_7] =
4518 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4519 					      is2GHz) + ht40PowerIncForPdadc;
4520 	targetPowerValT2[ALL_TARGET_HT40_12] =
4521 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4522 					      is2GHz) + ht40PowerIncForPdadc;
4523 	targetPowerValT2[ALL_TARGET_HT40_13] =
4524 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4525 					      is2GHz) + ht40PowerIncForPdadc;
4526 	targetPowerValT2[ALL_TARGET_HT40_14] =
4527 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4528 					      is2GHz) + ht40PowerIncForPdadc;
4529 	targetPowerValT2[ALL_TARGET_HT40_15] =
4530 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4531 					      is2GHz) + ht40PowerIncForPdadc;
4532 	targetPowerValT2[ALL_TARGET_HT40_20] =
4533 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4534 					      is2GHz) + ht40PowerIncForPdadc;
4535 	targetPowerValT2[ALL_TARGET_HT40_21] =
4536 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4537 					      is2GHz) + ht40PowerIncForPdadc;
4538 	targetPowerValT2[ALL_TARGET_HT40_22] =
4539 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4540 					      is2GHz) + ht40PowerIncForPdadc;
4541 	targetPowerValT2[ALL_TARGET_HT40_23] =
4542 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4543 					      is2GHz) + ht40PowerIncForPdadc;
4544 }
4545 
4546 static void ar9003_hw_get_target_power_eeprom(struct ath_hw *ah,
4547 					      struct ath9k_channel *chan,
4548 					      u8 *targetPowerValT2)
4549 {
4550 	bool is2GHz = IS_CHAN_2GHZ(chan);
4551 	unsigned int i = 0;
4552 	struct ath_common *common = ath9k_hw_common(ah);
4553 	u16 freq = chan->channel;
4554 
4555 	if (is2GHz)
4556 		ar9003_hw_get_cck_target_powers(ah, freq, targetPowerValT2);
4557 
4558 	ar9003_hw_get_legacy_target_powers(ah, freq, targetPowerValT2, is2GHz);
4559 	ar9003_hw_get_ht20_target_powers(ah, freq, targetPowerValT2, is2GHz);
4560 
4561 	if (IS_CHAN_HT40(chan))
4562 		ar9003_hw_get_ht40_target_powers(ah, freq, targetPowerValT2,
4563 						 is2GHz);
4564 
4565 	for (i = 0; i < ar9300RateSize; i++) {
4566 		ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
4567 			i, targetPowerValT2[i]);
4568 	}
4569 }
4570 
4571 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4572 				  int mode,
4573 				  int ipier,
4574 				  int ichain,
4575 				  int *pfrequency,
4576 				  int *pcorrection,
4577 				  int *ptemperature, int *pvoltage)
4578 {
4579 	u8 *pCalPier;
4580 	struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4581 	int is2GHz;
4582 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4583 	struct ath_common *common = ath9k_hw_common(ah);
4584 
4585 	if (ichain >= AR9300_MAX_CHAINS) {
4586 		ath_dbg(common, EEPROM,
4587 			"Invalid chain index, must be less than %d\n",
4588 			AR9300_MAX_CHAINS);
4589 		return -1;
4590 	}
4591 
4592 	if (mode) {		/* 5GHz */
4593 		if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4594 			ath_dbg(common, EEPROM,
4595 				"Invalid 5GHz cal pier index, must be less than %d\n",
4596 				AR9300_NUM_5G_CAL_PIERS);
4597 			return -1;
4598 		}
4599 		pCalPier = &(eep->calFreqPier5G[ipier]);
4600 		pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4601 		is2GHz = 0;
4602 	} else {
4603 		if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4604 			ath_dbg(common, EEPROM,
4605 				"Invalid 2GHz cal pier index, must be less than %d\n",
4606 				AR9300_NUM_2G_CAL_PIERS);
4607 			return -1;
4608 		}
4609 
4610 		pCalPier = &(eep->calFreqPier2G[ipier]);
4611 		pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4612 		is2GHz = 1;
4613 	}
