1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20 #include "ar9003_eeprom.h"
21 
22 #define COMP_HDR_LEN 4
23 #define COMP_CKSUM_LEN 2
24 
25 #define LE16(x) __constant_cpu_to_le16(x)
26 #define LE32(x) __constant_cpu_to_le32(x)
27 
28 /* Local defines to distinguish between extension and control CTL's */
29 #define EXT_ADDITIVE (0x8000)
30 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
31 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
32 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
33 
34 #define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
35 #define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
36 
37 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
38 
39 #define EEPROM_DATA_LEN_9485	1088
40 
41 static int ar9003_hw_power_interpolate(int32_t x,
42 				       int32_t *px, int32_t *py, u_int16_t np);
43 
44 
45 static const struct ar9300_eeprom ar9300_default = {
46 	.eepromVersion = 2,
47 	.templateVersion = 2,
48 	.macAddr = {0, 2, 3, 4, 5, 6},
49 	.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
50 		     0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
51 	.baseEepHeader = {
52 		.regDmn = { LE16(0), LE16(0x1f) },
53 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
54 		.opCapFlags = {
55 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
56 			.eepMisc = 0,
57 		},
58 		.rfSilent = 0,
59 		.blueToothOptions = 0,
60 		.deviceCap = 0,
61 		.deviceType = 5, /* takes lower byte in eeprom location */
62 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
63 		.params_for_tuning_caps = {0, 0},
64 		.featureEnable = 0x0c,
65 		 /*
66 		  * bit0 - enable tx temp comp - disabled
67 		  * bit1 - enable tx volt comp - disabled
68 		  * bit2 - enable fastClock - enabled
69 		  * bit3 - enable doubling - enabled
70 		  * bit4 - enable internal regulator - disabled
71 		  * bit5 - enable pa predistortion - disabled
72 		  */
73 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
74 		.eepromWriteEnableGpio = 3,
75 		.wlanDisableGpio = 0,
76 		.wlanLedGpio = 8,
77 		.rxBandSelectGpio = 0xff,
78 		.txrxgain = 0,
79 		.swreg = 0,
80 	 },
81 	.modalHeader2G = {
82 	/* ar9300_modal_eep_header  2g */
83 		/* 4 idle,t1,t2,b(4 bits per setting) */
84 		.antCtrlCommon = LE32(0x110),
85 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
86 		.antCtrlCommon2 = LE32(0x22222),
87 
88 		/*
89 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
90 		 * rx1, rx12, b (2 bits each)
91 		 */
92 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
93 
94 		/*
95 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
96 		 * for ar9280 (0xa20c/b20c 5:0)
97 		 */
98 		.xatten1DB = {0, 0, 0},
99 
100 		/*
101 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
102 		 * for ar9280 (0xa20c/b20c 16:12
103 		 */
104 		.xatten1Margin = {0, 0, 0},
105 		.tempSlope = 36,
106 		.voltSlope = 0,
107 
108 		/*
109 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
110 		 * channels in usual fbin coding format
111 		 */
112 		.spurChans = {0, 0, 0, 0, 0},
113 
114 		/*
115 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
116 		 * if the register is per chain
117 		 */
118 		.noiseFloorThreshCh = {-1, 0, 0},
119 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
120 		.quick_drop = 0,
121 		.xpaBiasLvl = 0,
122 		.txFrameToDataStart = 0x0e,
123 		.txFrameToPaOn = 0x0e,
124 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
125 		.antennaGain = 0,
126 		.switchSettling = 0x2c,
127 		.adcDesiredSize = -30,
128 		.txEndToXpaOff = 0,
129 		.txEndToRxOn = 0x2,
130 		.txFrameToXpaOn = 0xe,
131 		.thresh62 = 28,
132 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
133 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
134 		.xlna_bias_strength = 0,
135 		.futureModal = {
136 			0, 0, 0, 0, 0, 0, 0,
137 		},
138 	 },
139 	.base_ext1 = {
140 		.ant_div_control = 0,
141 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
142 	},
143 	.calFreqPier2G = {
144 		FREQ2FBIN(2412, 1),
145 		FREQ2FBIN(2437, 1),
146 		FREQ2FBIN(2472, 1),
147 	 },
148 	/* ar9300_cal_data_per_freq_op_loop 2g */
149 	.calPierData2G = {
150 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
151 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
152 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
153 	 },
154 	.calTarget_freqbin_Cck = {
155 		FREQ2FBIN(2412, 1),
156 		FREQ2FBIN(2484, 1),
157 	 },
158 	.calTarget_freqbin_2G = {
159 		FREQ2FBIN(2412, 1),
160 		FREQ2FBIN(2437, 1),
161 		FREQ2FBIN(2472, 1)
162 	 },
163 	.calTarget_freqbin_2GHT20 = {
164 		FREQ2FBIN(2412, 1),
165 		FREQ2FBIN(2437, 1),
166 		FREQ2FBIN(2472, 1)
167 	 },
168 	.calTarget_freqbin_2GHT40 = {
169 		FREQ2FBIN(2412, 1),
170 		FREQ2FBIN(2437, 1),
171 		FREQ2FBIN(2472, 1)
172 	 },
173 	.calTargetPowerCck = {
174 		 /* 1L-5L,5S,11L,11S */
175 		 { {36, 36, 36, 36} },
176 		 { {36, 36, 36, 36} },
177 	},
178 	.calTargetPower2G = {
179 		 /* 6-24,36,48,54 */
180 		 { {32, 32, 28, 24} },
181 		 { {32, 32, 28, 24} },
182 		 { {32, 32, 28, 24} },
183 	},
184 	.calTargetPower2GHT20 = {
185 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
186 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
187 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
188 	},
189 	.calTargetPower2GHT40 = {
190 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
191 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
192 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
193 	},
194 	.ctlIndex_2G =  {
195 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
196 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
197 	},
198 	.ctl_freqbin_2G = {
199 		{
200 			FREQ2FBIN(2412, 1),
201 			FREQ2FBIN(2417, 1),
202 			FREQ2FBIN(2457, 1),
203 			FREQ2FBIN(2462, 1)
204 		},
205 		{
206 			FREQ2FBIN(2412, 1),
207 			FREQ2FBIN(2417, 1),
208 			FREQ2FBIN(2462, 1),
209 			0xFF,
210 		},
211 
212 		{
213 			FREQ2FBIN(2412, 1),
214 			FREQ2FBIN(2417, 1),
215 			FREQ2FBIN(2462, 1),
216 			0xFF,
217 		},
218 		{
219 			FREQ2FBIN(2422, 1),
220 			FREQ2FBIN(2427, 1),
221 			FREQ2FBIN(2447, 1),
222 			FREQ2FBIN(2452, 1)
223 		},
224 
225 		{
226 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
227 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
228 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
229 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
230 		},
231 
232 		{
233 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
234 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
235 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
236 			0,
237 		},
238 
239 		{
240 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
241 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
242 			FREQ2FBIN(2472, 1),
243 			0,
244 		},
245 
246 		{
247 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
248 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
249 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
250 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
251 		},
252 
253 		{
254 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
255 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
256 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
257 		},
258 
259 		{
260 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
261 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
262 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
263 			0
264 		},
265 
266 		{
267 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
268 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
269 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
270 			0
271 		},
272 
273 		{
274 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
275 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
276 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
277 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
278 		}
279 	 },
280 	.ctlPowerData_2G = {
281 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
282 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
283 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
284 
285 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
286 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
287 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
288 
289 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
290 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
291 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
292 
293 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
294 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
295 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
296 	 },
297 	.modalHeader5G = {
298 		/* 4 idle,t1,t2,b (4 bits per setting) */
299 		.antCtrlCommon = LE32(0x110),
300 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
301 		.antCtrlCommon2 = LE32(0x22222),
302 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
303 		.antCtrlChain = {
304 			LE16(0x000), LE16(0x000), LE16(0x000),
305 		},
306 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
307 		.xatten1DB = {0, 0, 0},
308 
309 		/*
310 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
311 		 * for merlin (0xa20c/b20c 16:12
312 		 */
313 		.xatten1Margin = {0, 0, 0},
314 		.tempSlope = 68,
315 		.voltSlope = 0,
316 		/* spurChans spur channels in usual fbin coding format */
317 		.spurChans = {0, 0, 0, 0, 0},
318 		/* noiseFloorThreshCh Check if the register is per chain */
319 		.noiseFloorThreshCh = {-1, 0, 0},
320 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
321 		.quick_drop = 0,
322 		.xpaBiasLvl = 0,
323 		.txFrameToDataStart = 0x0e,
324 		.txFrameToPaOn = 0x0e,
325 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
326 		.antennaGain = 0,
327 		.switchSettling = 0x2d,
328 		.adcDesiredSize = -30,
329 		.txEndToXpaOff = 0,
330 		.txEndToRxOn = 0x2,
331 		.txFrameToXpaOn = 0xe,
332 		.thresh62 = 28,
333 		.papdRateMaskHt20 = LE32(0x0c80c080),
334 		.papdRateMaskHt40 = LE32(0x0080c080),
335 		.xlna_bias_strength = 0,
336 		.futureModal = {
337 			0, 0, 0, 0, 0, 0, 0,
338 		},
339 	 },
340 	.base_ext2 = {
341 		.tempSlopeLow = 0,
342 		.tempSlopeHigh = 0,
343 		.xatten1DBLow = {0, 0, 0},
344 		.xatten1MarginLow = {0, 0, 0},
345 		.xatten1DBHigh = {0, 0, 0},
346 		.xatten1MarginHigh = {0, 0, 0}
347 	},
348 	.calFreqPier5G = {
349 		FREQ2FBIN(5180, 0),
350 		FREQ2FBIN(5220, 0),
351 		FREQ2FBIN(5320, 0),
352 		FREQ2FBIN(5400, 0),
353 		FREQ2FBIN(5500, 0),
354 		FREQ2FBIN(5600, 0),
355 		FREQ2FBIN(5725, 0),
356 		FREQ2FBIN(5825, 0)
357 	},
358 	.calPierData5G = {
359 			{
360 				{0, 0, 0, 0, 0},
361 				{0, 0, 0, 0, 0},
362 				{0, 0, 0, 0, 0},
363 				{0, 0, 0, 0, 0},
364 				{0, 0, 0, 0, 0},
365 				{0, 0, 0, 0, 0},
366 				{0, 0, 0, 0, 0},
367 				{0, 0, 0, 0, 0},
368 			},
369 			{
370 				{0, 0, 0, 0, 0},
371 				{0, 0, 0, 0, 0},
372 				{0, 0, 0, 0, 0},
373 				{0, 0, 0, 0, 0},
374 				{0, 0, 0, 0, 0},
375 				{0, 0, 0, 0, 0},
376 				{0, 0, 0, 0, 0},
377 				{0, 0, 0, 0, 0},
378 			},
379 			{
380 				{0, 0, 0, 0, 0},
381 				{0, 0, 0, 0, 0},
382 				{0, 0, 0, 0, 0},
383 				{0, 0, 0, 0, 0},
384 				{0, 0, 0, 0, 0},
385 				{0, 0, 0, 0, 0},
386 				{0, 0, 0, 0, 0},
387 				{0, 0, 0, 0, 0},
388 			},
389 
390 	},
391 	.calTarget_freqbin_5G = {
392 		FREQ2FBIN(5180, 0),
393 		FREQ2FBIN(5220, 0),
394 		FREQ2FBIN(5320, 0),
395 		FREQ2FBIN(5400, 0),
396 		FREQ2FBIN(5500, 0),
397 		FREQ2FBIN(5600, 0),
398 		FREQ2FBIN(5725, 0),
399 		FREQ2FBIN(5825, 0)
400 	},
401 	.calTarget_freqbin_5GHT20 = {
402 		FREQ2FBIN(5180, 0),
403 		FREQ2FBIN(5240, 0),
404 		FREQ2FBIN(5320, 0),
405 		FREQ2FBIN(5500, 0),
406 		FREQ2FBIN(5700, 0),
407 		FREQ2FBIN(5745, 0),
408 		FREQ2FBIN(5725, 0),
409 		FREQ2FBIN(5825, 0)
410 	},
411 	.calTarget_freqbin_5GHT40 = {
412 		FREQ2FBIN(5180, 0),
413 		FREQ2FBIN(5240, 0),
414 		FREQ2FBIN(5320, 0),
415 		FREQ2FBIN(5500, 0),
416 		FREQ2FBIN(5700, 0),
417 		FREQ2FBIN(5745, 0),
418 		FREQ2FBIN(5725, 0),
419 		FREQ2FBIN(5825, 0)
420 	 },
421 	.calTargetPower5G = {
422 		/* 6-24,36,48,54 */
423 		{ {20, 20, 20, 10} },
424 		{ {20, 20, 20, 10} },
425 		{ {20, 20, 20, 10} },
426 		{ {20, 20, 20, 10} },
427 		{ {20, 20, 20, 10} },
428 		{ {20, 20, 20, 10} },
429 		{ {20, 20, 20, 10} },
430 		{ {20, 20, 20, 10} },
431 	 },
432 	.calTargetPower5GHT20 = {
433 		/*
434 		 * 0_8_16,1-3_9-11_17-19,
435 		 * 4,5,6,7,12,13,14,15,20,21,22,23
436 		 */
437 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
438 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
439 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
440 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
441 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
442 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
444 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445 	 },
446 	.calTargetPower5GHT40 =  {
447 		/*
448 		 * 0_8_16,1-3_9-11_17-19,
449 		 * 4,5,6,7,12,13,14,15,20,21,22,23
450 		 */
451 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
452 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
453 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
454 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
455 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
456 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
458 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459 	 },
460 	.ctlIndex_5G =  {
461 		0x10, 0x16, 0x18, 0x40, 0x46,
462 		0x48, 0x30, 0x36, 0x38
463 	},
464 	.ctl_freqbin_5G =  {
465 		{
466 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
467 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
468 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
469 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
470 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
471 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
472 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
473 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
474 		},
475 		{
476 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
477 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
478 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
479 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
480 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
481 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
482 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
483 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
484 		},
485 
486 		{
487 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
488 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
489 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
490 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
491 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
492 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
493 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
494 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
495 		},
496 
497 		{
498 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
499 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
500 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
501 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
502 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
503 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
504 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
505 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
506 		},
507 
508 		{
509 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
510 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
511 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
512 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
513 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
514 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
515 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
516 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
517 		},
518 
519 		{
520 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
521 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
522 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
523 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
524 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
525 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
526 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
527 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
528 		},
529 
530 		{
531 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
532 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
533 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
534 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
535 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
536 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
537 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
538 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
539 		},
540 
541 		{
542 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
543 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
544 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
545 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
546 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
547 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
548 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
549 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
550 		},
551 
552 		{
553 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
554 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
555 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
556 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
557 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
558 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
559 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
560 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
561 		}
562 	 },
563 	.ctlPowerData_5G = {
564 		{
565 			{
566 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
567 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
568 			}
569 		},
570 		{
571 			{
572 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
573 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
574 			}
575 		},
576 		{
577 			{
578 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
579 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
580 			}
581 		},
582 		{
583 			{
584 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
585 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
586 			}
587 		},
588 		{
589 			{
590 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
591 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
592 			}
593 		},
594 		{
595 			{
596 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
597 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
598 			}
599 		},
600 		{
601 			{
602 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
603 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
604 			}
605 		},
606 		{
607 			{
608 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
609 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
610 			}
611 		},
612 		{
613 			{
614 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
615 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
616 			}
617 		},
618 	 }
619 };
620 
621 static const struct ar9300_eeprom ar9300_x113 = {
622 	.eepromVersion = 2,
623 	.templateVersion = 6,
624 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
625 	.custData = {"x113-023-f0000"},
626 	.baseEepHeader = {
627 		.regDmn = { LE16(0), LE16(0x1f) },
628 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
629 		.opCapFlags = {
630 			.opFlags = AR5416_OPFLAGS_11A,
631 			.eepMisc = 0,
632 		},
633 		.rfSilent = 0,
634 		.blueToothOptions = 0,
635 		.deviceCap = 0,
636 		.deviceType = 5, /* takes lower byte in eeprom location */
637 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
638 		.params_for_tuning_caps = {0, 0},
639 		.featureEnable = 0x0d,
640 		 /*
641 		  * bit0 - enable tx temp comp - disabled
642 		  * bit1 - enable tx volt comp - disabled
643 		  * bit2 - enable fastClock - enabled
644 		  * bit3 - enable doubling - enabled
645 		  * bit4 - enable internal regulator - disabled
646 		  * bit5 - enable pa predistortion - disabled
647 		  */
648 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
649 		.eepromWriteEnableGpio = 6,
650 		.wlanDisableGpio = 0,
651 		.wlanLedGpio = 8,
652 		.rxBandSelectGpio = 0xff,
653 		.txrxgain = 0x21,
654 		.swreg = 0,
655 	 },
656 	.modalHeader2G = {
657 	/* ar9300_modal_eep_header  2g */
658 		/* 4 idle,t1,t2,b(4 bits per setting) */
659 		.antCtrlCommon = LE32(0x110),
660 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
661 		.antCtrlCommon2 = LE32(0x44444),
662 
663 		/*
664 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
665 		 * rx1, rx12, b (2 bits each)
666 		 */
667 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
668 
669 		/*
670 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
671 		 * for ar9280 (0xa20c/b20c 5:0)
672 		 */
673 		.xatten1DB = {0, 0, 0},
674 
675 		/*
676 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
677 		 * for ar9280 (0xa20c/b20c 16:12
678 		 */
679 		.xatten1Margin = {0, 0, 0},
680 		.tempSlope = 25,
681 		.voltSlope = 0,
682 
683 		/*
684 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
685 		 * channels in usual fbin coding format
686 		 */
687 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
688 
689 		/*
