1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20 #include "ar9003_eeprom.h"
21 
22 #define COMP_HDR_LEN 4
23 #define COMP_CKSUM_LEN 2
24 
25 #define AR_CH0_TOP (0x00016288)
26 #define AR_CH0_TOP_XPABIASLVL (0x300)
27 #define AR_CH0_TOP_XPABIASLVL_S (8)
28 
29 #define AR_CH0_THERM (0x00016290)
30 #define AR_CH0_THERM_XPABIASLVL_MSB 0x3
31 #define AR_CH0_THERM_XPABIASLVL_MSB_S 0
32 #define AR_CH0_THERM_XPASHORT2GND 0x4
33 #define AR_CH0_THERM_XPASHORT2GND_S 2
34 
35 #define AR_SWITCH_TABLE_COM_ALL (0xffff)
36 #define AR_SWITCH_TABLE_COM_ALL_S (0)
37 
38 #define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
39 #define AR_SWITCH_TABLE_COM2_ALL_S (0)
40 
41 #define AR_SWITCH_TABLE_ALL (0xfff)
42 #define AR_SWITCH_TABLE_ALL_S (0)
43 
44 #define LE16(x) __constant_cpu_to_le16(x)
45 #define LE32(x) __constant_cpu_to_le32(x)
46 
47 /* Local defines to distinguish between extension and control CTL's */
48 #define EXT_ADDITIVE (0x8000)
49 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
50 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
51 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
52 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
53 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   9  /* 10*log10(3)*2 */
54 #define PWRINCR_3_TO_1_CHAIN      9             /* 10*log(3)*2 */
55 #define PWRINCR_3_TO_2_CHAIN      3             /* floor(10*log(3/2)*2) */
56 #define PWRINCR_2_TO_1_CHAIN      6             /* 10*log(2)*2 */
57 
58 #define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
59 #define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
60 
61 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
62 
63 #define EEPROM_DATA_LEN_9485	1088
64 
65 static int ar9003_hw_power_interpolate(int32_t x,
66 				       int32_t *px, int32_t *py, u_int16_t np);
67 
68 
69 static const struct ar9300_eeprom ar9300_default = {
70 	.eepromVersion = 2,
71 	.templateVersion = 2,
72 	.macAddr = {0, 2, 3, 4, 5, 6},
73 	.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
74 		     0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
75 	.baseEepHeader = {
76 		.regDmn = { LE16(0), LE16(0x1f) },
77 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
78 		.opCapFlags = {
79 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
80 			.eepMisc = 0,
81 		},
82 		.rfSilent = 0,
83 		.blueToothOptions = 0,
84 		.deviceCap = 0,
85 		.deviceType = 5, /* takes lower byte in eeprom location */
86 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
87 		.params_for_tuning_caps = {0, 0},
88 		.featureEnable = 0x0c,
89 		 /*
90 		  * bit0 - enable tx temp comp - disabled
91 		  * bit1 - enable tx volt comp - disabled
92 		  * bit2 - enable fastClock - enabled
93 		  * bit3 - enable doubling - enabled
94 		  * bit4 - enable internal regulator - disabled
95 		  * bit5 - enable pa predistortion - disabled
96 		  */
97 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
98 		.eepromWriteEnableGpio = 3,
99 		.wlanDisableGpio = 0,
100 		.wlanLedGpio = 8,
101 		.rxBandSelectGpio = 0xff,
102 		.txrxgain = 0,
103 		.swreg = 0,
104 	 },
105 	.modalHeader2G = {
106 	/* ar9300_modal_eep_header  2g */
107 		/* 4 idle,t1,t2,b(4 bits per setting) */
108 		.antCtrlCommon = LE32(0x110),
109 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
110 		.antCtrlCommon2 = LE32(0x22222),
111 
112 		/*
113 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
114 		 * rx1, rx12, b (2 bits each)
115 		 */
116 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
117 
118 		/*
119 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
120 		 * for ar9280 (0xa20c/b20c 5:0)
121 		 */
122 		.xatten1DB = {0, 0, 0},
123 
124 		/*
125 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
126 		 * for ar9280 (0xa20c/b20c 16:12
127 		 */
128 		.xatten1Margin = {0, 0, 0},
129 		.tempSlope = 36,
130 		.voltSlope = 0,
131 
132 		/*
133 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
134 		 * channels in usual fbin coding format
135 		 */
136 		.spurChans = {0, 0, 0, 0, 0},
137 
138 		/*
139 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
140 		 * if the register is per chain
141 		 */
142 		.noiseFloorThreshCh = {-1, 0, 0},
143 		.ob = {1, 1, 1},/* 3 chain */
144 		.db_stage2 = {1, 1, 1}, /* 3 chain  */
145 		.db_stage3 = {0, 0, 0},
146 		.db_stage4 = {0, 0, 0},
147 		.xpaBiasLvl = 0,
148 		.txFrameToDataStart = 0x0e,
149 		.txFrameToPaOn = 0x0e,
150 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
151 		.antennaGain = 0,
152 		.switchSettling = 0x2c,
153 		.adcDesiredSize = -30,
154 		.txEndToXpaOff = 0,
155 		.txEndToRxOn = 0x2,
156 		.txFrameToXpaOn = 0xe,
157 		.thresh62 = 28,
158 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
159 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
160 		.futureModal = {
161 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
162 		},
163 	 },
164 	.base_ext1 = {
165 		.ant_div_control = 0,
166 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
167 	},
168 	.calFreqPier2G = {
169 		FREQ2FBIN(2412, 1),
170 		FREQ2FBIN(2437, 1),
171 		FREQ2FBIN(2472, 1),
172 	 },
173 	/* ar9300_cal_data_per_freq_op_loop 2g */
174 	.calPierData2G = {
175 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
176 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
177 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
178 	 },
179 	.calTarget_freqbin_Cck = {
180 		FREQ2FBIN(2412, 1),
181 		FREQ2FBIN(2484, 1),
182 	 },
183 	.calTarget_freqbin_2G = {
184 		FREQ2FBIN(2412, 1),
185 		FREQ2FBIN(2437, 1),
186 		FREQ2FBIN(2472, 1)
187 	 },
188 	.calTarget_freqbin_2GHT20 = {
189 		FREQ2FBIN(2412, 1),
190 		FREQ2FBIN(2437, 1),
191 		FREQ2FBIN(2472, 1)
192 	 },
193 	.calTarget_freqbin_2GHT40 = {
194 		FREQ2FBIN(2412, 1),
195 		FREQ2FBIN(2437, 1),
196 		FREQ2FBIN(2472, 1)
197 	 },
198 	.calTargetPowerCck = {
199 		 /* 1L-5L,5S,11L,11S */
200 		 { {36, 36, 36, 36} },
201 		 { {36, 36, 36, 36} },
202 	},
203 	.calTargetPower2G = {
204 		 /* 6-24,36,48,54 */
205 		 { {32, 32, 28, 24} },
206 		 { {32, 32, 28, 24} },
207 		 { {32, 32, 28, 24} },
208 	},
209 	.calTargetPower2GHT20 = {
210 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
211 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
212 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
213 	},
214 	.calTargetPower2GHT40 = {
215 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
216 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
217 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
218 	},
219 	.ctlIndex_2G =  {
220 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
221 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
222 	},
223 	.ctl_freqbin_2G = {
224 		{
225 			FREQ2FBIN(2412, 1),
226 			FREQ2FBIN(2417, 1),
227 			FREQ2FBIN(2457, 1),
228 			FREQ2FBIN(2462, 1)
229 		},
230 		{
231 			FREQ2FBIN(2412, 1),
232 			FREQ2FBIN(2417, 1),
233 			FREQ2FBIN(2462, 1),
234 			0xFF,
235 		},
236 
237 		{
238 			FREQ2FBIN(2412, 1),
239 			FREQ2FBIN(2417, 1),
240 			FREQ2FBIN(2462, 1),
241 			0xFF,
242 		},
243 		{
244 			FREQ2FBIN(2422, 1),
245 			FREQ2FBIN(2427, 1),
246 			FREQ2FBIN(2447, 1),
247 			FREQ2FBIN(2452, 1)
248 		},
249 
250 		{
251 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
252 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
253 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
254 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
255 		},
256 
257 		{
258 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
259 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
260 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
261 			0,
262 		},
263 
264 		{
265 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
266 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
267 			FREQ2FBIN(2472, 1),
268 			0,
269 		},
270 
271 		{
272 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
273 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
274 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
275 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
276 		},
277 
278 		{
279 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
280 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
281 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
282 		},
283 
284 		{
285 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
286 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
287 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
288 			0
289 		},
290 
291 		{
292 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
293 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
294 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
295 			0
296 		},
297 
298 		{
299 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
300 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
301 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
302 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
303 		}
304 	 },
305 	.ctlPowerData_2G = {
306 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
307 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
308 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
309 
310 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
311 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
312 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
313 
314 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
315 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
316 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
317 
318 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
319 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
320 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
321 	 },
322 	.modalHeader5G = {
323 		/* 4 idle,t1,t2,b (4 bits per setting) */
324 		.antCtrlCommon = LE32(0x110),
325 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
326 		.antCtrlCommon2 = LE32(0x22222),
327 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
328 		.antCtrlChain = {
329 			LE16(0x000), LE16(0x000), LE16(0x000),
330 		},
331 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
332 		.xatten1DB = {0, 0, 0},
333 
334 		/*
335 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
336 		 * for merlin (0xa20c/b20c 16:12
337 		 */
338 		.xatten1Margin = {0, 0, 0},
339 		.tempSlope = 68,
340 		.voltSlope = 0,
341 		/* spurChans spur channels in usual fbin coding format */
342 		.spurChans = {0, 0, 0, 0, 0},
343 		/* noiseFloorThreshCh Check if the register is per chain */
344 		.noiseFloorThreshCh = {-1, 0, 0},
345 		.ob = {3, 3, 3}, /* 3 chain */
346 		.db_stage2 = {3, 3, 3}, /* 3 chain */
347 		.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
348 		.db_stage4 = {3, 3, 3},	 /* don't exist for 2G */
349 		.xpaBiasLvl = 0,
350 		.txFrameToDataStart = 0x0e,
351 		.txFrameToPaOn = 0x0e,
352 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
353 		.antennaGain = 0,
354 		.switchSettling = 0x2d,
355 		.adcDesiredSize = -30,
356 		.txEndToXpaOff = 0,
357 		.txEndToRxOn = 0x2,
358 		.txFrameToXpaOn = 0xe,
359 		.thresh62 = 28,
360 		.papdRateMaskHt20 = LE32(0x0c80c080),
361 		.papdRateMaskHt40 = LE32(0x0080c080),
362 		.futureModal = {
363 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
364 		},
365 	 },
366 	.base_ext2 = {
367 		.tempSlopeLow = 0,
368 		.tempSlopeHigh = 0,
369 		.xatten1DBLow = {0, 0, 0},
370 		.xatten1MarginLow = {0, 0, 0},
371 		.xatten1DBHigh = {0, 0, 0},
372 		.xatten1MarginHigh = {0, 0, 0}
373 	},
374 	.calFreqPier5G = {
375 		FREQ2FBIN(5180, 0),
376 		FREQ2FBIN(5220, 0),
377 		FREQ2FBIN(5320, 0),
378 		FREQ2FBIN(5400, 0),
379 		FREQ2FBIN(5500, 0),
380 		FREQ2FBIN(5600, 0),
381 		FREQ2FBIN(5725, 0),
382 		FREQ2FBIN(5825, 0)
383 	},
384 	.calPierData5G = {
385 			{
386 				{0, 0, 0, 0, 0},
387 				{0, 0, 0, 0, 0},
388 				{0, 0, 0, 0, 0},
389 				{0, 0, 0, 0, 0},
390 				{0, 0, 0, 0, 0},
391 				{0, 0, 0, 0, 0},
392 				{0, 0, 0, 0, 0},
393 				{0, 0, 0, 0, 0},
394 			},
395 			{
396 				{0, 0, 0, 0, 0},
397 				{0, 0, 0, 0, 0},
398 				{0, 0, 0, 0, 0},
399 				{0, 0, 0, 0, 0},
400 				{0, 0, 0, 0, 0},
401 				{0, 0, 0, 0, 0},
402 				{0, 0, 0, 0, 0},
403 				{0, 0, 0, 0, 0},
404 			},
405 			{
406 				{0, 0, 0, 0, 0},
407 				{0, 0, 0, 0, 0},
408 				{0, 0, 0, 0, 0},
409 				{0, 0, 0, 0, 0},
410 				{0, 0, 0, 0, 0},
411 				{0, 0, 0, 0, 0},
412 				{0, 0, 0, 0, 0},
413 				{0, 0, 0, 0, 0},
414 			},
415 
416 	},
417 	.calTarget_freqbin_5G = {
418 		FREQ2FBIN(5180, 0),
419 		FREQ2FBIN(5220, 0),
420 		FREQ2FBIN(5320, 0),
421 		FREQ2FBIN(5400, 0),
422 		FREQ2FBIN(5500, 0),
423 		FREQ2FBIN(5600, 0),
424 		FREQ2FBIN(5725, 0),
425 		FREQ2FBIN(5825, 0)
426 	},
427 	.calTarget_freqbin_5GHT20 = {
428 		FREQ2FBIN(5180, 0),
429 		FREQ2FBIN(5240, 0),
430 		FREQ2FBIN(5320, 0),
431 		FREQ2FBIN(5500, 0),
432 		FREQ2FBIN(5700, 0),
433 		FREQ2FBIN(5745, 0),
434 		FREQ2FBIN(5725, 0),
435 		FREQ2FBIN(5825, 0)
436 	},
437 	.calTarget_freqbin_5GHT40 = {
438 		FREQ2FBIN(5180, 0),
439 		FREQ2FBIN(5240, 0),
440 		FREQ2FBIN(5320, 0),
441 		FREQ2FBIN(5500, 0),
442 		FREQ2FBIN(5700, 0),
443 		FREQ2FBIN(5745, 0),
444 		FREQ2FBIN(5725, 0),
445 		FREQ2FBIN(5825, 0)
446 	 },
447 	.calTargetPower5G = {
448 		/* 6-24,36,48,54 */
449 		{ {20, 20, 20, 10} },
450 		{ {20, 20, 20, 10} },
451 		{ {20, 20, 20, 10} },
452 		{ {20, 20, 20, 10} },
453 		{ {20, 20, 20, 10} },
454 		{ {20, 20, 20, 10} },
455 		{ {20, 20, 20, 10} },
456 		{ {20, 20, 20, 10} },
457 	 },
458 	.calTargetPower5GHT20 = {
459 		/*
460 		 * 0_8_16,1-3_9-11_17-19,
461 		 * 4,5,6,7,12,13,14,15,20,21,22,23
462 		 */
463 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
464 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
465 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
466 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
467 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
468 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
469 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
470 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
471 	 },
472 	.calTargetPower5GHT40 =  {
473 		/*
474 		 * 0_8_16,1-3_9-11_17-19,
475 		 * 4,5,6,7,12,13,14,15,20,21,22,23
476 		 */
477 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
478 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
479 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
480 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
481 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
482 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
483 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
484 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
485 	 },
486 	.ctlIndex_5G =  {
487 		0x10, 0x16, 0x18, 0x40, 0x46,
488 		0x48, 0x30, 0x36, 0x38
489 	},
490 	.ctl_freqbin_5G =  {
491 		{
492 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
493 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
494 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
495 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
496 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
497 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
498 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
499 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
500 		},
501 		{
502 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
503 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
504 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
505 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
506 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
507 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
508 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
509 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
510 		},
511 
512 		{
513 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
514 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
515 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
516 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
517 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
518 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
519 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
520 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
521 		},
522 
523 		{
524 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
525 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
526 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
527 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
528 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
529 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
530 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
531 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
532 		},
533 
534 		{
535 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
536 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
537 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
538 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
539 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
540 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
541 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
542 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
543 		},
544 
545 		{
546 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
547 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
548 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
549 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
550 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
551 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
552 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
553 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
554 		},
555 
556 		{
557 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
558 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
559 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
560 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
561 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
562 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
563 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
564 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
565 		},
566 
567 		{
568 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
569 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
570 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
571 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
572 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
573 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
574 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
575 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
576 		},
577 
578 		{
579 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
580 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
581 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
582 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
583 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
584 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
585 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
586 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
587 		}
588 	 },
589 	.ctlPowerData_5G = {
590 		{
591 			{
592 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
593 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
594 			}
595 		},
596 		{
597 			{
598 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
599 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
600 			}
601 		},
602 		{
603 			{
604 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
605 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
606 			}
607 		},
608 		{
609 			{
610 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
611 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
612 			}
613 		},
614 		{
615 			{
616 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
617 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
618 			}
619 		},
620 		{
621 			{
622 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
623 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
624 			}
625 		},
626 		{
627 			{
628 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
629 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
630 			}
631 		},
632 		{
633 			{
634 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
635 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
636 			}
637 		},
638 		{
639 			{
640 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
641 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
642 			}
643 		},
644 	 }
645 };
646 
647 static const struct ar9300_eeprom ar9300_x113 = {
648 	.eepromVersion = 2,
649 	.templateVersion = 6,
650 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
651 	.custData = {"x113-023-f0000"},
652 	.baseEepHeader = {
653 		.regDmn = { LE16(0), LE16(0x1f) },
654 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
655 		.opCapFlags = {
656 			.opFlags = AR5416_OPFLAGS_11A,
657 			.eepMisc = 0,
658 		},
659 		.rfSilent = 0,
660 		.blueToothOptions = 0,
661 		.deviceCap = 0,
662 		.deviceType = 5, /* takes lower byte in eeprom location */
663 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
664 		.params_for_tuning_caps = {0, 0},
665 		.featureEnable = 0x0d,
666 		 /*
667 		  * bit0 - enable tx temp comp - disabled
