1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "ar9003_phy.h"
19 #include "ar9003_eeprom.h"
20 
21 #define COMP_HDR_LEN 4
22 #define COMP_CKSUM_LEN 2
23 
24 #define AR_CH0_TOP (0x00016288)
25 #define AR_CH0_TOP_XPABIASLVL (0x300)
26 #define AR_CH0_TOP_XPABIASLVL_S (8)
27 
28 #define AR_CH0_THERM (0x00016290)
29 #define AR_CH0_THERM_XPABIASLVL_MSB 0x3
30 #define AR_CH0_THERM_XPABIASLVL_MSB_S 0
31 #define AR_CH0_THERM_XPASHORT2GND 0x4
32 #define AR_CH0_THERM_XPASHORT2GND_S 2
33 
34 #define AR_SWITCH_TABLE_COM_ALL (0xffff)
35 #define AR_SWITCH_TABLE_COM_ALL_S (0)
36 
37 #define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
38 #define AR_SWITCH_TABLE_COM2_ALL_S (0)
39 
40 #define AR_SWITCH_TABLE_ALL (0xfff)
41 #define AR_SWITCH_TABLE_ALL_S (0)
42 
43 #define LE16(x) __constant_cpu_to_le16(x)
44 #define LE32(x) __constant_cpu_to_le32(x)
45 
46 /* Local defines to distinguish between extension and control CTL's */
47 #define EXT_ADDITIVE (0x8000)
48 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
49 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
50 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
51 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
52 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   9  /* 10*log10(3)*2 */
53 #define PWRINCR_3_TO_1_CHAIN      9             /* 10*log(3)*2 */
54 #define PWRINCR_3_TO_2_CHAIN      3             /* floor(10*log(3/2)*2) */
55 #define PWRINCR_2_TO_1_CHAIN      6             /* 10*log(2)*2 */
56 
57 #define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
58 #define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
59 
60 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
61 
62 #define EEPROM_DATA_LEN_9485	1088
63 
64 static int ar9003_hw_power_interpolate(int32_t x,
65 				       int32_t *px, int32_t *py, u_int16_t np);
66 
67 
68 static const struct ar9300_eeprom ar9300_default = {
69 	.eepromVersion = 2,
70 	.templateVersion = 2,
71 	.macAddr = {1, 2, 3, 4, 5, 6},
72 	.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
73 		     0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
74 	.baseEepHeader = {
75 		.regDmn = { LE16(0), LE16(0x1f) },
76 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
77 		.opCapFlags = {
78 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
79 			.eepMisc = 0,
80 		},
81 		.rfSilent = 0,
82 		.blueToothOptions = 0,
83 		.deviceCap = 0,
84 		.deviceType = 5, /* takes lower byte in eeprom location */
85 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
86 		.params_for_tuning_caps = {0, 0},
87 		.featureEnable = 0x0c,
88 		 /*
89 		  * bit0 - enable tx temp comp - disabled
90 		  * bit1 - enable tx volt comp - disabled
91 		  * bit2 - enable fastClock - enabled
92 		  * bit3 - enable doubling - enabled
93 		  * bit4 - enable internal regulator - disabled
94 		  * bit5 - enable pa predistortion - disabled
95 		  */
96 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
97 		.eepromWriteEnableGpio = 3,
98 		.wlanDisableGpio = 0,
99 		.wlanLedGpio = 8,
100 		.rxBandSelectGpio = 0xff,
101 		.txrxgain = 0,
102 		.swreg = 0,
103 	 },
104 	.modalHeader2G = {
105 	/* ar9300_modal_eep_header  2g */
106 		/* 4 idle,t1,t2,b(4 bits per setting) */
107 		.antCtrlCommon = LE32(0x110),
108 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
109 		.antCtrlCommon2 = LE32(0x22222),
110 
111 		/*
112 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
113 		 * rx1, rx12, b (2 bits each)
114 		 */
115 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
116 
117 		/*
118 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
119 		 * for ar9280 (0xa20c/b20c 5:0)
120 		 */
121 		.xatten1DB = {0, 0, 0},
122 
123 		/*
124 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
125 		 * for ar9280 (0xa20c/b20c 16:12
126 		 */
127 		.xatten1Margin = {0, 0, 0},
128 		.tempSlope = 36,
129 		.voltSlope = 0,
130 
131 		/*
132 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
133 		 * channels in usual fbin coding format
134 		 */
135 		.spurChans = {0, 0, 0, 0, 0},
136 
137 		/*
138 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
139 		 * if the register is per chain
140 		 */
141 		.noiseFloorThreshCh = {-1, 0, 0},
142 		.ob = {1, 1, 1},/* 3 chain */
143 		.db_stage2 = {1, 1, 1}, /* 3 chain  */
144 		.db_stage3 = {0, 0, 0},
145 		.db_stage4 = {0, 0, 0},
146 		.xpaBiasLvl = 0,
147 		.txFrameToDataStart = 0x0e,
148 		.txFrameToPaOn = 0x0e,
149 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
150 		.antennaGain = 0,
151 		.switchSettling = 0x2c,
152 		.adcDesiredSize = -30,
153 		.txEndToXpaOff = 0,
154 		.txEndToRxOn = 0x2,
155 		.txFrameToXpaOn = 0xe,
156 		.thresh62 = 28,
157 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
158 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
159 		.futureModal = {
160 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
161 		},
162 	 },
163 	.base_ext1 = {
164 		.ant_div_control = 0,
165 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
166 	},