690 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
691 		 * if the register is per chain
692 		 */
693 		.noiseFloorThreshCh = {-1, 0, 0},
694 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
695 		.quick_drop = 0,
696 		.xpaBiasLvl = 0,
697 		.txFrameToDataStart = 0x0e,
698 		.txFrameToPaOn = 0x0e,
699 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
700 		.antennaGain = 0,
701 		.switchSettling = 0x2c,
702 		.adcDesiredSize = -30,
703 		.txEndToXpaOff = 0,
704 		.txEndToRxOn = 0x2,
705 		.txFrameToXpaOn = 0xe,
706 		.thresh62 = 28,
707 		.papdRateMaskHt20 = LE32(0x0c80c080),
708 		.papdRateMaskHt40 = LE32(0x0080c080),
709 		.xlna_bias_strength = 0,
710 		.futureModal = {
711 			0, 0, 0, 0, 0, 0, 0,
712 		},
713 	 },
714 	 .base_ext1 = {
715 		.ant_div_control = 0,
716 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
717 	 },
718 	.calFreqPier2G = {
719 		FREQ2FBIN(2412, 1),
720 		FREQ2FBIN(2437, 1),
721 		FREQ2FBIN(2472, 1),
722 	 },
723 	/* ar9300_cal_data_per_freq_op_loop 2g */
724 	.calPierData2G = {
725 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
726 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
727 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
728 	 },
729 	.calTarget_freqbin_Cck = {
730 		FREQ2FBIN(2412, 1),
731 		FREQ2FBIN(2472, 1),
732 	 },
733 	.calTarget_freqbin_2G = {
734 		FREQ2FBIN(2412, 1),
735 		FREQ2FBIN(2437, 1),
736 		FREQ2FBIN(2472, 1)
737 	 },
738 	.calTarget_freqbin_2GHT20 = {
739 		FREQ2FBIN(2412, 1),
740 		FREQ2FBIN(2437, 1),
741 		FREQ2FBIN(2472, 1)
742 	 },
743 	.calTarget_freqbin_2GHT40 = {
744 		FREQ2FBIN(2412, 1),
745 		FREQ2FBIN(2437, 1),
746 		FREQ2FBIN(2472, 1)
747 	 },
748 	.calTargetPowerCck = {
749 		 /* 1L-5L,5S,11L,11S */
750 		 { {34, 34, 34, 34} },
751 		 { {34, 34, 34, 34} },
752 	},
753 	.calTargetPower2G = {
754 		 /* 6-24,36,48,54 */
755 		 { {34, 34, 32, 32} },
756 		 { {34, 34, 32, 32} },
757 		 { {34, 34, 32, 32} },
758 	},
759 	.calTargetPower2GHT20 = {
760 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
761 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
762 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
763 	},
764 	.calTargetPower2GHT40 = {
765 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
766 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
767 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
768 	},
769 	.ctlIndex_2G =  {
770 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
771 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
772 	},
773 	.ctl_freqbin_2G = {
774 		{
775 			FREQ2FBIN(2412, 1),
776 			FREQ2FBIN(2417, 1),
777 			FREQ2FBIN(2457, 1),
778 			FREQ2FBIN(2462, 1)
779 		},
780 		{
781 			FREQ2FBIN(2412, 1),
782 			FREQ2FBIN(2417, 1),
783 			FREQ2FBIN(2462, 1),
784 			0xFF,
785 		},
786 
787 		{
788 			FREQ2FBIN(2412, 1),
789 			FREQ2FBIN(2417, 1),
790 			FREQ2FBIN(2462, 1),
791 			0xFF,
792 		},
793 		{
794 			FREQ2FBIN(2422, 1),
795 			FREQ2FBIN(2427, 1),
796 			FREQ2FBIN(2447, 1),
797 			FREQ2FBIN(2452, 1)
798 		},
799 
800 		{
801 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
802 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
803 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
804 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
805 		},
806 
807 		{
808 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
809 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
810 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
811 			0,
812 		},
813 
814 		{
815 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
816 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
817 			FREQ2FBIN(2472, 1),
818 			0,
819 		},
820 
821 		{
822 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
823 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
824 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
825 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
826 		},
827 
828 		{
829 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
830 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
831 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
832 		},
833 
834 		{
835 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
836 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
837 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
838 			0
839 		},
840 
841 		{
842 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
843 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
844 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
845 			0
846 		},
847 
848 		{
849 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
850 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
851 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
852 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
853 		}
854 	 },
855 	.ctlPowerData_2G = {
856 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
857 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
858 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
859 
860 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
861 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
862 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
863 
864 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
865 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
866 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
867 
868 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
869 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
870 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
871 	 },
872 	.modalHeader5G = {
873 		/* 4 idle,t1,t2,b (4 bits per setting) */
874 		.antCtrlCommon = LE32(0x220),
875 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
876 		.antCtrlCommon2 = LE32(0x11111),
877 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
878 		.antCtrlChain = {
879 			LE16(0x150), LE16(0x150), LE16(0x150),
880 		},
881 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
882 		.xatten1DB = {0, 0, 0},
883 
884 		/*
885 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
886 		 * for merlin (0xa20c/b20c 16:12
887 		 */
888 		.xatten1Margin = {0, 0, 0},
889 		.tempSlope = 68,
890 		.voltSlope = 0,
891 		/* spurChans spur channels in usual fbin coding format */
892 		.spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
893 		/* noiseFloorThreshCh Check if the register is per chain */
894 		.noiseFloorThreshCh = {-1, 0, 0},
895 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
896 		.quick_drop = 0,
897 		.xpaBiasLvl = 0xf,
898 		.txFrameToDataStart = 0x0e,
899 		.txFrameToPaOn = 0x0e,
900 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
901 		.antennaGain = 0,
902 		.switchSettling = 0x2d,
903 		.adcDesiredSize = -30,
904 		.txEndToXpaOff = 0,
905 		.txEndToRxOn = 0x2,
906 		.txFrameToXpaOn = 0xe,
907 		.thresh62 = 28,
908 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
909 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
910 		.xlna_bias_strength = 0,
911 		.futureModal = {
912 			0, 0, 0, 0, 0, 0, 0,
913 		},
914 	 },
915 	.base_ext2 = {
916 		.tempSlopeLow = 72,
917 		.tempSlopeHigh = 105,
918 		.xatten1DBLow = {0, 0, 0},
919 		.xatten1MarginLow = {0, 0, 0},
920 		.xatten1DBHigh = {0, 0, 0},
921 		.xatten1MarginHigh = {0, 0, 0}
922 	 },
923 	.calFreqPier5G = {
924 		FREQ2FBIN(5180, 0),
925 		FREQ2FBIN(5240, 0),
926 		FREQ2FBIN(5320, 0),
927 		FREQ2FBIN(5400, 0),
928 		FREQ2FBIN(5500, 0),
929 		FREQ2FBIN(5600, 0),
930 		FREQ2FBIN(5745, 0),
931 		FREQ2FBIN(5785, 0)
932 	},
933 	.calPierData5G = {
934 			{
935 				{0, 0, 0, 0, 0},
936 				{0, 0, 0, 0, 0},
937 				{0, 0, 0, 0, 0},
938 				{0, 0, 0, 0, 0},
939 				{0, 0, 0, 0, 0},
940 				{0, 0, 0, 0, 0},
941 				{0, 0, 0, 0, 0},
942 				{0, 0, 0, 0, 0},
943 			},
944 			{
945 				{0, 0, 0, 0, 0},
946 				{0, 0, 0, 0, 0},
947 				{0, 0, 0, 0, 0},
948 				{0, 0, 0, 0, 0},
949 				{0, 0, 0, 0, 0},
950 				{0, 0, 0, 0, 0},
951 				{0, 0, 0, 0, 0},
952 				{0, 0, 0, 0, 0},
953 			},
954 			{
955 				{0, 0, 0, 0, 0},
956 				{0, 0, 0, 0, 0},
957 				{0, 0, 0, 0, 0},
958 				{0, 0, 0, 0, 0},
959 				{0, 0, 0, 0, 0},
960 				{0, 0, 0, 0, 0},
961 				{0, 0, 0, 0, 0},
962 				{0, 0, 0, 0, 0},
963 			},
964 
965 	},
966 	.calTarget_freqbin_5G = {
967 		FREQ2FBIN(5180, 0),
968 		FREQ2FBIN(5220, 0),
969 		FREQ2FBIN(5320, 0),
970 		FREQ2FBIN(5400, 0),
971 		FREQ2FBIN(5500, 0),
972 		FREQ2FBIN(5600, 0),
973 		FREQ2FBIN(5745, 0),
974 		FREQ2FBIN(5785, 0)
975 	},
976 	.calTarget_freqbin_5GHT20 = {
977 		FREQ2FBIN(5180, 0),
978 		FREQ2FBIN(5240, 0),
979 		FREQ2FBIN(5320, 0),
980 		FREQ2FBIN(5400, 0),
981 		FREQ2FBIN(5500, 0),
982 		FREQ2FBIN(5700, 0),
983 		FREQ2FBIN(5745, 0),
984 		FREQ2FBIN(5825, 0)
985 	},
986 	.calTarget_freqbin_5GHT40 = {
987 		FREQ2FBIN(5190, 0),
988 		FREQ2FBIN(5230, 0),
989 		FREQ2FBIN(5320, 0),
990 		FREQ2FBIN(5410, 0),
991 		FREQ2FBIN(5510, 0),
992 		FREQ2FBIN(5670, 0),
993 		FREQ2FBIN(5755, 0),
994 		FREQ2FBIN(5825, 0)
995 	 },
996 	.calTargetPower5G = {
997 		/* 6-24,36,48,54 */
998 		{ {42, 40, 40, 34} },
999 		{ {42, 40, 40, 34} },
1000 		{ {42, 40, 40, 34} },
1001 		{ {42, 40, 40, 34} },
1002 		{ {42, 40, 40, 34} },
1003 		{ {42, 40, 40, 34} },
1004 		{ {42, 40, 40, 34} },
1005 		{ {42, 40, 40, 34} },
1006 	 },
1007 	.calTargetPower5GHT20 = {
1008 		/*
1009 		 * 0_8_16,1-3_9-11_17-19,
1010 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1011 		 */
1012 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1013 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1014 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1015 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1016 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1017 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1018 		{ {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1019 		{ {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1020 	 },
1021 	.calTargetPower5GHT40 =  {
1022 		/*
1023 		 * 0_8_16,1-3_9-11_17-19,
1024 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1025 		 */
1026 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1027 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1028 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1029 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1030 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1031 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1032 		{ {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1033 		{ {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1034 	 },
1035 	.ctlIndex_5G =  {
1036 		0x10, 0x16, 0x18, 0x40, 0x46,
1037 		0x48, 0x30, 0x36, 0x38
1038 	},
1039 	.ctl_freqbin_5G =  {
1040 		{
1041 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1042 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1043 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1044 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1045 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1046 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1047 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1048 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1049 		},
1050 		{
1051 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1052 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1053 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1054 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1055 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1056 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1057 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1058 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1059 		},
1060 
1061 		{
1062 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1063 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1064 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1065 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1066 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1067 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1068 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1069 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1070 		},
1071 
1072 		{
1073 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1074 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1075 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1076 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1077 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1078 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1079 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1080 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1081 		},
1082 
1083 		{
1084 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1085 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1086 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1087 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1088 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1089 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1090 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1091 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1092 		},
1093 
1094 		{
1095 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1096 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1097 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1098 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1099 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1100 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1101 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1102 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1103 		},
1104 
1105 		{
1106 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1107 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1108 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1109 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1110 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1111 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1112 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1113 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1114 		},
1115 
1116 		{
1117 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1118 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1119 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1120 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1121 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1122 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1123 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1124 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1125 		},
1126 
1127 		{
1128 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1129 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1130 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1131 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1132 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1133 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1134 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1135 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1136 		}
1137 	 },
1138 	.ctlPowerData_5G = {
1139 		{
1140 			{
1141 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1142 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1143 			}
1144 		},
1145 		{
1146 			{
1147 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1148 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1149 			}
1150 		},
1151 		{
1152 			{
1153 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1154 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1155 			}
1156 		},
1157 		{
1158 			{
1159 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1160 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1161 			}
1162 		},
1163 		{
1164 			{
1165 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1166 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1167 			}
1168 		},
1169 		{
1170 			{
1171 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1172 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1173 			}
1174 		},
1175 		{
1176 			{
1177 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1178 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1179 			}
1180 		},
1181 		{
1182 			{
1183 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1184 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1185 			}
1186 		},
1187 		{
1188 			{
1189 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1190 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1191 			}
1192 		},
1193 	 }
1194 };
1195 
1196 
1197 static const struct ar9300_eeprom ar9300_h112 = {
1198 	.eepromVersion = 2,
1199 	.templateVersion = 3,
1200 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1201 	.custData = {"h112-241-f0000"},
1202 	.baseEepHeader = {
1203 		.regDmn = { LE16(0), LE16(0x1f) },
1204 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1205 		.opCapFlags = {
1206 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1207 			.eepMisc = 0,
1208 		},
1209 		.rfSilent = 0,
1210 		.blueToothOptions = 0,
1211 		.deviceCap = 0,
1212 		.deviceType = 5, /* takes lower byte in eeprom location */
1213 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1214 		.params_for_tuning_caps = {0, 0},
1215 		.featureEnable = 0x0d,
1216 		/*
1217 		 * bit0 - enable tx temp comp - disabled
1218 		 * bit1 - enable tx volt comp - disabled
1219 		 * bit2 - enable fastClock - enabled
1220 		 * bit3 - enable doubling - enabled
1221 		 * bit4 - enable internal regulator - disabled
1222 		 * bit5 - enable pa predistortion - disabled
1223 		 */
1224 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1225 		.eepromWriteEnableGpio = 6,
1226 		.wlanDisableGpio = 0,
1227 		.wlanLedGpio = 8,
1228 		.rxBandSelectGpio = 0xff,
1229 		.txrxgain = 0x10,
1230 		.swreg = 0,
1231 	},
1232 	.modalHeader2G = {
1233 		/* ar9300_modal_eep_header  2g */
1234 		/* 4 idle,t1,t2,b(4 bits per setting) */
1235 		.antCtrlCommon = LE32(0x110),
1236 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1237 		.antCtrlCommon2 = LE32(0x44444),
1238 
1239 		/*
1240 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1241 		 * rx1, rx12, b (2 bits each)
1242 		 */
1243 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1244 
1245 		/*
1246 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
1247 		 * for ar9280 (0xa20c/b20c 5:0)
1248 		 */
1249 		.xatten1DB = {0, 0, 0},
1250 
1251 		/*
1252 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1253 		 * for ar9280 (0xa20c/b20c 16:12
1254 		 */
1255 		.xatten1Margin = {0, 0, 0},
1256 		.tempSlope = 25,
1257 		.voltSlope = 0,
1258 
1259 		/*
1260 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1261 		 * channels in usual fbin coding format
1262 		 */
1263 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1264 
1265 		/*
1266 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1267 		 * if the register is per chain
1268 		 */
1269 		.noiseFloorThreshCh = {-1, 0, 0},
1270 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1271 		.quick_drop = 0,
1272 		.xpaBiasLvl = 0,
1273 		.txFrameToDataStart = 0x0e,
1274 		.txFrameToPaOn = 0x0e,
1275 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1276 		.antennaGain = 0,
1277 		.switchSettling = 0x2c,
1278 		.adcDesiredSize = -30,
1279 		.txEndToXpaOff = 0,
1280 		.txEndToRxOn = 0x2,
1281 		.txFrameToXpaOn = 0xe,
1282 		.thresh62 = 28,
1283 		.papdRateMaskHt20 = LE32(0x0c80c080),
1284 		.papdRateMaskHt40 = LE32(0x0080c080),
1285 		.xlna_bias_strength = 0,
1286 		.futureModal = {
1287 			0, 0, 0, 0, 0, 0, 0,
1288 		},
1289 	},
1290 	.base_ext1 = {
1291 		.ant_div_control = 0,
1292 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1293 	},
1294 	.calFreqPier2G = {
1295 		FREQ2FBIN(2412, 1),
1296 		FREQ2FBIN(2437, 1),
1297 		FREQ2FBIN(2462, 1),
1298 	},
1299 	/* ar9300_cal_data_per_freq_op_loop 2g */
1300 	.calPierData2G = {
1301 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1302 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1303 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1304 	},
1305 	.calTarget_freqbin_Cck = {
1306 		FREQ2FBIN(2412, 1),
1307 		FREQ2FBIN(2472, 1),
1308 	},
1309 	.calTarget_freqbin_2G = {
1310 		FREQ2FBIN(2412, 1),
1311 		FREQ2FBIN(2437, 1),
1312 		FREQ2FBIN(2472, 1)
1313 	},
1314 	.calTarget_freqbin_2GHT20 = {
1315 		FREQ2FBIN(2412, 1),
1316 		FREQ2FBIN(2437, 1),
1317 		FREQ2FBIN(2472, 1)
1318 	},
1319 	.calTarget_freqbin_2GHT40 = {
1320 		FREQ2FBIN(2412, 1),
1321 		FREQ2FBIN(2437, 1),
1322 		FREQ2FBIN(2472, 1)
1323 	},
1324 	.calTargetPowerCck = {
1325 		/* 1L-5L,5S,11L,11S */
1326 		{ {34, 34, 34, 34} },
1327 		{ {34, 34, 34, 34} },
1328 	},
1329 	.calTargetPower2G = {
1330 		/* 6-24,36,48,54 */
1331 		{ {34, 34, 32, 32} },
1332 		{ {34, 34, 32, 32} },
1333 		{ {34, 34, 32, 32} },
1334 	},
1335 	.calTargetPower2GHT20 = {
1336 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1337 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1338 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1339 	},
1340 	.calTargetPower2GHT40 = {
1341 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1342 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1343 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1344 	},
1345 	.ctlIndex_2G =  {
1346 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1347 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1348 	},
1349 	.ctl_freqbin_2G = {
1350 		{
1351 			FREQ2FBIN(2412, 1),
1352 			FREQ2FBIN(2417, 1),
1353 			FREQ2FBIN(2457, 1),
1354 			FREQ2FBIN(2462, 1)