668 		  * bit1 - enable tx volt comp - disabled
669 		  * bit2 - enable fastClock - enabled
670 		  * bit3 - enable doubling - enabled
671 		  * bit4 - enable internal regulator - disabled
672 		  * bit5 - enable pa predistortion - disabled
673 		  */
674 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
675 		.eepromWriteEnableGpio = 6,
676 		.wlanDisableGpio = 0,
677 		.wlanLedGpio = 8,
678 		.rxBandSelectGpio = 0xff,
679 		.txrxgain = 0x21,
680 		.swreg = 0,
681 	 },
682 	.modalHeader2G = {
683 	/* ar9300_modal_eep_header  2g */
684 		/* 4 idle,t1,t2,b(4 bits per setting) */
685 		.antCtrlCommon = LE32(0x110),
686 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
687 		.antCtrlCommon2 = LE32(0x44444),
688 
689 		/*
690 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
691 		 * rx1, rx12, b (2 bits each)
692 		 */
693 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
694 
695 		/*
696 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
697 		 * for ar9280 (0xa20c/b20c 5:0)
698 		 */
699 		.xatten1DB = {0, 0, 0},
700 
701 		/*
702 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
703 		 * for ar9280 (0xa20c/b20c 16:12
704 		 */
705 		.xatten1Margin = {0, 0, 0},
706 		.tempSlope = 25,
707 		.voltSlope = 0,
708 
709 		/*
710 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
711 		 * channels in usual fbin coding format
712 		 */
713 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
714 
715 		/*
716 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
717 		 * if the register is per chain
718 		 */
719 		.noiseFloorThreshCh = {-1, 0, 0},
720 		.ob = {1, 1, 1},/* 3 chain */
721 		.db_stage2 = {1, 1, 1}, /* 3 chain  */
722 		.db_stage3 = {0, 0, 0},
723 		.db_stage4 = {0, 0, 0},
724 		.xpaBiasLvl = 0,
725 		.txFrameToDataStart = 0x0e,
726 		.txFrameToPaOn = 0x0e,
727 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
728 		.antennaGain = 0,
729 		.switchSettling = 0x2c,
730 		.adcDesiredSize = -30,
731 		.txEndToXpaOff = 0,
732 		.txEndToRxOn = 0x2,
733 		.txFrameToXpaOn = 0xe,
734 		.thresh62 = 28,
735 		.papdRateMaskHt20 = LE32(0x0c80c080),
736 		.papdRateMaskHt40 = LE32(0x0080c080),
737 		.futureModal = {
738 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
739 		},
740 	 },
741 	 .base_ext1 = {
742 		.ant_div_control = 0,
743 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
744 	 },
745 	.calFreqPier2G = {
746 		FREQ2FBIN(2412, 1),
747 		FREQ2FBIN(2437, 1),
748 		FREQ2FBIN(2472, 1),
749 	 },
750 	/* ar9300_cal_data_per_freq_op_loop 2g */
751 	.calPierData2G = {
752 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
753 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
754 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
755 	 },
756 	.calTarget_freqbin_Cck = {
757 		FREQ2FBIN(2412, 1),
758 		FREQ2FBIN(2472, 1),
759 	 },
760 	.calTarget_freqbin_2G = {
761 		FREQ2FBIN(2412, 1),
762 		FREQ2FBIN(2437, 1),
763 		FREQ2FBIN(2472, 1)
764 	 },
765 	.calTarget_freqbin_2GHT20 = {
766 		FREQ2FBIN(2412, 1),
767 		FREQ2FBIN(2437, 1),
768 		FREQ2FBIN(2472, 1)
769 	 },
770 	.calTarget_freqbin_2GHT40 = {
771 		FREQ2FBIN(2412, 1),
772 		FREQ2FBIN(2437, 1),
773 		FREQ2FBIN(2472, 1)
774 	 },
775 	.calTargetPowerCck = {
776 		 /* 1L-5L,5S,11L,11S */
777 		 { {34, 34, 34, 34} },
778 		 { {34, 34, 34, 34} },
779 	},
780 	.calTargetPower2G = {
781 		 /* 6-24,36,48,54 */
782 		 { {34, 34, 32, 32} },
783 		 { {34, 34, 32, 32} },
784 		 { {34, 34, 32, 32} },
785 	},
786 	.calTargetPower2GHT20 = {
787 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
788 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
789 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
790 	},
791 	.calTargetPower2GHT40 = {
792 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
793 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
794 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
795 	},
796 	.ctlIndex_2G =  {
797 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
798 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
799 	},
800 	.ctl_freqbin_2G = {
801 		{
802 			FREQ2FBIN(2412, 1),
803 			FREQ2FBIN(2417, 1),
804 			FREQ2FBIN(2457, 1),
805 			FREQ2FBIN(2462, 1)
806 		},
807 		{
808 			FREQ2FBIN(2412, 1),
809 			FREQ2FBIN(2417, 1),
810 			FREQ2FBIN(2462, 1),
811 			0xFF,
812 		},
813 
814 		{
815 			FREQ2FBIN(2412, 1),
816 			FREQ2FBIN(2417, 1),
817 			FREQ2FBIN(2462, 1),
818 			0xFF,
819 		},
820 		{
821 			FREQ2FBIN(2422, 1),
822 			FREQ2FBIN(2427, 1),
823 			FREQ2FBIN(2447, 1),
824 			FREQ2FBIN(2452, 1)
825 		},
826 
827 		{
828 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
829 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
830 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
831 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
832 		},
833 
834 		{
835 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
836 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
837 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
838 			0,
839 		},
840 
841 		{
842 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
843 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
844 			FREQ2FBIN(2472, 1),
845 			0,
846 		},
847 
848 		{
849 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
850 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
851 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
852 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
853 		},
854 
855 		{
856 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
857 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
858 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
859 		},
860 
861 		{
862 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
863 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
864 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
865 			0
866 		},
867 
868 		{
869 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
870 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
871 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
872 			0
873 		},
874 
875 		{
876 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
877 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
878 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
879 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
880 		}
881 	 },
882 	.ctlPowerData_2G = {
883 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
884 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
885 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
886 
887 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
888 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
889 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
890 
891 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
892 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
893 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
894 
895 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
896 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
897 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
898 	 },
899 	.modalHeader5G = {
900 		/* 4 idle,t1,t2,b (4 bits per setting) */
901 		.antCtrlCommon = LE32(0x220),
902 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
903 		.antCtrlCommon2 = LE32(0x11111),
904 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
905 		.antCtrlChain = {
906 			LE16(0x150), LE16(0x150), LE16(0x150),
907 		},
908 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
909 		.xatten1DB = {0, 0, 0},
910 
911 		/*
912 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
913 		 * for merlin (0xa20c/b20c 16:12
914 		 */
915 		.xatten1Margin = {0, 0, 0},
916 		.tempSlope = 68,
917 		.voltSlope = 0,
918 		/* spurChans spur channels in usual fbin coding format */
919 		.spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
920 		/* noiseFloorThreshCh Check if the register is per chain */
921 		.noiseFloorThreshCh = {-1, 0, 0},
922 		.ob = {3, 3, 3}, /* 3 chain */
923 		.db_stage2 = {3, 3, 3}, /* 3 chain */
924 		.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
925 		.db_stage4 = {3, 3, 3},	 /* don't exist for 2G */
926 		.xpaBiasLvl = 0xf,
927 		.txFrameToDataStart = 0x0e,
928 		.txFrameToPaOn = 0x0e,
929 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
930 		.antennaGain = 0,
931 		.switchSettling = 0x2d,
932 		.adcDesiredSize = -30,
933 		.txEndToXpaOff = 0,
934 		.txEndToRxOn = 0x2,
935 		.txFrameToXpaOn = 0xe,
936 		.thresh62 = 28,
937 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
938 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
939 		.futureModal = {
940 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
941 		},
942 	 },
943 	.base_ext2 = {
944 		.tempSlopeLow = 72,
945 		.tempSlopeHigh = 105,
946 		.xatten1DBLow = {0, 0, 0},
947 		.xatten1MarginLow = {0, 0, 0},
948 		.xatten1DBHigh = {0, 0, 0},
949 		.xatten1MarginHigh = {0, 0, 0}
950 	 },
951 	.calFreqPier5G = {
952 		FREQ2FBIN(5180, 0),
953 		FREQ2FBIN(5240, 0),
954 		FREQ2FBIN(5320, 0),
955 		FREQ2FBIN(5400, 0),
956 		FREQ2FBIN(5500, 0),
957 		FREQ2FBIN(5600, 0),
958 		FREQ2FBIN(5745, 0),
959 		FREQ2FBIN(5785, 0)
960 	},
961 	.calPierData5G = {
962 			{
963 				{0, 0, 0, 0, 0},
964 				{0, 0, 0, 0, 0},
965 				{0, 0, 0, 0, 0},
966 				{0, 0, 0, 0, 0},
967 				{0, 0, 0, 0, 0},
968 				{0, 0, 0, 0, 0},
969 				{0, 0, 0, 0, 0},
970 				{0, 0, 0, 0, 0},
971 			},
972 			{
973 				{0, 0, 0, 0, 0},
974 				{0, 0, 0, 0, 0},
975 				{0, 0, 0, 0, 0},
976 				{0, 0, 0, 0, 0},
977 				{0, 0, 0, 0, 0},
978 				{0, 0, 0, 0, 0},
979 				{0, 0, 0, 0, 0},
980 				{0, 0, 0, 0, 0},
981 			},
982 			{
983 				{0, 0, 0, 0, 0},
984 				{0, 0, 0, 0, 0},
985 				{0, 0, 0, 0, 0},
986 				{0, 0, 0, 0, 0},
987 				{0, 0, 0, 0, 0},
988 				{0, 0, 0, 0, 0},
989 				{0, 0, 0, 0, 0},
990 				{0, 0, 0, 0, 0},
991 			},
992 
993 	},
994 	.calTarget_freqbin_5G = {
995 		FREQ2FBIN(5180, 0),
996 		FREQ2FBIN(5220, 0),
997 		FREQ2FBIN(5320, 0),
998 		FREQ2FBIN(5400, 0),
999 		FREQ2FBIN(5500, 0),
1000 		FREQ2FBIN(5600, 0),
1001 		FREQ2FBIN(5745, 0),
1002 		FREQ2FBIN(5785, 0)
1003 	},
1004 	.calTarget_freqbin_5GHT20 = {
1005 		FREQ2FBIN(5180, 0),
1006 		FREQ2FBIN(5240, 0),
1007 		FREQ2FBIN(5320, 0),
1008 		FREQ2FBIN(5400, 0),
1009 		FREQ2FBIN(5500, 0),
1010 		FREQ2FBIN(5700, 0),
1011 		FREQ2FBIN(5745, 0),
1012 		FREQ2FBIN(5825, 0)
1013 	},
1014 	.calTarget_freqbin_5GHT40 = {
1015 		FREQ2FBIN(5190, 0),
1016 		FREQ2FBIN(5230, 0),
1017 		FREQ2FBIN(5320, 0),
1018 		FREQ2FBIN(5410, 0),
1019 		FREQ2FBIN(5510, 0),
1020 		FREQ2FBIN(5670, 0),
1021 		FREQ2FBIN(5755, 0),
1022 		FREQ2FBIN(5825, 0)
1023 	 },
1024 	.calTargetPower5G = {
1025 		/* 6-24,36,48,54 */
1026 		{ {42, 40, 40, 34} },
1027 		{ {42, 40, 40, 34} },
1028 		{ {42, 40, 40, 34} },
1029 		{ {42, 40, 40, 34} },
1030 		{ {42, 40, 40, 34} },
1031 		{ {42, 40, 40, 34} },
1032 		{ {42, 40, 40, 34} },
1033 		{ {42, 40, 40, 34} },
1034 	 },
1035 	.calTargetPower5GHT20 = {
1036 		/*
1037 		 * 0_8_16,1-3_9-11_17-19,
1038 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1039 		 */
1040 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1041 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1042 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1043 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1044 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1045 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1046 		{ {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1047 		{ {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1048 	 },
1049 	.calTargetPower5GHT40 =  {
1050 		/*
1051 		 * 0_8_16,1-3_9-11_17-19,
1052 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1053 		 */
1054 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1055 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1056 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1057 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1058 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1059 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1060 		{ {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1061 		{ {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1062 	 },
1063 	.ctlIndex_5G =  {
1064 		0x10, 0x16, 0x18, 0x40, 0x46,
1065 		0x48, 0x30, 0x36, 0x38
1066 	},
1067 	.ctl_freqbin_5G =  {
1068 		{
1069 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1070 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1071 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1072 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1073 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1074 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1075 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1076 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1077 		},
1078 		{
1079 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1080 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1081 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1082 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1083 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1084 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1085 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1086 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1087 		},
1088 
1089 		{
1090 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1091 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1092 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1093 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1094 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1095 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1096 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1097 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1098 		},
1099 
1100 		{
1101 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1102 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1103 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1104 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1105 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1106 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1107 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1108 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1109 		},
1110 
1111 		{
1112 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1113 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1114 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1115 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1116 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1117 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1118 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1119 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1120 		},
1121 
1122 		{
1123 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1124 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1125 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1126 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1127 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1128 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1129 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1130 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1131 		},
1132 
1133 		{
1134 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1135 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1136 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1137 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1138 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1139 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1140 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1141 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1142 		},
1143 
1144 		{
1145 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1146 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1147 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1148 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1149 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1150 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1151 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1152 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1153 		},
1154 
1155 		{
1156 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1157 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1158 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1159 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1160 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1161 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1162 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1163 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1164 		}
1165 	 },
1166 	.ctlPowerData_5G = {
1167 		{
1168 			{
1169 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1170 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1171 			}
1172 		},
1173 		{
1174 			{
1175 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1176 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1177 			}
1178 		},
1179 		{
1180 			{
1181 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1182 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1183 			}
1184 		},
1185 		{
1186 			{
1187 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1188 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1189 			}
1190 		},
1191 		{
1192 			{
1193 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1194 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1195 			}
1196 		},
1197 		{
1198 			{
1199 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1200 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1201 			}
1202 		},
1203 		{
1204 			{
1205 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1206 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1207 			}
1208 		},
1209 		{
1210 			{
1211 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1212 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1213 			}
1214 		},
1215 		{
1216 			{
1217 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1218 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1219 			}
1220 		},
1221 	 }
1222 };
1223 
1224 
1225 static const struct ar9300_eeprom ar9300_h112 = {
1226 	.eepromVersion = 2,
1227 	.templateVersion = 3,
1228 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1229 	.custData = {"h112-241-f0000"},
1230 	.baseEepHeader = {
1231 		.regDmn = { LE16(0), LE16(0x1f) },
1232 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1233 		.opCapFlags = {
1234 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1235 			.eepMisc = 0,
1236 		},
1237 		.rfSilent = 0,
1238 		.blueToothOptions = 0,
1239 		.deviceCap = 0,
1240 		.deviceType = 5, /* takes lower byte in eeprom location */
1241 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1242 		.params_for_tuning_caps = {0, 0},
1243 		.featureEnable = 0x0d,
1244 		/*
1245 		 * bit0 - enable tx temp comp - disabled
1246 		 * bit1 - enable tx volt comp - disabled
1247 		 * bit2 - enable fastClock - enabled
1248 		 * bit3 - enable doubling - enabled
1249 		 * bit4 - enable internal regulator - disabled
1250 		 * bit5 - enable pa predistortion - disabled
1251 		 */
1252 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1253 		.eepromWriteEnableGpio = 6,
1254 		.wlanDisableGpio = 0,
1255 		.wlanLedGpio = 8,
1256 		.rxBandSelectGpio = 0xff,
1257 		.txrxgain = 0x10,
1258 		.swreg = 0,
1259 	},
1260 	.modalHeader2G = {
1261 		/* ar9300_modal_eep_header  2g */
1262 		/* 4 idle,t1,t2,b(4 bits per setting) */
1263 		.antCtrlCommon = LE32(0x110),
1264 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1265 		.antCtrlCommon2 = LE32(0x44444),
1266 
1267 		/*
1268 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1269 		 * rx1, rx12, b (2 bits each)
1270 		 */
1271 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1272 
1273 		/*
1274 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
1275 		 * for ar9280 (0xa20c/b20c 5:0)
1276 		 */
1277 		.xatten1DB = {0, 0, 0},
1278 
1279 		/*
1280 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1281 		 * for ar9280 (0xa20c/b20c 16:12
1282 		 */
1283 		.xatten1Margin = {0, 0, 0},
1284 		.tempSlope = 25,
1285 		.voltSlope = 0,
1286 
1287 		/*
1288 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1289 		 * channels in usual fbin coding format
1290 		 */
1291 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1292 
1293 		/*
1294 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1295 		 * if the register is per chain
1296 		 */
1297 		.noiseFloorThreshCh = {-1, 0, 0},
1298 		.ob = {1, 1, 1},/* 3 chain */
1299 		.db_stage2 = {1, 1, 1}, /* 3 chain  */
1300 		.db_stage3 = {0, 0, 0},
1301 		.db_stage4 = {0, 0, 0},
1302 		.xpaBiasLvl = 0,
1303 		.txFrameToDataStart = 0x0e,
1304 		.txFrameToPaOn = 0x0e,
1305 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1306 		.antennaGain = 0,
1307 		.switchSettling = 0x2c,
1308 		.adcDesiredSize = -30,
1309 		.txEndToXpaOff = 0,
1310 		.txEndToRxOn = 0x2,
1311 		.txFrameToXpaOn = 0xe,
1312 		.thresh62 = 28,
1313 		.papdRateMaskHt20 = LE32(0x80c080),
1314 		.papdRateMaskHt40 = LE32(0x80c080),
1315 		.futureModal = {
1316 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1317 		},
1318 	},
1319 	.base_ext1 = {
1320 		.ant_div_control = 0,
1321 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1322 	},