167 	.calFreqPier2G = {
168 		FREQ2FBIN(2412, 1),
169 		FREQ2FBIN(2437, 1),
170 		FREQ2FBIN(2472, 1),
171 	 },
172 	/* ar9300_cal_data_per_freq_op_loop 2g */
173 	.calPierData2G = {
174 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
175 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
176 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
177 	 },
178 	.calTarget_freqbin_Cck = {
179 		FREQ2FBIN(2412, 1),
180 		FREQ2FBIN(2484, 1),
181 	 },
182 	.calTarget_freqbin_2G = {
183 		FREQ2FBIN(2412, 1),
184 		FREQ2FBIN(2437, 1),
185 		FREQ2FBIN(2472, 1)
186 	 },
187 	.calTarget_freqbin_2GHT20 = {
188 		FREQ2FBIN(2412, 1),
189 		FREQ2FBIN(2437, 1),
190 		FREQ2FBIN(2472, 1)
191 	 },
192 	.calTarget_freqbin_2GHT40 = {
193 		FREQ2FBIN(2412, 1),
194 		FREQ2FBIN(2437, 1),
195 		FREQ2FBIN(2472, 1)
196 	 },
197 	.calTargetPowerCck = {
198 		 /* 1L-5L,5S,11L,11S */
199 		 { {36, 36, 36, 36} },
200 		 { {36, 36, 36, 36} },
201 	},
202 	.calTargetPower2G = {
203 		 /* 6-24,36,48,54 */
204 		 { {32, 32, 28, 24} },
205 		 { {32, 32, 28, 24} },
206 		 { {32, 32, 28, 24} },
207 	},
208 	.calTargetPower2GHT20 = {
209 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
210 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
211 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
212 	},
213 	.calTargetPower2GHT40 = {
214 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
215 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
216 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
217 	},
218 	.ctlIndex_2G =  {
219 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
220 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
221 	},
222 	.ctl_freqbin_2G = {
223 		{
224 			FREQ2FBIN(2412, 1),
225 			FREQ2FBIN(2417, 1),
226 			FREQ2FBIN(2457, 1),
227 			FREQ2FBIN(2462, 1)
228 		},
229 		{
230 			FREQ2FBIN(2412, 1),
231 			FREQ2FBIN(2417, 1),
232 			FREQ2FBIN(2462, 1),
233 			0xFF,
234 		},
235 
236 		{
237 			FREQ2FBIN(2412, 1),
238 			FREQ2FBIN(2417, 1),
239 			FREQ2FBIN(2462, 1),
240 			0xFF,
241 		},
242 		{
243 			FREQ2FBIN(2422, 1),
244 			FREQ2FBIN(2427, 1),
245 			FREQ2FBIN(2447, 1),
246 			FREQ2FBIN(2452, 1)
247 		},
248 
249 		{
250 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
251 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
252 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
253 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
254 		},
255 
256 		{
257 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
258 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
259 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
260 			0,
261 		},
262 
263 		{
264 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
265 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
266 			FREQ2FBIN(2472, 1),
267 			0,
268 		},
269 
270 		{
271 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
272 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
273 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
274 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
275 		},
276 
277 		{
278 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
279 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
280 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
281 		},
282 
283 		{
284 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
285 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
286 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
287 			0
288 		},
289 
290 		{
291 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
292 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
293 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
294 			0
295 		},
296 
297 		{
298 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
299 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
300 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
301 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
302 		}
303 	 },
304 	.ctlPowerData_2G = {
305 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
306 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
307 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
308 
309 		 { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
310 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
311 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
312 
313 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
314 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
315 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
316 
317 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
318 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
319 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
320 	 },
321 	.modalHeader5G = {
322 		/* 4 idle,t1,t2,b (4 bits per setting) */
323 		.antCtrlCommon = LE32(0x110),
324 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
325 		.antCtrlCommon2 = LE32(0x22222),
326 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
327 		.antCtrlChain = {
328 			LE16(0x000), LE16(0x000), LE16(0x000),
329 		},