4614 
4615 	*pfrequency = ath9k_hw_fbin2freq(*pCalPier, is2GHz);
4616 	*pcorrection = pCalPierStruct->refPower;
4617 	*ptemperature = pCalPierStruct->tempMeas;
4618 	*pvoltage = pCalPierStruct->voltMeas;
4619 
4620 	return 0;
4621 }
4622 
4623 static void ar9003_hw_power_control_override(struct ath_hw *ah,
4624 					     int frequency,
4625 					     int *correction,
4626 					     int *voltage, int *temperature)
4627 {
4628 	int temp_slope = 0, temp_slope1 = 0, temp_slope2 = 0;
4629 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4630 	int f[8], t[8], t1[3], t2[3], i;
4631 
4632 	REG_RMW(ah, AR_PHY_TPC_11_B0,
4633 		(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4634 		AR_PHY_TPC_OLPC_GAIN_DELTA);
4635 	if (ah->caps.tx_chainmask & BIT(1))
4636 		REG_RMW(ah, AR_PHY_TPC_11_B1,
4637 			(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4638 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4639 	if (ah->caps.tx_chainmask & BIT(2))
4640 		REG_RMW(ah, AR_PHY_TPC_11_B2,
4641 			(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4642 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4643 
4644 	/* enable open loop power control on chip */
4645 	REG_RMW(ah, AR_PHY_TPC_6_B0,
4646 		(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4647 		AR_PHY_TPC_6_ERROR_EST_MODE);
4648 	if (ah->caps.tx_chainmask & BIT(1))
4649 		REG_RMW(ah, AR_PHY_TPC_6_B1,
4650 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4651 			AR_PHY_TPC_6_ERROR_EST_MODE);
4652 	if (ah->caps.tx_chainmask & BIT(2))
4653 		REG_RMW(ah, AR_PHY_TPC_6_B2,
4654 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4655 			AR_PHY_TPC_6_ERROR_EST_MODE);
4656 
4657 	/*
4658 	 * enable temperature compensation
4659 	 * Need to use register names
4660 	 */
4661 	if (frequency < 4000) {
4662 		temp_slope = eep->modalHeader2G.tempSlope;
4663 	} else {
4664 		if (AR_SREV_9550(ah)) {
4665 			t[0] = eep->base_ext1.tempslopextension[2];
4666 			t1[0] = eep->base_ext1.tempslopextension[3];
4667 			t2[0] = eep->base_ext1.tempslopextension[4];
4668 			f[0] = 5180;
4669 
4670 			t[1] = eep->modalHeader5G.tempSlope;
4671 			t1[1] = eep->base_ext1.tempslopextension[0];
4672 			t2[1] = eep->base_ext1.tempslopextension[1];
4673 			f[1] = 5500;
4674 
4675 			t[2] = eep->base_ext1.tempslopextension[5];
4676 			t1[2] = eep->base_ext1.tempslopextension[6];
4677 			t2[2] = eep->base_ext1.tempslopextension[7];
4678 			f[2] = 5785;
4679 
4680 			temp_slope = ar9003_hw_power_interpolate(frequency,
4681 								 f, t, 3);
4682 			temp_slope1 = ar9003_hw_power_interpolate(frequency,
4683 								   f, t1, 3);
4684 			temp_slope2 = ar9003_hw_power_interpolate(frequency,
4685 								   f, t2, 3);
4686 
4687 			goto tempslope;
4688 		}
4689 
4690 		if ((eep->baseEepHeader.miscConfiguration & 0x20) != 0) {
4691 			for (i = 0; i < 8; i++) {
4692 				t[i] = eep->base_ext1.tempslopextension[i];
4693 				f[i] = FBIN2FREQ(eep->calFreqPier5G[i], 0);
4694 			}
4695 			temp_slope = ar9003_hw_power_interpolate((s32) frequency,
4696 								 f, t, 8);
4697 		} else if (eep->base_ext2.tempSlopeLow != 0) {
4698 			t[0] = eep->base_ext2.tempSlopeLow;
4699 			f[0] = 5180;
4700 			t[1] = eep->modalHeader5G.tempSlope;
4701 			f[1] = 5500;
4702 			t[2] = eep->base_ext2.tempSlopeHigh;
4703 			f[2] = 5785;
4704 			temp_slope = ar9003_hw_power_interpolate((s32) frequency,
4705 								 f, t, 3);
4706 		} else {
4707 			temp_slope = eep->modalHeader5G.tempSlope;
4708 		}
4709 	}
4710 
4711 tempslope:
4712 	if (AR_SREV_9550(ah)) {
4713 		/*
4714 		 * AR955x has tempSlope register for each chain.