1355 		},
1356 		{
1357 			FREQ2FBIN(2412, 1),
1358 			FREQ2FBIN(2417, 1),
1359 			FREQ2FBIN(2462, 1),
1360 			0xFF,
1361 		},
1362 
1363 		{
1364 			FREQ2FBIN(2412, 1),
1365 			FREQ2FBIN(2417, 1),
1366 			FREQ2FBIN(2462, 1),
1367 			0xFF,
1368 		},
1369 		{
1370 			FREQ2FBIN(2422, 1),
1371 			FREQ2FBIN(2427, 1),
1372 			FREQ2FBIN(2447, 1),
1373 			FREQ2FBIN(2452, 1)
1374 		},
1375 
1376 		{
1377 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1378 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1379 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1380 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1381 		},
1382 
1383 		{
1384 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1385 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1386 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1387 			0,
1388 		},
1389 
1390 		{
1391 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1392 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1393 			FREQ2FBIN(2472, 1),
1394 			0,
1395 		},
1396 
1397 		{
1398 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1399 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1400 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1401 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1402 		},
1403 
1404 		{
1405 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1406 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1407 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1408 		},
1409 
1410 		{
1411 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1412 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1413 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1414 			0
1415 		},
1416 
1417 		{
1418 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1419 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1420 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1421 			0
1422 		},
1423 
1424 		{
1425 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1426 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1427 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1428 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1429 		}
1430 	},
1431 	.ctlPowerData_2G = {
1432 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1433 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1434 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1435 
1436 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1437 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1438 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1439 
1440 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1441 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1442 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1443 
1444 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1445 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1446 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1447 	},
1448 	.modalHeader5G = {
1449 		/* 4 idle,t1,t2,b (4 bits per setting) */
1450 		.antCtrlCommon = LE32(0x220),
1451 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1452 		.antCtrlCommon2 = LE32(0x44444),
1453 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1454 		.antCtrlChain = {
1455 			LE16(0x150), LE16(0x150), LE16(0x150),
1456 		},
1457 		/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1458 		.xatten1DB = {0, 0, 0},
1459 
1460 		/*
1461 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1462 		 * for merlin (0xa20c/b20c 16:12
1463 		 */
1464 		.xatten1Margin = {0, 0, 0},
1465 		.tempSlope = 45,
1466 		.voltSlope = 0,
1467 		/* spurChans spur channels in usual fbin coding format */
1468 		.spurChans = {0, 0, 0, 0, 0},
1469 		/* noiseFloorThreshCh Check if the register is per chain */
1470 		.noiseFloorThreshCh = {-1, 0, 0},
1471 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1472 		.quick_drop = 0,
1473 		.xpaBiasLvl = 0,
1474 		.txFrameToDataStart = 0x0e,
1475 		.txFrameToPaOn = 0x0e,
1476 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1477 		.antennaGain = 0,
1478 		.switchSettling = 0x2d,
1479 		.adcDesiredSize = -30,
1480 		.txEndToXpaOff = 0,
1481 		.txEndToRxOn = 0x2,
1482 		.txFrameToXpaOn = 0xe,
1483 		.thresh62 = 28,
1484 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
1485 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
1486 		.xlna_bias_strength = 0,
1487 		.futureModal = {
1488 			0, 0, 0, 0, 0, 0, 0,
1489 		},
1490 	},
1491 	.base_ext2 = {
1492 		.tempSlopeLow = 40,
1493 		.tempSlopeHigh = 50,
1494 		.xatten1DBLow = {0, 0, 0},
1495 		.xatten1MarginLow = {0, 0, 0},
1496 		.xatten1DBHigh = {0, 0, 0},
1497 		.xatten1MarginHigh = {0, 0, 0}
1498 	},
1499 	.calFreqPier5G = {
1500 		FREQ2FBIN(5180, 0),
1501 		FREQ2FBIN(5220, 0),
1502 		FREQ2FBIN(5320, 0),
1503 		FREQ2FBIN(5400, 0),
1504 		FREQ2FBIN(5500, 0),
1505 		FREQ2FBIN(5600, 0),
1506 		FREQ2FBIN(5700, 0),
1507 		FREQ2FBIN(5785, 0)
1508 	},
1509 	.calPierData5G = {
1510 		{
1511 			{0, 0, 0, 0, 0},
1512 			{0, 0, 0, 0, 0},
1513 			{0, 0, 0, 0, 0},
1514 			{0, 0, 0, 0, 0},
1515 			{0, 0, 0, 0, 0},
1516 			{0, 0, 0, 0, 0},
1517 			{0, 0, 0, 0, 0},
1518 			{0, 0, 0, 0, 0},
1519 		},
1520 		{
1521 			{0, 0, 0, 0, 0},
1522 			{0, 0, 0, 0, 0},
1523 			{0, 0, 0, 0, 0},
1524 			{0, 0, 0, 0, 0},
1525 			{0, 0, 0, 0, 0},
1526 			{0, 0, 0, 0, 0},
1527 			{0, 0, 0, 0, 0},
1528 			{0, 0, 0, 0, 0},
1529 		},
1530 		{
1531 			{0, 0, 0, 0, 0},
1532 			{0, 0, 0, 0, 0},
1533 			{0, 0, 0, 0, 0},
1534 			{0, 0, 0, 0, 0},
1535 			{0, 0, 0, 0, 0},
1536 			{0, 0, 0, 0, 0},
1537 			{0, 0, 0, 0, 0},
1538 			{0, 0, 0, 0, 0},
1539 		},
1540 
1541 	},
1542 	.calTarget_freqbin_5G = {
1543 		FREQ2FBIN(5180, 0),
1544 		FREQ2FBIN(5240, 0),
1545 		FREQ2FBIN(5320, 0),
1546 		FREQ2FBIN(5400, 0),
1547 		FREQ2FBIN(5500, 0),
1548 		FREQ2FBIN(5600, 0),
1549 		FREQ2FBIN(5700, 0),
1550 		FREQ2FBIN(5825, 0)
1551 	},
1552 	.calTarget_freqbin_5GHT20 = {
1553 		FREQ2FBIN(5180, 0),
1554 		FREQ2FBIN(5240, 0),
1555 		FREQ2FBIN(5320, 0),
1556 		FREQ2FBIN(5400, 0),
1557 		FREQ2FBIN(5500, 0),
1558 		FREQ2FBIN(5700, 0),
1559 		FREQ2FBIN(5745, 0),
1560 		FREQ2FBIN(5825, 0)
1561 	},
1562 	.calTarget_freqbin_5GHT40 = {
1563 		FREQ2FBIN(5180, 0),
1564 		FREQ2FBIN(5240, 0),
1565 		FREQ2FBIN(5320, 0),
1566 		FREQ2FBIN(5400, 0),
1567 		FREQ2FBIN(5500, 0),
1568 		FREQ2FBIN(5700, 0),
1569 		FREQ2FBIN(5745, 0),
1570 		FREQ2FBIN(5825, 0)
1571 	},
1572 	.calTargetPower5G = {
1573 		/* 6-24,36,48,54 */
1574 		{ {30, 30, 28, 24} },
1575 		{ {30, 30, 28, 24} },
1576 		{ {30, 30, 28, 24} },
1577 		{ {30, 30, 28, 24} },
1578 		{ {30, 30, 28, 24} },
1579 		{ {30, 30, 28, 24} },
1580 		{ {30, 30, 28, 24} },
1581 		{ {30, 30, 28, 24} },
1582 	},
1583 	.calTargetPower5GHT20 = {
1584 		/*
1585 		 * 0_8_16,1-3_9-11_17-19,
1586 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1587 		 */
1588 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1589 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1590 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1591 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1592 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1593 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1594 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1595 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1596 	},
1597 	.calTargetPower5GHT40 =  {
1598 		/*
1599 		 * 0_8_16,1-3_9-11_17-19,
1600 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1601 		 */
1602 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1603 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1604 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1605 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1606 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1607 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1608 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1609 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1610 	},
1611 	.ctlIndex_5G =  {
1612 		0x10, 0x16, 0x18, 0x40, 0x46,
1613 		0x48, 0x30, 0x36, 0x38
1614 	},
1615 	.ctl_freqbin_5G =  {
1616 		{
1617 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1618 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1619 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1620 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1621 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1622 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1623 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1624 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1625 		},
1626 		{
1627 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1628 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1629 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1630 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1631 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1632 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1633 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1634 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1635 		},
1636 
1637 		{
1638 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1639 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1640 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1641 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1642 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1643 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1644 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1645 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1646 		},
1647 
1648 		{
1649 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1650 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1651 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1652 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1653 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1654 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1655 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1656 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1657 		},
1658 
1659 		{
1660 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1661 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1662 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1663 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1664 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1665 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1666 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1667 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1668 		},
1669 
1670 		{
1671 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1672 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1673 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1674 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1675 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1676 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1677 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1678 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1679 		},
1680 
1681 		{
1682 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1683 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1684 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1685 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1686 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1687 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1688 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1689 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1690 		},
1691 
1692 		{
1693 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1694 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1695 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1696 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1697 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1698 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1699 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1700 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1701 		},
1702 
1703 		{
1704 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1705 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1706 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1707 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1708 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1709 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1710 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1711 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1712 		}
1713 	},
1714 	.ctlPowerData_5G = {
1715 		{
1716 			{
1717 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1718 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1719 			}
1720 		},
1721 		{
1722 			{
1723 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1724 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1725 			}
1726 		},
1727 		{
1728 			{
1729 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1730 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1731 			}
1732 		},
1733 		{
1734 			{
1735 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1736 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1737 			}
1738 		},
1739 		{
1740 			{
1741 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1742 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1743 			}
1744 		},
1745 		{
1746 			{
1747 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1748 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1749 			}
1750 		},
1751 		{
1752 			{
1753 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1754 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1755 			}
1756 		},
1757 		{
1758 			{
1759 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1760 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1761 			}
1762 		},
1763 		{
1764 			{
1765 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1766 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1767 			}
1768 		},
1769 	}
1770 };
1771 
1772 
1773 static const struct ar9300_eeprom ar9300_x112 = {
1774 	.eepromVersion = 2,
1775 	.templateVersion = 5,
1776 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1777 	.custData = {"x112-041-f0000"},
1778 	.baseEepHeader = {
1779 		.regDmn = { LE16(0), LE16(0x1f) },
1780 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1781 		.opCapFlags = {
1782 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1783 			.eepMisc = 0,
1784 		},
1785 		.rfSilent = 0,
1786 		.blueToothOptions = 0,
1787 		.deviceCap = 0,
1788 		.deviceType = 5, /* takes lower byte in eeprom location */
1789 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1790 		.params_for_tuning_caps = {0, 0},
1791 		.featureEnable = 0x0d,
1792 		/*
1793 		 * bit0 - enable tx temp comp - disabled
1794 		 * bit1 - enable tx volt comp - disabled
1795 		 * bit2 - enable fastclock - enabled
1796 		 * bit3 - enable doubling - enabled
1797 		 * bit4 - enable internal regulator - disabled
1798 		 * bit5 - enable pa predistortion - disabled
1799 		 */
1800 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1801 		.eepromWriteEnableGpio = 6,
1802 		.wlanDisableGpio = 0,
1803 		.wlanLedGpio = 8,
1804 		.rxBandSelectGpio = 0xff,
1805 		.txrxgain = 0x0,
1806 		.swreg = 0,
1807 	},
1808 	.modalHeader2G = {
1809 		/* ar9300_modal_eep_header  2g */
1810 		/* 4 idle,t1,t2,b(4 bits per setting) */
1811 		.antCtrlCommon = LE32(0x110),
1812 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1813 		.antCtrlCommon2 = LE32(0x22222),
1814 
1815 		/*
1816 		 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1817 		 * rx1, rx12, b (2 bits each)
1818 		 */
1819 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1820 
1821 		/*
1822 		 * xatten1DB[AR9300_max_chains];  3 xatten1_db
1823 		 * for ar9280 (0xa20c/b20c 5:0)
1824 		 */
1825 		.xatten1DB = {0x1b, 0x1b, 0x1b},
1826 
1827 		/*
1828 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1829 		 * for ar9280 (0xa20c/b20c 16:12
1830 		 */
1831 		.xatten1Margin = {0x15, 0x15, 0x15},
1832 		.tempSlope = 50,
1833 		.voltSlope = 0,
1834 
1835 		/*
1836 		 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1837 		 * channels in usual fbin coding format
1838 		 */
1839 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1840 
1841 		/*
1842 		 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1843 		 * if the register is per chain
1844 		 */
1845 		.noiseFloorThreshCh = {-1, 0, 0},
1846 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1847 		.quick_drop = 0,
1848 		.xpaBiasLvl = 0,
1849 		.txFrameToDataStart = 0x0e,
1850 		.txFrameToPaOn = 0x0e,
1851 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1852 		.antennaGain = 0,
1853 		.switchSettling = 0x2c,
1854 		.adcDesiredSize = -30,
1855 		.txEndToXpaOff = 0,
1856 		.txEndToRxOn = 0x2,
1857 		.txFrameToXpaOn = 0xe,
1858 		.thresh62 = 28,
1859 		.papdRateMaskHt20 = LE32(0x0c80c080),
1860 		.papdRateMaskHt40 = LE32(0x0080c080),
1861 		.xlna_bias_strength = 0,
1862 		.futureModal = {
1863 			0, 0, 0, 0, 0, 0, 0,
1864 		},
1865 	},
1866 	.base_ext1 = {
1867 		.ant_div_control = 0,
1868 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1869 	},
1870 	.calFreqPier2G = {
1871 		FREQ2FBIN(2412, 1),
1872 		FREQ2FBIN(2437, 1),
1873 		FREQ2FBIN(2472, 1),
1874 	},
1875 	/* ar9300_cal_data_per_freq_op_loop 2g */
1876 	.calPierData2G = {
1877 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1878 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1879 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1880 	},
1881 	.calTarget_freqbin_Cck = {
1882 		FREQ2FBIN(2412, 1),
1883 		FREQ2FBIN(2472, 1),
1884 	},
1885 	.calTarget_freqbin_2G = {
1886 		FREQ2FBIN(2412, 1),
1887 		FREQ2FBIN(2437, 1),
1888 		FREQ2FBIN(2472, 1)
1889 	},
1890 	.calTarget_freqbin_2GHT20 = {
1891 		FREQ2FBIN(2412, 1),
1892 		FREQ2FBIN(2437, 1),
1893 		FREQ2FBIN(2472, 1)
1894 	},
1895 	.calTarget_freqbin_2GHT40 = {
1896 		FREQ2FBIN(2412, 1),
1897 		FREQ2FBIN(2437, 1),
1898 		FREQ2FBIN(2472, 1)
1899 	},
1900 	.calTargetPowerCck = {
1901 		/* 1L-5L,5S,11L,11s */
1902 		{ {38, 38, 38, 38} },
1903 		{ {38, 38, 38, 38} },
1904 	},
1905 	.calTargetPower2G = {
1906 		/* 6-24,36,48,54 */
1907 		{ {38, 38, 36, 34} },
1908 		{ {38, 38, 36, 34} },
1909 		{ {38, 38, 34, 32} },
1910 	},
1911 	.calTargetPower2GHT20 = {
1912 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1913 		{ {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1914 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1915 	},
1916 	.calTargetPower2GHT40 = {
1917 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1918 		{ {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1919 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1920 	},
1921 	.ctlIndex_2G =  {
1922 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1923 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1924 	},
1925 	.ctl_freqbin_2G = {
1926 		{
1927 			FREQ2FBIN(2412, 1),
1928 			FREQ2FBIN(2417, 1),
1929 			FREQ2FBIN(2457, 1),
1930 			FREQ2FBIN(2462, 1)
1931 		},
1932 		{
1933 			FREQ2FBIN(2412, 1),
1934 			FREQ2FBIN(2417, 1),
1935 			FREQ2FBIN(2462, 1),
1936 			0xFF,
1937 		},
1938 
1939 		{
1940 			FREQ2FBIN(2412, 1),
1941 			FREQ2FBIN(2417, 1),
1942 			FREQ2FBIN(2462, 1),
1943 			0xFF,
1944 		},
1945 		{
1946 			FREQ2FBIN(2422, 1),
1947 			FREQ2FBIN(2427, 1),
1948 			FREQ2FBIN(2447, 1),
1949 			FREQ2FBIN(2452, 1)
1950 		},
1951 
1952 		{
1953 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1954 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1955 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1956 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1957 		},
1958 
1959 		{
1960 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1961 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1962 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1963 			0,
1964 		},
1965 
1966 		{
1967 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1968 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1969 			FREQ2FBIN(2472, 1),
1970 			0,
1971 		},
1972 
1973 		{
1974 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1975 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1976 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1977 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1978 		},
1979 
1980 		{
1981 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1982 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1983 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1984 		},
1985 
1986 		{
1987 			/* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1988 			/* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1989 			/* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1990 			0
1991 		},
1992 
1993 		{
1994 			/* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1995 			/* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1996 			/* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1997 			0
1998 		},
1999 
2000 		{
2001 			/* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2002 			/* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2003 			/* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2004 			/* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2005 		}
2006 	},
2007 	.ctlPowerData_2G = {
2008 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2009 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2010 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2011 
2012 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2013 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2014 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2015 