330 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
331 		.xatten1DB = {0, 0, 0},
332 
333 		/*
334 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
335 		 * for merlin (0xa20c/b20c 16:12
336 		 */
337 		.xatten1Margin = {0, 0, 0},
338 		.tempSlope = 68,
339 		.voltSlope = 0,
340 		/* spurChans spur channels in usual fbin coding format */
341 		.spurChans = {0, 0, 0, 0, 0},
342 		/* noiseFloorThreshCh Check if the register is per chain */
343 		.noiseFloorThreshCh = {-1, 0, 0},
344 		.ob = {3, 3, 3}, /* 3 chain */
345 		.db_stage2 = {3, 3, 3}, /* 3 chain */
346 		.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
347 		.db_stage4 = {3, 3, 3},	 /* don't exist for 2G */
348 		.xpaBiasLvl = 0,
349 		.txFrameToDataStart = 0x0e,
350 		.txFrameToPaOn = 0x0e,
351 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
352 		.antennaGain = 0,
353 		.switchSettling = 0x2d,
354 		.adcDesiredSize = -30,
355 		.txEndToXpaOff = 0,
356 		.txEndToRxOn = 0x2,
357 		.txFrameToXpaOn = 0xe,
358 		.thresh62 = 28,
359 		.papdRateMaskHt20 = LE32(0x0c80c080),
360 		.papdRateMaskHt40 = LE32(0x0080c080),
361 		.futureModal = {
362 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
363 		},
364 	 },
365 	.base_ext2 = {
366 		.tempSlopeLow = 0,
367 		.tempSlopeHigh = 0,
368 		.xatten1DBLow = {0, 0, 0},
369 		.xatten1MarginLow = {0, 0, 0},
370 		.xatten1DBHigh = {0, 0, 0},
371 		.xatten1MarginHigh = {0, 0, 0}
372 	},
373 	.calFreqPier5G = {
374 		FREQ2FBIN(5180, 0),
375 		FREQ2FBIN(5220, 0),
376 		FREQ2FBIN(5320, 0),
377 		FREQ2FBIN(5400, 0),
378 		FREQ2FBIN(5500, 0),
379 		FREQ2FBIN(5600, 0),
380 		FREQ2FBIN(5725, 0),
381 		FREQ2FBIN(5825, 0)
382 	},
383 	.calPierData5G = {
384 			{
385 				{0, 0, 0, 0, 0},
386 				{0, 0, 0, 0, 0},
387 				{0, 0, 0, 0, 0},
388 				{0, 0, 0, 0, 0},
389 				{0, 0, 0, 0, 0},
390 				{0, 0, 0, 0, 0},
391 				{0, 0, 0, 0, 0},
392 				{0, 0, 0, 0, 0},
393 			},
394 			{
395 				{0, 0, 0, 0, 0},
396 				{0, 0, 0, 0, 0},
397 				{0, 0, 0, 0, 0},
398 				{0, 0, 0, 0, 0},
399 				{0, 0, 0, 0, 0},
400 				{0, 0, 0, 0, 0},
401 				{0, 0, 0, 0, 0},
402 				{0, 0, 0, 0, 0},
403 			},
404 			{
405 				{0, 0, 0, 0, 0},
406 				{0, 0, 0, 0, 0},
407 				{0, 0, 0, 0, 0},
408 				{0, 0, 0, 0, 0},
409 				{0, 0, 0, 0, 0},
410 				{0, 0, 0, 0, 0},
411 				{0, 0, 0, 0, 0},
412 				{0, 0, 0, 0, 0},
413 			},
414 
415 	},
416 	.calTarget_freqbin_5G = {
417 		FREQ2FBIN(5180, 0),
418 		FREQ2FBIN(5220, 0),
419 		FREQ2FBIN(5320, 0),
420 		FREQ2FBIN(5400, 0),
421 		FREQ2FBIN(5500, 0),
422 		FREQ2FBIN(5600, 0),
423 		FREQ2FBIN(5725, 0),
424 		FREQ2FBIN(5825, 0)
425 	},
426 	.calTarget_freqbin_5GHT20 = {
427 		FREQ2FBIN(5180, 0),
428 		FREQ2FBIN(5240, 0),
429 		FREQ2FBIN(5320, 0),
430 		FREQ2FBIN(5500, 0),
431 		FREQ2FBIN(5700, 0),
432 		FREQ2FBIN(5745, 0),
433 		FREQ2FBIN(5725, 0),
434 		FREQ2FBIN(5825, 0)
435 	},
436 	.calTarget_freqbin_5GHT40 = {
437 		FREQ2FBIN(5180, 0),
438 		FREQ2FBIN(5240, 0),
439 		FREQ2FBIN(5320, 0),
440 		FREQ2FBIN(5500, 0),
441 		FREQ2FBIN(5700, 0),
442 		FREQ2FBIN(5745, 0),
443 		FREQ2FBIN(5725, 0),
444 		FREQ2FBIN(5825, 0)
445 	 },
446 	.calTargetPower5G = {
447 		/* 6-24,36,48,54 */
448 		{ {20, 20, 20, 10} },
449 		{ {20, 20, 20, 10} },
450 		{ {20, 20, 20, 10} },
451 		{ {20, 20, 20, 10} },
452 		{ {20, 20, 20, 10} },
453 		{ {20, 20, 20, 10} },
454 		{ {20, 20, 20, 10} },
455 		{ {20, 20, 20, 10} },
456 	 },
457 	.calTargetPower5GHT20 = {
458 		/*
459 		 * 0_8_16,1-3_9-11_17-19,
460 		 * 4,5,6,7,12,13,14,15,20,21,22,23
461 		 */
462 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
463 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
464 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
465 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
466 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
467 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
468 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
469 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
470 	 },
471 	.calTargetPower5GHT40 =  {
472 		/*
473 		 * 0_8_16,1-3_9-11_17-19,
474 		 * 4,5,6,7,12,13,14,15,20,21,22,23
475 		 */
476 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
477 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
478 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
479 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
480 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
481 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
482 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
483 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
484 	 },
485 	.ctlIndex_5G =  {
486 		0x10, 0x16, 0x18, 0x40, 0x46,
487 		0x48, 0x30, 0x36, 0x38
488 	},
489 	.ctl_freqbin_5G =  {
490 		{
491 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
492 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
493 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
494 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
495 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