4715 		 * Check whether temp_compensation feature is enabled or not.
4716 		 */
4717 		if (eep->baseEepHeader.featureEnable & 0x1) {
4718 			if (frequency < 4000) {
4719 				REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4720 					      AR_PHY_TPC_19_ALPHA_THERM,
4721 					      eep->base_ext2.tempSlopeLow);
4722 				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4723 					      AR_PHY_TPC_19_ALPHA_THERM,
4724 					      temp_slope);
4725 				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4726 					      AR_PHY_TPC_19_ALPHA_THERM,
4727 					      eep->base_ext2.tempSlopeHigh);
4728 			} else {
4729 				REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4730 					      AR_PHY_TPC_19_ALPHA_THERM,
4731 					      temp_slope);
4732 				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4733 					      AR_PHY_TPC_19_ALPHA_THERM,
4734 					      temp_slope1);
4735 				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4736 					      AR_PHY_TPC_19_ALPHA_THERM,
4737 					      temp_slope2);
4738 			}
4739 		} else {
4740 			/*
4741 			 * If temp compensation is not enabled,
4742 			 * set all registers to 0.
4743 			 */
4744 			REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4745 				      AR_PHY_TPC_19_ALPHA_THERM, 0);
4746 			REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4747 				      AR_PHY_TPC_19_ALPHA_THERM, 0);
4748 			REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4749 				      AR_PHY_TPC_19_ALPHA_THERM, 0);
4750 		}
4751 	} else {
4752 		REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4753 			      AR_PHY_TPC_19_ALPHA_THERM, temp_slope);
4754 	}
4755 
4756 	if (AR_SREV_9462_20_OR_LATER(ah))
4757 		REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4758 			      AR_PHY_TPC_19_B1_ALPHA_THERM, temp_slope);
4759 
4760 
4761 	REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4762 		      temperature[0]);
4763 }
4764 
4765 /* Apply the recorded correction values. */
4766 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4767 {
4768 	int ichain, ipier, npier;
4769 	int mode;
4770 	int lfrequency[AR9300_MAX_CHAINS],
4771 	    lcorrection[AR9300_MAX_CHAINS],
4772 	    ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4773 	int hfrequency[AR9300_MAX_CHAINS],
4774 	    hcorrection[AR9300_MAX_CHAINS],
4775 	    htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4776 	int fdiff;
4777 	int correction[AR9300_MAX_CHAINS],
4778 	    voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4779 	int pfrequency, pcorrection, ptemperature, pvoltage;
4780 	struct ath_common *common = ath9k_hw_common(ah);
4781 
4782 	mode = (frequency >= 4000);
4783 	if (mode)
4784 		npier = AR9300_NUM_5G_CAL_PIERS;
4785 	else
4786 		npier = AR9300_NUM_2G_CAL_PIERS;
4787 
4788 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4789 		lfrequency[ichain] = 0;
4790 		hfrequency[ichain] = 100000;
4791 	}
4792 	/* identify best lower and higher frequency calibration measurement */
4793 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4794 		for (ipier = 0; ipier < npier; ipier++) {
4795 			if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4796 						    &pfrequency, &pcorrection,
4797 						    &ptemperature, &pvoltage)) {
4798 				fdiff = frequency - pfrequency;
4799 
4800 				/*
4801 				 * this measurement is higher than
4802 				 * our desired frequency
4803 				 */
4804 				if (fdiff <= 0) {
4805 					if (hfrequency[ichain] <= 0 ||
4806 					    hfrequency[ichain] >= 100000 ||
4807 					    fdiff >
4808 					    (frequency - hfrequency[ichain])) {
4809 						/*
4810 						 * new best higher
4811 						 * frequency measurement
4812 						 */
4813 						hfrequency[ichain] = pfrequency;