1323 	.calFreqPier2G = {
1324 		FREQ2FBIN(2412, 1),
1325 		FREQ2FBIN(2437, 1),
1326 		FREQ2FBIN(2472, 1),
1327 	},
1328 	/* ar9300_cal_data_per_freq_op_loop 2g */
1329 	.calPierData2G = {
1330 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1331 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1332 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1333 	},
1334 	.calTarget_freqbin_Cck = {
1335 		FREQ2FBIN(2412, 1),
1336 		FREQ2FBIN(2484, 1),
1337 	},
1338 	.calTarget_freqbin_2G = {
1339 		FREQ2FBIN(2412, 1),
1340 		FREQ2FBIN(2437, 1),
1341 		FREQ2FBIN(2472, 1)
1342 	},
1343 	.calTarget_freqbin_2GHT20 = {
1344 		FREQ2FBIN(2412, 1),
1345 		FREQ2FBIN(2437, 1),
1346 		FREQ2FBIN(2472, 1)
1347 	},
1348 	.calTarget_freqbin_2GHT40 = {
1349 		FREQ2FBIN(2412, 1),
1350 		FREQ2FBIN(2437, 1),
1351 		FREQ2FBIN(2472, 1)
1352 	},
1353 	.calTargetPowerCck = {
1354 		/* 1L-5L,5S,11L,11S */
1355 		{ {34, 34, 34, 34} },
1356 		{ {34, 34, 34, 34} },
1357 	},
1358 	.calTargetPower2G = {
1359 		/* 6-24,36,48,54 */
1360 		{ {34, 34, 32, 32} },
1361 		{ {34, 34, 32, 32} },
1362 		{ {34, 34, 32, 32} },
1363 	},
1364 	.calTargetPower2GHT20 = {
1365 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1366 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1367 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1368 	},
1369 	.calTargetPower2GHT40 = {
1370 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1371 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1372 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1373 	},
1374 	.ctlIndex_2G =  {
1375 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1376 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1377 	},
1378 	.ctl_freqbin_2G = {
1379 		{
1380 			FREQ2FBIN(2412, 1),
1381 			FREQ2FBIN(2417, 1),
1382 			FREQ2FBIN(2457, 1),
1383 			FREQ2FBIN(2462, 1)
1384 		},
1385 		{
1386 			FREQ2FBIN(2412, 1),
1387 			FREQ2FBIN(2417, 1),
1388 			FREQ2FBIN(2462, 1),
1389 			0xFF,
1390 		},
1391 
1392 		{
1393 			FREQ2FBIN(2412, 1),
1394 			FREQ2FBIN(2417, 1),
1395 			FREQ2FBIN(2462, 1),
1396 			0xFF,
1397 		},
1398 		{
1399 			FREQ2FBIN(2422, 1),
1400 			FREQ2FBIN(2427, 1),
1401 			FREQ2FBIN(2447, 1),
1402 			FREQ2FBIN(2452, 1)
1403 		},
1404 
1405 		{
1406 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1407 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1408 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1409 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1410 		},
1411 
1412 		{
1413 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1414 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1415 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1416 			0,
1417 		},
1418 
1419 		{
1420 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1421 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1422 			FREQ2FBIN(2472, 1),
1423 			0,
1424 		},
1425 
1426 		{
1427 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1428 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1429 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1430 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1431 		},
1432 
1433 		{
1434 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1435 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1436 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1437 		},
1438 
1439 		{
1440 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1441 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1442 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1443 			0
1444 		},
1445 
1446 		{
1447 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1448 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1449 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1450 			0
1451 		},
1452 
1453 		{
1454 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1455 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1456 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1457 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1458 		}
1459 	},
1460 	.ctlPowerData_2G = {
1461 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1462 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1463 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1464 
1465 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1466 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1467 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1468 
1469 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1470 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1471 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1472 
1473 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1474 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1475 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1476 	},
1477 	.modalHeader5G = {
1478 		/* 4 idle,t1,t2,b (4 bits per setting) */
1479 		.antCtrlCommon = LE32(0x220),
1480 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1481 		.antCtrlCommon2 = LE32(0x44444),
1482 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1483 		.antCtrlChain = {
1484 			LE16(0x150), LE16(0x150), LE16(0x150),
1485 		},
1486 		/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1487 		.xatten1DB = {0, 0, 0},
1488 
1489 		/*
1490 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1491 		 * for merlin (0xa20c/b20c 16:12
1492 		 */
1493 		.xatten1Margin = {0, 0, 0},
1494 		.tempSlope = 45,
1495 		.voltSlope = 0,
1496 		/* spurChans spur channels in usual fbin coding format */
1497 		.spurChans = {0, 0, 0, 0, 0},
1498 		/* noiseFloorThreshCh Check if the register is per chain */
1499 		.noiseFloorThreshCh = {-1, 0, 0},
1500 		.ob = {3, 3, 3}, /* 3 chain */
1501 		.db_stage2 = {3, 3, 3}, /* 3 chain */
1502 		.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
1503 		.db_stage4 = {3, 3, 3},	 /* don't exist for 2G */
1504 		.xpaBiasLvl = 0,
1505 		.txFrameToDataStart = 0x0e,
1506 		.txFrameToPaOn = 0x0e,
1507 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1508 		.antennaGain = 0,
1509 		.switchSettling = 0x2d,
1510 		.adcDesiredSize = -30,
1511 		.txEndToXpaOff = 0,
1512 		.txEndToRxOn = 0x2,
1513 		.txFrameToXpaOn = 0xe,
1514 		.thresh62 = 28,
1515 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
1516 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
1517 		.futureModal = {
1518 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1519 		},
1520 	},
1521 	.base_ext2 = {
1522 		.tempSlopeLow = 40,
1523 		.tempSlopeHigh = 50,
1524 		.xatten1DBLow = {0, 0, 0},
1525 		.xatten1MarginLow = {0, 0, 0},
1526 		.xatten1DBHigh = {0, 0, 0},
1527 		.xatten1MarginHigh = {0, 0, 0}
1528 	},
1529 	.calFreqPier5G = {
1530 		FREQ2FBIN(5180, 0),
1531 		FREQ2FBIN(5220, 0),
1532 		FREQ2FBIN(5320, 0),
1533 		FREQ2FBIN(5400, 0),
1534 		FREQ2FBIN(5500, 0),
1535 		FREQ2FBIN(5600, 0),
1536 		FREQ2FBIN(5700, 0),
1537 		FREQ2FBIN(5825, 0)
1538 	},
1539 	.calPierData5G = {
1540 		{
1541 			{0, 0, 0, 0, 0},
1542 			{0, 0, 0, 0, 0},
1543 			{0, 0, 0, 0, 0},
1544 			{0, 0, 0, 0, 0},
1545 			{0, 0, 0, 0, 0},
1546 			{0, 0, 0, 0, 0},
1547 			{0, 0, 0, 0, 0},
1548 			{0, 0, 0, 0, 0},
1549 		},
1550 		{
1551 			{0, 0, 0, 0, 0},
1552 			{0, 0, 0, 0, 0},
1553 			{0, 0, 0, 0, 0},
1554 			{0, 0, 0, 0, 0},
1555 			{0, 0, 0, 0, 0},
1556 			{0, 0, 0, 0, 0},
1557 			{0, 0, 0, 0, 0},
1558 			{0, 0, 0, 0, 0},
1559 		},
1560 		{
1561 			{0, 0, 0, 0, 0},
1562 			{0, 0, 0, 0, 0},
1563 			{0, 0, 0, 0, 0},
1564 			{0, 0, 0, 0, 0},
1565 			{0, 0, 0, 0, 0},
1566 			{0, 0, 0, 0, 0},
1567 			{0, 0, 0, 0, 0},
1568 			{0, 0, 0, 0, 0},
1569 		},
1570 
1571 	},
1572 	.calTarget_freqbin_5G = {
1573 		FREQ2FBIN(5180, 0),
1574 		FREQ2FBIN(5240, 0),
1575 		FREQ2FBIN(5320, 0),
1576 		FREQ2FBIN(5400, 0),
1577 		FREQ2FBIN(5500, 0),
1578 		FREQ2FBIN(5600, 0),
1579 		FREQ2FBIN(5700, 0),
1580 		FREQ2FBIN(5825, 0)
1581 	},
1582 	.calTarget_freqbin_5GHT20 = {
1583 		FREQ2FBIN(5180, 0),
1584 		FREQ2FBIN(5240, 0),
1585 		FREQ2FBIN(5320, 0),
1586 		FREQ2FBIN(5400, 0),
1587 		FREQ2FBIN(5500, 0),
1588 		FREQ2FBIN(5700, 0),
1589 		FREQ2FBIN(5745, 0),
1590 		FREQ2FBIN(5825, 0)
1591 	},
1592 	.calTarget_freqbin_5GHT40 = {
1593 		FREQ2FBIN(5180, 0),
1594 		FREQ2FBIN(5240, 0),
1595 		FREQ2FBIN(5320, 0),
1596 		FREQ2FBIN(5400, 0),
1597 		FREQ2FBIN(5500, 0),
1598 		FREQ2FBIN(5700, 0),
1599 		FREQ2FBIN(5745, 0),
1600 		FREQ2FBIN(5825, 0)
1601 	},
1602 	.calTargetPower5G = {
1603 		/* 6-24,36,48,54 */
1604 		{ {30, 30, 28, 24} },
1605 		{ {30, 30, 28, 24} },
1606 		{ {30, 30, 28, 24} },
1607 		{ {30, 30, 28, 24} },
1608 		{ {30, 30, 28, 24} },
1609 		{ {30, 30, 28, 24} },
1610 		{ {30, 30, 28, 24} },
1611 		{ {30, 30, 28, 24} },
1612 	},
1613 	.calTargetPower5GHT20 = {
1614 		/*
1615 		 * 0_8_16,1-3_9-11_17-19,
1616 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1617 		 */
1618 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1619 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1620 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1621 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1622 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1623 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1624 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1625 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1626 	},
1627 	.calTargetPower5GHT40 =  {
1628 		/*
1629 		 * 0_8_16,1-3_9-11_17-19,
1630 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1631 		 */
1632 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1633 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1634 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1635 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1636 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1637 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1638 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1639 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1640 	},
1641 	.ctlIndex_5G =  {
1642 		0x10, 0x16, 0x18, 0x40, 0x46,
1643 		0x48, 0x30, 0x36, 0x38
1644 	},
1645 	.ctl_freqbin_5G =  {
1646 		{
1647 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1648 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1649 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1650 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1651 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1652 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1653 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1654 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1655 		},
1656 		{
1657 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1658 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1659 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1660 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1661 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1662 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1663 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1664 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1665 		},
1666 
1667 		{
1668 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1669 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1670 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1671 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1672 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1673 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1674 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1675 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1676 		},
1677 
1678 		{
1679 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1680 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1681 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1682 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1683 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1684 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1685 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1686 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1687 		},
1688 
1689 		{
1690 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1691 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1692 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1693 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1694 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1695 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1696 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1697 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1698 		},
1699 
1700 		{
1701 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1702 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1703 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1704 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1705 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1706 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1707 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1708 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1709 		},
1710 
1711 		{
1712 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1713 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1714 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1715 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1716 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1717 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1718 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1719 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1720 		},
1721 
1722 		{
1723 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1724 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1725 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1726 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1727 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1728 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1729 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1730 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1731 		},
1732 
1733 		{
1734 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1735 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1736 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1737 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1738 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1739 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1740 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1741 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1742 		}
1743 	},
1744 	.ctlPowerData_5G = {
1745 		{
1746 			{
1747 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1748 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1749 			}
1750 		},
1751 		{
1752 			{
1753 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1754 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1755 			}
1756 		},
1757 		{
1758 			{
1759 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1760 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1761 			}
1762 		},
1763 		{
1764 			{
1765 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1766 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1767 			}
1768 		},
1769 		{
1770 			{
1771 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1772 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1773 			}
1774 		},
1775 		{
1776 			{
1777 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1778 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1779 			}
1780 		},
1781 		{
1782 			{
1783 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1784 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1785 			}
1786 		},
1787 		{
1788 			{
1789 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1790 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1791 			}
1792 		},
1793 		{
1794 			{
1795 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1796 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1797 			}
1798 		},
1799 	}
1800 };
1801 
1802 
1803 static const struct ar9300_eeprom ar9300_x112 = {
1804 	.eepromVersion = 2,
1805 	.templateVersion = 5,
1806 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1807 	.custData = {"x112-041-f0000"},
1808 	.baseEepHeader = {
1809 		.regDmn = { LE16(0), LE16(0x1f) },
1810 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1811 		.opCapFlags = {
1812 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1813 			.eepMisc = 0,
1814 		},
1815 		.rfSilent = 0,
1816 		.blueToothOptions = 0,
1817 		.deviceCap = 0,
1818 		.deviceType = 5, /* takes lower byte in eeprom location */
1819 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1820 		.params_for_tuning_caps = {0, 0},
1821 		.featureEnable = 0x0d,
1822 		/*
1823 		 * bit0 - enable tx temp comp - disabled
1824 		 * bit1 - enable tx volt comp - disabled
1825 		 * bit2 - enable fastclock - enabled
1826 		 * bit3 - enable doubling - enabled
1827 		 * bit4 - enable internal regulator - disabled
1828 		 * bit5 - enable pa predistortion - disabled
1829 		 */
1830 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1831 		.eepromWriteEnableGpio = 6,
1832 		.wlanDisableGpio = 0,
1833 		.wlanLedGpio = 8,
1834 		.rxBandSelectGpio = 0xff,
1835 		.txrxgain = 0x0,
1836 		.swreg = 0,
1837 	},
1838 	.modalHeader2G = {
1839 		/* ar9300_modal_eep_header  2g */
1840 		/* 4 idle,t1,t2,b(4 bits per setting) */
1841 		.antCtrlCommon = LE32(0x110),
1842 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1843 		.antCtrlCommon2 = LE32(0x22222),
1844 
1845 		/*
1846 		 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1847 		 * rx1, rx12, b (2 bits each)
1848 		 */
1849 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1850 
1851 		/*
1852 		 * xatten1DB[AR9300_max_chains];  3 xatten1_db
1853 		 * for ar9280 (0xa20c/b20c 5:0)
1854 		 */
1855 		.xatten1DB = {0x1b, 0x1b, 0x1b},
1856 
1857 		/*
1858 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1859 		 * for ar9280 (0xa20c/b20c 16:12
1860 		 */
1861 		.xatten1Margin = {0x15, 0x15, 0x15},
1862 		.tempSlope = 50,
1863 		.voltSlope = 0,
1864 
1865 		/*
1866 		 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1867 		 * channels in usual fbin coding format
1868 		 */
1869 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1870 
1871 		/*
1872 		 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1873 		 * if the register is per chain
1874 		 */
1875 		.noiseFloorThreshCh = {-1, 0, 0},
1876 		.ob = {1, 1, 1},/* 3 chain */
1877 		.db_stage2 = {1, 1, 1}, /* 3 chain  */
1878 		.db_stage3 = {0, 0, 0},
1879 		.db_stage4 = {0, 0, 0},
1880 		.xpaBiasLvl = 0,
1881 		.txFrameToDataStart = 0x0e,
1882 		.txFrameToPaOn = 0x0e,
1883 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1884 		.antennaGain = 0,
1885 		.switchSettling = 0x2c,
1886 		.adcDesiredSize = -30,
1887 		.txEndToXpaOff = 0,
1888 		.txEndToRxOn = 0x2,
1889 		.txFrameToXpaOn = 0xe,
1890 		.thresh62 = 28,
1891 		.papdRateMaskHt20 = LE32(0x0c80c080),
1892 		.papdRateMaskHt40 = LE32(0x0080c080),
1893 		.futureModal = {
1894 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1895 		},
1896 	},
1897 	.base_ext1 = {
1898 		.ant_div_control = 0,
1899 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1900 	},
1901 	.calFreqPier2G = {
1902 		FREQ2FBIN(2412, 1),
1903 		FREQ2FBIN(2437, 1),
1904 		FREQ2FBIN(2472, 1),
1905 	},
1906 	/* ar9300_cal_data_per_freq_op_loop 2g */
1907 	.calPierData2G = {
1908 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1909 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1910 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1911 	},
1912 	.calTarget_freqbin_Cck = {
1913 		FREQ2FBIN(2412, 1),
1914 		FREQ2FBIN(2472, 1),
1915 	},
1916 	.calTarget_freqbin_2G = {
1917 		FREQ2FBIN(2412, 1),
1918 		FREQ2FBIN(2437, 1),
1919 		FREQ2FBIN(2472, 1)
1920 	},
1921 	.calTarget_freqbin_2GHT20 = {
1922 		FREQ2FBIN(2412, 1),
1923 		FREQ2FBIN(2437, 1),
1924 		FREQ2FBIN(2472, 1)
1925 	},
1926 	.calTarget_freqbin_2GHT40 = {
1927 		FREQ2FBIN(2412, 1),
1928 		FREQ2FBIN(2437, 1),
1929 		FREQ2FBIN(2472, 1)
1930 	},
1931 	.calTargetPowerCck = {
1932 		/* 1L-5L,5S,11L,11s */
1933 		{ {38, 38, 38, 38} },
1934 		{ {38, 38, 38, 38} },
1935 	},
1936 	.calTargetPower2G = {
1937 		/* 6-24,36,48,54 */
1938 		{ {38, 38, 36, 34} },
1939 		{ {38, 38, 36, 34} },
1940 		{ {38, 38, 34, 32} },
1941 	},
1942 	.calTargetPower2GHT20 = {
1943 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1944 		{ {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1945 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1946 	},
1947 	.calTargetPower2GHT40 = {
1948 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1949 		{ {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1950 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1951 	},
1952 	.ctlIndex_2G =  {
1953 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1954 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1955 	},
1956 	.ctl_freqbin_2G = {
1957 		{
1958 			FREQ2FBIN(2412, 1),
1959 			FREQ2FBIN(2417, 1),
1960 			FREQ2FBIN(2457, 1),
1961 			FREQ2FBIN(2462, 1)
1962 		},
1963 		{
1964 			FREQ2FBIN(2412, 1),
1965 			FREQ2FBIN(2417, 1),
1966 			FREQ2FBIN(2462, 1),
1967 			0xFF,
1968 		},
1969 
1970 		{
1971 			FREQ2FBIN(2412, 1),
1972 			FREQ2FBIN(2417, 1),
1973 			FREQ2FBIN(2462, 1),
1974 			0xFF,
1975 		},
1976 		{
1977 			FREQ2FBIN(2422, 1),
1978 			FREQ2FBIN(2427, 1),