496 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
497 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
498 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
499 		},
500 		{
501 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
502 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
503 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
504 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
505 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
506 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
507 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
508 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
509 		},
510 
511 		{
512 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
513 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
514 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
515 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
516 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
517 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
518 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
519 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
520 		},
521 
522 		{
523 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
524 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
525 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
526 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
527 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
528 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
529 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
530 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
531 		},
532 
533 		{
534 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
535 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
536 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
537 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
538 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
539 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
540 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
541 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
542 		},
543 
544 		{
545 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
546 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
547 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
548 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
549 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
550 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
551 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
552 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
553 		},
554 
555 		{
556 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
557 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
558 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
559 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
560 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
561 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
562 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
563 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
564 		},
565 
566 		{
567 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
568 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
569 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
570 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
571 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
572 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
573 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
574 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
575 		},
576 
577 		{
578 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
579 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
580 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
581 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
582 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
583 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
584 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
585 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
586 		}
587 	 },
588 	.ctlPowerData_5G = {
589 		{
590 			{
591 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
592 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
593 			}
594 		},
595 		{
596 			{
597 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
598 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
599 			}
600 		},
601 		{
602 			{
603 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
604 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
605 			}
606 		},
607 		{
608 			{
609 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
610 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
611 			}
612 		},
613 		{
614 			{
615 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
616 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
617 			}
618 		},
619 		{
620 			{
621 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
622 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
623 			}
624 		},
625 		{
626 			{