4814 						hcorrection[ichain] =
4815 						    pcorrection;
4816 						htemperature[ichain] =
4817 						    ptemperature;
4818 						hvoltage[ichain] = pvoltage;
4819 					}
4820 				}
4821 				if (fdiff >= 0) {
4822 					if (lfrequency[ichain] <= 0
4823 					    || fdiff <
4824 					    (frequency - lfrequency[ichain])) {
4825 						/*
4826 						 * new best lower
4827 						 * frequency measurement
4828 						 */
4829 						lfrequency[ichain] = pfrequency;
4830 						lcorrection[ichain] =
4831 						    pcorrection;
4832 						ltemperature[ichain] =
4833 						    ptemperature;
4834 						lvoltage[ichain] = pvoltage;
4835 					}
4836 				}
4837 			}
4838 		}
4839 	}
4840 
4841 	/* interpolate  */
4842 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4843 		ath_dbg(common, EEPROM, "ch=%d f=%d low=%d %d h=%d %d\n",
4844 			ichain, frequency, lfrequency[ichain],
4845 			lcorrection[ichain], hfrequency[ichain],
4846 			hcorrection[ichain]);
4847 		/* they're the same, so just pick one */
4848 		if (hfrequency[ichain] == lfrequency[ichain]) {
4849 			correction[ichain] = lcorrection[ichain];
4850 			voltage[ichain] = lvoltage[ichain];
4851 			temperature[ichain] = ltemperature[ichain];
4852 		}
4853 		/* the low frequency is good */
4854 		else if (frequency - lfrequency[ichain] < 1000) {
4855 			/* so is the high frequency, interpolate */
4856 			if (hfrequency[ichain] - frequency < 1000) {
4857 
4858 				correction[ichain] = interpolate(frequency,
4859 						lfrequency[ichain],
4860 						hfrequency[ichain],
4861 						lcorrection[ichain],
4862 						hcorrection[ichain]);
4863 
4864 				temperature[ichain] = interpolate(frequency,
4865 						lfrequency[ichain],
4866 						hfrequency[ichain],
4867 						ltemperature[ichain],
4868 						htemperature[ichain]);
4869 
4870 				voltage[ichain] = interpolate(frequency,
4871 						lfrequency[ichain],
4872 						hfrequency[ichain],
4873 						lvoltage[ichain],
4874 						hvoltage[ichain]);
4875 			}
4876 			/* only low is good, use it */
4877 			else {
4878 				correction[ichain] = lcorrection[ichain];
4879 				temperature[ichain] = ltemperature[ichain];
4880 				voltage[ichain] = lvoltage[ichain];
4881 			}
4882 		}
4883 		/* only high is good, use it */
4884 		else if (hfrequency[ichain] - frequency < 1000) {
4885 			correction[ichain] = hcorrection[ichain];
4886 			temperature[ichain] = htemperature[ichain];
4887 			voltage[ichain] = hvoltage[ichain];
4888 		} else {	/* nothing is good, presume 0???? */
4889 			correction[ichain] = 0;
4890 			temperature[ichain] = 0;
4891 			voltage[ichain] = 0;
4892 		}
4893 	}
4894 
4895 	ar9003_hw_power_control_override(ah, frequency, correction, voltage,
4896 					 temperature);
4897 
4898 	ath_dbg(common, EEPROM,
4899 		"for frequency=%d, calibration correction = %d %d %d\n",
4900 		frequency, correction[0], correction[1], correction[2]);
4901 
4902 	return 0;
4903 }
4904 
4905 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
4906 					   int idx,
4907 					   int edge,
4908 					   bool is2GHz)
4909 {
4910 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4911 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4912 
4913 	if (is2GHz)
4914 		return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
4915 	else
4916 		return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
4917 }
4918 
4919 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
4920 					     int idx,
4921 					     unsigned int edge,
4922 					     u16 freq,
4923 					     bool is2GHz)
4924 {
4925 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4926 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4927 
4928 	u8 *ctl_freqbin = is2GHz ?