2016 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2017 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2018 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2019 
2020 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2021 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2022 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2023 	},
2024 	.modalHeader5G = {
2025 		/* 4 idle,t1,t2,b (4 bits per setting) */
2026 		.antCtrlCommon = LE32(0x110),
2027 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2028 		.antCtrlCommon2 = LE32(0x22222),
2029 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2030 		.antCtrlChain = {
2031 			LE16(0x0), LE16(0x0), LE16(0x0),
2032 		},
2033 		/* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2034 		.xatten1DB = {0x13, 0x19, 0x17},
2035 
2036 		/*
2037 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2038 		 * for merlin (0xa20c/b20c 16:12
2039 		 */
2040 		.xatten1Margin = {0x19, 0x19, 0x19},
2041 		.tempSlope = 70,
2042 		.voltSlope = 15,
2043 		/* spurChans spur channels in usual fbin coding format */
2044 		.spurChans = {0, 0, 0, 0, 0},
2045 		/* noiseFloorThreshch check if the register is per chain */
2046 		.noiseFloorThreshCh = {-1, 0, 0},
2047 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2048 		.quick_drop = 0,
2049 		.xpaBiasLvl = 0,
2050 		.txFrameToDataStart = 0x0e,
2051 		.txFrameToPaOn = 0x0e,
2052 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2053 		.antennaGain = 0,
2054 		.switchSettling = 0x2d,
2055 		.adcDesiredSize = -30,
2056 		.txEndToXpaOff = 0,
2057 		.txEndToRxOn = 0x2,
2058 		.txFrameToXpaOn = 0xe,
2059 		.thresh62 = 28,
2060 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2061 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2062 		.xlna_bias_strength = 0,
2063 		.futureModal = {
2064 			0, 0, 0, 0, 0, 0, 0,
2065 		},
2066 	},
2067 	.base_ext2 = {
2068 		.tempSlopeLow = 72,
2069 		.tempSlopeHigh = 105,
2070 		.xatten1DBLow = {0x10, 0x14, 0x10},
2071 		.xatten1MarginLow = {0x19, 0x19 , 0x19},
2072 		.xatten1DBHigh = {0x1d, 0x20, 0x24},
2073 		.xatten1MarginHigh = {0x10, 0x10, 0x10}
2074 	},
2075 	.calFreqPier5G = {
2076 		FREQ2FBIN(5180, 0),
2077 		FREQ2FBIN(5220, 0),
2078 		FREQ2FBIN(5320, 0),
2079 		FREQ2FBIN(5400, 0),
2080 		FREQ2FBIN(5500, 0),
2081 		FREQ2FBIN(5600, 0),
2082 		FREQ2FBIN(5700, 0),
2083 		FREQ2FBIN(5785, 0)
2084 	},
2085 	.calPierData5G = {
2086 		{
2087 			{0, 0, 0, 0, 0},
2088 			{0, 0, 0, 0, 0},
2089 			{0, 0, 0, 0, 0},
2090 			{0, 0, 0, 0, 0},
2091 			{0, 0, 0, 0, 0},
2092 			{0, 0, 0, 0, 0},
2093 			{0, 0, 0, 0, 0},
2094 			{0, 0, 0, 0, 0},
2095 		},
2096 		{
2097 			{0, 0, 0, 0, 0},
2098 			{0, 0, 0, 0, 0},
2099 			{0, 0, 0, 0, 0},
2100 			{0, 0, 0, 0, 0},
2101 			{0, 0, 0, 0, 0},
2102 			{0, 0, 0, 0, 0},
2103 			{0, 0, 0, 0, 0},
2104 			{0, 0, 0, 0, 0},
2105 		},
2106 		{
2107 			{0, 0, 0, 0, 0},
2108 			{0, 0, 0, 0, 0},
2109 			{0, 0, 0, 0, 0},
2110 			{0, 0, 0, 0, 0},
2111 			{0, 0, 0, 0, 0},
2112 			{0, 0, 0, 0, 0},
2113 			{0, 0, 0, 0, 0},
2114 			{0, 0, 0, 0, 0},
2115 		},
2116 
2117 	},
2118 	.calTarget_freqbin_5G = {
2119 		FREQ2FBIN(5180, 0),
2120 		FREQ2FBIN(5220, 0),
2121 		FREQ2FBIN(5320, 0),
2122 		FREQ2FBIN(5400, 0),
2123 		FREQ2FBIN(5500, 0),
2124 		FREQ2FBIN(5600, 0),
2125 		FREQ2FBIN(5725, 0),
2126 		FREQ2FBIN(5825, 0)
2127 	},
2128 	.calTarget_freqbin_5GHT20 = {
2129 		FREQ2FBIN(5180, 0),
2130 		FREQ2FBIN(5220, 0),
2131 		FREQ2FBIN(5320, 0),
2132 		FREQ2FBIN(5400, 0),
2133 		FREQ2FBIN(5500, 0),
2134 		FREQ2FBIN(5600, 0),
2135 		FREQ2FBIN(5725, 0),
2136 		FREQ2FBIN(5825, 0)
2137 	},
2138 	.calTarget_freqbin_5GHT40 = {
2139 		FREQ2FBIN(5180, 0),
2140 		FREQ2FBIN(5220, 0),
2141 		FREQ2FBIN(5320, 0),
2142 		FREQ2FBIN(5400, 0),
2143 		FREQ2FBIN(5500, 0),
2144 		FREQ2FBIN(5600, 0),
2145 		FREQ2FBIN(5725, 0),
2146 		FREQ2FBIN(5825, 0)
2147 	},
2148 	.calTargetPower5G = {
2149 		/* 6-24,36,48,54 */
2150 		{ {32, 32, 28, 26} },
2151 		{ {32, 32, 28, 26} },
2152 		{ {32, 32, 28, 26} },
2153 		{ {32, 32, 26, 24} },
2154 		{ {32, 32, 26, 24} },
2155 		{ {32, 32, 24, 22} },
2156 		{ {30, 30, 24, 22} },
2157 		{ {30, 30, 24, 22} },
2158 	},
2159 	.calTargetPower5GHT20 = {
2160 		/*
2161 		 * 0_8_16,1-3_9-11_17-19,
2162 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2163 		 */
2164 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2165 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2166 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2167 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2168 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2169 		{ {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2170 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2171 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2172 	},
2173 	.calTargetPower5GHT40 =  {
2174 		/*
2175 		 * 0_8_16,1-3_9-11_17-19,
2176 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2177 		 */
2178 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2179 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2180 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2181 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2182 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2183 		{ {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2184 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2185 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2186 	},
2187 	.ctlIndex_5G =  {
2188 		0x10, 0x16, 0x18, 0x40, 0x46,
2189 		0x48, 0x30, 0x36, 0x38
2190 	},
2191 	.ctl_freqbin_5G =  {
2192 		{
2193 			/* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2194 			/* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2195 			/* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2196 			/* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2197 			/* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2198 			/* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2199 			/* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2200 			/* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2201 		},
2202 		{
2203 			/* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2204 			/* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2205 			/* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2206 			/* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2207 			/* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2208 			/* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2209 			/* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2210 			/* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2211 		},
2212 
2213 		{
2214 			/* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2215 			/* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2216 			/* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2217 			/* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2218 			/* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2219 			/* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2220 			/* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2221 			/* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2222 		},
2223 
2224 		{
2225 			/* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2226 			/* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2227 			/* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2228 			/* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2229 			/* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2230 			/* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2231 			/* Data[3].ctledges[6].bchannel */ 0xFF,
2232 			/* Data[3].ctledges[7].bchannel */ 0xFF,
2233 		},
2234 
2235 		{
2236 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2237 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2238 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2239 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2240 			/* Data[4].ctledges[4].bchannel */ 0xFF,
2241 			/* Data[4].ctledges[5].bchannel */ 0xFF,
2242 			/* Data[4].ctledges[6].bchannel */ 0xFF,
2243 			/* Data[4].ctledges[7].bchannel */ 0xFF,
2244 		},
2245 
2246 		{
2247 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2248 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2249 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2250 			/* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2251 			/* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2252 			/* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2253 			/* Data[5].ctledges[6].bchannel */ 0xFF,
2254 			/* Data[5].ctledges[7].bchannel */ 0xFF
2255 		},
2256 
2257 		{
2258 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2259 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2260 			/* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2261 			/* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2262 			/* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2263 			/* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2264 			/* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2265 			/* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2266 		},
2267 
2268 		{
2269 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2270 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2271 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2272 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2273 			/* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2274 			/* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2275 			/* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2276 			/* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2277 		},
2278 
2279 		{
2280 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2281 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2282 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2283 			/* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2284 			/* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2285 			/* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2286 			/* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2287 			/* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2288 		}
2289 	},
2290 	.ctlPowerData_5G = {
2291 		{
2292 			{
2293 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2294 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2295 			}
2296 		},
2297 		{
2298 			{
2299 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2300 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2301 			}
2302 		},
2303 		{
2304 			{
2305 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2306 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2307 			}
2308 		},
2309 		{
2310 			{
2311 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2312 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2313 			}
2314 		},
2315 		{
2316 			{
2317 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2318 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2319 			}
2320 		},
2321 		{
2322 			{
2323 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2324 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2325 			}
2326 		},
2327 		{
2328 			{
2329 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2330 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2331 			}
2332 		},
2333 		{
2334 			{
2335 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2336 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2337 			}
2338 		},
2339 		{
2340 			{
2341 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2342 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2343 			}
2344 		},
2345 	}
2346 };
2347 
2348 static const struct ar9300_eeprom ar9300_h116 = {
2349 	.eepromVersion = 2,
2350 	.templateVersion = 4,
2351 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2352 	.custData = {"h116-041-f0000"},
2353 	.baseEepHeader = {
2354 		.regDmn = { LE16(0), LE16(0x1f) },
2355 		.txrxMask =  0x33, /* 4 bits tx and 4 bits rx */
2356 		.opCapFlags = {
2357 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2358 			.eepMisc = 0,
2359 		},
2360 		.rfSilent = 0,
2361 		.blueToothOptions = 0,
2362 		.deviceCap = 0,
2363 		.deviceType = 5, /* takes lower byte in eeprom location */
2364 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2365 		.params_for_tuning_caps = {0, 0},
2366 		.featureEnable = 0x0d,
2367 		 /*
2368 		  * bit0 - enable tx temp comp - disabled
2369 		  * bit1 - enable tx volt comp - disabled
2370 		  * bit2 - enable fastClock - enabled
2371 		  * bit3 - enable doubling - enabled
2372 		  * bit4 - enable internal regulator - disabled
2373 		  * bit5 - enable pa predistortion - disabled
2374 		  */
2375 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
2376 		.eepromWriteEnableGpio = 6,
2377 		.wlanDisableGpio = 0,
2378 		.wlanLedGpio = 8,
2379 		.rxBandSelectGpio = 0xff,
2380 		.txrxgain = 0x10,
2381 		.swreg = 0,
2382 	 },
2383 	.modalHeader2G = {
2384 	/* ar9300_modal_eep_header  2g */
2385 		/* 4 idle,t1,t2,b(4 bits per setting) */
2386 		.antCtrlCommon = LE32(0x110),
2387 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2388 		.antCtrlCommon2 = LE32(0x44444),
2389 
2390 		/*
2391 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2392 		 * rx1, rx12, b (2 bits each)
2393 		 */
2394 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2395 
2396 		/*
2397 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
2398 		 * for ar9280 (0xa20c/b20c 5:0)
2399 		 */
2400 		.xatten1DB = {0x1f, 0x1f, 0x1f},
2401 
2402 		/*
2403 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2404 		 * for ar9280 (0xa20c/b20c 16:12
2405 		 */
2406 		.xatten1Margin = {0x12, 0x12, 0x12},
2407 		.tempSlope = 25,
2408 		.voltSlope = 0,
2409 
2410 		/*
2411 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2412 		 * channels in usual fbin coding format
2413 		 */
2414 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2415 
2416 		/*
2417 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2418 		 * if the register is per chain
2419 		 */
2420 		.noiseFloorThreshCh = {-1, 0, 0},
2421 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2422 		.quick_drop = 0,
2423 		.xpaBiasLvl = 0,
2424 		.txFrameToDataStart = 0x0e,
2425 		.txFrameToPaOn = 0x0e,
2426 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2427 		.antennaGain = 0,
2428 		.switchSettling = 0x2c,
2429 		.adcDesiredSize = -30,
2430 		.txEndToXpaOff = 0,
2431 		.txEndToRxOn = 0x2,
2432 		.txFrameToXpaOn = 0xe,
2433 		.thresh62 = 28,
2434 		.papdRateMaskHt20 = LE32(0x0c80C080),
2435 		.papdRateMaskHt40 = LE32(0x0080C080),
2436 		.xlna_bias_strength = 0,
2437 		.futureModal = {
2438 			0, 0, 0, 0, 0, 0, 0,
2439 		},
2440 	 },
2441 	 .base_ext1 = {
2442 		.ant_div_control = 0,
2443 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
2444 	 },
2445 	.calFreqPier2G = {
2446 		FREQ2FBIN(2412, 1),
2447 		FREQ2FBIN(2437, 1),
2448 		FREQ2FBIN(2462, 1),
2449 	 },
2450 	/* ar9300_cal_data_per_freq_op_loop 2g */
2451 	.calPierData2G = {
2452 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2453 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2454 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2455 	 },
2456 	.calTarget_freqbin_Cck = {
2457 		FREQ2FBIN(2412, 1),
2458 		FREQ2FBIN(2472, 1),
2459 	 },
2460 	.calTarget_freqbin_2G = {
2461 		FREQ2FBIN(2412, 1),
2462 		FREQ2FBIN(2437, 1),
2463 		FREQ2FBIN(2472, 1)
2464 	 },
2465 	.calTarget_freqbin_2GHT20 = {
2466 		FREQ2FBIN(2412, 1),
2467 		FREQ2FBIN(2437, 1),
2468 		FREQ2FBIN(2472, 1)
2469 	 },
2470 	.calTarget_freqbin_2GHT40 = {
2471 		FREQ2FBIN(2412, 1),
2472 		FREQ2FBIN(2437, 1),
2473 		FREQ2FBIN(2472, 1)
2474 	 },
2475 	.calTargetPowerCck = {
2476 		 /* 1L-5L,5S,11L,11S */
2477 		 { {34, 34, 34, 34} },
2478 		 { {34, 34, 34, 34} },
2479 	},
2480 	.calTargetPower2G = {
2481 		 /* 6-24,36,48,54 */
2482 		 { {34, 34, 32, 32} },
2483 		 { {34, 34, 32, 32} },
2484 		 { {34, 34, 32, 32} },
2485 	},
2486 	.calTargetPower2GHT20 = {
2487 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2488 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2489 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2490 	},
2491 	.calTargetPower2GHT40 = {
2492 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2493 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2494 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2495 	},
2496 	.ctlIndex_2G =  {
2497 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2498 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2499 	},
2500 	.ctl_freqbin_2G = {
2501 		{
2502 			FREQ2FBIN(2412, 1),
2503 			FREQ2FBIN(2417, 1),
2504 			FREQ2FBIN(2457, 1),
2505 			FREQ2FBIN(2462, 1)
2506 		},
2507 		{
2508 			FREQ2FBIN(2412, 1),
2509 			FREQ2FBIN(2417, 1),
2510 			FREQ2FBIN(2462, 1),
2511 			0xFF,
2512 		},
2513 
2514 		{
2515 			FREQ2FBIN(2412, 1),
2516 			FREQ2FBIN(2417, 1),
2517 			FREQ2FBIN(2462, 1),
2518 			0xFF,
2519 		},
2520 		{
2521 			FREQ2FBIN(2422, 1),
2522 			FREQ2FBIN(2427, 1),
2523 			FREQ2FBIN(2447, 1),
2524 			FREQ2FBIN(2452, 1)
2525 		},
2526 
2527 		{
2528 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2529 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2530 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2531 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2532 		},
2533 
2534 		{
2535 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2536 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2537 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2538 			0,
2539 		},
2540 
2541 		{
2542 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2543 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2544 			FREQ2FBIN(2472, 1),
2545 			0,
2546 		},
2547 
2548 		{
2549 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2550 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2551 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2552 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2553 		},
2554 
2555 		{
2556 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2557 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2558 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2559 		},
2560 
2561 		{
2562 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2563 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2564 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2565 			0
2566 		},
2567 
2568 		{
2569 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2570 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2571 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2572 			0
2573 		},
2574 
2575 		{
2576 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2577 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2578 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2579 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2580 		}
2581 	 },
2582 	.ctlPowerData_2G = {
2583 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2584 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2585 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2586 
2587 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2588 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2589 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2590 
2591 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2592 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2593 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2594 
2595 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2596 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2597 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2598 	 },
2599 	.modalHeader5G = {
2600 		/* 4 idle,t1,t2,b (4 bits per setting) */
2601 		.antCtrlCommon = LE32(0x220),
2602 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2603 		.antCtrlCommon2 = LE32(0x44444),
2604 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2605 		.antCtrlChain = {
2606 			LE16(0x150), LE16(0x150), LE16(0x150),
2607 		},
2608 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2609 		.xatten1DB = {0x19, 0x19, 0x19},
2610 
2611 		/*
2612 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2613 		 * for merlin (0xa20c/b20c 16:12
2614 		 */
2615 		.xatten1Margin = {0x14, 0x14, 0x14},
2616 		.tempSlope = 70,
2617 		.voltSlope = 0,
2618 		/* spurChans spur channels in usual fbin coding format */
2619 		.spurChans = {0, 0, 0, 0, 0},
2620 		/* noiseFloorThreshCh Check if the register is per chain */
2621 		.noiseFloorThreshCh = {-1, 0, 0},
2622 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2623 		.quick_drop = 0,
2624 		.xpaBiasLvl = 0,
2625 		.txFrameToDataStart = 0x0e,
2626 		.txFrameToPaOn = 0x0e,
2627 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2628 		.antennaGain = 0,
2629 		.switchSettling = 0x2d,
2630 		.adcDesiredSize = -30,
2631 		.txEndToXpaOff = 0,
2632 		.txEndToRxOn = 0x2,
2633 		.txFrameToXpaOn = 0xe,
2634 		.thresh62 = 28,
2635 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2636 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2637 		.xlna_bias_strength = 0,
2638 		.futureModal = {
2639 			0, 0, 0, 0, 0, 0, 0,
2640 		},
2641 	 },
2642 	.base_ext2 = {
2643 		.tempSlopeLow = 35,
2644 		.tempSlopeHigh = 50,
2645 		.xatten1DBLow = {0, 0, 0},
2646 		.xatten1MarginLow = {0, 0, 0},
2647 		.xatten1DBHigh = {0, 0, 0},
2648 		.xatten1MarginHigh = {0, 0, 0}
2649 	 },
2650 	.calFreqPier5G = {
2651 		FREQ2FBIN(5160, 0),
2652 		FREQ2FBIN(5220, 0),
2653 		FREQ2FBIN(5320, 0),