627 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
628 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
629 			}
630 		},
631 		{
632 			{
633 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
634 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
635 			}
636 		},
637 		{
638 			{
639 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
640 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
641 			}
642 		},
643 	 }
644 };
645 
646 static const struct ar9300_eeprom ar9300_x113 = {
647 	.eepromVersion = 2,
648 	.templateVersion = 6,
649 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
650 	.custData = {"x113-023-f0000"},
651 	.baseEepHeader = {
652 		.regDmn = { LE16(0), LE16(0x1f) },
653 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
654 		.opCapFlags = {
655 			.opFlags = AR5416_OPFLAGS_11A,
656 			.eepMisc = 0,
657 		},
658 		.rfSilent = 0,
659 		.blueToothOptions = 0,
660 		.deviceCap = 0,
661 		.deviceType = 5, /* takes lower byte in eeprom location */
662 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
663 		.params_for_tuning_caps = {0, 0},
664 		.featureEnable = 0x0d,
665 		 /*
666 		  * bit0 - enable tx temp comp - disabled
667 		  * bit1 - enable tx volt comp - disabled
668 		  * bit2 - enable fastClock - enabled
669 		  * bit3 - enable doubling - enabled
670 		  * bit4 - enable internal regulator - disabled
671 		  * bit5 - enable pa predistortion - disabled
672 		  */
673 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
674 		.eepromWriteEnableGpio = 6,
675 		.wlanDisableGpio = 0,
676 		.wlanLedGpio = 8,
677 		.rxBandSelectGpio = 0xff,
678 		.txrxgain = 0x21,
679 		.swreg = 0,
680 	 },
681 	.modalHeader2G = {
682 	/* ar9300_modal_eep_header  2g */
683 		/* 4 idle,t1,t2,b(4 bits per setting) */
684 		.antCtrlCommon = LE32(0x110),
685 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
686 		.antCtrlCommon2 = LE32(0x44444),
687 
688 		/*
689 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
690 		 * rx1, rx12, b (2 bits each)
691 		 */
692 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
693 
694 		/*
695 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
696 		 * for ar9280 (0xa20c/b20c 5:0)
697 		 */
698 		.xatten1DB = {0, 0, 0},
699 
700 		/*
701 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
702 		 * for ar9280 (0xa20c/b20c 16:12
703 		 */
704 		.xatten1Margin = {0, 0, 0},
705 		.tempSlope = 25,
706 		.voltSlope = 0,
707 
708 		/*
709 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
710 		 * channels in usual fbin coding format
711 		 */
712 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
713 
714 		/*
715 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
716 		 * if the register is per chain
717 		 */
718 		.noiseFloorThreshCh = {-1, 0, 0},
719 		.ob = {1, 1, 1},/* 3 chain */
720 		.db_stage2 = {1, 1, 1}, /* 3 chain  */
721 		.db_stage3 = {0, 0, 0},
722 		.db_stage4 = {0, 0, 0},
723 		.xpaBiasLvl = 0,
724 		.txFrameToDataStart = 0x0e,
725 		.txFrameToPaOn = 0x0e,
726 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
727 		.antennaGain = 0,
728 		.switchSettling = 0x2c,
729 		.adcDesiredSize = -30,
730 		.txEndToXpaOff = 0,
731 		.txEndToRxOn = 0x2,
732 		.txFrameToXpaOn = 0xe,
733 		.thresh62 = 28,
734 		.papdRateMaskHt20 = LE32(0x0c80c080),
735 		.papdRateMaskHt40 = LE32(0x0080c080),
736 		.futureModal = {
737 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
738 		},
739 	 },
740 	 .base_ext1 = {
741 		.ant_div_control = 0,
742 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
743 	 },
744 	.calFreqPier2G = {
745 		FREQ2FBIN(2412, 1),
746 		FREQ2FBIN(2437, 1),
747 		FREQ2FBIN(2472, 1),
748 	 },
749 	/* ar9300_cal_data_per_freq_op_loop 2g */
750 	.calPierData2G = {
751 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
752 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
753 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
754 	 },
755 	.calTarget_freqbin_Cck = {
756 		FREQ2FBIN(2412, 1),
757 		FREQ2FBIN(2472, 1),
758 	 },
759 	.calTarget_freqbin_2G = {
760 		FREQ2FBIN(2412, 1),
761 		FREQ2FBIN(2437, 1),
762 		FREQ2FBIN(2472, 1)
763 	 },
764 	.calTarget_freqbin_2GHT20 = {
765 		FREQ2FBIN(2412, 1),
766 		FREQ2FBIN(2437, 1),
767 		FREQ2FBIN(2472, 1)
768 	 },
769 	.calTarget_freqbin_2GHT40 = {
770 		FREQ2FBIN(2412, 1),
771 		FREQ2FBIN(2437, 1),
772 		FREQ2FBIN(2472, 1)
773 	 },
774 	.calTargetPowerCck = {
775 		 /* 1L-5L,5S,11L,11S */
776 		 { {34, 34, 34, 34} },
777 		 { {34, 34, 34, 34} },
778 	},
779 	.calTargetPower2G = {
780 		 /* 6-24,36,48,54 */
781 		 { {34, 34, 32, 32} },
782 		 { {34, 34, 32, 32} },
783 		 { {34, 34, 32, 32} },
784 	},
785 	.calTargetPower2GHT20 = {
786 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
787 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
788 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
789 	},
790 	.calTargetPower2GHT40 = {
791 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
792 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