4929 		&eep->ctl_freqbin_2G[idx][0] :
4930 		&eep->ctl_freqbin_5G[idx][0];
4931 
4932 	if (is2GHz) {
4933 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
4934 		    CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
4935 			return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
4936 	} else {
4937 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
4938 		    CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
4939 			return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
4940 	}
4941 
4942 	return MAX_RATE_POWER;
4943 }
4944 
4945 /*
4946  * Find the maximum conformance test limit for the given channel and CTL info
4947  */
4948 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
4949 					u16 freq, int idx, bool is2GHz)
4950 {
4951 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
4952 	u8 *ctl_freqbin = is2GHz ?
4953 		&eep->ctl_freqbin_2G[idx][0] :
4954 		&eep->ctl_freqbin_5G[idx][0];
4955 	u16 num_edges = is2GHz ?
4956 		AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
4957 	unsigned int edge;
4958 
4959 	/* Get the edge power */
4960 	for (edge = 0;
4961 	     (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
4962 	     edge++) {
4963 		/*
4964 		 * If there's an exact channel match or an inband flag set
4965 		 * on the lower channel use the given rdEdgePower
4966 		 */
4967 		if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
4968 			twiceMaxEdgePower =
4969 				ar9003_hw_get_direct_edge_power(eep, idx,
4970 								edge, is2GHz);
4971 			break;
4972 		} else if ((edge > 0) &&
4973 			   (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
4974 						      is2GHz))) {
4975 			twiceMaxEdgePower =
4976 				ar9003_hw_get_indirect_edge_power(eep, idx,
4977 								  edge, freq,
4978 								  is2GHz);
4979 			/*
4980 			 * Leave loop - no more affecting edges possible in
4981 			 * this monotonic increasing list
4982 			 */
4983 			break;
4984 		}
4985 	}
4986 	return twiceMaxEdgePower;
4987 }
4988 
4989 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
4990 					       struct ath9k_channel *chan,
4991 					       u8 *pPwrArray, u16 cfgCtl,
4992 					       u8 antenna_reduction,
4993 					       u16 powerLimit)
4994 {
4995 	struct ath_common *common = ath9k_hw_common(ah);
4996 	struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
4997 	u16 twiceMaxEdgePower;
4998 	int i;
4999 	u16 scaledPower = 0, minCtlPower;
5000 	static const u16 ctlModesFor11a[] = {
5001 		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
5002 	};
5003 	static const u16 ctlModesFor11g[] = {
5004 		CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
5005 		CTL_11G_EXT, CTL_2GHT40
5006 	};
5007 	u16 numCtlModes;
5008 	const u16 *pCtlMode;
5009 	u16 ctlMode, freq;
5010 	struct chan_centers centers;
5011 	u8 *ctlIndex;
5012 	u8 ctlNum;
5013 	u16 twiceMinEdgePower;
5014 	bool is2ghz = IS_CHAN_2GHZ(chan);
5015 
5016 	ath9k_hw_get_channel_centers(ah, chan, &centers);
5017 	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
5018 						antenna_reduction);
5019 
5020 	if (is2ghz) {
5021 		/* Setup for CTL modes */
5022 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
5023 		numCtlModes =
5024 			ARRAY_SIZE(ctlModesFor11g) -
5025 				   SUB_NUM_CTL_MODES_AT_2G_40;
5026 		pCtlMode = ctlModesFor11g;
5027 		if (IS_CHAN_HT40(chan))
5028 			/* All 2G CTL's */
5029 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
5030 	} else {
5031 		/* Setup for CTL modes */
5032 		/* CTL_11A, CTL_5GHT20 */
5033 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
5034 					 SUB_NUM_CTL_MODES_AT_5G_40;
5035 		pCtlMode = ctlModesFor11a;
5036 		if (IS_CHAN_HT40(chan))
5037 			/* All 5G CTL's */
5038 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
5039 	}
5040 
5041 	/*
5042 	 * For MIMO, need to apply regulatory caps individually across
5043 	 * dynamically running modes: CCK, OFDM, HT20, HT40
5044 	 *
5045 	 * The outer loop walks through each possible applicable runtime mode.