1979 			FREQ2FBIN(2447, 1),
1980 			FREQ2FBIN(2452, 1)
1981 		},
1982 
1983 		{
1984 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1985 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1986 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1987 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1988 		},
1989 
1990 		{
1991 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1992 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1993 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1994 			0,
1995 		},
1996 
1997 		{
1998 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1999 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2000 			FREQ2FBIN(2472, 1),
2001 			0,
2002 		},
2003 
2004 		{
2005 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2006 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2007 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2008 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2009 		},
2010 
2011 		{
2012 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2013 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2014 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2015 		},
2016 
2017 		{
2018 			/* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2019 			/* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2020 			/* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2021 			0
2022 		},
2023 
2024 		{
2025 			/* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2026 			/* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2027 			/* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2028 			0
2029 		},
2030 
2031 		{
2032 			/* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2033 			/* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2034 			/* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2035 			/* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2036 		}
2037 	},
2038 	.ctlPowerData_2G = {
2039 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2040 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2041 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2042 
2043 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2044 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2045 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2046 
2047 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2048 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2049 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2050 
2051 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2052 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2053 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2054 	},
2055 	.modalHeader5G = {
2056 		/* 4 idle,t1,t2,b (4 bits per setting) */
2057 		.antCtrlCommon = LE32(0x110),
2058 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2059 		.antCtrlCommon2 = LE32(0x22222),
2060 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2061 		.antCtrlChain = {
2062 			LE16(0x0), LE16(0x0), LE16(0x0),
2063 		},
2064 		/* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2065 		.xatten1DB = {0x13, 0x19, 0x17},
2066 
2067 		/*
2068 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2069 		 * for merlin (0xa20c/b20c 16:12
2070 		 */
2071 		.xatten1Margin = {0x19, 0x19, 0x19},
2072 		.tempSlope = 70,
2073 		.voltSlope = 15,
2074 		/* spurChans spur channels in usual fbin coding format */
2075 		.spurChans = {0, 0, 0, 0, 0},
2076 		/* noiseFloorThreshch check if the register is per chain */
2077 		.noiseFloorThreshCh = {-1, 0, 0},
2078 		.ob = {3, 3, 3}, /* 3 chain */
2079 		.db_stage2 = {3, 3, 3}, /* 3 chain */
2080 		.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
2081 		.db_stage4 = {3, 3, 3},	 /* don't exist for 2G */
2082 		.xpaBiasLvl = 0,
2083 		.txFrameToDataStart = 0x0e,
2084 		.txFrameToPaOn = 0x0e,
2085 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2086 		.antennaGain = 0,
2087 		.switchSettling = 0x2d,
2088 		.adcDesiredSize = -30,
2089 		.txEndToXpaOff = 0,
2090 		.txEndToRxOn = 0x2,
2091 		.txFrameToXpaOn = 0xe,
2092 		.thresh62 = 28,
2093 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2094 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2095 		.futureModal = {
2096 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2097 		},
2098 	},
2099 	.base_ext2 = {
2100 		.tempSlopeLow = 72,
2101 		.tempSlopeHigh = 105,
2102 		.xatten1DBLow = {0x10, 0x14, 0x10},
2103 		.xatten1MarginLow = {0x19, 0x19 , 0x19},
2104 		.xatten1DBHigh = {0x1d, 0x20, 0x24},
2105 		.xatten1MarginHigh = {0x10, 0x10, 0x10}
2106 	},
2107 	.calFreqPier5G = {
2108 		FREQ2FBIN(5180, 0),
2109 		FREQ2FBIN(5220, 0),
2110 		FREQ2FBIN(5320, 0),
2111 		FREQ2FBIN(5400, 0),
2112 		FREQ2FBIN(5500, 0),
2113 		FREQ2FBIN(5600, 0),
2114 		FREQ2FBIN(5700, 0),
2115 		FREQ2FBIN(5785, 0)
2116 	},
2117 	.calPierData5G = {
2118 		{
2119 			{0, 0, 0, 0, 0},
2120 			{0, 0, 0, 0, 0},
2121 			{0, 0, 0, 0, 0},
2122 			{0, 0, 0, 0, 0},
2123 			{0, 0, 0, 0, 0},
2124 			{0, 0, 0, 0, 0},
2125 			{0, 0, 0, 0, 0},
2126 			{0, 0, 0, 0, 0},
2127 		},
2128 		{
2129 			{0, 0, 0, 0, 0},
2130 			{0, 0, 0, 0, 0},
2131 			{0, 0, 0, 0, 0},
2132 			{0, 0, 0, 0, 0},
2133 			{0, 0, 0, 0, 0},
2134 			{0, 0, 0, 0, 0},
2135 			{0, 0, 0, 0, 0},
2136 			{0, 0, 0, 0, 0},
2137 		},
2138 		{
2139 			{0, 0, 0, 0, 0},
2140 			{0, 0, 0, 0, 0},
2141 			{0, 0, 0, 0, 0},
2142 			{0, 0, 0, 0, 0},
2143 			{0, 0, 0, 0, 0},
2144 			{0, 0, 0, 0, 0},
2145 			{0, 0, 0, 0, 0},
2146 			{0, 0, 0, 0, 0},
2147 		},
2148 
2149 	},
2150 	.calTarget_freqbin_5G = {
2151 		FREQ2FBIN(5180, 0),
2152 		FREQ2FBIN(5220, 0),
2153 		FREQ2FBIN(5320, 0),
2154 		FREQ2FBIN(5400, 0),
2155 		FREQ2FBIN(5500, 0),
2156 		FREQ2FBIN(5600, 0),
2157 		FREQ2FBIN(5725, 0),
2158 		FREQ2FBIN(5825, 0)
2159 	},
2160 	.calTarget_freqbin_5GHT20 = {
2161 		FREQ2FBIN(5180, 0),
2162 		FREQ2FBIN(5220, 0),
2163 		FREQ2FBIN(5320, 0),
2164 		FREQ2FBIN(5400, 0),
2165 		FREQ2FBIN(5500, 0),
2166 		FREQ2FBIN(5600, 0),
2167 		FREQ2FBIN(5725, 0),
2168 		FREQ2FBIN(5825, 0)
2169 	},
2170 	.calTarget_freqbin_5GHT40 = {
2171 		FREQ2FBIN(5180, 0),
2172 		FREQ2FBIN(5220, 0),
2173 		FREQ2FBIN(5320, 0),
2174 		FREQ2FBIN(5400, 0),
2175 		FREQ2FBIN(5500, 0),
2176 		FREQ2FBIN(5600, 0),
2177 		FREQ2FBIN(5725, 0),
2178 		FREQ2FBIN(5825, 0)
2179 	},
2180 	.calTargetPower5G = {
2181 		/* 6-24,36,48,54 */
2182 		{ {32, 32, 28, 26} },
2183 		{ {32, 32, 28, 26} },
2184 		{ {32, 32, 28, 26} },
2185 		{ {32, 32, 26, 24} },
2186 		{ {32, 32, 26, 24} },
2187 		{ {32, 32, 24, 22} },
2188 		{ {30, 30, 24, 22} },
2189 		{ {30, 30, 24, 22} },
2190 	},
2191 	.calTargetPower5GHT20 = {
2192 		/*
2193 		 * 0_8_16,1-3_9-11_17-19,
2194 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2195 		 */
2196 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2197 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2198 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2199 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2200 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2201 		{ {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2202 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2203 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2204 	},
2205 	.calTargetPower5GHT40 =  {
2206 		/*
2207 		 * 0_8_16,1-3_9-11_17-19,
2208 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2209 		 */
2210 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2211 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2212 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2213 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2214 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2215 		{ {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2216 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2217 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2218 	},
2219 	.ctlIndex_5G =  {
2220 		0x10, 0x16, 0x18, 0x40, 0x46,
2221 		0x48, 0x30, 0x36, 0x38
2222 	},
2223 	.ctl_freqbin_5G =  {
2224 		{
2225 			/* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2226 			/* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2227 			/* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2228 			/* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2229 			/* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2230 			/* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2231 			/* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2232 			/* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2233 		},
2234 		{
2235 			/* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2236 			/* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2237 			/* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2238 			/* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2239 			/* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2240 			/* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2241 			/* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2242 			/* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2243 		},
2244 
2245 		{
2246 			/* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2247 			/* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2248 			/* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2249 			/* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2250 			/* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2251 			/* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2252 			/* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2253 			/* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2254 		},
2255 
2256 		{
2257 			/* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2258 			/* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2259 			/* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2260 			/* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2261 			/* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2262 			/* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2263 			/* Data[3].ctledges[6].bchannel */ 0xFF,
2264 			/* Data[3].ctledges[7].bchannel */ 0xFF,
2265 		},
2266 
2267 		{
2268 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2269 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2270 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2271 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2272 			/* Data[4].ctledges[4].bchannel */ 0xFF,
2273 			/* Data[4].ctledges[5].bchannel */ 0xFF,
2274 			/* Data[4].ctledges[6].bchannel */ 0xFF,
2275 			/* Data[4].ctledges[7].bchannel */ 0xFF,
2276 		},
2277 
2278 		{
2279 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2280 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2281 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2282 			/* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2283 			/* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2284 			/* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2285 			/* Data[5].ctledges[6].bchannel */ 0xFF,
2286 			/* Data[5].ctledges[7].bchannel */ 0xFF
2287 		},
2288 
2289 		{
2290 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2291 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2292 			/* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2293 			/* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2294 			/* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2295 			/* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2296 			/* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2297 			/* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2298 		},
2299 
2300 		{
2301 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2302 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2303 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2304 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2305 			/* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2306 			/* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2307 			/* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2308 			/* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2309 		},
2310 
2311 		{
2312 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2313 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2314 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2315 			/* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2316 			/* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2317 			/* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2318 			/* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2319 			/* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2320 		}
2321 	},
2322 	.ctlPowerData_5G = {
2323 		{
2324 			{
2325 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2326 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2327 			}
2328 		},
2329 		{
2330 			{
2331 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2332 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2333 			}
2334 		},
2335 		{
2336 			{
2337 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2338 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2339 			}
2340 		},
2341 		{
2342 			{
2343 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2344 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2345 			}
2346 		},
2347 		{
2348 			{
2349 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2350 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2351 			}
2352 		},
2353 		{
2354 			{
2355 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2356 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2357 			}
2358 		},
2359 		{
2360 			{
2361 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2362 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2363 			}
2364 		},
2365 		{
2366 			{
2367 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2368 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2369 			}
2370 		},
2371 		{
2372 			{
2373 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2374 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2375 			}
2376 		},
2377 	}
2378 };
2379 
2380 static const struct ar9300_eeprom ar9300_h116 = {
2381 	.eepromVersion = 2,
2382 	.templateVersion = 4,
2383 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2384 	.custData = {"h116-041-f0000"},
2385 	.baseEepHeader = {
2386 		.regDmn = { LE16(0), LE16(0x1f) },
2387 		.txrxMask =  0x33, /* 4 bits tx and 4 bits rx */
2388 		.opCapFlags = {
2389 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2390 			.eepMisc = 0,
2391 		},
2392 		.rfSilent = 0,
2393 		.blueToothOptions = 0,
2394 		.deviceCap = 0,
2395 		.deviceType = 5, /* takes lower byte in eeprom location */
2396 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2397 		.params_for_tuning_caps = {0, 0},
2398 		.featureEnable = 0x0d,
2399 		 /*
2400 		  * bit0 - enable tx temp comp - disabled
2401 		  * bit1 - enable tx volt comp - disabled
2402 		  * bit2 - enable fastClock - enabled
2403 		  * bit3 - enable doubling - enabled
2404 		  * bit4 - enable internal regulator - disabled
2405 		  * bit5 - enable pa predistortion - disabled
2406 		  */
2407 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
2408 		.eepromWriteEnableGpio = 6,
2409 		.wlanDisableGpio = 0,
2410 		.wlanLedGpio = 8,
2411 		.rxBandSelectGpio = 0xff,
2412 		.txrxgain = 0x10,
2413 		.swreg = 0,
2414 	 },
2415 	.modalHeader2G = {
2416 	/* ar9300_modal_eep_header  2g */
2417 		/* 4 idle,t1,t2,b(4 bits per setting) */
2418 		.antCtrlCommon = LE32(0x110),
2419 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2420 		.antCtrlCommon2 = LE32(0x44444),
2421 
2422 		/*
2423 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2424 		 * rx1, rx12, b (2 bits each)
2425 		 */
2426 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2427 
2428 		/*
2429 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
2430 		 * for ar9280 (0xa20c/b20c 5:0)
2431 		 */
2432 		.xatten1DB = {0x1f, 0x1f, 0x1f},
2433 
2434 		/*
2435 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2436 		 * for ar9280 (0xa20c/b20c 16:12
2437 		 */
2438 		.xatten1Margin = {0x12, 0x12, 0x12},
2439 		.tempSlope = 25,
2440 		.voltSlope = 0,
2441 
2442 		/*
2443 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2444 		 * channels in usual fbin coding format
2445 		 */
2446 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2447 
2448 		/*
2449 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2450 		 * if the register is per chain
2451 		 */
2452 		.noiseFloorThreshCh = {-1, 0, 0},
2453 		.ob = {1, 1, 1},/* 3 chain */
2454 		.db_stage2 = {1, 1, 1}, /* 3 chain  */
2455 		.db_stage3 = {0, 0, 0},
2456 		.db_stage4 = {0, 0, 0},
2457 		.xpaBiasLvl = 0,
2458 		.txFrameToDataStart = 0x0e,
2459 		.txFrameToPaOn = 0x0e,
2460 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2461 		.antennaGain = 0,
2462 		.switchSettling = 0x2c,
2463 		.adcDesiredSize = -30,
2464 		.txEndToXpaOff = 0,
2465 		.txEndToRxOn = 0x2,
2466 		.txFrameToXpaOn = 0xe,
2467 		.thresh62 = 28,
2468 		.papdRateMaskHt20 = LE32(0x0c80C080),
2469 		.papdRateMaskHt40 = LE32(0x0080C080),
2470 		.futureModal = {
2471 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2472 		},
2473 	 },
2474 	 .base_ext1 = {
2475 		.ant_div_control = 0,
2476 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
2477 	 },
2478 	.calFreqPier2G = {
2479 		FREQ2FBIN(2412, 1),
2480 		FREQ2FBIN(2437, 1),
2481 		FREQ2FBIN(2472, 1),
2482 	 },
2483 	/* ar9300_cal_data_per_freq_op_loop 2g */
2484 	.calPierData2G = {
2485 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2486 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2487 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2488 	 },
2489 	.calTarget_freqbin_Cck = {
2490 		FREQ2FBIN(2412, 1),
2491 		FREQ2FBIN(2472, 1),
2492 	 },
2493 	.calTarget_freqbin_2G = {
2494 		FREQ2FBIN(2412, 1),
2495 		FREQ2FBIN(2437, 1),
2496 		FREQ2FBIN(2472, 1)
2497 	 },
2498 	.calTarget_freqbin_2GHT20 = {
2499 		FREQ2FBIN(2412, 1),
2500 		FREQ2FBIN(2437, 1),
2501 		FREQ2FBIN(2472, 1)
2502 	 },
2503 	.calTarget_freqbin_2GHT40 = {
2504 		FREQ2FBIN(2412, 1),
2505 		FREQ2FBIN(2437, 1),
2506 		FREQ2FBIN(2472, 1)
2507 	 },
2508 	.calTargetPowerCck = {
2509 		 /* 1L-5L,5S,11L,11S */
2510 		 { {34, 34, 34, 34} },
2511 		 { {34, 34, 34, 34} },
2512 	},
2513 	.calTargetPower2G = {
2514 		 /* 6-24,36,48,54 */
2515 		 { {34, 34, 32, 32} },
2516 		 { {34, 34, 32, 32} },
2517 		 { {34, 34, 32, 32} },
2518 	},
2519 	.calTargetPower2GHT20 = {
2520 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2521 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2522 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2523 	},
2524 	.calTargetPower2GHT40 = {
2525 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2526 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2527 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2528 	},
2529 	.ctlIndex_2G =  {
2530 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2531 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2532 	},
2533 	.ctl_freqbin_2G = {
2534 		{
2535 			FREQ2FBIN(2412, 1),
2536 			FREQ2FBIN(2417, 1),
2537 			FREQ2FBIN(2457, 1),
2538 			FREQ2FBIN(2462, 1)
2539 		},
2540 		{
2541 			FREQ2FBIN(2412, 1),
2542 			FREQ2FBIN(2417, 1),
2543 			FREQ2FBIN(2462, 1),
2544 			0xFF,
2545 		},
2546 
2547 		{
2548 			FREQ2FBIN(2412, 1),
2549 			FREQ2FBIN(2417, 1),
2550 			FREQ2FBIN(2462, 1),
2551 			0xFF,
2552 		},
2553 		{
2554 			FREQ2FBIN(2422, 1),
2555 			FREQ2FBIN(2427, 1),
2556 			FREQ2FBIN(2447, 1),
2557 			FREQ2FBIN(2452, 1)
2558 		},
2559 
2560 		{
2561 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2562 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2563 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2564 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2565 		},
2566 
2567 		{
2568 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2569 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2570 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2571 			0,
2572 		},
2573 
2574 		{
2575 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2576 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2577 			FREQ2FBIN(2472, 1),
2578 			0,
2579 		},
2580 
2581 		{
2582 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2583 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2584 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2585 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2586 		},
2587 
2588 		{
2589 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2590 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2591 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2592 		},
2593 
2594 		{
2595 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2596 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2597 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2598 			0
2599 		},
2600 
2601 		{
2602 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2603 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2604 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2605 			0
2606 		},
2607 
2608 		{
2609 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2610 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2611 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2612 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2613 		}
2614 	 },
2615 	.ctlPowerData_2G = {