2654 		FREQ2FBIN(5400, 0),
2655 		FREQ2FBIN(5500, 0),
2656 		FREQ2FBIN(5600, 0),
2657 		FREQ2FBIN(5700, 0),
2658 		FREQ2FBIN(5785, 0)
2659 	},
2660 	.calPierData5G = {
2661 			{
2662 				{0, 0, 0, 0, 0},
2663 				{0, 0, 0, 0, 0},
2664 				{0, 0, 0, 0, 0},
2665 				{0, 0, 0, 0, 0},
2666 				{0, 0, 0, 0, 0},
2667 				{0, 0, 0, 0, 0},
2668 				{0, 0, 0, 0, 0},
2669 				{0, 0, 0, 0, 0},
2670 			},
2671 			{
2672 				{0, 0, 0, 0, 0},
2673 				{0, 0, 0, 0, 0},
2674 				{0, 0, 0, 0, 0},
2675 				{0, 0, 0, 0, 0},
2676 				{0, 0, 0, 0, 0},
2677 				{0, 0, 0, 0, 0},
2678 				{0, 0, 0, 0, 0},
2679 				{0, 0, 0, 0, 0},
2680 			},
2681 			{
2682 				{0, 0, 0, 0, 0},
2683 				{0, 0, 0, 0, 0},
2684 				{0, 0, 0, 0, 0},
2685 				{0, 0, 0, 0, 0},
2686 				{0, 0, 0, 0, 0},
2687 				{0, 0, 0, 0, 0},
2688 				{0, 0, 0, 0, 0},
2689 				{0, 0, 0, 0, 0},
2690 			},
2691 
2692 	},
2693 	.calTarget_freqbin_5G = {
2694 		FREQ2FBIN(5180, 0),
2695 		FREQ2FBIN(5240, 0),
2696 		FREQ2FBIN(5320, 0),
2697 		FREQ2FBIN(5400, 0),
2698 		FREQ2FBIN(5500, 0),
2699 		FREQ2FBIN(5600, 0),
2700 		FREQ2FBIN(5700, 0),
2701 		FREQ2FBIN(5825, 0)
2702 	},
2703 	.calTarget_freqbin_5GHT20 = {
2704 		FREQ2FBIN(5180, 0),
2705 		FREQ2FBIN(5240, 0),
2706 		FREQ2FBIN(5320, 0),
2707 		FREQ2FBIN(5400, 0),
2708 		FREQ2FBIN(5500, 0),
2709 		FREQ2FBIN(5700, 0),
2710 		FREQ2FBIN(5745, 0),
2711 		FREQ2FBIN(5825, 0)
2712 	},
2713 	.calTarget_freqbin_5GHT40 = {
2714 		FREQ2FBIN(5180, 0),
2715 		FREQ2FBIN(5240, 0),
2716 		FREQ2FBIN(5320, 0),
2717 		FREQ2FBIN(5400, 0),
2718 		FREQ2FBIN(5500, 0),
2719 		FREQ2FBIN(5700, 0),
2720 		FREQ2FBIN(5745, 0),
2721 		FREQ2FBIN(5825, 0)
2722 	 },
2723 	.calTargetPower5G = {
2724 		/* 6-24,36,48,54 */
2725 		{ {30, 30, 28, 24} },
2726 		{ {30, 30, 28, 24} },
2727 		{ {30, 30, 28, 24} },
2728 		{ {30, 30, 28, 24} },
2729 		{ {30, 30, 28, 24} },
2730 		{ {30, 30, 28, 24} },
2731 		{ {30, 30, 28, 24} },
2732 		{ {30, 30, 28, 24} },
2733 	 },
2734 	.calTargetPower5GHT20 = {
2735 		/*
2736 		 * 0_8_16,1-3_9-11_17-19,
2737 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2738 		 */
2739 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2740 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2741 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2742 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2743 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2744 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2745 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2746 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2747 	 },
2748 	.calTargetPower5GHT40 =  {
2749 		/*
2750 		 * 0_8_16,1-3_9-11_17-19,
2751 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2752 		 */
2753 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2754 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2755 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2756 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2757 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2758 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2759 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2760 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2761 	 },
2762 	.ctlIndex_5G =  {
2763 		0x10, 0x16, 0x18, 0x40, 0x46,
2764 		0x48, 0x30, 0x36, 0x38
2765 	},
2766 	.ctl_freqbin_5G =  {
2767 		{
2768 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2769 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2770 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2771 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2772 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2773 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2774 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2775 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2776 		},
2777 		{
2778 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2779 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2780 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2781 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2782 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2783 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2784 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2785 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2786 		},
2787 
2788 		{
2789 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2790 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2791 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2792 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2793 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2794 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2795 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2796 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2797 		},
2798 
2799 		{
2800 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2801 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2802 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2803 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2804 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2805 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2806 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
2807 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
2808 		},
2809 
2810 		{
2811 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2812 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2813 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2814 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2815 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
2816 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
2817 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
2818 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
2819 		},
2820 
2821 		{
2822 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2823 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2824 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2825 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2826 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2827 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2828 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
2829 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
2830 		},
2831 
2832 		{
2833 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2834 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2835 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2836 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2837 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2838 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2839 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2840 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2841 		},
2842 
2843 		{
2844 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2845 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2846 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2847 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2848 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2849 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2850 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2851 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2852 		},
2853 
2854 		{
2855 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2856 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2857 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2858 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2859 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2860 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2861 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2862 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2863 		}
2864 	 },
2865 	.ctlPowerData_5G = {
2866 		{
2867 			{
2868 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2869 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2870 			}
2871 		},
2872 		{
2873 			{
2874 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2875 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2876 			}
2877 		},
2878 		{
2879 			{
2880 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2881 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2882 			}
2883 		},
2884 		{
2885 			{
2886 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2887 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2888 			}
2889 		},
2890 		{
2891 			{
2892 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2893 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2894 			}
2895 		},
2896 		{
2897 			{
2898 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2899 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2900 			}
2901 		},
2902 		{
2903 			{
2904 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2905 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2906 			}
2907 		},
2908 		{
2909 			{
2910 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2911 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2912 			}
2913 		},
2914 		{
2915 			{
2916 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2917 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2918 			}
2919 		},
2920 	 }
2921 };
2922 
2923 
2924 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2925 	&ar9300_default,
2926 	&ar9300_x112,
2927 	&ar9300_h116,
2928 	&ar9300_h112,
2929 	&ar9300_x113,
2930 };
2931 
2932 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2933 {
2934 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2935 	int it;
2936 
2937 	for (it = 0; it < N_LOOP; it++)
2938 		if (ar9300_eep_templates[it]->templateVersion == id)
2939 			return ar9300_eep_templates[it];
2940 	return NULL;
2941 #undef N_LOOP
2942 }
2943 
2944 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2945 {
2946 	return 0;
2947 }
2948 
2949 static int interpolate(int x, int xa, int xb, int ya, int yb)
2950 {
2951 	int bf, factor, plus;
2952 
2953 	bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2954 	factor = bf / 2;
2955 	plus = bf % 2;
2956 	return ya + factor + plus;
2957 }
2958 
2959 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
2960 				      enum eeprom_param param)
2961 {
2962 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2963 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
2964 
2965 	switch (param) {
2966 	case EEP_MAC_LSW:
2967 		return get_unaligned_be16(eep->macAddr);
2968 	case EEP_MAC_MID:
2969 		return get_unaligned_be16(eep->macAddr + 2);
2970 	case EEP_MAC_MSW:
2971 		return get_unaligned_be16(eep->macAddr + 4);
2972 	case EEP_REG_0:
2973 		return le16_to_cpu(pBase->regDmn[0]);
2974 	case EEP_OP_CAP:
2975 		return pBase->deviceCap;
2976 	case EEP_OP_MODE:
2977 		return pBase->opCapFlags.opFlags;
2978 	case EEP_RF_SILENT:
2979 		return pBase->rfSilent;
2980 	case EEP_TX_MASK:
2981 		return (pBase->txrxMask >> 4) & 0xf;
2982 	case EEP_RX_MASK:
2983 		return pBase->txrxMask & 0xf;
2984 	case EEP_PAPRD:
2985 		return !!(pBase->featureEnable & BIT(5));
2986 	case EEP_CHAIN_MASK_REDUCE:
2987 		return (pBase->miscConfiguration >> 0x3) & 0x1;
2988 	case EEP_ANT_DIV_CTL1:
2989 		return eep->base_ext1.ant_div_control;
2990 	case EEP_ANTENNA_GAIN_5G:
2991 		return eep->modalHeader5G.antennaGain;
2992 	case EEP_ANTENNA_GAIN_2G:
2993 		return eep->modalHeader2G.antennaGain;
2994 	default:
2995 		return 0;
2996 	}
2997 }
2998 
2999 static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
3000 				    u8 *buffer)
3001 {
3002 	u16 val;
3003 
3004 	if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3005 		return false;
3006 
3007 	*buffer = (val >> (8 * (address % 2))) & 0xff;
3008 	return true;
3009 }
3010 
3011 static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
3012 				    u8 *buffer)
3013 {
3014 	u16 val;
3015 
3016 	if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3017 		return false;
3018 
3019 	buffer[0] = val >> 8;
3020 	buffer[1] = val & 0xff;
3021 
3022 	return true;
3023 }
3024 
3025 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3026 			       int count)
3027 {
3028 	struct ath_common *common = ath9k_hw_common(ah);
3029 	int i;
3030 
3031 	if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3032 		ath_dbg(common, EEPROM, "eeprom address not in range\n");
3033 		return false;
3034 	}
3035 
3036 	/*
3037 	 * Since we're reading the bytes in reverse order from a little-endian
3038 	 * word stream, an even address means we only use the lower half of
3039 	 * the 16-bit word at that address
3040 	 */
3041 	if (address % 2 == 0) {
3042 		if (!ar9300_eeprom_read_byte(common, address--, buffer++))
3043 			goto error;
3044 
3045 		count--;
3046 	}
3047 
3048 	for (i = 0; i < count / 2; i++) {
3049 		if (!ar9300_eeprom_read_word(common, address, buffer))
3050 			goto error;
3051 
3052 		address -= 2;
3053 		buffer += 2;
3054 	}
3055 
3056 	if (count % 2)
3057 		if (!ar9300_eeprom_read_byte(common, address, buffer))
3058 			goto error;
3059 
3060 	return true;
3061 
3062 error:
3063 	ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
3064 		address);
3065 	return false;
3066 }
3067 
3068 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3069 {
3070 	REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3071 
3072 	if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3073 			   AR9300_OTP_STATUS_VALID, 1000))
3074 		return false;
3075 
3076 	*data = REG_READ(ah, AR9300_OTP_READ_DATA);
3077 	return true;
3078 }
3079 
3080 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3081 			    int count)
3082 {
3083 	u32 data;
3084 	int i;
3085 
3086 	for (i = 0; i < count; i++) {
3087 		int offset = 8 * ((address - i) % 4);
3088 		if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3089 			return false;
3090 
3091 		buffer[i] = (data >> offset) & 0xff;
3092 	}
3093 
3094 	return true;
3095 }
3096 
3097 
3098 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3099 				   int *length, int *major, int *minor)
3100 {
3101 	unsigned long value[4];
3102 
3103 	value[0] = best[0];
3104 	value[1] = best[1];
3105 	value[2] = best[2];
3106 	value[3] = best[3];
3107 	*code = ((value[0] >> 5) & 0x0007);
3108 	*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3109 	*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3110 	*major = (value[2] & 0x000f);
3111 	*minor = (value[3] & 0x00ff);
3112 }
3113 
3114 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3115 {
3116 	int it, checksum = 0;
3117 
3118 	for (it = 0; it < dsize; it++) {
3119 		checksum += data[it];
3120 		checksum &= 0xffff;
3121 	}
3122 
3123 	return checksum;
3124 }
3125 
3126 static bool ar9300_uncompress_block(struct ath_hw *ah,
3127 				    u8 *mptr,
3128 				    int mdataSize,
3129 				    u8 *block,
3130 				    int size)
3131 {
3132 	int it;
3133 	int spot;
3134 	int offset;
3135 	int length;
3136 	struct ath_common *common = ath9k_hw_common(ah);
3137 
3138 	spot = 0;
3139 
3140 	for (it = 0; it < size; it += (length+2)) {
3141 		offset = block[it];
3142 		offset &= 0xff;
3143 		spot += offset;
3144 		length = block[it+1];
3145 		length &= 0xff;
3146 
3147 		if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3148 			ath_dbg(common, EEPROM,
3149 				"Restore at %d: spot=%d offset=%d length=%d\n",
3150 				it, spot, offset, length);
3151 			memcpy(&mptr[spot], &block[it+2], length);
3152 			spot += length;
3153 		} else if (length > 0) {
3154 			ath_dbg(common, EEPROM,
3155 				"Bad restore at %d: spot=%d offset=%d length=%d\n",
3156 				it, spot, offset, length);
3157 			return false;
3158 		}
3159 	}
3160 	return true;
3161 }
3162 
3163 static int ar9300_compress_decision(struct ath_hw *ah,
3164 				    int it,
3165 				    int code,
3166 				    int reference,
3167 				    u8 *mptr,
3168 				    u8 *word, int length, int mdata_size)
3169 {
3170 	struct ath_common *common = ath9k_hw_common(ah);
3171 	const struct ar9300_eeprom *eep = NULL;
3172 
3173 	switch (code) {
3174 	case _CompressNone:
3175 		if (length != mdata_size) {
3176 			ath_dbg(common, EEPROM,
3177 				"EEPROM structure size mismatch memory=%d eeprom=%d\n",
3178 				mdata_size, length);
3179 			return -1;
3180 		}
3181 		memcpy(mptr, word + COMP_HDR_LEN, length);
3182 		ath_dbg(common, EEPROM,
3183 			"restored eeprom %d: uncompressed, length %d\n",
3184 			it, length);
3185 		break;
3186 	case _CompressBlock:
3187 		if (reference == 0) {
3188 		} else {
3189 			eep = ar9003_eeprom_struct_find_by_id(reference);
3190 			if (eep == NULL) {
3191 				ath_dbg(common, EEPROM,
3192 					"can't find reference eeprom struct %d\n",
3193 					reference);
3194 				return -1;
3195 			}
3196 			memcpy(mptr, eep, mdata_size);
3197 		}
3198 		ath_dbg(common, EEPROM,
3199 			"restore eeprom %d: block, reference %d, length %d\n",
3200 			it, reference, length);
3201 		ar9300_uncompress_block(ah, mptr, mdata_size,
3202 					(word + COMP_HDR_LEN), length);
3203 		break;
3204 	default:
3205 		ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
3206 		return -1;
3207 	}
3208 	return 0;
3209 }
3210 
3211 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3212 			       int count);
3213 
3214 static bool ar9300_check_header(void *data)
3215 {
3216 	u32 *word = data;
3217 	return !(*word == 0 || *word == ~0);
3218 }
3219 
3220 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3221 				       int base_addr)
3222 {
3223 	u8 header[4];
3224 
3225 	if (!read(ah, base_addr, header, 4))
3226 		return false;
3227 
3228 	return ar9300_check_header(header);
3229 }
3230 
3231 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3232 				       int mdata_size)
3233 {
3234 	struct ath_common *common = ath9k_hw_common(ah);
3235 	u16 *data = (u16 *) mptr;
3236 	int i;
3237 
3238 	for (i = 0; i < mdata_size / 2; i++, data++)
3239 		ath9k_hw_nvram_read(common, i, data);
3240 
3241 	return 0;
3242 }
3243 /*
3244  * Read the configuration data from the eeprom.
3245  * The data can be put in any specified memory buffer.
3246  *
3247  * Returns -1 on error.
3248  * Returns address of next memory location on success.
3249  */
3250 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3251 					  u8 *mptr, int mdata_size)
3252 {
3253 #define MDEFAULT 15
3254 #define MSTATE 100
3255 	int cptr;
3256 	u8 *word;
3257 	int code;
3258 	int reference, length, major, minor;
3259 	int osize;
3260 	int it;
3261 	u16 checksum, mchecksum;
3262 	struct ath_common *common = ath9k_hw_common(ah);
3263 	struct ar9300_eeprom *eep;
3264 	eeprom_read_op read;
3265 
3266 	if (ath9k_hw_use_flash(ah)) {
3267 		u8 txrx;
3268 
3269 		ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3270 
3271 		/* check if eeprom contains valid data */
3272 		eep = (struct ar9300_eeprom *) mptr;
3273 		txrx = eep->baseEepHeader.txrxMask;
3274 		if (txrx != 0 && txrx != 0xff)
3275 			return 0;
3276 	}
3277 
3278 	word = kzalloc(2048, GFP_KERNEL);
3279 	if (!word)
3280 		return -ENOMEM;
3281 
3282 	memcpy(mptr, &ar9300_default, mdata_size);
3283 
3284 	read = ar9300_read_eeprom;
3285 	if (AR_SREV_9485(ah))
3286 		cptr = AR9300_BASE_ADDR_4K;
3287 	else if (AR_SREV_9330(ah))
3288 		cptr = AR9300_BASE_ADDR_512;
3289 	else
3290 		cptr = AR9300_BASE_ADDR;
3291 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3292 		cptr);
3293 	if (ar9300_check_eeprom_header(ah, read, cptr))
3294 		goto found;
3295 
3296 	cptr = AR9300_BASE_ADDR_512;
3297 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3298 		cptr);
3299 	if (ar9300_check_eeprom_header(ah, read, cptr))
3300 		goto found;
3301 
3302 	read = ar9300_read_otp;
3303 	cptr = AR9300_BASE_ADDR;
3304 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3305 	if (ar9300_check_eeprom_header(ah, read, cptr))
3306 		goto found;
3307 
3308 	cptr = AR9300_BASE_ADDR_512;
3309 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3310 	if (ar9300_check_eeprom_header(ah, read, cptr))
3311 		goto found;
3312 
3313 	goto fail;
3314 
3315 found:
3316 	ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
3317 
3318 	for (it = 0; it < MSTATE; it++) {
3319 		if (!read(ah, cptr, word, COMP_HDR_LEN))
3320 			goto fail;
3321 
3322 		if (!ar9300_check_header(word))
3323 			break;
3324 
3325 		ar9300_comp_hdr_unpack(word, &code, &reference,
3326 				       &length, &major, &minor);
3327 		ath_dbg(common, EEPROM,
3328 			"Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3329 			cptr, code, reference, length, major, minor);
3330 		if ((!AR_SREV_9485(ah) && length >= 1024) ||
3331 		    (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3332 			ath_dbg(common, EEPROM, "Skipping bad header\n");
3333 			cptr -= COMP_HDR_LEN;
3334 			continue;
3335 		}
3336 
3337 		osize = length;
3338 		read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3339 		checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3340 		mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3341 		ath_dbg(common, EEPROM, "checksum %x %x\n",
3342 			checksum, mchecksum);
3343 		if (checksum == mchecksum) {
3344 			ar9300_compress_decision(ah, it, code, reference, mptr,
3345 						 word, length, mdata_size);
3346 		} else {
3347 			ath_dbg(common, EEPROM,
3348 				"skipping block with bad checksum\n");
3349 		}
3350 		cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3351 	}
3352 
3353 	kfree(word);
3354 	return cptr;
3355 
3356 fail:
3357 	kfree(word);
3358 	return -1;
3359 }
3360 
3361 /*
3362  * Restore the configuration structure by reading the eeprom.
3363  * This function destroys any existing in-memory structure
3364  * content.