5046 	 * The inner loop walks through each ctlIndex entry in EEPROM.
5047 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
5048 	 */
5049 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
5050 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
5051 			(pCtlMode[ctlMode] == CTL_2GHT40);
5052 		if (isHt40CtlMode)
5053 			freq = centers.synth_center;
5054 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
5055 			freq = centers.ext_center;
5056 		else
5057 			freq = centers.ctl_center;
5058 
5059 		ath_dbg(common, REGULATORY,
5060 			"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
5061 			ctlMode, numCtlModes, isHt40CtlMode,
5062 			(pCtlMode[ctlMode] & EXT_ADDITIVE));
5063 
5064 		/* walk through each CTL index stored in EEPROM */
5065 		if (is2ghz) {
5066 			ctlIndex = pEepData->ctlIndex_2G;
5067 			ctlNum = AR9300_NUM_CTLS_2G;
5068 		} else {
5069 			ctlIndex = pEepData->ctlIndex_5G;
5070 			ctlNum = AR9300_NUM_CTLS_5G;
5071 		}
5072 
5073 		twiceMaxEdgePower = MAX_RATE_POWER;
5074 		for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
5075 			ath_dbg(common, REGULATORY,
5076 				"LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
5077 				i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
5078 				chan->channel);
5079 
5080 			/*
5081 			 * compare test group from regulatory
5082 			 * channel list with test mode from pCtlMode
5083 			 * list
5084 			 */
5085 			if ((((cfgCtl & ~CTL_MODE_M) |
5086 			       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
5087 				ctlIndex[i]) ||
5088 			    (((cfgCtl & ~CTL_MODE_M) |
5089 			       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
5090 			     ((ctlIndex[i] & CTL_MODE_M) |
5091 			       SD_NO_CTL))) {
5092 				twiceMinEdgePower =
5093 				  ar9003_hw_get_max_edge_power(pEepData,
5094 							       freq, i,
5095 							       is2ghz);
5096 
5097 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
5098 					/*
5099 					 * Find the minimum of all CTL
5100 					 * edge powers that apply to
5101 					 * this channel
5102 					 */
5103 					twiceMaxEdgePower =
5104 						min(twiceMaxEdgePower,
5105 						    twiceMinEdgePower);
5106 				else {
5107 					/* specific */
5108 					twiceMaxEdgePower = twiceMinEdgePower;
5109 					break;
5110 				}
5111 			}
5112 		}
5113 
5114 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
5115 
5116 		ath_dbg(common, REGULATORY,
5117 			"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
5118 			ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
5119 			scaledPower, minCtlPower);
5120 
5121 		/* Apply ctl mode to correct target power set */
5122 		switch (pCtlMode[ctlMode]) {
5123 		case CTL_11B:
5124 			for (i = ALL_TARGET_LEGACY_1L_5L;
5125 			     i <= ALL_TARGET_LEGACY_11S; i++)
5126 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5127 						       minCtlPower);
5128 			break;
5129 		case CTL_11A:
5130 		case CTL_11G:
5131 			for (i = ALL_TARGET_LEGACY_6_24;
5132 			     i <= ALL_TARGET_LEGACY_54; i++)
5133 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5134 						       minCtlPower);
5135 			break;
5136 		case CTL_5GHT20:
5137 		case CTL_2GHT20:
5138 			for (i = ALL_TARGET_HT20_0_8_16;
5139 			     i <= ALL_TARGET_HT20_23; i++) {
5140 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5141 						       minCtlPower);
5142 				if (ath9k_hw_mci_is_enabled(ah))
5143 					pPwrArray[i] =
5144 						(u8)min((u16)pPwrArray[i],