2616 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2617 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2618 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2619 
2620 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2621 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2622 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2623 
2624 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2625 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2626 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2627 
2628 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2629 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2630 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2631 	 },
2632 	.modalHeader5G = {
2633 		/* 4 idle,t1,t2,b (4 bits per setting) */
2634 		.antCtrlCommon = LE32(0x220),
2635 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2636 		.antCtrlCommon2 = LE32(0x44444),
2637 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2638 		.antCtrlChain = {
2639 			LE16(0x150), LE16(0x150), LE16(0x150),
2640 		},
2641 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2642 		.xatten1DB = {0x19, 0x19, 0x19},
2643 
2644 		/*
2645 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2646 		 * for merlin (0xa20c/b20c 16:12
2647 		 */
2648 		.xatten1Margin = {0x14, 0x14, 0x14},
2649 		.tempSlope = 70,
2650 		.voltSlope = 0,
2651 		/* spurChans spur channels in usual fbin coding format */
2652 		.spurChans = {0, 0, 0, 0, 0},
2653 		/* noiseFloorThreshCh Check if the register is per chain */
2654 		.noiseFloorThreshCh = {-1, 0, 0},
2655 		.ob = {3, 3, 3}, /* 3 chain */
2656 		.db_stage2 = {3, 3, 3}, /* 3 chain */
2657 		.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
2658 		.db_stage4 = {3, 3, 3},	 /* don't exist for 2G */
2659 		.xpaBiasLvl = 0,
2660 		.txFrameToDataStart = 0x0e,
2661 		.txFrameToPaOn = 0x0e,
2662 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2663 		.antennaGain = 0,
2664 		.switchSettling = 0x2d,
2665 		.adcDesiredSize = -30,
2666 		.txEndToXpaOff = 0,
2667 		.txEndToRxOn = 0x2,
2668 		.txFrameToXpaOn = 0xe,
2669 		.thresh62 = 28,
2670 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2671 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2672 		.futureModal = {
2673 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2674 		},
2675 	 },
2676 	.base_ext2 = {
2677 		.tempSlopeLow = 35,
2678 		.tempSlopeHigh = 50,
2679 		.xatten1DBLow = {0, 0, 0},
2680 		.xatten1MarginLow = {0, 0, 0},
2681 		.xatten1DBHigh = {0, 0, 0},
2682 		.xatten1MarginHigh = {0, 0, 0}
2683 	 },
2684 	.calFreqPier5G = {
2685 		FREQ2FBIN(5180, 0),
2686 		FREQ2FBIN(5220, 0),
2687 		FREQ2FBIN(5320, 0),
2688 		FREQ2FBIN(5400, 0),
2689 		FREQ2FBIN(5500, 0),
2690 		FREQ2FBIN(5600, 0),
2691 		FREQ2FBIN(5700, 0),
2692 		FREQ2FBIN(5785, 0)
2693 	},
2694 	.calPierData5G = {
2695 			{
2696 				{0, 0, 0, 0, 0},
2697 				{0, 0, 0, 0, 0},
2698 				{0, 0, 0, 0, 0},
2699 				{0, 0, 0, 0, 0},
2700 				{0, 0, 0, 0, 0},
2701 				{0, 0, 0, 0, 0},
2702 				{0, 0, 0, 0, 0},
2703 				{0, 0, 0, 0, 0},
2704 			},
2705 			{
2706 				{0, 0, 0, 0, 0},
2707 				{0, 0, 0, 0, 0},
2708 				{0, 0, 0, 0, 0},
2709 				{0, 0, 0, 0, 0},
2710 				{0, 0, 0, 0, 0},
2711 				{0, 0, 0, 0, 0},
2712 				{0, 0, 0, 0, 0},
2713 				{0, 0, 0, 0, 0},
2714 			},
2715 			{
2716 				{0, 0, 0, 0, 0},
2717 				{0, 0, 0, 0, 0},
2718 				{0, 0, 0, 0, 0},
2719 				{0, 0, 0, 0, 0},
2720 				{0, 0, 0, 0, 0},
2721 				{0, 0, 0, 0, 0},
2722 				{0, 0, 0, 0, 0},
2723 				{0, 0, 0, 0, 0},
2724 			},
2725 
2726 	},
2727 	.calTarget_freqbin_5G = {
2728 		FREQ2FBIN(5180, 0),
2729 		FREQ2FBIN(5240, 0),
2730 		FREQ2FBIN(5320, 0),
2731 		FREQ2FBIN(5400, 0),
2732 		FREQ2FBIN(5500, 0),
2733 		FREQ2FBIN(5600, 0),
2734 		FREQ2FBIN(5700, 0),
2735 		FREQ2FBIN(5825, 0)
2736 	},
2737 	.calTarget_freqbin_5GHT20 = {
2738 		FREQ2FBIN(5180, 0),
2739 		FREQ2FBIN(5240, 0),
2740 		FREQ2FBIN(5320, 0),
2741 		FREQ2FBIN(5400, 0),
2742 		FREQ2FBIN(5500, 0),
2743 		FREQ2FBIN(5700, 0),
2744 		FREQ2FBIN(5745, 0),
2745 		FREQ2FBIN(5825, 0)
2746 	},
2747 	.calTarget_freqbin_5GHT40 = {
2748 		FREQ2FBIN(5180, 0),
2749 		FREQ2FBIN(5240, 0),
2750 		FREQ2FBIN(5320, 0),
2751 		FREQ2FBIN(5400, 0),
2752 		FREQ2FBIN(5500, 0),
2753 		FREQ2FBIN(5700, 0),
2754 		FREQ2FBIN(5745, 0),
2755 		FREQ2FBIN(5825, 0)
2756 	 },
2757 	.calTargetPower5G = {
2758 		/* 6-24,36,48,54 */
2759 		{ {30, 30, 28, 24} },
2760 		{ {30, 30, 28, 24} },
2761 		{ {30, 30, 28, 24} },
2762 		{ {30, 30, 28, 24} },
2763 		{ {30, 30, 28, 24} },
2764 		{ {30, 30, 28, 24} },
2765 		{ {30, 30, 28, 24} },
2766 		{ {30, 30, 28, 24} },
2767 	 },
2768 	.calTargetPower5GHT20 = {
2769 		/*
2770 		 * 0_8_16,1-3_9-11_17-19,
2771 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2772 		 */
2773 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2774 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2775 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2776 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2777 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2778 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2779 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2780 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2781 	 },
2782 	.calTargetPower5GHT40 =  {
2783 		/*
2784 		 * 0_8_16,1-3_9-11_17-19,
2785 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2786 		 */
2787 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2788 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2789 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2790 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2791 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2792 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2793 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2794 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2795 	 },
2796 	.ctlIndex_5G =  {
2797 		0x10, 0x16, 0x18, 0x40, 0x46,
2798 		0x48, 0x30, 0x36, 0x38
2799 	},
2800 	.ctl_freqbin_5G =  {
2801 		{
2802 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2803 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2804 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2805 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2806 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2807 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2808 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2809 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2810 		},
2811 		{
2812 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2813 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2814 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2815 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2816 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2817 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2818 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2819 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2820 		},
2821 
2822 		{
2823 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2824 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2825 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2826 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2827 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2828 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2829 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2830 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2831 		},
2832 
2833 		{
2834 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2835 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2836 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2837 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2838 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2839 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2840 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
2841 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
2842 		},
2843 
2844 		{
2845 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2846 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2847 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2848 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2849 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
2850 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
2851 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
2852 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
2853 		},
2854 
2855 		{
2856 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2857 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2858 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2859 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2860 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2861 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2862 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
2863 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
2864 		},
2865 
2866 		{
2867 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2868 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2869 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2870 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2871 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2872 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2873 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2874 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2875 		},
2876 
2877 		{
2878 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2879 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2880 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2881 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2882 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2883 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2884 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2885 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2886 		},
2887 
2888 		{
2889 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2890 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2891 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2892 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2893 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2894 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2895 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2896 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2897 		}
2898 	 },
2899 	.ctlPowerData_5G = {
2900 		{
2901 			{
2902 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2903 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2904 			}
2905 		},
2906 		{
2907 			{
2908 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2909 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2910 			}
2911 		},
2912 		{
2913 			{
2914 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2915 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2916 			}
2917 		},
2918 		{
2919 			{
2920 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2921 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2922 			}
2923 		},
2924 		{
2925 			{
2926 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2927 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2928 			}
2929 		},
2930 		{
2931 			{
2932 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2933 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2934 			}
2935 		},
2936 		{
2937 			{
2938 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2939 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2940 			}
2941 		},
2942 		{
2943 			{
2944 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2945 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2946 			}
2947 		},
2948 		{
2949 			{
2950 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2951 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2952 			}
2953 		},
2954 	 }
2955 };
2956 
2957 
2958 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2959 	&ar9300_default,
2960 	&ar9300_x112,
2961 	&ar9300_h116,
2962 	&ar9300_h112,
2963 	&ar9300_x113,
2964 };
2965 
2966 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2967 {
2968 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2969 	int it;
2970 
2971 	for (it = 0; it < N_LOOP; it++)
2972 		if (ar9300_eep_templates[it]->templateVersion == id)
2973 			return ar9300_eep_templates[it];
2974 	return NULL;
2975 #undef N_LOOP
2976 }
2977 
2978 
2979 static u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
2980 {
2981 	if (fbin == AR5416_BCHAN_UNUSED)
2982 		return fbin;
2983 
2984 	return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2985 }
2986 
2987 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2988 {
2989 	return 0;
2990 }
2991 
2992 static int interpolate(int x, int xa, int xb, int ya, int yb)
2993 {
2994 	int bf, factor, plus;
2995 
2996 	bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2997 	factor = bf / 2;
2998 	plus = bf % 2;
2999 	return ya + factor + plus;
3000 }
3001 
3002 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
3003 				      enum eeprom_param param)
3004 {
3005 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3006 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3007 
3008 	switch (param) {
3009 	case EEP_MAC_LSW:
3010 		return get_unaligned_be16(eep->macAddr);
3011 	case EEP_MAC_MID:
3012 		return get_unaligned_be16(eep->macAddr + 2);
3013 	case EEP_MAC_MSW:
3014 		return get_unaligned_be16(eep->macAddr + 4);
3015 	case EEP_REG_0:
3016 		return le16_to_cpu(pBase->regDmn[0]);
3017 	case EEP_REG_1:
3018 		return le16_to_cpu(pBase->regDmn[1]);
3019 	case EEP_OP_CAP:
3020 		return pBase->deviceCap;
3021 	case EEP_OP_MODE:
3022 		return pBase->opCapFlags.opFlags;
3023 	case EEP_RF_SILENT:
3024 		return pBase->rfSilent;
3025 	case EEP_TX_MASK:
3026 		return (pBase->txrxMask >> 4) & 0xf;
3027 	case EEP_RX_MASK:
3028 		return pBase->txrxMask & 0xf;
3029 	case EEP_DRIVE_STRENGTH:
3030 #define AR9300_EEP_BASE_DRIV_STRENGTH	0x1
3031 		return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH;
3032 	case EEP_INTERNAL_REGULATOR:
3033 		/* Bit 4 is internal regulator flag */
3034 		return (pBase->featureEnable & 0x10) >> 4;
3035 	case EEP_SWREG:
3036 		return le32_to_cpu(pBase->swreg);
3037 	case EEP_PAPRD:
3038 		return !!(pBase->featureEnable & BIT(5));
3039 	case EEP_CHAIN_MASK_REDUCE:
3040 		return (pBase->miscConfiguration >> 0x3) & 0x1;
3041 	case EEP_ANT_DIV_CTL1:
3042 		return eep->base_ext1.ant_div_control;
3043 	default:
3044 		return 0;
3045 	}
3046 }
3047 
3048 static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
3049 				    u8 *buffer)
3050 {
3051 	u16 val;
3052 
3053 	if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3054 		return false;
3055 
3056 	*buffer = (val >> (8 * (address % 2))) & 0xff;
3057 	return true;
3058 }
3059 
3060 static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
3061 				    u8 *buffer)
3062 {
3063 	u16 val;
3064 
3065 	if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3066 		return false;
3067 
3068 	buffer[0] = val >> 8;
3069 	buffer[1] = val & 0xff;
3070 
3071 	return true;
3072 }
3073 
3074 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3075 			       int count)
3076 {
3077 	struct ath_common *common = ath9k_hw_common(ah);
3078 	int i;
3079 
3080 	if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3081 		ath_dbg(common, ATH_DBG_EEPROM,
3082 			"eeprom address not in range\n");
3083 		return false;
3084 	}
3085 
3086 	/*
3087 	 * Since we're reading the bytes in reverse order from a little-endian
3088 	 * word stream, an even address means we only use the lower half of
3089 	 * the 16-bit word at that address
3090 	 */
3091 	if (address % 2 == 0) {
3092 		if (!ar9300_eeprom_read_byte(common, address--, buffer++))
3093 			goto error;
3094 
3095 		count--;
3096 	}
3097 
3098 	for (i = 0; i < count / 2; i++) {
3099 		if (!ar9300_eeprom_read_word(common, address, buffer))
3100 			goto error;
3101 
3102 		address -= 2;
3103 		buffer += 2;
3104 	}
3105 
3106 	if (count % 2)
3107 		if (!ar9300_eeprom_read_byte(common, address, buffer))
3108 			goto error;
3109 
3110 	return true;
3111 
3112 error:
3113 	ath_dbg(common, ATH_DBG_EEPROM,
3114 		"unable to read eeprom region at offset %d\n", address);
3115 	return false;
3116 }
3117 
3118 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3119 {
3120 	REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3121 
3122 	if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3123 			   AR9300_OTP_STATUS_VALID, 1000))
3124 		return false;
3125 
3126 	*data = REG_READ(ah, AR9300_OTP_READ_DATA);
3127 	return true;
3128 }
3129 
3130 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3131 			    int count)
3132 {
3133 	u32 data;
3134 	int i;
3135 
3136 	for (i = 0; i < count; i++) {
3137 		int offset = 8 * ((address - i) % 4);
3138 		if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3139 			return false;
3140 
3141 		buffer[i] = (data >> offset) & 0xff;
3142 	}
3143 
3144 	return true;
3145 }
3146 
3147 
3148 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3149 				   int *length, int *major, int *minor)
3150 {
3151 	unsigned long value[4];
3152 
3153 	value[0] = best[0];
3154 	value[1] = best[1];
3155 	value[2] = best[2];
3156 	value[3] = best[3];
3157 	*code = ((value[0] >> 5) & 0x0007);
3158 	*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3159 	*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3160 	*major = (value[2] & 0x000f);
3161 	*minor = (value[3] & 0x00ff);
3162 }
3163 
3164 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3165 {
3166 	int it, checksum = 0;
3167 
3168 	for (it = 0; it < dsize; it++) {
3169 		checksum += data[it];
3170 		checksum &= 0xffff;
3171 	}
3172 
3173 	return checksum;
3174 }
3175 
3176 static bool ar9300_uncompress_block(struct ath_hw *ah,
3177 				    u8 *mptr,
3178 				    int mdataSize,
3179 				    u8 *block,
3180 				    int size)
3181 {
3182 	int it;
3183 	int spot;
3184 	int offset;
3185 	int length;
3186 	struct ath_common *common = ath9k_hw_common(ah);
3187 
3188 	spot = 0;
3189 
3190 	for (it = 0; it < size; it += (length+2)) {
3191 		offset = block[it];
3192 		offset &= 0xff;
3193 		spot += offset;
3194 		length = block[it+1];
3195 		length &= 0xff;
3196 
3197 		if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3198 			ath_dbg(common, ATH_DBG_EEPROM,
3199 				"Restore at %d: spot=%d offset=%d length=%d\n",
3200 				it, spot, offset, length);
3201 			memcpy(&mptr[spot], &block[it+2], length);
3202 			spot += length;
3203 		} else if (length > 0) {
3204 			ath_dbg(common, ATH_DBG_EEPROM,
3205 				"Bad restore at %d: spot=%d offset=%d length=%d\n",
3206 				it, spot, offset, length);
3207 			return false;
3208 		}
3209 	}
3210 	return true;
3211 }
3212 
3213 static int ar9300_compress_decision(struct ath_hw *ah,
3214 				    int it,
3215 				    int code,
3216 				    int reference,
3217 				    u8 *mptr,
3218 				    u8 *word, int length, int mdata_size)
3219 {
3220 	struct ath_common *common = ath9k_hw_common(ah);
3221 	const struct ar9300_eeprom *eep = NULL;
3222 
3223 	switch (code) {
3224 	case _CompressNone:
3225 		if (length != mdata_size) {
3226 			ath_dbg(common, ATH_DBG_EEPROM,
3227 				"EEPROM structure size mismatch memory=%d eeprom=%d\n",
3228 				mdata_size, length);
3229 			return -1;
3230 		}
3231 		memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length);
3232 		ath_dbg(common, ATH_DBG_EEPROM,
3233 			"restored eeprom %d: uncompressed, length %d\n",
3234 			it, length);
3235 		break;
3236 	case _CompressBlock:
3237 		if (reference == 0) {
3238 		} else {
3239 			eep = ar9003_eeprom_struct_find_by_id(reference);
3240 			if (eep == NULL) {
3241 				ath_dbg(common, ATH_DBG_EEPROM,
3242 					"can't find reference eeprom struct %d\n",
3243 					reference);
3244 				return -1;
3245 			}
3246 			memcpy(mptr, eep, mdata_size);
3247 		}
3248 		ath_dbg(common, ATH_DBG_EEPROM,
3249 			"restore eeprom %d: block, reference %d, length %d\n",
3250 			it, reference, length);
3251 		ar9300_uncompress_block(ah, mptr, mdata_size,
3252 					(u8 *) (word + COMP_HDR_LEN), length);
3253 		break;
3254 	default:
3255 		ath_dbg(common, ATH_DBG_EEPROM,
3256 			"unknown compression code %d\n", code);
3257 		return -1;
3258 	}
3259 	return 0;
3260 }
3261 
3262 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3263 			       int count);
3264 
3265 static bool ar9300_check_header(void *data)
3266 {
3267 	u32 *word = data;
3268 	return !(*word == 0 || *word == ~0);
3269 }
3270 
3271 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3272 				       int base_addr)
3273 {
3274 	u8 header[4];
3275 
3276 	if (!read(ah, base_addr, header, 4))
3277 		return false;
3278 
3279 	return ar9300_check_header(header);
3280 }
3281 
3282 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3283 				       int mdata_size)
3284 {
3285 	struct ath_common *common = ath9k_hw_common(ah);
3286 	u16 *data = (u16 *) mptr;
3287 	int i;
3288 
3289 	for (i = 0; i < mdata_size / 2; i++, data++)
3290 		ath9k_hw_nvram_read(common, i, data);
3291 
3292 	return 0;
3293 }
3294 /*
3295  * Read the configuration data from the eeprom.
3296  * The data can be put in any specified memory buffer.
3297  *
3298  * Returns -1 on error.
3299  * Returns address of next memory location on success.