793 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
794 	},
795 	.ctlIndex_2G =  {
796 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
797 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
798 	},
799 	.ctl_freqbin_2G = {
800 		{
801 			FREQ2FBIN(2412, 1),
802 			FREQ2FBIN(2417, 1),
803 			FREQ2FBIN(2457, 1),
804 			FREQ2FBIN(2462, 1)
805 		},
806 		{
807 			FREQ2FBIN(2412, 1),
808 			FREQ2FBIN(2417, 1),
809 			FREQ2FBIN(2462, 1),
810 			0xFF,
811 		},
812 
813 		{
814 			FREQ2FBIN(2412, 1),
815 			FREQ2FBIN(2417, 1),
816 			FREQ2FBIN(2462, 1),
817 			0xFF,
818 		},
819 		{
820 			FREQ2FBIN(2422, 1),
821 			FREQ2FBIN(2427, 1),
822 			FREQ2FBIN(2447, 1),
823 			FREQ2FBIN(2452, 1)
824 		},
825 
826 		{
827 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
828 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
829 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
830 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
831 		},
832 
833 		{
834 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
835 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
836 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
837 			0,
838 		},
839 
840 		{
841 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
842 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
843 			FREQ2FBIN(2472, 1),
844 			0,
845 		},
846 
847 		{
848 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
849 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
850 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
851 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
852 		},
853 
854 		{
855 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
856 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
857 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
858 		},
859 
860 		{
861 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
862 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
863 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
864 			0
865 		},
866 
867 		{
868 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
869 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
870 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
871 			0
872 		},
873 
874 		{
875 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
876 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
877 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
878 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
879 		}
880 	 },
881 	.ctlPowerData_2G = {
882 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
883 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
884 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
885 
886 		 { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
887 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
888 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
889 
890 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
891 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
892 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
893 
894 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
895 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
896 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
897 	 },
898 	.modalHeader5G = {
899 		/* 4 idle,t1,t2,b (4 bits per setting) */
900 		.antCtrlCommon = LE32(0x220),
901 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
902 		.antCtrlCommon2 = LE32(0x11111),
903 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
904 		.antCtrlChain = {
905 			LE16(0x150), LE16(0x150), LE16(0x150),
906 		},
907 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
908 		.xatten1DB = {0, 0, 0},
909 
910 		/*
911 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
912 		 * for merlin (0xa20c/b20c 16:12
913 		 */
914 		.xatten1Margin = {0, 0, 0},
915 		.tempSlope = 68,
916 		.voltSlope = 0,
917 		/* spurChans spur channels in usual fbin coding format */
918 		.spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
919 		/* noiseFloorThreshCh Check if the register is per chain */
920 		.noiseFloorThreshCh = {-1, 0, 0},
921 		.ob = {3, 3, 3}, /* 3 chain */
922 		.db_stage2 = {3, 3, 3}, /* 3 chain */
923 		.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
924 		.db_stage4 = {3, 3, 3},	 /* don't exist for 2G */
925 		.xpaBiasLvl = 0xf,
926 		.txFrameToDataStart = 0x0e,
927 		.txFrameToPaOn = 0x0e,
928 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
929 		.antennaGain = 0,
930 		.switchSettling = 0x2d,
931 		.adcDesiredSize = -30,
932 		.txEndToXpaOff = 0,
933 		.txEndToRxOn = 0x2,
934 		.txFrameToXpaOn = 0xe,
935 		.thresh62 = 28,
936 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
937 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
938 		.futureModal = {
939 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
940 		},
941 	 },
942 	.base_ext2 = {
943 		.tempSlopeLow = 72,
944 		.tempSlopeHigh = 105,
945 		.xatten1DBLow = {0, 0, 0},
946 		.xatten1MarginLow = {0, 0, 0},
947 		.xatten1DBHigh = {0, 0, 0},