5145 						ar9003_mci_get_max_txpower(ah,
5146 							pCtlMode[ctlMode]));
5147 			}
5148 			break;
5149 		case CTL_5GHT40:
5150 		case CTL_2GHT40:
5151 			for (i = ALL_TARGET_HT40_0_8_16;
5152 			     i <= ALL_TARGET_HT40_23; i++) {
5153 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5154 						       minCtlPower);
5155 				if (ath9k_hw_mci_is_enabled(ah))
5156 					pPwrArray[i] =
5157 						(u8)min((u16)pPwrArray[i],
5158 						ar9003_mci_get_max_txpower(ah,
5159 							pCtlMode[ctlMode]));
5160 			}
5161 			break;
5162 		default:
5163 			break;
5164 		}
5165 	} /* end ctl mode checking */
5166 }
5167 
5168 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
5169 {
5170 	u8 mod_idx = mcs_idx % 8;
5171 
5172 	if (mod_idx <= 3)
5173 		return mod_idx ? (base_pwridx + 1) : base_pwridx;
5174 	else
5175 		return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
5176 }
5177 
5178 static void ar9003_paprd_set_txpower(struct ath_hw *ah,
5179 				     struct ath9k_channel *chan,
5180 				     u8 *targetPowerValT2)
5181 {
5182 	int i;
5183 
5184 	if (!ar9003_is_paprd_enabled(ah))
5185 		return;
5186 
5187 	if (IS_CHAN_HT40(chan))
5188 		i = ALL_TARGET_HT40_7;
5189 	else
5190 		i = ALL_TARGET_HT20_7;
5191 
5192 	if (IS_CHAN_2GHZ(chan)) {
5193 		if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) &&
5194 		    !AR_SREV_9462(ah) && !AR_SREV_9565(ah)) {
5195 			if (IS_CHAN_HT40(chan))
5196 				i = ALL_TARGET_HT40_0_8_16;
5197 			else
5198 				i = ALL_TARGET_HT20_0_8_16;
5199 		}
5200 	}
5201 
5202 	ah->paprd_target_power = targetPowerValT2[i];
5203 }
5204 
5205 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
5206 					struct ath9k_channel *chan, u16 cfgCtl,
5207 					u8 twiceAntennaReduction,
5208 					u8 powerLimit, bool test)
5209 {
5210 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
5211 	struct ath_common *common = ath9k_hw_common(ah);
5212 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5213 	struct ar9300_modal_eep_header *modal_hdr;
5214 	u8 targetPowerValT2[ar9300RateSize];
5215 	u8 target_power_val_t2_eep[ar9300RateSize];
5216 	unsigned int i = 0, paprd_scale_factor = 0;
5217 	u8 pwr_idx, min_pwridx = 0;
5218 
5219 	memset(targetPowerValT2, 0 , sizeof(targetPowerValT2));
5220 
5221 	/*
5222 	 * Get target powers from EEPROM - our baseline for TX Power
5223 	 */
5224 	ar9003_hw_get_target_power_eeprom(ah, chan, targetPowerValT2);
5225 
5226 	if (ar9003_is_paprd_enabled(ah)) {
5227 		if (IS_CHAN_2GHZ(chan))
5228 			modal_hdr = &eep->modalHeader2G;
5229 		else
5230 			modal_hdr = &eep->modalHeader5G;
5231 
5232 		ah->paprd_ratemask =
5233 			le32_to_cpu(modal_hdr->papdRateMaskHt20) &
5234 			AR9300_PAPRD_RATE_MASK;
5235 
5236 		ah->paprd_ratemask_ht40 =
5237 			le32_to_cpu(modal_hdr->papdRateMaskHt40) &
5238 			AR9300_PAPRD_RATE_MASK;
5239 
5240 		paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
5241 		min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
5242 						  ALL_TARGET_HT20_0_8_16;
5243 
5244 		if (!ah->paprd_table_write_done) {
5245 			memcpy(target_power_val_t2_eep, targetPowerValT2,
5246 			       sizeof(targetPowerValT2));
5247 			for (i = 0; i < 24; i++) {
5248 				pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
5249 				if (ah->paprd_ratemask & (1 << i)) {
5250 					if (targetPowerValT2[pwr_idx] &&
5251 					    targetPowerValT2[pwr_idx] ==
5252 					    target_power_val_t2_eep[pwr_idx])
5253 						targetPowerValT2[pwr_idx] -=