3300  */
3301 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3302 					  u8 *mptr, int mdata_size)
3303 {
3304 #define MDEFAULT 15
3305 #define MSTATE 100
3306 	int cptr;
3307 	u8 *word;
3308 	int code;
3309 	int reference, length, major, minor;
3310 	int osize;
3311 	int it;
3312 	u16 checksum, mchecksum;
3313 	struct ath_common *common = ath9k_hw_common(ah);
3314 	eeprom_read_op read;
3315 
3316 	if (ath9k_hw_use_flash(ah))
3317 		return ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3318 
3319 	word = kzalloc(2048, GFP_KERNEL);
3320 	if (!word)
3321 		return -1;
3322 
3323 	memcpy(mptr, &ar9300_default, mdata_size);
3324 
3325 	read = ar9300_read_eeprom;
3326 	if (AR_SREV_9485(ah))
3327 		cptr = AR9300_BASE_ADDR_4K;
3328 	else if (AR_SREV_9330(ah))
3329 		cptr = AR9300_BASE_ADDR_512;
3330 	else
3331 		cptr = AR9300_BASE_ADDR;
3332 	ath_dbg(common, ATH_DBG_EEPROM,
3333 		"Trying EEPROM access at Address 0x%04x\n", cptr);
3334 	if (ar9300_check_eeprom_header(ah, read, cptr))
3335 		goto found;
3336 
3337 	cptr = AR9300_BASE_ADDR_512;
3338 	ath_dbg(common, ATH_DBG_EEPROM,
3339 		"Trying EEPROM access at Address 0x%04x\n", cptr);
3340 	if (ar9300_check_eeprom_header(ah, read, cptr))
3341 		goto found;
3342 
3343 	read = ar9300_read_otp;
3344 	cptr = AR9300_BASE_ADDR;
3345 	ath_dbg(common, ATH_DBG_EEPROM,
3346 		"Trying OTP access at Address 0x%04x\n", cptr);
3347 	if (ar9300_check_eeprom_header(ah, read, cptr))
3348 		goto found;
3349 
3350 	cptr = AR9300_BASE_ADDR_512;
3351 	ath_dbg(common, ATH_DBG_EEPROM,
3352 		"Trying OTP access at Address 0x%04x\n", cptr);
3353 	if (ar9300_check_eeprom_header(ah, read, cptr))
3354 		goto found;
3355 
3356 	goto fail;
3357 
3358 found:
3359 	ath_dbg(common, ATH_DBG_EEPROM, "Found valid EEPROM data\n");
3360 
3361 	for (it = 0; it < MSTATE; it++) {
3362 		if (!read(ah, cptr, word, COMP_HDR_LEN))
3363 			goto fail;
3364 
3365 		if (!ar9300_check_header(word))
3366 			break;
3367 
3368 		ar9300_comp_hdr_unpack(word, &code, &reference,
3369 				       &length, &major, &minor);
3370 		ath_dbg(common, ATH_DBG_EEPROM,
3371 			"Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3372 			cptr, code, reference, length, major, minor);
3373 		if ((!AR_SREV_9485(ah) && length >= 1024) ||
3374 		    (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3375 			ath_dbg(common, ATH_DBG_EEPROM,
3376 				"Skipping bad header\n");
3377 			cptr -= COMP_HDR_LEN;
3378 			continue;
3379 		}
3380 
3381 		osize = length;
3382 		read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3383 		checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3384 		mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3385 		ath_dbg(common, ATH_DBG_EEPROM,
3386 			"checksum %x %x\n", checksum, mchecksum);
3387 		if (checksum == mchecksum) {
3388 			ar9300_compress_decision(ah, it, code, reference, mptr,
3389 						 word, length, mdata_size);
3390 		} else {
3391 			ath_dbg(common, ATH_DBG_EEPROM,
3392 				"skipping block with bad checksum\n");
3393 		}
3394 		cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3395 	}
3396 
3397 	kfree(word);
3398 	return cptr;
3399 
3400 fail:
3401 	kfree(word);
3402 	return -1;
3403 }
3404 
3405 /*
3406  * Restore the configuration structure by reading the eeprom.
3407  * This function destroys any existing in-memory structure
3408  * content.
3409  */
3410 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3411 {
3412 	u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3413 
3414 	if (ar9300_eeprom_restore_internal(ah, mptr,
3415 			sizeof(struct ar9300_eeprom)) < 0)
3416 		return false;
3417 
3418 	return true;
3419 }
3420 
3421 /* XXX: review hardware docs */
3422 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3423 {
3424 	return ah->eeprom.ar9300_eep.eepromVersion;
3425 }
3426 
3427 /* XXX: could be read from the eepromVersion, not sure yet */
3428 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3429 {
3430 	return 0;
3431 }
3432 
3433 static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz)
3434 {
3435 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3436 
3437 	if (is2ghz)
3438 		return eep->modalHeader2G.xpaBiasLvl;
3439 	else
3440 		return eep->modalHeader5G.xpaBiasLvl;
3441 }
3442 
3443 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3444 {
3445 	int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz);
3446 
3447 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3448 		REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3449 	else {
3450 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3451 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3452 				AR_CH0_THERM_XPABIASLVL_MSB,
3453 				bias >> 2);
3454 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3455 				AR_CH0_THERM_XPASHORT2GND, 1);
3456 	}
3457 }
3458 
3459 static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3460 {
3461 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3462 	__le32 val;
3463 
3464 	if (is2ghz)
3465 		val = eep->modalHeader2G.antCtrlCommon;
3466 	else
3467 		val = eep->modalHeader5G.antCtrlCommon;
3468 	return le32_to_cpu(val);
3469 }
3470 
3471 static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3472 {
3473 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3474 	__le32 val;
3475 
3476 	if (is2ghz)
3477 		val = eep->modalHeader2G.antCtrlCommon2;
3478 	else
3479 		val = eep->modalHeader5G.antCtrlCommon2;
3480 	return le32_to_cpu(val);
3481 }
3482 
3483 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah,
3484 					int chain,
3485 					bool is2ghz)
3486 {
3487 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3488 	__le16 val = 0;
3489 
3490 	if (chain >= 0 && chain < AR9300_MAX_CHAINS) {
3491 		if (is2ghz)
3492 			val = eep->modalHeader2G.antCtrlChain[chain];
3493 		else
3494 			val = eep->modalHeader5G.antCtrlChain[chain];
3495 	}
3496 
3497 	return le16_to_cpu(val);
3498 }
3499 
3500 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3501 {
3502 	int chain;
3503 	u32 regval;
3504 	u32 ant_div_ctl1;
3505 	static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3506 			AR_PHY_SWITCH_CHAIN_0,
3507 			AR_PHY_SWITCH_CHAIN_1,
3508 			AR_PHY_SWITCH_CHAIN_2,
3509 	};
3510 
3511 	u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3512 
3513 	REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_ALL, value);
3514 
3515 	value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3516 	REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3517 
3518 	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3519 		if ((ah->rxchainmask & BIT(chain)) ||
3520 		    (ah->txchainmask & BIT(chain))) {
3521 			value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3522 							     is2ghz);
3523 			REG_RMW_FIELD(ah, switch_chain_reg[chain],
3524 				      AR_SWITCH_TABLE_ALL, value);
3525 		}
3526 	}
3527 
3528 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3529 		value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3530 		/*
3531 		 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3532 		 * are the fields present
3533 		 */
3534 		regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3535 		regval &= (~AR_ANT_DIV_CTRL_ALL);
3536 		regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3537 		/* enable_lnadiv */
3538 		regval &= (~AR_PHY_9485_ANT_DIV_LNADIV);
3539 		regval |= ((value >> 6) & 0x1) <<
3540 				AR_PHY_9485_ANT_DIV_LNADIV_S;
3541 		REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3542 
3543 		/*enable fast_div */
3544 		regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3545 		regval &= (~AR_FAST_DIV_ENABLE);
3546 		regval |= ((value >> 7) & 0x1) <<
3547 				AR_FAST_DIV_ENABLE_S;
3548 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3549 		ant_div_ctl1 =
3550 			ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
3551 		/* check whether antenna diversity is enabled */
3552 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
3553 			regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3554 			/*
3555 			 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3556 			 * main_tb, alt_tb
3557 			 */
3558 			regval &= (~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
3559 					AR_PHY_9485_ANT_DIV_ALT_LNACONF |
3560 					AR_PHY_9485_ANT_DIV_ALT_GAINTB |
3561 					AR_PHY_9485_ANT_DIV_MAIN_GAINTB));
3562 			/* by default use LNA1 for the main antenna */
3563 			regval |= (AR_PHY_9485_ANT_DIV_LNA1 <<
3564 					AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S);
3565 			regval |= (AR_PHY_9485_ANT_DIV_LNA2 <<
3566 					AR_PHY_9485_ANT_DIV_ALT_LNACONF_S);
3567 			REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3568 		}
3569 
3570 
3571 	}
3572 
3573 }
3574 
3575 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3576 {
3577 	int drive_strength;
3578 	unsigned long reg;
3579 
3580 	drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH);
3581 
3582 	if (!drive_strength)
3583 		return;
3584 
3585 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3586 	reg &= ~0x00ffffc0;
3587 	reg |= 0x5 << 21;
3588 	reg |= 0x5 << 18;
3589 	reg |= 0x5 << 15;
3590 	reg |= 0x5 << 12;
3591 	reg |= 0x5 << 9;
3592 	reg |= 0x5 << 6;
3593 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3594 
3595 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3596 	reg &= ~0xffffffe0;
3597 	reg |= 0x5 << 29;
3598 	reg |= 0x5 << 26;
3599 	reg |= 0x5 << 23;
3600 	reg |= 0x5 << 20;
3601 	reg |= 0x5 << 17;
3602 	reg |= 0x5 << 14;
3603 	reg |= 0x5 << 11;
3604 	reg |= 0x5 << 8;
3605 	reg |= 0x5 << 5;
3606 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3607 
3608 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3609 	reg &= ~0xff800000;
3610 	reg |= 0x5 << 29;
3611 	reg |= 0x5 << 26;
3612 	reg |= 0x5 << 23;
3613 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3614 }
3615 
3616 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3617 				     struct ath9k_channel *chan)
3618 {
3619 	int f[3], t[3];
3620 	u16 value;
3621 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3622 
3623 	if (chain >= 0 && chain < 3) {
3624 		if (IS_CHAN_2GHZ(chan))
3625 			return eep->modalHeader2G.xatten1DB[chain];
3626 		else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3627 			t[0] = eep->base_ext2.xatten1DBLow[chain];
3628 			f[0] = 5180;
3629 			t[1] = eep->modalHeader5G.xatten1DB[chain];
3630 			f[1] = 5500;
3631 			t[2] = eep->base_ext2.xatten1DBHigh[chain];
3632 			f[2] = 5785;
3633 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3634 							    f, t, 3);
3635 			return value;
3636 		} else
3637 			return eep->modalHeader5G.xatten1DB[chain];
3638 	}
3639 
3640 	return 0;
3641 }
3642 
3643 
3644 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3645 					    struct ath9k_channel *chan)
3646 {
3647 	int f[3], t[3];
3648 	u16 value;
3649 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3650 
3651 	if (chain >= 0 && chain < 3) {
3652 		if (IS_CHAN_2GHZ(chan))
3653 			return eep->modalHeader2G.xatten1Margin[chain];
3654 		else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3655 			t[0] = eep->base_ext2.xatten1MarginLow[chain];
3656 			f[0] = 5180;
3657 			t[1] = eep->modalHeader5G.xatten1Margin[chain];
3658 			f[1] = 5500;
3659 			t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3660 			f[2] = 5785;
3661 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3662 							    f, t, 3);
3663 			return value;
3664 		} else
3665 			return eep->modalHeader5G.xatten1Margin[chain];
3666 	}
3667 
3668 	return 0;
3669 }
3670 
3671 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3672 {
3673 	int i;
3674 	u16 value;
3675 	unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3676 					  AR_PHY_EXT_ATTEN_CTL_1,
3677 					  AR_PHY_EXT_ATTEN_CTL_2,
3678 					 };
3679 
3680 	/* Test value. if 0 then attenuation is unused. Don't load anything. */
3681 	for (i = 0; i < 3; i++) {
3682 		if (ah->txchainmask & BIT(i)) {
3683 			value = ar9003_hw_atten_chain_get(ah, i, chan);
3684 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3685 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3686 
3687 			value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3688 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3689 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3690 				      value);
3691 		}
3692 	}
3693 }
3694 
3695 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3696 {
3697 	int timeout = 100;
3698 
3699 	while (pmu_set != REG_READ(ah, pmu_reg)) {
3700 		if (timeout-- == 0)
3701 			return false;
3702 		REG_WRITE(ah, pmu_reg, pmu_set);
3703 		udelay(10);
3704 	}
3705 
3706 	return true;
3707 }
3708 
3709 static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3710 {
3711 	int internal_regulator =
3712 		ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR);
3713 
3714 	if (internal_regulator) {
3715 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3716 			int reg_pmu_set;
3717 
3718 			reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3719 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3720 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3721 				return;
3722 
3723 			if (AR_SREV_9330(ah)) {
3724 				if (ah->is_clk_25mhz) {
3725 					reg_pmu_set = (3 << 1) | (8 << 4) |
3726 						      (3 << 8) | (1 << 14) |
3727 						      (6 << 17) | (1 << 20) |
3728 						      (3 << 24);
3729 				} else {
3730 					reg_pmu_set = (4 << 1)  | (7 << 4) |
3731 						      (3 << 8)  | (1 << 14) |
3732 						      (6 << 17) | (1 << 20) |
3733 						      (3 << 24);
3734 				}
3735 			} else {
3736 				reg_pmu_set = (5 << 1) | (7 << 4) |
3737 					      (2 << 8) | (2 << 14) |
3738 					      (6 << 17) | (1 << 20) |
3739 					      (3 << 24) | (1 << 28);
3740 			}
3741 
3742 			REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3743 			if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3744 				return;
3745 
3746 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3747 					| (4 << 26);
3748 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3749 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3750 				return;
3751 
3752 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3753 					| (1 << 21);
3754 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3755 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3756 				return;
3757 		} else {
3758 			/* Internal regulator is ON. Write swreg register. */
3759 			int swreg = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
3760 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3761 				  REG_READ(ah, AR_RTC_REG_CONTROL1) &
3762 				  (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3763 			REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg);
3764 			/* Set REG_CONTROL1.SWREG_PROGRAM */
3765 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3766 				  REG_READ(ah,
3767 					   AR_RTC_REG_CONTROL1) |
3768 					   AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3769 		}
3770 	} else {
3771 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3772 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3773 			while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3774 					      AR_PHY_PMU2_PGM))
3775 				udelay(10);
3776 
3777 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3778 			while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3779 					       AR_PHY_PMU1_PWD))
3780 				udelay(10);
3781 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3782 			while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3783 					      AR_PHY_PMU2_PGM))
3784 				udelay(10);
3785 		} else
3786 			REG_WRITE(ah, AR_RTC_SLEEP_CLK,
3787 				  (REG_READ(ah,
3788 				   AR_RTC_SLEEP_CLK) |
3789 				   AR_RTC_FORCE_SWREG_PRD));
3790 	}
3791 
3792 }
3793 
3794 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3795 {
3796 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3797 	u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3798 
3799 	if (eep->baseEepHeader.featureEnable & 0x40) {
3800 		tuning_caps_param &= 0x7f;
3801 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3802 			      tuning_caps_param);
3803 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3804 			      tuning_caps_param);
3805 	}
3806 }
3807 
3808 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
3809 					     struct ath9k_channel *chan)
3810 {
3811 	ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
3812 	ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
3813 	ar9003_hw_drive_strength_apply(ah);
3814 	ar9003_hw_atten_apply(ah, chan);
3815 	if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah))
3816 		ar9003_hw_internal_regulator_apply(ah);
3817 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3818 		ar9003_hw_apply_tuning_caps(ah);
3819 }
3820 
3821 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
3822 				      struct ath9k_channel *chan)
3823 {
3824 }
3825 
3826 /*
3827  * Returns the interpolated y value corresponding to the specified x value
3828  * from the np ordered pairs of data (px,py).
3829  * The pairs do not have to be in any order.
3830  * If the specified x value is less than any of the px,
3831  * the returned y value is equal to the py for the lowest px.
3832  * If the specified x value is greater than any of the px,
3833  * the returned y value is equal to the py for the highest px.