948 		.xatten1MarginHigh = {0, 0, 0}
949 	 },
950 	.calFreqPier5G = {
951 		FREQ2FBIN(5180, 0),
952 		FREQ2FBIN(5240, 0),
953 		FREQ2FBIN(5320, 0),
954 		FREQ2FBIN(5400, 0),
955 		FREQ2FBIN(5500, 0),
956 		FREQ2FBIN(5600, 0),
957 		FREQ2FBIN(5745, 0),
958 		FREQ2FBIN(5785, 0)
959 	},
960 	.calPierData5G = {
961 			{
962 				{0, 0, 0, 0, 0},
963 				{0, 0, 0, 0, 0},
964 				{0, 0, 0, 0, 0},
965 				{0, 0, 0, 0, 0},
966 				{0, 0, 0, 0, 0},
967 				{0, 0, 0, 0, 0},
968 				{0, 0, 0, 0, 0},
969 				{0, 0, 0, 0, 0},
970 			},
971 			{
972 				{0, 0, 0, 0, 0},
973 				{0, 0, 0, 0, 0},
974 				{0, 0, 0, 0, 0},
975 				{0, 0, 0, 0, 0},
976 				{0, 0, 0, 0, 0},
977 				{0, 0, 0, 0, 0},
978 				{0, 0, 0, 0, 0},
979 				{0, 0, 0, 0, 0},
980 			},
981 			{
982 				{0, 0, 0, 0, 0},
983 				{0, 0, 0, 0, 0},
984 				{0, 0, 0, 0, 0},
985 				{0, 0, 0, 0, 0},
986 				{0, 0, 0, 0, 0},
987 				{0, 0, 0, 0, 0},
988 				{0, 0, 0, 0, 0},
989 				{0, 0, 0, 0, 0},
990 			},
991 
992 	},
993 	.calTarget_freqbin_5G = {
994 		FREQ2FBIN(5180, 0),
995 		FREQ2FBIN(5220, 0),
996 		FREQ2FBIN(5320, 0),
997 		FREQ2FBIN(5400, 0),
998 		FREQ2FBIN(5500, 0),
999 		FREQ2FBIN(5600, 0),
1000 		FREQ2FBIN(5745, 0),
1001 		FREQ2FBIN(5785, 0)
1002 	},
1003 	.calTarget_freqbin_5GHT20 = {
1004 		FREQ2FBIN(5180, 0),
1005 		FREQ2FBIN(5240, 0),
1006 		FREQ2FBIN(5320, 0),
1007 		FREQ2FBIN(5400, 0),
1008 		FREQ2FBIN(5500, 0),
1009 		FREQ2FBIN(5700, 0),
1010 		FREQ2FBIN(5745, 0),
1011 		FREQ2FBIN(5825, 0)
1012 	},
1013 	.calTarget_freqbin_5GHT40 = {
1014 		FREQ2FBIN(5190, 0),
1015 		FREQ2FBIN(5230, 0),
1016 		FREQ2FBIN(5320, 0),
1017 		FREQ2FBIN(5410, 0),
1018 		FREQ2FBIN(5510, 0),
1019 		FREQ2FBIN(5670, 0),
1020 		FREQ2FBIN(5755, 0),
1021 		FREQ2FBIN(5825, 0)
1022 	 },
1023 	.calTargetPower5G = {
1024 		/* 6-24,36,48,54 */
1025 		{ {42, 40, 40, 34} },
1026 		{ {42, 40, 40, 34} },
1027 		{ {42, 40, 40, 34} },
1028 		{ {42, 40, 40, 34} },
1029 		{ {42, 40, 40, 34} },
1030 		{ {42, 40, 40, 34} },
1031 		{ {42, 40, 40, 34} },
1032 		{ {42, 40, 40, 34} },
1033 	 },
1034 	.calTargetPower5GHT20 = {
1035 		/*
1036 		 * 0_8_16,1-3_9-11_17-19,
1037 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1038 		 */
1039 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1040 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1041 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1042 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1043 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1044 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1045 		{ {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1046 		{ {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1047 	 },
1048 	.calTargetPower5GHT40 =  {
1049 		/*
1050 		 * 0_8_16,1-3_9-11_17-19,
1051 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1052 		 */
1053 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1054 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1055 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1056 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1057 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1058 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1059 		{ {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1060 		{ {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1061 	 },
1062 	.ctlIndex_5G =  {
1063 		0x10, 0x16, 0x18, 0x40, 0x46,
1064 		0x48, 0x30, 0x36, 0x38
1065 	},
1066 	.ctl_freqbin_5G =  {
1067 		{
1068 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1069 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1070 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1071 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1072 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1073 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1074 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1075 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1076 		},
1077 		{
1078 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1079 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1080 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1081 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1082 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1083 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1084 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1085 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1086 		},
1087 
1088 		{
1089 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1090 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1091 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1092 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1093 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1094 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1095 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1096 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1097 		},
1098 
1099 		{