5254 							paprd_scale_factor;
5255 				}
5256 			}
5257 		}
5258 		memcpy(target_power_val_t2_eep, targetPowerValT2,
5259 		       sizeof(targetPowerValT2));
5260 	}
5261 
5262 	ar9003_hw_set_power_per_rate_table(ah, chan,
5263 					   targetPowerValT2, cfgCtl,
5264 					   twiceAntennaReduction,
5265 					   powerLimit);
5266 
5267 	if (ar9003_is_paprd_enabled(ah)) {
5268 		for (i = 0; i < ar9300RateSize; i++) {
5269 			if ((ah->paprd_ratemask & (1 << i)) &&
5270 			    (abs(targetPowerValT2[i] -
5271 				target_power_val_t2_eep[i]) >
5272 			    paprd_scale_factor)) {
5273 				ah->paprd_ratemask &= ~(1 << i);
5274 				ath_dbg(common, EEPROM,
5275 					"paprd disabled for mcs %d\n", i);
5276 			}
5277 		}
5278 	}
5279 
5280 	regulatory->max_power_level = 0;
5281 	for (i = 0; i < ar9300RateSize; i++) {
5282 		if (targetPowerValT2[i] > regulatory->max_power_level)
5283 			regulatory->max_power_level = targetPowerValT2[i];
5284 	}
5285 
5286 	ath9k_hw_update_regulatory_maxpower(ah);
5287 
5288 	if (test)
5289 		return;
5290 
5291 	for (i = 0; i < ar9300RateSize; i++) {
5292 		ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
5293 			i, targetPowerValT2[i]);
5294 	}
5295 
5296 	/* Write target power array to registers */
5297 	ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5298 	ar9003_hw_calibration_apply(ah, chan->channel);
5299 	ar9003_paprd_set_txpower(ah, chan, targetPowerValT2);
5300 }
5301 
5302 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
5303 					    u16 i, bool is2GHz)
5304 {
5305 	return AR_NO_SPUR;
5306 }
5307 
5308 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
5309 {
5310 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5311 
5312 	return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
5313 }
5314 
5315 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
5316 {
5317 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5318 
5319 	return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
5320 }
5321 
5322 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is2ghz)
5323 {
5324 	return ar9003_modal_header(ah, is2ghz)->spurChans;
5325 }
5326 
5327 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
5328 					   struct ath9k_channel *chan)
5329 {
5330 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5331 
5332 	if (IS_CHAN_2GHZ(chan))
5333 		return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5334 			  AR9300_PAPRD_SCALE_1);
5335 	else {
5336 		if (chan->channel >= 5700)
5337 		return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5338 			  AR9300_PAPRD_SCALE_1);
5339 		else if (chan->channel >= 5400)
5340 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5341 				   AR9300_PAPRD_SCALE_2);
5342 		else
5343 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5344 				  AR9300_PAPRD_SCALE_1);
5345 	}
5346 }
5347 
5348 const struct eeprom_ops eep_ar9300_ops = {
5349 	.check_eeprom = ath9k_hw_ar9300_check_eeprom,
5350 	.get_eeprom = ath9k_hw_ar9300_get_eeprom,
5351 	.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5352 	.dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5353 	.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5354 	.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5355 	.set_board_values = ath9k_hw_ar9300_set_board_values,
5356 	.set_addac = ath9k_hw_ar9300_set_addac,
5357 	.set_txpower = ath9k_hw_ar9300_set_txpower,
5358 	.get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5359 };
5360