3834  */
3835 static int ar9003_hw_power_interpolate(int32_t x,
3836 				       int32_t *px, int32_t *py, u_int16_t np)
3837 {
3838 	int ip = 0;
3839 	int lx = 0, ly = 0, lhave = 0;
3840 	int hx = 0, hy = 0, hhave = 0;
3841 	int dx = 0;
3842 	int y = 0;
3843 
3844 	lhave = 0;
3845 	hhave = 0;
3846 
3847 	/* identify best lower and higher x calibration measurement */
3848 	for (ip = 0; ip < np; ip++) {
3849 		dx = x - px[ip];
3850 
3851 		/* this measurement is higher than our desired x */
3852 		if (dx <= 0) {
3853 			if (!hhave || dx > (x - hx)) {
3854 				/* new best higher x measurement */
3855 				hx = px[ip];
3856 				hy = py[ip];
3857 				hhave = 1;
3858 			}
3859 		}
3860 		/* this measurement is lower than our desired x */
3861 		if (dx >= 0) {
3862 			if (!lhave || dx < (x - lx)) {
3863 				/* new best lower x measurement */
3864 				lx = px[ip];
3865 				ly = py[ip];
3866 				lhave = 1;
3867 			}
3868 		}
3869 	}
3870 
3871 	/* the low x is good */
3872 	if (lhave) {
3873 		/* so is the high x */
3874 		if (hhave) {
3875 			/* they're the same, so just pick one */
3876 			if (hx == lx)
3877 				y = ly;
3878 			else	/* interpolate  */
3879 				y = interpolate(x, lx, hx, ly, hy);
3880 		} else		/* only low is good, use it */
3881 			y = ly;
3882 	} else if (hhave)	/* only high is good, use it */
3883 		y = hy;
3884 	else /* nothing is good,this should never happen unless np=0, ???? */
3885 		y = -(1 << 30);
3886 	return y;
3887 }
3888 
3889 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
3890 				       u16 rateIndex, u16 freq, bool is2GHz)
3891 {
3892 	u16 numPiers, i;
3893 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
3894 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
3895 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3896 	struct cal_tgt_pow_legacy *pEepromTargetPwr;
3897 	u8 *pFreqBin;
3898 
3899 	if (is2GHz) {
3900 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
3901 		pEepromTargetPwr = eep->calTargetPower2G;
3902 		pFreqBin = eep->calTarget_freqbin_2G;
3903 	} else {
3904 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
3905 		pEepromTargetPwr = eep->calTargetPower5G;
3906 		pFreqBin = eep->calTarget_freqbin_5G;
3907 	}
3908 
3909 	/*
3910 	 * create array of channels and targetpower from
3911 	 * targetpower piers stored on eeprom
3912 	 */
3913 	for (i = 0; i < numPiers; i++) {
3914 		freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
3915 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3916 	}
3917 
3918 	/* interpolate to get target power for given frequency */
3919 	return (u8) ar9003_hw_power_interpolate((s32) freq,
3920 						 freqArray,
3921 						 targetPowerArray, numPiers);
3922 }
3923 
3924 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
3925 					    u16 rateIndex,
3926 					    u16 freq, bool is2GHz)
3927 {
3928 	u16 numPiers, i;
3929 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
3930 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
3931 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3932 	struct cal_tgt_pow_ht *pEepromTargetPwr;
3933 	u8 *pFreqBin;
3934 
3935 	if (is2GHz) {
3936 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
3937 		pEepromTargetPwr = eep->calTargetPower2GHT20;
3938 		pFreqBin = eep->calTarget_freqbin_2GHT20;
3939 	} else {
3940 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
3941 		pEepromTargetPwr = eep->calTargetPower5GHT20;
3942 		pFreqBin = eep->calTarget_freqbin_5GHT20;
3943 	}
3944 
3945 	/*
3946 	 * create array of channels and targetpower
3947 	 * from targetpower piers stored on eeprom
3948 	 */
3949 	for (i = 0; i < numPiers; i++) {
3950 		freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
3951 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3952 	}
3953 
3954 	/* interpolate to get target power for given frequency */
3955 	return (u8) ar9003_hw_power_interpolate((s32) freq,
3956 						 freqArray,
3957 						 targetPowerArray, numPiers);
3958 }
3959 
3960 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
3961 					    u16 rateIndex,
3962 					    u16 freq, bool is2GHz)
3963 {
3964 	u16 numPiers, i;
3965 	s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
3966 	s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
3967 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3968 	struct cal_tgt_pow_ht *pEepromTargetPwr;
3969 	u8 *pFreqBin;
3970 
3971 	if (is2GHz) {
3972 		numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
3973 		pEepromTargetPwr = eep->calTargetPower2GHT40;
3974 		pFreqBin = eep->calTarget_freqbin_2GHT40;
3975 	} else {
3976 		numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
3977 		pEepromTargetPwr = eep->calTargetPower5GHT40;
3978 		pFreqBin = eep->calTarget_freqbin_5GHT40;
3979 	}
3980 
3981 	/*
3982 	 * create array of channels and targetpower from
3983 	 * targetpower piers stored on eeprom
3984 	 */
3985 	for (i = 0; i < numPiers; i++) {
3986 		freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
3987 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3988 	}
3989 
3990 	/* interpolate to get target power for given frequency */
3991 	return (u8) ar9003_hw_power_interpolate((s32) freq,
3992 						 freqArray,
3993 						 targetPowerArray, numPiers);
3994 }
3995 
3996 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
3997 					   u16 rateIndex, u16 freq)
3998 {
3999 	u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4000 	s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4001 	s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4002 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4003 	struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4004 	u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4005 
4006 	/*
4007 	 * create array of channels and targetpower from
4008 	 * targetpower piers stored on eeprom
4009 	 */
4010 	for (i = 0; i < numPiers; i++) {
4011 		freqArray[i] = FBIN2FREQ(pFreqBin[i], 1);
4012 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4013 	}
4014 
4015 	/* interpolate to get target power for given frequency */
4016 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4017 						 freqArray,
4018 						 targetPowerArray, numPiers);
4019 }
4020 
4021 /* Set tx power registers to array of values passed in */
4022 static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4023 {
4024 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
4025 	/* make sure forced gain is not set */
4026 	REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4027 
4028 	/* Write the OFDM power per rate set */
4029 
4030 	/* 6 (LSB), 9, 12, 18 (MSB) */
4031 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4032 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4033 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4034 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4035 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4036 
4037 	/* 24 (LSB), 36, 48, 54 (MSB) */
4038 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4039 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4040 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4041 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4042 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4043 
4044 	/* Write the CCK power per rate set */
4045 
4046 	/* 1L (LSB), reserved, 2L, 2S (MSB) */
4047 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4048 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4049 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4050 		  /* POW_SM(txPowerTimes2,  8) | this is reserved for AR9003 */
4051 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4052 
4053 	/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4054 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4055 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4056 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4057 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4058 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4059 	    );
4060 
4061         /* Write the power for duplicated frames - HT40 */
4062 
4063         /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4064 	REG_WRITE(ah, 0xa3e0,
4065 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4066 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4067 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24],  8) |
4068 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L],  0)
4069 	    );
4070 
4071 	/* Write the HT20 power per rate set */
4072 
4073 	/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4074 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4075 		  POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4076 		  POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4077 		  POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4078 		  POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4079 	    );
4080 
4081 	/* 6 (LSB), 7, 12, 13 (MSB) */
4082 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4083 		  POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4084 		  POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4085 		  POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4086 		  POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4087 	    );
4088 
4089 	/* 14 (LSB), 15, 20, 21 */
4090 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4091 		  POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4092 		  POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4093 		  POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4094 		  POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4095 	    );
4096 
4097 	/* Mixed HT20 and HT40 rates */
4098 
4099 	/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4100 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4101 		  POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4102 		  POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4103 		  POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4104 		  POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4105 	    );
4106 
4107 	/*
4108 	 * Write the HT40 power per rate set
4109 	 * correct PAR difference between HT40 and HT20/LEGACY
4110 	 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4111 	 */
4112 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4113 		  POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4114 		  POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4115 		  POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4116 		  POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4117 	    );
4118 
4119 	/* 6 (LSB), 7, 12, 13 (MSB) */
4120 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4121 		  POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4122 		  POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4123 		  POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4124 		  POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4125 	    );
4126 
4127 	/* 14 (LSB), 15, 20, 21 */
4128 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4129 		  POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4130 		  POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4131 		  POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4132 		  POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4133 	    );
4134 
4135 	return 0;
4136 #undef POW_SM
4137 }
4138 
4139 static void ar9003_hw_set_target_power_eeprom(struct ath_hw *ah, u16 freq,
4140 					      u8 *targetPowerValT2)
4141 {
4142 	/* XXX: hard code for now, need to get from eeprom struct */
4143 	u8 ht40PowerIncForPdadc = 0;
4144 	bool is2GHz = false;
4145 	unsigned int i = 0;
4146 	struct ath_common *common = ath9k_hw_common(ah);
4147 
4148 	if (freq < 4000)
4149 		is2GHz = true;
4150 
4151 	targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4152 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4153 					 is2GHz);
4154 	targetPowerValT2[ALL_TARGET_LEGACY_36] =
4155 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4156 					 is2GHz);
4157 	targetPowerValT2[ALL_TARGET_LEGACY_48] =
4158 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4159 					 is2GHz);
4160 	targetPowerValT2[ALL_TARGET_LEGACY_54] =
4161 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4162 					 is2GHz);
4163 	targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4164 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4165 					     freq);
4166 	targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4167 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4168 	targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4169 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4170 	targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4171 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4172 	targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4173 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4174 					      is2GHz);
4175 	targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4176 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4177 					      freq, is2GHz);
4178 	targetPowerValT2[ALL_TARGET_HT20_4] =
4179 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4180 					      is2GHz);
4181 	targetPowerValT2[ALL_TARGET_HT20_5] =
4182 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4183 					      is2GHz);
4184 	targetPowerValT2[ALL_TARGET_HT20_6] =
4185 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4186 					      is2GHz);
4187 	targetPowerValT2[ALL_TARGET_HT20_7] =
4188 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4189 					      is2GHz);
4190 	targetPowerValT2[ALL_TARGET_HT20_12] =
4191 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4192 					      is2GHz);
4193 	targetPowerValT2[ALL_TARGET_HT20_13] =
4194 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4195 					      is2GHz);
4196 	targetPowerValT2[ALL_TARGET_HT20_14] =
4197 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4198 					      is2GHz);
4199 	targetPowerValT2[ALL_TARGET_HT20_15] =
4200 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4201 					      is2GHz);
4202 	targetPowerValT2[ALL_TARGET_HT20_20] =
4203 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4204 					      is2GHz);
4205 	targetPowerValT2[ALL_TARGET_HT20_21] =
4206 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4207 					      is2GHz);
4208 	targetPowerValT2[ALL_TARGET_HT20_22] =
4209 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4210 					      is2GHz);
4211 	targetPowerValT2[ALL_TARGET_HT20_23] =
4212 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4213 					      is2GHz);
4214 	targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4215 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4216 					      is2GHz) + ht40PowerIncForPdadc;
4217 	targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4218 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4219 					      freq,
4220 					      is2GHz) + ht40PowerIncForPdadc;
4221 	targetPowerValT2[ALL_TARGET_HT40_4] =
4222 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4223 					      is2GHz) + ht40PowerIncForPdadc;
4224 	targetPowerValT2[ALL_TARGET_HT40_5] =
4225 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4226 					      is2GHz) + ht40PowerIncForPdadc;
4227 	targetPowerValT2[ALL_TARGET_HT40_6] =
4228 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4229 					      is2GHz) + ht40PowerIncForPdadc;
4230 	targetPowerValT2[ALL_TARGET_HT40_7] =
4231 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4232 					      is2GHz) + ht40PowerIncForPdadc;
4233 	targetPowerValT2[ALL_TARGET_HT40_12] =
4234 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4235 					      is2GHz) + ht40PowerIncForPdadc;
4236 	targetPowerValT2[ALL_TARGET_HT40_13] =
4237 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4238 					      is2GHz) + ht40PowerIncForPdadc;
4239 	targetPowerValT2[ALL_TARGET_HT40_14] =
4240 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4241 					      is2GHz) + ht40PowerIncForPdadc;
4242 	targetPowerValT2[ALL_TARGET_HT40_15] =
4243 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4244 					      is2GHz) + ht40PowerIncForPdadc;
4245 	targetPowerValT2[ALL_TARGET_HT40_20] =
4246 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4247 					      is2GHz) + ht40PowerIncForPdadc;
4248 	targetPowerValT2[ALL_TARGET_HT40_21] =
4249 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4250 					      is2GHz) + ht40PowerIncForPdadc;
4251 	targetPowerValT2[ALL_TARGET_HT40_22] =
4252 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4253 					      is2GHz) + ht40PowerIncForPdadc;
4254 	targetPowerValT2[ALL_TARGET_HT40_23] =
4255 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4256 					      is2GHz) + ht40PowerIncForPdadc;
4257 
4258 	for (i = 0; i < ar9300RateSize; i++) {
4259 		ath_dbg(common, ATH_DBG_EEPROM,
4260 			"TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
4261 	}
4262 }
4263 
4264 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4265 				  int mode,
4266 				  int ipier,
4267 				  int ichain,
4268 				  int *pfrequency,
4269 				  int *pcorrection,
4270 				  int *ptemperature, int *pvoltage)
4271 {
4272 	u8 *pCalPier;
4273 	struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4274 	int is2GHz;
4275 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4276 	struct ath_common *common = ath9k_hw_common(ah);
4277 
4278 	if (ichain >= AR9300_MAX_CHAINS) {
4279 		ath_dbg(common, ATH_DBG_EEPROM,
4280 			"Invalid chain index, must be less than %d\n",
4281 			AR9300_MAX_CHAINS);
4282 		return -1;
4283 	}
4284 
4285 	if (mode) {		/* 5GHz */
4286 		if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4287 			ath_dbg(common, ATH_DBG_EEPROM,
4288 				"Invalid 5GHz cal pier index, must be less than %d\n",
4289 				AR9300_NUM_5G_CAL_PIERS);
4290 			return -1;
4291 		}
4292 		pCalPier = &(eep->calFreqPier5G[ipier]);
4293 		pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4294 		is2GHz = 0;
4295 	} else {
4296 		if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4297 			ath_dbg(common, ATH_DBG_EEPROM,
4298 				"Invalid 2GHz cal pier index, must be less than %d\n",
4299 				AR9300_NUM_2G_CAL_PIERS);
4300 			return -1;
4301 		}
4302 
4303 		pCalPier = &(eep->calFreqPier2G[ipier]);
4304 		pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4305 		is2GHz = 1;
4306 	}
4307 
4308 	*pfrequency = FBIN2FREQ(*pCalPier, is2GHz);
4309 	*pcorrection = pCalPierStruct->refPower;
4310 	*ptemperature = pCalPierStruct->tempMeas;
4311 	*pvoltage = pCalPierStruct->voltMeas;
4312 
4313 	return 0;
4314 }
4315 
4316 static int ar9003_hw_power_control_override(struct ath_hw *ah,
4317 					    int frequency,
4318 					    int *correction,
4319 					    int *voltage, int *temperature)
4320 {
4321 	int tempSlope = 0;
4322 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4323 	int f[3], t[3];
4324 
4325 	REG_RMW(ah, AR_PHY_TPC_11_B0,
4326 		(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4327 		AR_PHY_TPC_OLPC_GAIN_DELTA);
4328 	if (ah->caps.tx_chainmask & BIT(1))
4329 		REG_RMW(ah, AR_PHY_TPC_11_B1,
4330 			(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4331 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4332 	if (ah->caps.tx_chainmask & BIT(2))
4333 		REG_RMW(ah, AR_PHY_TPC_11_B2,
4334 			(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4335 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4336 
4337 	/* enable open loop power control on chip */
4338 	REG_RMW(ah, AR_PHY_TPC_6_B0,
4339 		(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4340 		AR_PHY_TPC_6_ERROR_EST_MODE);
4341 	if (ah->caps.tx_chainmask & BIT(1))
4342 		REG_RMW(ah, AR_PHY_TPC_6_B1,
4343 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4344 			AR_PHY_TPC_6_ERROR_EST_MODE);
4345 	if (ah->caps.tx_chainmask & BIT(2))
4346 		REG_RMW(ah, AR_PHY_TPC_6_B2,
4347 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4348 			AR_PHY_TPC_6_ERROR_EST_MODE);
4349 
4350 	/*
4351 	 * enable temperature compensation
4352 	 * Need to use register names
4353 	 */
4354 	if (frequency < 4000)
4355 		tempSlope = eep->modalHeader2G.tempSlope;
4356 	else if (eep->base_ext2.tempSlopeLow != 0) {
4357 		t[0] = eep->base_ext2.tempSlopeLow;
4358 		f[0] = 5180;
4359 		t[1] = eep->modalHeader5G.tempSlope;
4360 		f[1] = 5500;
4361 		t[2] = eep->base_ext2.tempSlopeHigh;
4362 		f[2] = 5785;
4363 		tempSlope = ar9003_hw_power_interpolate((s32) frequency,
4364 							f, t, 3);
4365 	} else
4366 		tempSlope = eep->modalHeader5G.tempSlope;
4367 
4368 	REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
4369 	REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4370 		      temperature[0]);
4371 
4372 	return 0;
4373 }
4374 
4375 /* Apply the recorded correction values. */
4376 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4377 {
4378 	int ichain, ipier, npier;
4379 	int mode;
4380 	int lfrequency[AR9300_MAX_CHAINS],
4381 	    lcorrection[AR9300_MAX_CHAINS],
4382 	    ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4383 	int hfrequency[AR9300_MAX_CHAINS],
4384 	    hcorrection[AR9300_MAX_CHAINS],
4385 	    htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4386 	int fdiff;
4387 	int correction[AR9300_MAX_CHAINS],
4388 	    voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4389 	int pfrequency, pcorrection, ptemperature, pvoltage;
4390 	struct ath_common *common = ath9k_hw_common(ah);
4391 
4392 	mode = (frequency >= 4000);
4393 	if (mode)
4394 		npier = AR9300_NUM_5G_CAL_PIERS;
4395 	else
4396 		npier = AR9300_NUM_2G_CAL_PIERS;
4397 
4398 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4399 		lfrequency[ichain] = 0;
4400 		hfrequency[ichain] = 100000;
4401 	}
4402 	/* identify best lower and higher frequency calibration measurement */
4403 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4404 		for (ipier = 0; ipier < npier; ipier++) {
4405 			if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4406 						    &pfrequency, &pcorrection,
4407 						    &ptemperature, &pvoltage)) {
4408 				fdiff = frequency - pfrequency;
4409 
4410 				/*
4411 				 * this measurement is higher than
4412 				 * our desired frequency
4413 				 */
4414 				if (fdiff <= 0) {
4415 					if (hfrequency[ichain] <= 0 ||
4416 					    hfrequency[ichain] >= 100000 ||
4417 					    fdiff >
4418 					    (frequency - hfrequency[ichain])) {
4419 						/*
4420 						 * new best higher
4421 						 * frequency measurement
4422 						 */
4423 						hfrequency[ichain] = pfrequency;
4424 						hcorrection[ichain] =
4425 						    pcorrection;
4426 						htemperature[ichain] =
4427 						    ptemperature;
4428 						hvoltage[ichain] = pvoltage;
4429 					}
4430 				}
4431 				if (fdiff >= 0) {
4432 					if (lfrequency[ichain] <= 0
4433 					    || fdiff <
4434 					    (frequency - lfrequency[ichain])) {
4435 						/*
4436 						 * new best lower
4437 						 * frequency measurement
4438 						 */
4439 						lfrequency[ichain] = pfrequency;
4440 						lcorrection[ichain] =
4441 						    pcorrection;
4442 						ltemperature[ichain] =
4443 						    ptemperature;
4444 						lvoltage[ichain] = pvoltage;
4445 					}
4446 				}
4447 			}
4448 		}
4449 	}
4450 
4451 	/* interpolate  */
4452 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4453 		ath_dbg(common, ATH_DBG_EEPROM,
4454 			"ch=%d f=%d low=%d %d h=%d %d\n",
4455 			ichain, frequency, lfrequency[ichain],
4456 			lcorrection[ichain], hfrequency[ichain],
4457 			hcorrection[ichain]);
4458 		/* they're the same, so just pick one */
4459 		if (hfrequency[ichain] == lfrequency[ichain]) {
4460 			correction[ichain] = lcorrection[ichain];
4461 			voltage[ichain] = lvoltage[ichain];
4462 			temperature[ichain] = ltemperature[ichain];
4463 		}
4464 		/* the low frequency is good */
4465 		else if (frequency - lfrequency[ichain] < 1000) {
4466 			/* so is the high frequency, interpolate */
4467 			if (hfrequency[ichain] - frequency < 1000) {
4468 
4469 				correction[ichain] = interpolate(frequency,
4470 						lfrequency[ichain],
4471 						hfrequency[ichain],
4472 						lcorrection[ichain],
4473 						hcorrection[ichain]);
4474 
4475 				temperature[ichain] = interpolate(frequency,
4476 						lfrequency[ichain],
4477 						hfrequency[ichain],
4478 						ltemperature[ichain],
4479 						htemperature[ichain]);
4480 
4481 				voltage[ichain] = interpolate(frequency,
4482 						lfrequency[ichain],
4483 						hfrequency[ichain],
4484 						lvoltage[ichain],
4485 						hvoltage[ichain]);
4486 			}
4487 			/* only low is good, use it */
4488 			else {
4489 				correction[ichain] = lcorrection[ichain];
4490 				temperature[ichain] = ltemperature[ichain];
4491 				voltage[ichain] = lvoltage[ichain];
4492 			}
4493 		}
4494 		/* only high is good, use it */
4495 		else if (hfrequency[ichain] - frequency < 1000) {
4496 			correction[ichain] = hcorrection[ichain];
4497 			temperature[ichain] = htemperature[ichain];
4498 			voltage[ichain] = hvoltage[ichain];
4499 		} else {	/* nothing is good, presume 0???? */
4500 			correction[ichain] = 0;
4501 			temperature[ichain] = 0;
4502 			voltage[ichain] = 0;
4503 		}
4504 	}
4505 
4506 	ar9003_hw_power_control_override(ah, frequency, correction, voltage,
4507 					 temperature);
4508 
4509 	ath_dbg(common, ATH_DBG_EEPROM,
4510 		"for frequency=%d, calibration correction = %d %d %d\n",
4511 		frequency, correction[0], correction[1], correction[2]);
4512 
4513 	return 0;
4514 }
4515 
4516 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
4517 					   int idx,
4518 					   int edge,
4519 					   bool is2GHz)
4520 {
4521 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4522 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4523 
4524 	if (is2GHz)
4525 		return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
4526 	else
4527 		return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
4528 }
4529 
4530 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
4531 					     int idx,
4532 					     unsigned int edge,
4533 					     u16 freq,
4534 					     bool is2GHz)
4535 {
4536 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4537 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4538 
4539 	u8 *ctl_freqbin = is2GHz ?