3365  */
3366 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3367 {
3368 	u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3369 
3370 	if (ar9300_eeprom_restore_internal(ah, mptr,
3371 			sizeof(struct ar9300_eeprom)) < 0)
3372 		return false;
3373 
3374 	return true;
3375 }
3376 
3377 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
3378 static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
3379 				    struct ar9300_modal_eep_header *modal_hdr)
3380 {
3381 	PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
3382 	PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
3383 	PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
3384 	PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
3385 	PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
3386 	PR_EEP("Ant. Gain", modal_hdr->antennaGain);
3387 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
3388 	PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
3389 	PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
3390 	PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
3391 	PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
3392 	PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
3393 	PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
3394 	PR_EEP("Temp Slope", modal_hdr->tempSlope);
3395 	PR_EEP("Volt Slope", modal_hdr->voltSlope);
3396 	PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
3397 	PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
3398 	PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
3399 	PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
3400 	PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
3401 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
3402 	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
3403 	PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3404 	PR_EEP("Quick Drop", modal_hdr->quick_drop);
3405 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
3406 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
3407 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
3408 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
3409 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
3410 	PR_EEP("txClip", modal_hdr->txClip);
3411 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
3412 
3413 	return len;
3414 }
3415 
3416 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3417 				       u8 *buf, u32 len, u32 size)
3418 {
3419 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3420 	struct ar9300_base_eep_hdr *pBase;
3421 
3422 	if (!dump_base_hdr) {
3423 		len += snprintf(buf + len, size - len,
3424 				"%20s :\n", "2GHz modal Header");
3425 		len = ar9003_dump_modal_eeprom(buf, len, size,
3426 						&eep->modalHeader2G);
3427 		len += snprintf(buf + len, size - len,
3428 				"%20s :\n", "5GHz modal Header");
3429 		len = ar9003_dump_modal_eeprom(buf, len, size,
3430 						&eep->modalHeader5G);
3431 		goto out;
3432 	}
3433 
3434 	pBase = &eep->baseEepHeader;
3435 
3436 	PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
3437 	PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
3438 	PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
3439 	PR_EEP("TX Mask", (pBase->txrxMask >> 4));
3440 	PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
3441 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
3442 				AR5416_OPFLAGS_11A));
3443 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
3444 				AR5416_OPFLAGS_11G));
3445 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
3446 					AR5416_OPFLAGS_N_2G_HT20));
3447 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
3448 					AR5416_OPFLAGS_N_2G_HT40));
3449 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
3450 					AR5416_OPFLAGS_N_5G_HT20));
3451 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
3452 					AR5416_OPFLAGS_N_5G_HT40));
3453 	PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc & 0x01));
3454 	PR_EEP("RF Silent", pBase->rfSilent);
3455 	PR_EEP("BT option", pBase->blueToothOptions);
3456 	PR_EEP("Device Cap", pBase->deviceCap);
3457 	PR_EEP("Device Type", pBase->deviceType);
3458 	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
3459 	PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
3460 	PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
3461 	PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
3462 	PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
3463 	PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
3464 	PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
3465 	PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
3466 	PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
3467 	PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3468 	PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
3469 	PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
3470 	PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
3471 	PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
3472 	PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
3473 	PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
3474 	PR_EEP("Tx Gain", pBase->txrxgain >> 4);
3475 	PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
3476 	PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
3477 
3478 	len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
3479 			ah->eeprom.ar9300_eep.macAddr);
3480 out:
3481 	if (len > size)
3482 		len = size;
3483 
3484 	return len;
3485 }
3486 #else
3487 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3488 				       u8 *buf, u32 len, u32 size)
3489 {
3490 	return 0;
3491 }
3492 #endif
3493 
3494 /* XXX: review hardware docs */
3495 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3496 {
3497 	return ah->eeprom.ar9300_eep.eepromVersion;
3498 }
3499 
3500 /* XXX: could be read from the eepromVersion, not sure yet */
3501 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3502 {
3503 	return 0;
3504 }
3505 
3506 static struct ar9300_modal_eep_header *ar9003_modal_header(struct ath_hw *ah,
3507 							   bool is2ghz)
3508 {
3509 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3510 
3511 	if (is2ghz)
3512 		return &eep->modalHeader2G;
3513 	else
3514 		return &eep->modalHeader5G;
3515 }
3516 
3517 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3518 {
3519 	int bias = ar9003_modal_header(ah, is2ghz)->xpaBiasLvl;
3520 
3521 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3522 		REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3523 	else if (AR_SREV_9462(ah) || AR_SREV_9550(ah))
3524 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3525 	else {
3526 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3527 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3528 				AR_CH0_THERM_XPABIASLVL_MSB,
3529 				bias >> 2);
3530 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3531 				AR_CH0_THERM_XPASHORT2GND, 1);
3532 	}
3533 }
3534 
3535 static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is2ghz)
3536 {
3537 	return le16_to_cpu(ar9003_modal_header(ah, is2ghz)->switchcomspdt);
3538 }
3539 
3540 
3541 static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3542 {
3543 	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon);
3544 }
3545 
3546 static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3547 {
3548 	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon2);
3549 }
3550 
3551 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah, int chain,
3552 					bool is2ghz)
3553 {
3554 	__le16 val = ar9003_modal_header(ah, is2ghz)->antCtrlChain[chain];
3555 	return le16_to_cpu(val);
3556 }
3557 
3558 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3559 {
3560 	int chain;
3561 	u32 regval;
3562 	u32 ant_div_ctl1;
3563 	static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3564 			AR_PHY_SWITCH_CHAIN_0,
3565 			AR_PHY_SWITCH_CHAIN_1,
3566 			AR_PHY_SWITCH_CHAIN_2,
3567 	};
3568 
3569 	u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3570 
3571 	if (AR_SREV_9462(ah)) {
3572 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3573 				AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3574 	} else if (AR_SREV_9550(ah)) {
3575 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3576 				AR_SWITCH_TABLE_COM_AR9550_ALL, value);
3577 	} else
3578 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3579 			      AR_SWITCH_TABLE_COM_ALL, value);
3580 
3581 
3582 	/*
3583 	 *   AR9462 defines new switch table for BT/WLAN,
3584 	 *       here's new field name in XXX.ref for both 2G and 5G.
3585 	 *   Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3586 	 *   15:12   R/W     SWITCH_TABLE_COM_SPDT_WLAN_RX
3587 	 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3588 	 *
3589 	 *   11:8     R/W     SWITCH_TABLE_COM_SPDT_WLAN_TX
3590 	 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3591 	 *
3592 	 *   7:4 R/W  SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3593 	 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3594 	 */
3595 	if (AR_SREV_9462_20_OR_LATER(ah)) {
3596 		value = ar9003_switch_com_spdt_get(ah, is2ghz);
3597 		REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
3598 				AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3599 		REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE);
3600 	}
3601 
3602 	value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3603 	REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3604 
3605 	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3606 		if ((ah->rxchainmask & BIT(chain)) ||
3607 		    (ah->txchainmask & BIT(chain))) {
3608 			value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3609 							     is2ghz);
3610 			REG_RMW_FIELD(ah, switch_chain_reg[chain],
3611 				      AR_SWITCH_TABLE_ALL, value);
3612 		}
3613 	}
3614 
3615 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3616 		value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3617 		/*
3618 		 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3619 		 * are the fields present
3620 		 */
3621 		regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3622 		regval &= (~AR_ANT_DIV_CTRL_ALL);
3623 		regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3624 		/* enable_lnadiv */
3625 		regval &= (~AR_PHY_9485_ANT_DIV_LNADIV);
3626 		regval |= ((value >> 6) & 0x1) <<
3627 				AR_PHY_9485_ANT_DIV_LNADIV_S;
3628 		REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3629 
3630 		/*enable fast_div */
3631 		regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3632 		regval &= (~AR_FAST_DIV_ENABLE);
3633 		regval |= ((value >> 7) & 0x1) <<
3634 				AR_FAST_DIV_ENABLE_S;
3635 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3636 		ant_div_ctl1 =
3637 			ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
3638 		/* check whether antenna diversity is enabled */
3639 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
3640 			regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3641 			/*
3642 			 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3643 			 * main_tb, alt_tb
3644 			 */
3645 			regval &= (~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
3646 					AR_PHY_9485_ANT_DIV_ALT_LNACONF |
3647 					AR_PHY_9485_ANT_DIV_ALT_GAINTB |
3648 					AR_PHY_9485_ANT_DIV_MAIN_GAINTB));
3649 			/* by default use LNA1 for the main antenna */
3650 			regval |= (AR_PHY_9485_ANT_DIV_LNA1 <<
3651 					AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S);
3652 			regval |= (AR_PHY_9485_ANT_DIV_LNA2 <<
3653 					AR_PHY_9485_ANT_DIV_ALT_LNACONF_S);
3654 			REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3655 		}
3656 
3657 
3658 	}
3659 
3660 }
3661 
3662 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3663 {
3664 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3665 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3666 	int drive_strength;
3667 	unsigned long reg;
3668 
3669 	drive_strength = pBase->miscConfiguration & BIT(0);
3670 	if (!drive_strength)
3671 		return;
3672 
3673 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3674 	reg &= ~0x00ffffc0;
3675 	reg |= 0x5 << 21;
3676 	reg |= 0x5 << 18;
3677 	reg |= 0x5 << 15;
3678 	reg |= 0x5 << 12;
3679 	reg |= 0x5 << 9;
3680 	reg |= 0x5 << 6;
3681 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3682 
3683 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3684 	reg &= ~0xffffffe0;
3685 	reg |= 0x5 << 29;
3686 	reg |= 0x5 << 26;
3687 	reg |= 0x5 << 23;
3688 	reg |= 0x5 << 20;
3689 	reg |= 0x5 << 17;
3690 	reg |= 0x5 << 14;
3691 	reg |= 0x5 << 11;
3692 	reg |= 0x5 << 8;
3693 	reg |= 0x5 << 5;
3694 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3695 
3696 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3697 	reg &= ~0xff800000;
3698 	reg |= 0x5 << 29;
3699 	reg |= 0x5 << 26;
3700 	reg |= 0x5 << 23;
3701 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3702 }
3703 
3704 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3705 				     struct ath9k_channel *chan)
3706 {
3707 	int f[3], t[3];
3708 	u16 value;
3709 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3710 
3711 	if (chain >= 0 && chain < 3) {
3712 		if (IS_CHAN_2GHZ(chan))
3713 			return eep->modalHeader2G.xatten1DB[chain];
3714 		else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3715 			t[0] = eep->base_ext2.xatten1DBLow[chain];
3716 			f[0] = 5180;
3717 			t[1] = eep->modalHeader5G.xatten1DB[chain];
3718 			f[1] = 5500;
3719 			t[2] = eep->base_ext2.xatten1DBHigh[chain];
3720 			f[2] = 5785;
3721 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3722 							    f, t, 3);
3723 			return value;
3724 		} else
3725 			return eep->modalHeader5G.xatten1DB[chain];
3726 	}
3727 
3728 	return 0;
3729 }
3730 
3731 
3732 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3733 					    struct ath9k_channel *chan)
3734 {
3735 	int f[3], t[3];
3736 	u16 value;
3737 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3738 
3739 	if (chain >= 0 && chain < 3) {
3740 		if (IS_CHAN_2GHZ(chan))
3741 			return eep->modalHeader2G.xatten1Margin[chain];
3742 		else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3743 			t[0] = eep->base_ext2.xatten1MarginLow[chain];
3744 			f[0] = 5180;
3745 			t[1] = eep->modalHeader5G.xatten1Margin[chain];
3746 			f[1] = 5500;
3747 			t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3748 			f[2] = 5785;
3749 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3750 							    f, t, 3);
3751 			return value;
3752 		} else
3753 			return eep->modalHeader5G.xatten1Margin[chain];
3754 	}
3755 
3756 	return 0;
3757 }
3758 
3759 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3760 {
3761 	int i;
3762 	u16 value;
3763 	unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3764 					  AR_PHY_EXT_ATTEN_CTL_1,
3765 					  AR_PHY_EXT_ATTEN_CTL_2,
3766 					 };
3767 
3768 	/* Test value. if 0 then attenuation is unused. Don't load anything. */
3769 	for (i = 0; i < 3; i++) {
3770 		if (ah->txchainmask & BIT(i)) {
3771 			value = ar9003_hw_atten_chain_get(ah, i, chan);
3772 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3773 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3774 
3775 			value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3776 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3777 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3778 				      value);
3779 		}
3780 	}
3781 }
3782 
3783 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3784 {
3785 	int timeout = 100;
3786 
3787 	while (pmu_set != REG_READ(ah, pmu_reg)) {
3788 		if (timeout-- == 0)
3789 			return false;
3790 		REG_WRITE(ah, pmu_reg, pmu_set);
3791 		udelay(10);
3792 	}
3793 
3794 	return true;
3795 }
3796 
3797 void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3798 {
3799 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3800 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3801 	u32 reg_val;
3802 
3803 	if (pBase->featureEnable & BIT(4)) {
3804 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3805 			int reg_pmu_set;
3806 
3807 			reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3808 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3809 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3810 				return;
3811 
3812 			if (AR_SREV_9330(ah)) {
3813 				if (ah->is_clk_25mhz) {
3814 					reg_pmu_set = (3 << 1) | (8 << 4) |
3815 						      (3 << 8) | (1 << 14) |
3816 						      (6 << 17) | (1 << 20) |
3817 						      (3 << 24);
3818 				} else {
3819 					reg_pmu_set = (4 << 1)  | (7 << 4) |
3820 						      (3 << 8)  | (1 << 14) |
3821 						      (6 << 17) | (1 << 20) |
3822 						      (3 << 24);
3823 				}
3824 			} else {
3825 				reg_pmu_set = (5 << 1) | (7 << 4) |
3826 					      (2 << 8) | (2 << 14) |
3827 					      (6 << 17) | (1 << 20) |
3828 					      (3 << 24) | (1 << 28);
3829 			}
3830 
3831 			REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3832 			if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3833 				return;
3834 
3835 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3836 					| (4 << 26);
3837 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3838 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3839 				return;
3840 
3841 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3842 					| (1 << 21);
3843 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3844 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3845 				return;
3846 		} else if (AR_SREV_9462(ah)) {
3847 			reg_val = le32_to_cpu(pBase->swreg);
3848 			REG_WRITE(ah, AR_PHY_PMU1, reg_val);
3849 		} else {
3850 			/* Internal regulator is ON. Write swreg register. */
3851 			reg_val = le32_to_cpu(pBase->swreg);
3852 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3853 				  REG_READ(ah, AR_RTC_REG_CONTROL1) &
3854 				  (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3855 			REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
3856 			/* Set REG_CONTROL1.SWREG_PROGRAM */
3857 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3858 				  REG_READ(ah,
3859 					   AR_RTC_REG_CONTROL1) |
3860 					   AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3861 		}
3862 	} else {
3863 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3864 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3865 			while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3866 						AR_PHY_PMU2_PGM))
3867 				udelay(10);
3868 
3869 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3870 			while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3871 						AR_PHY_PMU1_PWD))
3872 				udelay(10);
3873 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3874 			while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3875 						AR_PHY_PMU2_PGM))
3876 				udelay(10);
3877 		} else if (AR_SREV_9462(ah))
3878 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3879 		else {
3880 			reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
3881 				AR_RTC_FORCE_SWREG_PRD;
3882 			REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
3883 		}
3884 	}
3885 
3886 }
3887 
3888 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3889 {
3890 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3891 	u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3892 
3893 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3894 		return;
3895 
3896 	if (eep->baseEepHeader.featureEnable & 0x40) {
3897 		tuning_caps_param &= 0x7f;
3898 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3899 			      tuning_caps_param);
3900 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3901 			      tuning_caps_param);
3902 	}
3903 }
3904 
3905 static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
3906 {
3907 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3908 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3909 	int quick_drop;
3910 	s32 t[3], f[3] = {5180, 5500, 5785};
3911 
3912 	if (!(pBase->miscConfiguration & BIT(1)))
3913 		return;
3914 
3915 	if (freq < 4000)
3916 		quick_drop = eep->modalHeader2G.quick_drop;
3917 	else {
3918 		t[0] = eep->base_ext1.quick_drop_low;
3919 		t[1] = eep->modalHeader5G.quick_drop;
3920 		t[2] = eep->base_ext1.quick_drop_high;
3921 		quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
3922 	}
3923 	REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
3924 }
3925 
3926 static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, bool is2ghz)
3927 {
3928 	u32 value;
3929 
3930 	value = ar9003_modal_header(ah, is2ghz)->txEndToXpaOff;
3931 
3932 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3933 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
3934 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3935 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
3936 }
3937 
3938 static void ar9003_hw_xpa_timing_control_apply(struct ath_hw *ah, bool is2ghz)
3939 {
3940 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3941 	u8 xpa_ctl;
3942 
3943 	if (!(eep->baseEepHeader.featureEnable & 0x80))
3944 		return;
3945 
3946 	if (!AR_SREV_9300(ah) && !AR_SREV_9340(ah) && !AR_SREV_9580(ah))
3947 		return;
3948 
3949 	xpa_ctl = ar9003_modal_header(ah, is2ghz)->txFrameToXpaOn;
3950 	if (is2ghz)
3951 		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3952 			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON, xpa_ctl);
3953 	else
3954 		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3955 			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON, xpa_ctl);
3956 }
3957 
3958 static void ar9003_hw_xlna_bias_strength_apply(struct ath_hw *ah, bool is2ghz)
3959 {
3960 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3961 	u8 bias;
3962 
3963 	if (!(eep->baseEepHeader.featureEnable & 0x40))
3964 		return;
3965 
3966 	if (!AR_SREV_9300(ah))
3967 		return;
3968 
3969 	bias = ar9003_modal_header(ah, is2ghz)->xlna_bias_strength;
3970 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
3971 		      bias & 0x3);
3972 	bias >>= 2;
3973 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
3974 		      bias & 0x3);
3975 	bias >>= 2;
3976 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
3977 		      bias & 0x3);
3978 }
3979 
3980 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
3981 					     struct ath9k_channel *chan)
3982 {
3983 	bool is2ghz = IS_CHAN_2GHZ(chan);
3984 	ar9003_hw_xpa_timing_control_apply(ah, is2ghz);
3985 	ar9003_hw_xpa_bias_level_apply(ah, is2ghz);
3986 	ar9003_hw_ant_ctrl_apply(ah, is2ghz);
3987 	ar9003_hw_drive_strength_apply(ah);
3988 	ar9003_hw_xlna_bias_strength_apply(ah, is2ghz);
3989 	ar9003_hw_atten_apply(ah, chan);
3990 	ar9003_hw_quick_drop_apply(ah, chan->channel);
3991 	if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) && !AR_SREV_9550(ah))
3992 		ar9003_hw_internal_regulator_apply(ah);
3993 	ar9003_hw_apply_tuning_caps(ah);
3994 	ar9003_hw_txend_to_xpa_off_apply(ah, is2ghz);
3995 }
3996 
3997 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
3998 				      struct ath9k_channel *chan)
3999 {
4000 }
4001 
4002 /*
4003  * Returns the interpolated y value corresponding to the specified x value
4004  * from the np ordered pairs of data (px,py).
4005  * The pairs do not have to be in any order.
4006  * If the specified x value is less than any of the px,
4007  * the returned y value is equal to the py for the lowest px.
4008  * If the specified x value is greater than any of the px,
4009  * the returned y value is equal to the py for the highest px.