4540 		&eep->ctl_freqbin_2G[idx][0] :
4541 		&eep->ctl_freqbin_5G[idx][0];
4542 
4543 	if (is2GHz) {
4544 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
4545 		    CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
4546 			return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
4547 	} else {
4548 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
4549 		    CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
4550 			return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
4551 	}
4552 
4553 	return MAX_RATE_POWER;
4554 }
4555 
4556 /*
4557  * Find the maximum conformance test limit for the given channel and CTL info
4558  */
4559 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
4560 					u16 freq, int idx, bool is2GHz)
4561 {
4562 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
4563 	u8 *ctl_freqbin = is2GHz ?
4564 		&eep->ctl_freqbin_2G[idx][0] :
4565 		&eep->ctl_freqbin_5G[idx][0];
4566 	u16 num_edges = is2GHz ?
4567 		AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
4568 	unsigned int edge;
4569 
4570 	/* Get the edge power */
4571 	for (edge = 0;
4572 	     (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
4573 	     edge++) {
4574 		/*
4575 		 * If there's an exact channel match or an inband flag set
4576 		 * on the lower channel use the given rdEdgePower
4577 		 */
4578 		if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
4579 			twiceMaxEdgePower =
4580 				ar9003_hw_get_direct_edge_power(eep, idx,
4581 								edge, is2GHz);
4582 			break;
4583 		} else if ((edge > 0) &&
4584 			   (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
4585 						      is2GHz))) {
4586 			twiceMaxEdgePower =
4587 				ar9003_hw_get_indirect_edge_power(eep, idx,
4588 								  edge, freq,
4589 								  is2GHz);
4590 			/*
4591 			 * Leave loop - no more affecting edges possible in
4592 			 * this monotonic increasing list
4593 			 */
4594 			break;
4595 		}
4596 	}
4597 	return twiceMaxEdgePower;
4598 }
4599 
4600 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
4601 					       struct ath9k_channel *chan,
4602 					       u8 *pPwrArray, u16 cfgCtl,
4603 					       u8 twiceAntennaReduction,
4604 					       u8 twiceMaxRegulatoryPower,
4605 					       u16 powerLimit)
4606 {
4607 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4608 	struct ath_common *common = ath9k_hw_common(ah);
4609 	struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
4610 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
4611 	static const u16 tpScaleReductionTable[5] = {
4612 		0, 3, 6, 9, MAX_RATE_POWER
4613 	};
4614 	int i;
4615 	int16_t  twiceLargestAntenna;
4616 	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
4617 	static const u16 ctlModesFor11a[] = {
4618 		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
4619 	};
4620 	static const u16 ctlModesFor11g[] = {
4621 		CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
4622 		CTL_11G_EXT, CTL_2GHT40
4623 	};
4624 	u16 numCtlModes;
4625 	const u16 *pCtlMode;
4626 	u16 ctlMode, freq;
4627 	struct chan_centers centers;
4628 	u8 *ctlIndex;
4629 	u8 ctlNum;
4630 	u16 twiceMinEdgePower;
4631 	bool is2ghz = IS_CHAN_2GHZ(chan);
4632 
4633 	ath9k_hw_get_channel_centers(ah, chan, &centers);
4634 
4635 	/* Compute TxPower reduction due to Antenna Gain */
4636 	if (is2ghz)
4637 		twiceLargestAntenna = pEepData->modalHeader2G.antennaGain;
4638 	else
4639 		twiceLargestAntenna = pEepData->modalHeader5G.antennaGain;
4640 
4641 	twiceLargestAntenna = (int16_t)min((twiceAntennaReduction) -
4642 				twiceLargestAntenna, 0);
4643 
4644 	/*
4645 	 * scaledPower is the minimum of the user input power level
4646 	 * and the regulatory allowed power level
4647 	 */
4648 	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
4649 
4650 	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
4651 		maxRegAllowedPower -=
4652 			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
4653 	}
4654 
4655 	scaledPower = min(powerLimit, maxRegAllowedPower);
4656 
4657 	/*
4658 	 * Reduce scaled Power by number of chains active to get
4659 	 * to per chain tx power level
4660 	 */
4661 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
4662 	case 1:
4663 		break;
4664 	case 2:
4665 		if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
4666 			scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
4667 		else
4668 			scaledPower = 0;
4669 		break;
4670 	case 3:
4671 		if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
4672 			scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
4673 		else
4674 			scaledPower = 0;
4675 		break;
4676 	}
4677 
4678 	scaledPower = max((u16)0, scaledPower);
4679 
4680 	/*
4681 	 * Get target powers from EEPROM - our baseline for TX Power
4682 	 */
4683 	if (is2ghz) {
4684 		/* Setup for CTL modes */
4685 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
4686 		numCtlModes =
4687 			ARRAY_SIZE(ctlModesFor11g) -
4688 				   SUB_NUM_CTL_MODES_AT_2G_40;
4689 		pCtlMode = ctlModesFor11g;
4690 		if (IS_CHAN_HT40(chan))
4691 			/* All 2G CTL's */
4692 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
4693 	} else {
4694 		/* Setup for CTL modes */
4695 		/* CTL_11A, CTL_5GHT20 */
4696 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
4697 					 SUB_NUM_CTL_MODES_AT_5G_40;
4698 		pCtlMode = ctlModesFor11a;
4699 		if (IS_CHAN_HT40(chan))
4700 			/* All 5G CTL's */
4701 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
4702 	}
4703 
4704 	/*
4705 	 * For MIMO, need to apply regulatory caps individually across
4706 	 * dynamically running modes: CCK, OFDM, HT20, HT40
4707 	 *
4708 	 * The outer loop walks through each possible applicable runtime mode.
4709 	 * The inner loop walks through each ctlIndex entry in EEPROM.
4710 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
4711 	 */
4712 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
4713 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
4714 			(pCtlMode[ctlMode] == CTL_2GHT40);
4715 		if (isHt40CtlMode)
4716 			freq = centers.synth_center;
4717 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
4718 			freq = centers.ext_center;
4719 		else
4720 			freq = centers.ctl_center;
4721 
4722 		ath_dbg(common, ATH_DBG_REGULATORY,
4723 			"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
4724 			ctlMode, numCtlModes, isHt40CtlMode,
4725 			(pCtlMode[ctlMode] & EXT_ADDITIVE));
4726 
4727 		/* walk through each CTL index stored in EEPROM */
4728 		if (is2ghz) {
4729 			ctlIndex = pEepData->ctlIndex_2G;
4730 			ctlNum = AR9300_NUM_CTLS_2G;
4731 		} else {
4732 			ctlIndex = pEepData->ctlIndex_5G;
4733 			ctlNum = AR9300_NUM_CTLS_5G;
4734 		}
4735 
4736 		for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
4737 			ath_dbg(common, ATH_DBG_REGULATORY,
4738 				"LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
4739 				i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
4740 				chan->channel);
4741 
4742 				/*
4743 				 * compare test group from regulatory
4744 				 * channel list with test mode from pCtlMode
4745 				 * list
4746 				 */
4747 				if ((((cfgCtl & ~CTL_MODE_M) |
4748 				       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4749 					ctlIndex[i]) ||
4750 				    (((cfgCtl & ~CTL_MODE_M) |
4751 				       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4752 				     ((ctlIndex[i] & CTL_MODE_M) |
4753 				       SD_NO_CTL))) {
4754 					twiceMinEdgePower =
4755 					  ar9003_hw_get_max_edge_power(pEepData,
4756 								       freq, i,
4757 								       is2ghz);
4758 
4759 					if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
4760 						/*
4761 						 * Find the minimum of all CTL
4762 						 * edge powers that apply to
4763 						 * this channel
4764 						 */
4765 						twiceMaxEdgePower =
4766 							min(twiceMaxEdgePower,
4767 							    twiceMinEdgePower);
4768 						else {
4769 							/* specific */
4770 							twiceMaxEdgePower =
4771 							  twiceMinEdgePower;
4772 							break;
4773 						}
4774 				}
4775 			}
4776 
4777 			minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
4778 
4779 			ath_dbg(common, ATH_DBG_REGULATORY,
4780 				"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
4781 				ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
4782 				scaledPower, minCtlPower);
4783 
4784 			/* Apply ctl mode to correct target power set */
4785 			switch (pCtlMode[ctlMode]) {
4786 			case CTL_11B:
4787 				for (i = ALL_TARGET_LEGACY_1L_5L;
4788 				     i <= ALL_TARGET_LEGACY_11S; i++)
4789 					pPwrArray[i] =
4790 					  (u8)min((u16)pPwrArray[i],
4791 						  minCtlPower);
4792 				break;
4793 			case CTL_11A:
4794 			case CTL_11G:
4795 				for (i = ALL_TARGET_LEGACY_6_24;
4796 				     i <= ALL_TARGET_LEGACY_54; i++)
4797 					pPwrArray[i] =
4798 					  (u8)min((u16)pPwrArray[i],
4799 						  minCtlPower);
4800 				break;
4801 			case CTL_5GHT20:
4802 			case CTL_2GHT20:
4803 				for (i = ALL_TARGET_HT20_0_8_16;
4804 				     i <= ALL_TARGET_HT20_21; i++)
4805 					pPwrArray[i] =
4806 					  (u8)min((u16)pPwrArray[i],
4807 						  minCtlPower);
4808 				pPwrArray[ALL_TARGET_HT20_22] =
4809 				  (u8)min((u16)pPwrArray[ALL_TARGET_HT20_22],
4810 					  minCtlPower);
4811 				pPwrArray[ALL_TARGET_HT20_23] =
4812 				  (u8)min((u16)pPwrArray[ALL_TARGET_HT20_23],
4813 					   minCtlPower);
4814 				break;
4815 			case CTL_5GHT40:
4816 			case CTL_2GHT40:
4817 				for (i = ALL_TARGET_HT40_0_8_16;
4818 				     i <= ALL_TARGET_HT40_23; i++)
4819 					pPwrArray[i] =
4820 					  (u8)min((u16)pPwrArray[i],
4821 						  minCtlPower);
4822 				break;
4823 			default:
4824 			    break;
4825 			}
4826 	} /* end ctl mode checking */
4827 }
4828 
4829 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
4830 {
4831 	u8 mod_idx = mcs_idx % 8;
4832 
4833 	if (mod_idx <= 3)
4834 		return mod_idx ? (base_pwridx + 1) : base_pwridx;
4835 	else
4836 		return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
4837 }
4838 
4839 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
4840 					struct ath9k_channel *chan, u16 cfgCtl,
4841 					u8 twiceAntennaReduction,
4842 					u8 twiceMaxRegulatoryPower,
4843 					u8 powerLimit, bool test)
4844 {
4845 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4846 	struct ath_common *common = ath9k_hw_common(ah);
4847 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4848 	struct ar9300_modal_eep_header *modal_hdr;
4849 	u8 targetPowerValT2[ar9300RateSize];
4850 	u8 target_power_val_t2_eep[ar9300RateSize];
4851 	unsigned int i = 0, paprd_scale_factor = 0;
4852 	u8 pwr_idx, min_pwridx = 0;
4853 
4854 	ar9003_hw_set_target_power_eeprom(ah, chan->channel, targetPowerValT2);
4855 
4856 	if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
4857 		if (IS_CHAN_2GHZ(chan))
4858 			modal_hdr = &eep->modalHeader2G;
4859 		else
4860 			modal_hdr = &eep->modalHeader5G;
4861 
4862 		ah->paprd_ratemask =
4863 			le32_to_cpu(modal_hdr->papdRateMaskHt20) &
4864 			AR9300_PAPRD_RATE_MASK;
4865 
4866 		ah->paprd_ratemask_ht40 =
4867 			le32_to_cpu(modal_hdr->papdRateMaskHt40) &
4868 			AR9300_PAPRD_RATE_MASK;
4869 
4870 		paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
4871 		min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
4872 						  ALL_TARGET_HT20_0_8_16;
4873 
4874 		if (!ah->paprd_table_write_done) {
4875 			memcpy(target_power_val_t2_eep, targetPowerValT2,
4876 			       sizeof(targetPowerValT2));
4877 			for (i = 0; i < 24; i++) {
4878 				pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
4879 				if (ah->paprd_ratemask & (1 << i)) {
4880 					if (targetPowerValT2[pwr_idx] &&
4881 					    targetPowerValT2[pwr_idx] ==
4882 					    target_power_val_t2_eep[pwr_idx])
4883 						targetPowerValT2[pwr_idx] -=
4884 							paprd_scale_factor;
4885 				}
4886 			}
4887 		}
4888 		memcpy(target_power_val_t2_eep, targetPowerValT2,
4889 		       sizeof(targetPowerValT2));
4890 	}
4891 
4892 	ar9003_hw_set_power_per_rate_table(ah, chan,
4893 					   targetPowerValT2, cfgCtl,
4894 					   twiceAntennaReduction,
4895 					   twiceMaxRegulatoryPower,
4896 					   powerLimit);
4897 
4898 	if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
4899 		for (i = 0; i < ar9300RateSize; i++) {
4900 			if ((ah->paprd_ratemask & (1 << i)) &&
4901 			    (abs(targetPowerValT2[i] -
4902 				target_power_val_t2_eep[i]) >
4903 			    paprd_scale_factor)) {
4904 				ah->paprd_ratemask &= ~(1 << i);
4905 				ath_dbg(common, ATH_DBG_EEPROM,
4906 					"paprd disabled for mcs %d\n", i);
4907 			}
4908 		}
4909 	}
4910 
4911 	regulatory->max_power_level = 0;
4912 	for (i = 0; i < ar9300RateSize; i++) {
4913 		if (targetPowerValT2[i] > regulatory->max_power_level)
4914 			regulatory->max_power_level = targetPowerValT2[i];
4915 	}
4916 
4917 	if (test)
4918 		return;
4919 
4920 	for (i = 0; i < ar9300RateSize; i++) {
4921 		ath_dbg(common, ATH_DBG_EEPROM,
4922 			"TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
4923 	}
4924 
4925 	/*
4926 	 * This is the TX power we send back to driver core,
4927 	 * and it can use to pass to userspace to display our
4928 	 * currently configured TX power setting.
4929 	 *
4930 	 * Since power is rate dependent, use one of the indices
4931 	 * from the AR9300_Rates enum to select an entry from
4932 	 * targetPowerValT2[] to report. Currently returns the
4933 	 * power for HT40 MCS 0, HT20 MCS 0, or OFDM 6 Mbps
4934 	 * as CCK power is less interesting (?).
4935 	 */
4936 	i = ALL_TARGET_LEGACY_6_24; /* legacy */
4937 	if (IS_CHAN_HT40(chan))
4938 		i = ALL_TARGET_HT40_0_8_16; /* ht40 */
4939 	else if (IS_CHAN_HT20(chan))
4940 		i = ALL_TARGET_HT20_0_8_16; /* ht20 */
4941 
4942 	ah->txpower_limit = targetPowerValT2[i];
4943 	regulatory->max_power_level = targetPowerValT2[i];
4944 
4945 	/* Write target power array to registers */
4946 	ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
4947 	ar9003_hw_calibration_apply(ah, chan->channel);
4948 
4949 	if (IS_CHAN_2GHZ(chan)) {
4950 		if (IS_CHAN_HT40(chan))
4951 			i = ALL_TARGET_HT40_0_8_16;
4952 		else
4953 			i = ALL_TARGET_HT20_0_8_16;
4954 	} else {
4955 		if (IS_CHAN_HT40(chan))
4956 			i = ALL_TARGET_HT40_7;
4957 		else
4958 			i = ALL_TARGET_HT20_7;
4959 	}
4960 	ah->paprd_target_power = targetPowerValT2[i];
4961 }
4962 
4963 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
4964 					    u16 i, bool is2GHz)
4965 {
4966 	return AR_NO_SPUR;
4967 }
4968 
4969 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
4970 {
4971 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4972 
4973 	return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
4974 }
4975 
4976 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
4977 {
4978 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4979 
4980 	return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
4981 }
4982 
4983 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is_2ghz)
4984 {
4985 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4986 
4987 	if (is_2ghz)
4988 		return eep->modalHeader2G.spurChans;
4989 	else
4990 		return eep->modalHeader5G.spurChans;
4991 }
4992 
4993 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
4994 					   struct ath9k_channel *chan)
4995 {
4996 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4997 
4998 	if (IS_CHAN_2GHZ(chan))
4999 		return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5000 			  AR9300_PAPRD_SCALE_1);
5001 	else {
5002 		if (chan->channel >= 5700)
5003 		return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5004 			  AR9300_PAPRD_SCALE_1);
5005 		else if (chan->channel >= 5400)
5006 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5007 				   AR9300_PAPRD_SCALE_2);
5008 		else
5009 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5010 				  AR9300_PAPRD_SCALE_1);
5011 	}
5012 }
5013 
5014 const struct eeprom_ops eep_ar9300_ops = {
5015 	.check_eeprom = ath9k_hw_ar9300_check_eeprom,
5016 	.get_eeprom = ath9k_hw_ar9300_get_eeprom,
5017 	.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5018 	.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5019 	.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5020 	.set_board_values = ath9k_hw_ar9300_set_board_values,
5021 	.set_addac = ath9k_hw_ar9300_set_addac,
5022 	.set_txpower = ath9k_hw_ar9300_set_txpower,
5023 	.get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5024 };
5025