4010  */
4011 static int ar9003_hw_power_interpolate(int32_t x,
4012 				       int32_t *px, int32_t *py, u_int16_t np)
4013 {
4014 	int ip = 0;
4015 	int lx = 0, ly = 0, lhave = 0;
4016 	int hx = 0, hy = 0, hhave = 0;
4017 	int dx = 0;
4018 	int y = 0;
4019 
4020 	lhave = 0;
4021 	hhave = 0;
4022 
4023 	/* identify best lower and higher x calibration measurement */
4024 	for (ip = 0; ip < np; ip++) {
4025 		dx = x - px[ip];
4026 
4027 		/* this measurement is higher than our desired x */
4028 		if (dx <= 0) {
4029 			if (!hhave || dx > (x - hx)) {
4030 				/* new best higher x measurement */
4031 				hx = px[ip];
4032 				hy = py[ip];
4033 				hhave = 1;
4034 			}
4035 		}
4036 		/* this measurement is lower than our desired x */
4037 		if (dx >= 0) {
4038 			if (!lhave || dx < (x - lx)) {
4039 				/* new best lower x measurement */
4040 				lx = px[ip];
4041 				ly = py[ip];
4042 				lhave = 1;
4043 			}
4044 		}
4045 	}
4046 
4047 	/* the low x is good */
4048 	if (lhave) {
4049 		/* so is the high x */
4050 		if (hhave) {
4051 			/* they're the same, so just pick one */
4052 			if (hx == lx)
4053 				y = ly;
4054 			else	/* interpolate  */
4055 				y = interpolate(x, lx, hx, ly, hy);
4056 		} else		/* only low is good, use it */
4057 			y = ly;
4058 	} else if (hhave)	/* only high is good, use it */
4059 		y = hy;
4060 	else /* nothing is good,this should never happen unless np=0, ???? */
4061 		y = -(1 << 30);
4062 	return y;
4063 }
4064 
4065 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
4066 				       u16 rateIndex, u16 freq, bool is2GHz)
4067 {
4068 	u16 numPiers, i;
4069 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4070 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4071 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4072 	struct cal_tgt_pow_legacy *pEepromTargetPwr;
4073 	u8 *pFreqBin;
4074 
4075 	if (is2GHz) {
4076 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4077 		pEepromTargetPwr = eep->calTargetPower2G;
4078 		pFreqBin = eep->calTarget_freqbin_2G;
4079 	} else {
4080 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4081 		pEepromTargetPwr = eep->calTargetPower5G;
4082 		pFreqBin = eep->calTarget_freqbin_5G;
4083 	}
4084 
4085 	/*
4086 	 * create array of channels and targetpower from
4087 	 * targetpower piers stored on eeprom
4088 	 */
4089 	for (i = 0; i < numPiers; i++) {
4090 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4091 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4092 	}
4093 
4094 	/* interpolate to get target power for given frequency */
4095 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4096 						 freqArray,
4097 						 targetPowerArray, numPiers);
4098 }
4099 
4100 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
4101 					    u16 rateIndex,
4102 					    u16 freq, bool is2GHz)
4103 {
4104 	u16 numPiers, i;
4105 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4106 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4107 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4108 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4109 	u8 *pFreqBin;
4110 
4111 	if (is2GHz) {
4112 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4113 		pEepromTargetPwr = eep->calTargetPower2GHT20;
4114 		pFreqBin = eep->calTarget_freqbin_2GHT20;
4115 	} else {
4116 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4117 		pEepromTargetPwr = eep->calTargetPower5GHT20;
4118 		pFreqBin = eep->calTarget_freqbin_5GHT20;
4119 	}
4120 
4121 	/*
4122 	 * create array of channels and targetpower
4123 	 * from targetpower piers stored on eeprom
4124 	 */
4125 	for (i = 0; i < numPiers; i++) {
4126 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4127 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4128 	}
4129 
4130 	/* interpolate to get target power for given frequency */
4131 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4132 						 freqArray,
4133 						 targetPowerArray, numPiers);
4134 }
4135 
4136 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
4137 					    u16 rateIndex,
4138 					    u16 freq, bool is2GHz)
4139 {
4140 	u16 numPiers, i;
4141 	s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
4142 	s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
4143 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4144 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4145 	u8 *pFreqBin;
4146 
4147 	if (is2GHz) {
4148 		numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
4149 		pEepromTargetPwr = eep->calTargetPower2GHT40;
4150 		pFreqBin = eep->calTarget_freqbin_2GHT40;
4151 	} else {
4152 		numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
4153 		pEepromTargetPwr = eep->calTargetPower5GHT40;
4154 		pFreqBin = eep->calTarget_freqbin_5GHT40;
4155 	}
4156 
4157 	/*
4158 	 * create array of channels and targetpower from
4159 	 * targetpower piers stored on eeprom
4160 	 */
4161 	for (i = 0; i < numPiers; i++) {
4162 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4163 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4164 	}
4165 
4166 	/* interpolate to get target power for given frequency */
4167 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4168 						 freqArray,
4169 						 targetPowerArray, numPiers);
4170 }
4171 
4172 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
4173 					   u16 rateIndex, u16 freq)
4174 {
4175 	u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4176 	s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4177 	s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4178 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4179 	struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4180 	u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4181 
4182 	/*
4183 	 * create array of channels and targetpower from
4184 	 * targetpower piers stored on eeprom
4185 	 */
4186 	for (i = 0; i < numPiers; i++) {
4187 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], 1);
4188 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4189 	}
4190 
4191 	/* interpolate to get target power for given frequency */
4192 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4193 						 freqArray,
4194 						 targetPowerArray, numPiers);
4195 }
4196 
4197 /* Set tx power registers to array of values passed in */
4198 static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4199 {
4200 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
4201 	/* make sure forced gain is not set */
4202 	REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4203 
4204 	/* Write the OFDM power per rate set */
4205 
4206 	/* 6 (LSB), 9, 12, 18 (MSB) */
4207 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4208 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4209 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4210 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4211 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4212 
4213 	/* 24 (LSB), 36, 48, 54 (MSB) */
4214 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4215 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4216 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4217 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4218 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4219 
4220 	/* Write the CCK power per rate set */
4221 
4222 	/* 1L (LSB), reserved, 2L, 2S (MSB) */
4223 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4224 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4225 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4226 		  /* POW_SM(txPowerTimes2,  8) | this is reserved for AR9003 */
4227 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4228 
4229 	/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4230 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4231 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4232 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4233 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4234 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4235 	    );
4236 
4237         /* Write the power for duplicated frames - HT40 */
4238 
4239         /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4240 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4241 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4242 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4243 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24],  8) |
4244 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L],  0)
4245 	    );
4246 
4247 	/* Write the HT20 power per rate set */
4248 
4249 	/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4250 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4251 		  POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4252 		  POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4253 		  POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4254 		  POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4255 	    );
4256 
4257 	/* 6 (LSB), 7, 12, 13 (MSB) */
4258 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4259 		  POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4260 		  POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4261 		  POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4262 		  POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4263 	    );
4264 
4265 	/* 14 (LSB), 15, 20, 21 */
4266 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4267 		  POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4268 		  POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4269 		  POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4270 		  POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4271 	    );
4272 
4273 	/* Mixed HT20 and HT40 rates */
4274 
4275 	/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4276 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4277 		  POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4278 		  POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4279 		  POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4280 		  POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4281 	    );
4282 
4283 	/*
4284 	 * Write the HT40 power per rate set
4285 	 * correct PAR difference between HT40 and HT20/LEGACY
4286 	 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4287 	 */
4288 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4289 		  POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4290 		  POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4291 		  POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4292 		  POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4293 	    );
4294 
4295 	/* 6 (LSB), 7, 12, 13 (MSB) */
4296 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4297 		  POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4298 		  POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4299 		  POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4300 		  POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4301 	    );
4302 
4303 	/* 14 (LSB), 15, 20, 21 */
4304 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4305 		  POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4306 		  POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4307 		  POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4308 		  POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4309 	    );
4310 
4311 	return 0;
4312 #undef POW_SM
4313 }
4314 
4315 static void ar9003_hw_get_legacy_target_powers(struct ath_hw *ah, u16 freq,
4316 					       u8 *targetPowerValT2,
4317 					       bool is2GHz)
4318 {
4319 	targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4320 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4321 					 is2GHz);
4322 	targetPowerValT2[ALL_TARGET_LEGACY_36] =
4323 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4324 					 is2GHz);
4325 	targetPowerValT2[ALL_TARGET_LEGACY_48] =
4326 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4327 					 is2GHz);
4328 	targetPowerValT2[ALL_TARGET_LEGACY_54] =
4329 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4330 					 is2GHz);
4331 }
4332 
4333 static void ar9003_hw_get_cck_target_powers(struct ath_hw *ah, u16 freq,
4334 					    u8 *targetPowerValT2)
4335 {
4336 	targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4337 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4338 					     freq);
4339 	targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4340 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4341 	targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4342 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4343 	targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4344 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4345 }
4346 
4347 static void ar9003_hw_get_ht20_target_powers(struct ath_hw *ah, u16 freq,
4348 					     u8 *targetPowerValT2, bool is2GHz)
4349 {
4350 	targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4351 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4352 					      is2GHz);
4353 	targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4354 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4355 					      freq, is2GHz);
4356 	targetPowerValT2[ALL_TARGET_HT20_4] =
4357 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4358 					      is2GHz);
4359 	targetPowerValT2[ALL_TARGET_HT20_5] =
4360 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4361 					      is2GHz);
4362 	targetPowerValT2[ALL_TARGET_HT20_6] =
4363 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4364 					      is2GHz);
4365 	targetPowerValT2[ALL_TARGET_HT20_7] =
4366 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4367 					      is2GHz);
4368 	targetPowerValT2[ALL_TARGET_HT20_12] =
4369 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4370 					      is2GHz);
4371 	targetPowerValT2[ALL_TARGET_HT20_13] =
4372 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4373 					      is2GHz);
4374 	targetPowerValT2[ALL_TARGET_HT20_14] =
4375 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4376 					      is2GHz);
4377 	targetPowerValT2[ALL_TARGET_HT20_15] =
4378 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4379 					      is2GHz);
4380 	targetPowerValT2[ALL_TARGET_HT20_20] =
4381 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4382 					      is2GHz);
4383 	targetPowerValT2[ALL_TARGET_HT20_21] =
4384 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4385 					      is2GHz);
4386 	targetPowerValT2[ALL_TARGET_HT20_22] =
4387 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4388 					      is2GHz);
4389 	targetPowerValT2[ALL_TARGET_HT20_23] =
4390 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4391 					      is2GHz);
4392 }
4393 
4394 static void ar9003_hw_get_ht40_target_powers(struct ath_hw *ah,
4395 						   u16 freq,
4396 						   u8 *targetPowerValT2,
4397 						   bool is2GHz)
4398 {
4399 	/* XXX: hard code for now, need to get from eeprom struct */
4400 	u8 ht40PowerIncForPdadc = 0;
4401 
4402 	targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4403 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4404 					      is2GHz) + ht40PowerIncForPdadc;
4405 	targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4406 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4407 					      freq,
4408 					      is2GHz) + ht40PowerIncForPdadc;
4409 	targetPowerValT2[ALL_TARGET_HT40_4] =
4410 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4411 					      is2GHz) + ht40PowerIncForPdadc;
4412 	targetPowerValT2[ALL_TARGET_HT40_5] =
4413 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4414 					      is2GHz) + ht40PowerIncForPdadc;
4415 	targetPowerValT2[ALL_TARGET_HT40_6] =
4416 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4417 					      is2GHz) + ht40PowerIncForPdadc;
4418 	targetPowerValT2[ALL_TARGET_HT40_7] =
4419 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4420 					      is2GHz) + ht40PowerIncForPdadc;
4421 	targetPowerValT2[ALL_TARGET_HT40_12] =
4422 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4423 					      is2GHz) + ht40PowerIncForPdadc;
4424 	targetPowerValT2[ALL_TARGET_HT40_13] =
4425 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4426 					      is2GHz) + ht40PowerIncForPdadc;
4427 	targetPowerValT2[ALL_TARGET_HT40_14] =
4428 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4429 					      is2GHz) + ht40PowerIncForPdadc;
4430 	targetPowerValT2[ALL_TARGET_HT40_15] =
4431 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4432 					      is2GHz) + ht40PowerIncForPdadc;
4433 	targetPowerValT2[ALL_TARGET_HT40_20] =
4434 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4435 					      is2GHz) + ht40PowerIncForPdadc;
4436 	targetPowerValT2[ALL_TARGET_HT40_21] =
4437 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4438 					      is2GHz) + ht40PowerIncForPdadc;
4439 	targetPowerValT2[ALL_TARGET_HT40_22] =
4440 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4441 					      is2GHz) + ht40PowerIncForPdadc;
4442 	targetPowerValT2[ALL_TARGET_HT40_23] =
4443 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4444 					      is2GHz) + ht40PowerIncForPdadc;
4445 }
4446 
4447 static void ar9003_hw_get_target_power_eeprom(struct ath_hw *ah,
4448 					      struct ath9k_channel *chan,
4449 					      u8 *targetPowerValT2)
4450 {
4451 	bool is2GHz = IS_CHAN_2GHZ(chan);
4452 	unsigned int i = 0;
4453 	struct ath_common *common = ath9k_hw_common(ah);
4454 	u16 freq = chan->channel;
4455 
4456 	if (is2GHz)
4457 		ar9003_hw_get_cck_target_powers(ah, freq, targetPowerValT2);
4458 
4459 	ar9003_hw_get_legacy_target_powers(ah, freq, targetPowerValT2, is2GHz);
4460 	ar9003_hw_get_ht20_target_powers(ah, freq, targetPowerValT2, is2GHz);
4461 
4462 	if (IS_CHAN_HT40(chan))
4463 		ar9003_hw_get_ht40_target_powers(ah, freq, targetPowerValT2,
4464 						 is2GHz);
4465 
4466 	for (i = 0; i < ar9300RateSize; i++) {
4467 		ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
4468 			i, targetPowerValT2[i]);
4469 	}
4470 }
4471 
4472 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4473 				  int mode,
4474 				  int ipier,
4475 				  int ichain,
4476 				  int *pfrequency,
4477 				  int *pcorrection,
4478 				  int *ptemperature, int *pvoltage)
4479 {
4480 	u8 *pCalPier;
4481 	struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4482 	int is2GHz;
4483 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4484 	struct ath_common *common = ath9k_hw_common(ah);
4485 
4486 	if (ichain >= AR9300_MAX_CHAINS) {
4487 		ath_dbg(common, EEPROM,
4488 			"Invalid chain index, must be less than %d\n",
4489 			AR9300_MAX_CHAINS);
4490 		return -1;
4491 	}
4492 
4493 	if (mode) {		/* 5GHz */
4494 		if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4495 			ath_dbg(common, EEPROM,
4496 				"Invalid 5GHz cal pier index, must be less than %d\n",
4497 				AR9300_NUM_5G_CAL_PIERS);
4498 			return -1;
4499 		}
4500 		pCalPier = &(eep->calFreqPier5G[ipier]);
4501 		pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4502 		is2GHz = 0;
4503 	} else {
4504 		if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4505 			ath_dbg(common, EEPROM,
4506 				"Invalid 2GHz cal pier index, must be less than %d\n",
4507 				AR9300_NUM_2G_CAL_PIERS);
4508 			return -1;
4509 		}
4510 
4511 		pCalPier = &(eep->calFreqPier2G[ipier]);
4512 		pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4513 		is2GHz = 1;
4514 	}
4515 
4516 	*pfrequency = ath9k_hw_fbin2freq(*pCalPier, is2GHz);
4517 	*pcorrection = pCalPierStruct->refPower;
4518 	*ptemperature = pCalPierStruct->tempMeas;
4519 	*pvoltage = pCalPierStruct->voltMeas;
4520 
4521 	return 0;
4522 }
4523 
4524 static int ar9003_hw_power_control_override(struct ath_hw *ah,
4525 					    int frequency,
4526 					    int *correction,
4527 					    int *voltage, int *temperature)
4528 {
4529 	int tempSlope = 0;
4530 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4531 	int f[3], t[3];
4532 
4533 	REG_RMW(ah, AR_PHY_TPC_11_B0,
4534 		(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4535 		AR_PHY_TPC_OLPC_GAIN_DELTA);
4536 	if (ah->caps.tx_chainmask & BIT(1))
4537 		REG_RMW(ah, AR_PHY_TPC_11_B1,
4538 			(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4539 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4540 	if (ah->caps.tx_chainmask & BIT(2))
4541 		REG_RMW(ah, AR_PHY_TPC_11_B2,
4542 			(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4543 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4544 
4545 	/* enable open loop power control on chip */
4546 	REG_RMW(ah, AR_PHY_TPC_6_B0,
4547 		(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4548 		AR_PHY_TPC_6_ERROR_EST_MODE);
4549 	if (ah->caps.tx_chainmask & BIT(1))
4550 		REG_RMW(ah, AR_PHY_TPC_6_B1,
4551 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4552 			AR_PHY_TPC_6_ERROR_EST_MODE);
4553 	if (ah->caps.tx_chainmask & BIT(2))
4554 		REG_RMW(ah, AR_PHY_TPC_6_B2,
4555 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4556 			AR_PHY_TPC_6_ERROR_EST_MODE);
4557 
4558 	/*
4559 	 * enable temperature compensation
4560 	 * Need to use register names
4561 	 */
4562 	if (frequency < 4000)
4563 		tempSlope = eep->modalHeader2G.tempSlope;
4564 	else if (eep->base_ext2.tempSlopeLow != 0) {
4565 		t[0] = eep->base_ext2.tempSlopeLow;
4566 		f[0] = 5180;
4567 		t[1] = eep->modalHeader5G.tempSlope;
4568 		f[1] = 5500;
4569 		t[2] = eep->base_ext2.tempSlopeHigh;
4570 		f[2] = 5785;
4571 		tempSlope = ar9003_hw_power_interpolate((s32) frequency,
4572 							f, t, 3);
4573 	} else
4574 		tempSlope = eep->modalHeader5G.tempSlope;
4575 
4576 	REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
4577 
4578 	if (AR_SREV_9462_20(ah))
4579 		REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4580 			      AR_PHY_TPC_19_B1_ALPHA_THERM, tempSlope);
4581 
4582 
4583 	REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4584 		      temperature[0]);
4585 
4586 	return 0;
4587 }
4588 
4589 /* Apply the recorded correction values. */
4590 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4591 {
4592 	int ichain, ipier, npier;
4593 	int mode;
4594 	int lfrequency[AR9300_MAX_CHAINS],
4595 	    lcorrection[AR9300_MAX_CHAINS],
4596 	    ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4597 	int hfrequency[AR9300_MAX_CHAINS],
4598 	    hcorrection[AR9300_MAX_CHAINS],
4599 	    htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4600 	int fdiff;
4601 	int correction[AR9300_MAX_CHAINS],
4602 	    voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4603 	int pfrequency, pcorrection, ptemperature, pvoltage;
4604 	struct ath_common *common = ath9k_hw_common(ah);
4605 
4606 	mode = (frequency >= 4000);
4607 	if (mode)
4608 		npier = AR9300_NUM_5G_CAL_PIERS;
4609 	else
4610 		npier = AR9300_NUM_2G_CAL_PIERS;
4611 
4612 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4613 		lfrequency[ichain] = 0;
4614 		hfrequency[ichain] = 100000;
4615 	}
4616 	/* identify best lower and higher frequency calibration measurement */
4617 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4618 		for (ipier = 0; ipier < npier; ipier++) {
4619 			if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4620 						    &pfrequency, &pcorrection,
4621 						    &ptemperature, &pvoltage)) {
4622 				fdiff = frequency - pfrequency;
4623 
4624 				/*
4625 				 * this measurement is higher than
4626 				 * our desired frequency
4627 				 */
4628 				if (fdiff <= 0) {
4629 					if (hfrequency[ichain] <= 0 ||
4630 					    hfrequency[ichain] >= 100000 ||
4631 					    fdiff >
4632 					    (frequency - hfrequency[ichain])) {
4633 						/*
4634 						 * new best higher
4635 						 * frequency measurement
4636 						 */
4637 						hfrequency[ichain] = pfrequency;
4638 						hcorrection[ichain] =
4639 						    pcorrection;
4640 						htemperature[ichain] =
4641 						    ptemperature;
4642 						hvoltage[ichain] = pvoltage;
4643 					}
4644 				}
4645 				if (fdiff >= 0) {
4646 					if (lfrequency[ichain] <= 0
4647 					    || fdiff <
4648 					    (frequency - lfrequency[ichain])) {
4649 						/*
4650 						 * new best lower
4651 						 * frequency measurement
4652 						 */
4653 						lfrequency[ichain] = pfrequency;
4654 						lcorrection[ichain] =
4655 						    pcorrection;
4656 						ltemperature[ichain] =
4657 						    ptemperature;
4658 						lvoltage[ichain] = pvoltage;
4659 					}
4660 				}
4661 			}
4662 		}
4663 	}
4664 
4665 	/* interpolate  */
4666 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4667 		ath_dbg(common, EEPROM, "ch=%d f=%d low=%d %d h=%d %d\n",
4668 			ichain, frequency, lfrequency[ichain],
4669 			lcorrection[ichain], hfrequency[ichain],
4670 			hcorrection[ichain]);
4671 		/* they're the same, so just pick one */
4672 		if (hfrequency[ichain] == lfrequency[ichain]) {
4673 			correction[ichain] = lcorrection[ichain];
4674 			voltage[ichain] = lvoltage[ichain];
4675 			temperature[ichain] = ltemperature[ichain];
4676 		}
4677 		/* the low frequency is good */
4678 		else if (frequency - lfrequency[ichain] < 1000) {
4679 			/* so is the high frequency, interpolate */
4680 			if (hfrequency[ichain] - frequency < 1000) {
4681 
4682 				correction[ichain] = interpolate(frequency,
4683 						lfrequency[ichain],
4684 						hfrequency[ichain],
4685 						lcorrection[ichain],
4686 						hcorrection[ichain]);
4687 
4688 				temperature[ichain] = interpolate(frequency,
4689 						lfrequency[ichain],
4690 						hfrequency[ichain],
4691 						ltemperature[ichain],
4692 						htemperature[ichain]);
4693 
4694 				voltage[ichain] = interpolate(frequency,
4695 						lfrequency[ichain],
4696 						hfrequency[ichain],
4697 						lvoltage[ichain],
4698 						hvoltage[ichain]);
4699 			}
4700 			/* only low is good, use it */
4701 			else {
4702 				correction[ichain] = lcorrection[ichain];
4703 				temperature[ichain] = ltemperature[ichain];
4704 				voltage[ichain] = lvoltage[ichain];
4705 			}
4706 		}
4707 		/* only high is good, use it */
4708 		else if (hfrequency[ichain] - frequency < 1000) {
4709 			correction[ichain] = hcorrection[ichain];
4710 			temperature[ichain] = htemperature[ichain];
4711 			voltage[ichain] = hvoltage[ichain];
4712 		} else {	/* nothing is good, presume 0???? */
4713 			correction[ichain] = 0;
4714 			temperature[ichain] = 0;
4715 			voltage[ichain] = 0;
4716 		}
4717 	}
4718 
4719 	ar9003_hw_power_control_override(ah, frequency, correction, voltage,
4720 					 temperature);
4721 
4722 	ath_dbg(common, EEPROM,
4723 		"for frequency=%d, calibration correction = %d %d %d\n",
4724 		frequency, correction[0], correction[1], correction[2]);
4725 
4726 	return 0;
4727 }
4728 
4729 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
4730 					   int idx,
4731 					   int edge,
4732 					   bool is2GHz)
4733 {
4734 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4735 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4736 
4737 	if (is2GHz)
4738 		return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
4739 	else
4740 		return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
4741 }
4742 
4743 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
4744 					     int idx,
4745 					     unsigned int edge,
4746 					     u16 freq,
4747 					     bool is2GHz)
4748 {
4749 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4750 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4751 
4752 	u8 *ctl_freqbin = is2GHz ?
4753 		&eep->ctl_freqbin_2G[idx][0] :
4754 		&eep->ctl_freqbin_5G[idx][0];
4755 
4756 	if (is2GHz) {
4757 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
4758 		    CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
4759 			return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
4760 	} else {
4761 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
4762 		    CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
4763 			return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
4764 	}
4765 
4766 	return MAX_RATE_POWER;
4767 }
4768 
4769 /*
4770  * Find the maximum conformance test limit for the given channel and CTL info
4771  */
4772 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
4773 					u16 freq, int idx, bool is2GHz)
4774 {
4775 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
4776 	u8 *ctl_freqbin = is2GHz ?
4777 		&eep->ctl_freqbin_2G[idx][0] :
4778 		&eep->ctl_freqbin_5G[idx][0];
4779 	u16 num_edges = is2GHz ?
4780 		AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
4781 	unsigned int edge;
4782 
4783 	/* Get the edge power */
4784 	for (edge = 0;
4785 	     (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
4786 	     edge++) {
4787 		/*
4788 		 * If there's an exact channel match or an inband flag set
4789 		 * on the lower channel use the given rdEdgePower
4790 		 */
4791 		if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
4792 			twiceMaxEdgePower =
4793 				ar9003_hw_get_direct_edge_power(eep, idx,
4794 								edge, is2GHz);
4795 			break;
4796 		} else if ((edge > 0) &&
4797 			   (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
4798 						      is2GHz))) {
4799 			twiceMaxEdgePower =
4800 				ar9003_hw_get_indirect_edge_power(eep, idx,
4801 								  edge, freq,
4802 								  is2GHz);
4803 			/*
4804 			 * Leave loop - no more affecting edges possible in
4805 			 * this monotonic increasing list
4806 			 */
4807 			break;
4808 		}
4809 	}
4810 	return twiceMaxEdgePower;
4811 }
4812 
4813 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
4814 					       struct ath9k_channel *chan,
4815 					       u8 *pPwrArray, u16 cfgCtl,
4816 					       u8 antenna_reduction,
4817 					       u16 powerLimit)
4818 {
4819 	struct ath_common *common = ath9k_hw_common(ah);
4820 	struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
4821 	u16 twiceMaxEdgePower;
4822 	int i;
4823 	u16 scaledPower = 0, minCtlPower;
4824 	static const u16 ctlModesFor11a[] = {
4825 		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
4826 	};
4827 	static const u16 ctlModesFor11g[] = {
4828 		CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
4829 		CTL_11G_EXT, CTL_2GHT40
4830 	};
4831 	u16 numCtlModes;
4832 	const u16 *pCtlMode;
4833 	u16 ctlMode, freq;
4834 	struct chan_centers centers;
4835 	u8 *ctlIndex;
4836 	u8 ctlNum;
4837 	u16 twiceMinEdgePower;
4838 	bool is2ghz = IS_CHAN_2GHZ(chan);
4839 
4840 	ath9k_hw_get_channel_centers(ah, chan, &centers);
4841 	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
4842 						antenna_reduction);
4843 
4844 	if (is2ghz) {
4845 		/* Setup for CTL modes */
4846 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
4847 		numCtlModes =
4848 			ARRAY_SIZE(ctlModesFor11g) -
4849 				   SUB_NUM_CTL_MODES_AT_2G_40;
4850 		pCtlMode = ctlModesFor11g;
4851 		if (IS_CHAN_HT40(chan))
4852 			/* All 2G CTL's */
4853 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
4854 	} else {
4855 		/* Setup for CTL modes */
4856 		/* CTL_11A, CTL_5GHT20 */
4857 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
4858 					 SUB_NUM_CTL_MODES_AT_5G_40;
4859 		pCtlMode = ctlModesFor11a;
4860 		if (IS_CHAN_HT40(chan))
4861 			/* All 5G CTL's */
4862 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
4863 	}
4864 
4865 	/*
4866 	 * For MIMO, need to apply regulatory caps individually across
4867 	 * dynamically running modes: CCK, OFDM, HT20, HT40
4868 	 *
4869 	 * The outer loop walks through each possible applicable runtime mode.
4870 	 * The inner loop walks through each ctlIndex entry in EEPROM.
4871 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
4872 	 */
4873 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
4874 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
4875 			(pCtlMode[ctlMode] == CTL_2GHT40);
4876 		if (isHt40CtlMode)
4877 			freq = centers.synth_center;
4878 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
4879 			freq = centers.ext_center;
4880 		else
4881 			freq = centers.ctl_center;
4882 
4883 		ath_dbg(common, REGULATORY,
4884 			"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
4885 			ctlMode, numCtlModes, isHt40CtlMode,
4886 			(pCtlMode[ctlMode] & EXT_ADDITIVE));
4887 
4888 		/* walk through each CTL index stored in EEPROM */
4889 		if (is2ghz) {
4890 			ctlIndex = pEepData->ctlIndex_2G;
4891 			ctlNum = AR9300_NUM_CTLS_2G;
4892 		} else {
4893 			ctlIndex = pEepData->ctlIndex_5G;
4894 			ctlNum = AR9300_NUM_CTLS_5G;
4895 		}
4896 
4897 		twiceMaxEdgePower = MAX_RATE_POWER;
4898 		for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
4899 			ath_dbg(common, REGULATORY,
4900 				"LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
4901 				i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
4902 				chan->channel);
4903 
4904 				/*
4905 				 * compare test group from regulatory
4906 				 * channel list with test mode from pCtlMode
4907 				 * list
4908 				 */
4909 				if ((((cfgCtl & ~CTL_MODE_M) |
4910 				       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4911 					ctlIndex[i]) ||
4912 				    (((cfgCtl & ~CTL_MODE_M) |
4913 				       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4914 				     ((ctlIndex[i] & CTL_MODE_M) |
4915 				       SD_NO_CTL))) {
4916 					twiceMinEdgePower =
4917 					  ar9003_hw_get_max_edge_power(pEepData,
4918 								       freq, i,
4919 								       is2ghz);
4920 
4921 					if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
4922 						/*
4923 						 * Find the minimum of all CTL
4924 						 * edge powers that apply to
4925 						 * this channel
4926 						 */
4927 						twiceMaxEdgePower =
4928 							min(twiceMaxEdgePower,
4929 							    twiceMinEdgePower);
4930 						else {
4931 							/* specific */
4932 							twiceMaxEdgePower =
4933 							  twiceMinEdgePower;
4934 							break;
4935 						}
4936 				}
4937 			}
4938 
4939 			minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
4940 
4941 			ath_dbg(common, REGULATORY,
4942 				"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
4943 				ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
4944 				scaledPower, minCtlPower);
4945 
4946 			/* Apply ctl mode to correct target power set */
4947 			switch (pCtlMode[ctlMode]) {
4948 			case CTL_11B:
4949 				for (i = ALL_TARGET_LEGACY_1L_5L;
4950 				     i <= ALL_TARGET_LEGACY_11S; i++)
4951 					pPwrArray[i] =
4952 					  (u8)min((u16)pPwrArray[i],
4953 						  minCtlPower);
4954 				break;
4955 			case CTL_11A:
4956 			case CTL_11G:
4957 				for (i = ALL_TARGET_LEGACY_6_24;
4958 				     i <= ALL_TARGET_LEGACY_54; i++)
4959 					pPwrArray[i] =
4960 					  (u8)min((u16)pPwrArray[i],
4961 						  minCtlPower);
4962 				break;
4963 			case CTL_5GHT20:
4964 			case CTL_2GHT20:
4965 				for (i = ALL_TARGET_HT20_0_8_16;
4966 				     i <= ALL_TARGET_HT20_21; i++)
4967 					pPwrArray[i] =
4968 					  (u8)min((u16)pPwrArray[i],
4969 						  minCtlPower);
4970 				pPwrArray[ALL_TARGET_HT20_22] =
4971 				  (u8)min((u16)pPwrArray[ALL_TARGET_HT20_22],
4972 					  minCtlPower);
4973 				pPwrArray[ALL_TARGET_HT20_23] =
4974 				  (u8)min((u16)pPwrArray[ALL_TARGET_HT20_23],
4975 					   minCtlPower);
4976 				break;
4977 			case CTL_5GHT40:
4978 			case CTL_2GHT40:
4979 				for (i = ALL_TARGET_HT40_0_8_16;
4980 				     i <= ALL_TARGET_HT40_23; i++)
4981 					pPwrArray[i] =
4982 					  (u8)min((u16)pPwrArray[i],
4983 						  minCtlPower);
4984 				break;
4985 			default:
4986 			    break;
4987 			}
4988 	} /* end ctl mode checking */
4989 }
4990 
4991 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
4992 {
4993 	u8 mod_idx = mcs_idx % 8;
4994 
4995 	if (mod_idx <= 3)
4996 		return mod_idx ? (base_pwridx + 1) : base_pwridx;
4997 	else
4998 		return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
4999 }
5000 
5001 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
5002 					struct ath9k_channel *chan, u16 cfgCtl,
5003 					u8 twiceAntennaReduction,
5004 					u8 powerLimit, bool test)
5005 {
5006 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
5007 	struct ath_common *common = ath9k_hw_common(ah);
5008 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5009 	struct ar9300_modal_eep_header *modal_hdr;
5010 	u8 targetPowerValT2[ar9300RateSize];
5011 	u8 target_power_val_t2_eep[ar9300RateSize];
5012 	unsigned int i = 0, paprd_scale_factor = 0;
5013 	u8 pwr_idx, min_pwridx = 0;
5014 
5015 	memset(targetPowerValT2, 0 , sizeof(targetPowerValT2));
5016 
5017 	/*
5018 	 * Get target powers from EEPROM - our baseline for TX Power
5019 	 */
5020 	ar9003_hw_get_target_power_eeprom(ah, chan, targetPowerValT2);
5021 
5022 	if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
5023 		if (IS_CHAN_2GHZ(chan))
5024 			modal_hdr = &eep->modalHeader2G;
5025 		else
5026 			modal_hdr = &eep->modalHeader5G;
5027 
5028 		ah->paprd_ratemask =
5029 			le32_to_cpu(modal_hdr->papdRateMaskHt20) &
5030 			AR9300_PAPRD_RATE_MASK;
5031 
5032 		ah->paprd_ratemask_ht40 =
5033 			le32_to_cpu(modal_hdr->papdRateMaskHt40) &
5034 			AR9300_PAPRD_RATE_MASK;
5035 
5036 		paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
5037 		min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
5038 						  ALL_TARGET_HT20_0_8_16;
5039 
5040 		if (!ah->paprd_table_write_done) {
5041 			memcpy(target_power_val_t2_eep, targetPowerValT2,
5042 			       sizeof(targetPowerValT2));
5043 			for (i = 0; i < 24; i++) {
5044 				pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
5045 				if (ah->paprd_ratemask & (1 << i)) {
5046 					if (targetPowerValT2[pwr_idx] &&
5047 					    targetPowerValT2[pwr_idx] ==
5048 					    target_power_val_t2_eep[pwr_idx])
5049 						targetPowerValT2[pwr_idx] -=
5050 							paprd_scale_factor;
5051 				}
5052 			}
5053 		}
5054 		memcpy(target_power_val_t2_eep, targetPowerValT2,
5055 		       sizeof(targetPowerValT2));
5056 	}
5057 
5058 	ar9003_hw_set_power_per_rate_table(ah, chan,
5059 					   targetPowerValT2, cfgCtl,
5060 					   twiceAntennaReduction,
5061 					   powerLimit);
5062 
5063 	if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
5064 		for (i = 0; i < ar9300RateSize; i++) {
5065 			if ((ah->paprd_ratemask & (1 << i)) &&
5066 			    (abs(targetPowerValT2[i] -
5067 				target_power_val_t2_eep[i]) >
5068 			    paprd_scale_factor)) {
5069 				ah->paprd_ratemask &= ~(1 << i);
5070 				ath_dbg(common, EEPROM,
5071 					"paprd disabled for mcs %d\n", i);
5072 			}
5073 		}
5074 	}
5075 
5076 	regulatory->max_power_level = 0;
5077 	for (i = 0; i < ar9300RateSize; i++) {
5078 		if (targetPowerValT2[i] > regulatory->max_power_level)
5079 			regulatory->max_power_level = targetPowerValT2[i];
5080 	}
5081 
5082 	ath9k_hw_update_regulatory_maxpower(ah);
5083 
5084 	if (test)
5085 		return;
5086 
5087 	for (i = 0; i < ar9300RateSize; i++) {
5088 		ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
5089 			i, targetPowerValT2[i]);
5090 	}
5091 
5092 	/* Write target power array to registers */
5093 	ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5094 	ar9003_hw_calibration_apply(ah, chan->channel);
5095 
5096 	if (IS_CHAN_2GHZ(chan)) {
5097 		if (IS_CHAN_HT40(chan))
5098 			i = ALL_TARGET_HT40_0_8_16;
5099 		else
5100 			i = ALL_TARGET_HT20_0_8_16;
5101 	} else {
5102 		if (IS_CHAN_HT40(chan))
5103 			i = ALL_TARGET_HT40_7;
5104 		else
5105 			i = ALL_TARGET_HT20_7;
5106 	}
5107 	ah->paprd_target_power = targetPowerValT2[i];
5108 }
5109 
5110 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
5111 					    u16 i, bool is2GHz)
5112 {
5113 	return AR_NO_SPUR;
5114 }
5115 
5116 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
5117 {
5118 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5119 
5120 	return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
5121 }
5122 
5123 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
5124 {
5125 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5126 
5127 	return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
5128 }
5129 
5130 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is2ghz)
5131 {
5132 	return ar9003_modal_header(ah, is2ghz)->spurChans;
5133 }
5134 
5135 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
5136 					   struct ath9k_channel *chan)
5137 {
5138 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5139 
5140 	if (IS_CHAN_2GHZ(chan))
5141 		return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5142 			  AR9300_PAPRD_SCALE_1);
5143 	else {
5144 		if (chan->channel >= 5700)
5145 		return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5146 			  AR9300_PAPRD_SCALE_1);
5147 		else if (chan->channel >= 5400)
5148 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5149 				   AR9300_PAPRD_SCALE_2);
5150 		else
5151 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5152 				  AR9300_PAPRD_SCALE_1);
5153 	}
5154 }
5155 
5156 const struct eeprom_ops eep_ar9300_ops = {
5157 	.check_eeprom = ath9k_hw_ar9300_check_eeprom,
5158 	.get_eeprom = ath9k_hw_ar9300_get_eeprom,
5159 	.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5160 	.dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5161 	.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5162 	.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5163 	.set_board_values = ath9k_hw_ar9300_set_board_values,
5164 	.set_addac = ath9k_hw_ar9300_set_addac,
5165 	.set_txpower = ath9k_hw_ar9300_set_txpower,
5166 	.get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5167 };
5168