1100 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1101 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1102 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1103 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1104 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1105 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1106 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1107 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1108 		},
1109 
1110 		{
1111 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1112 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1113 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1114 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1115 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1116 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1117 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1118 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1119 		},
1120 
1121 		{
1122 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1123 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1124 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1125 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1126 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1127 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1128 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1129 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1130 		},
1131 
1132 		{
1133 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1134 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1135 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1136 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1137 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1138 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1139 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1140 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1141 		},
1142 
1143 		{
1144 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1145 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1146 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1147 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1148 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1149 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1150 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1151 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1152 		},
1153 
1154 		{
1155 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1156 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1157 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1158 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1159 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1160 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1161 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1162 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1163 		}
1164 	 },
1165 	.ctlPowerData_5G = {
1166 		{
1167 			{
1168 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1169 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1170 			}
1171 		},
1172 		{
1173 			{
1174 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1175 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1176 			}
1177 		},
1178 		{
1179 			{
1180 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1181 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1182 			}
1183 		},
1184 		{
1185 			{
1186 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1187 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1188 			}
1189 		},
1190 		{
1191 			{
1192 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1193 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1194 			}
1195 		},
1196 		{
1197 			{
1198 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1199 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1200 			}
1201 		},
1202 		{
1203 			{
1204 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1205 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1206 			}
1207 		},
1208 		{
1209 			{
1210 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1211 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1212 			}
1213 		},
1214 		{
1215 			{
1216 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1217 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1218 			}
1219 		},
1220 	 }
1221 };
1222 
1223 
1224 static const struct ar9300_eeprom ar9300_h112 = {
1225 	.eepromVersion = 2,
1226 	.templateVersion = 3,
1227 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1228 	.custData = {"h112-241-f0000"},
1229 	.baseEepHeader = {
1230 		.regDmn = { LE16(0), LE16(0x1f) },
1231 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1232 		.opCapFlags = {
1233 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1234 			.eepMisc = 0,
1235 		},
1236 		.rfSilent = 0,
1237 		.blueToothOptions = 0,
1238 		.deviceCap = 0,
1239 		.deviceType = 5, /* takes lower byte in eeprom location */
1240 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1241 		.params_for_tuning_caps = {0, 0},
1242 		.featureEnable = 0x0d,
1243 		/*
1244 		 * bit0 - enable tx temp comp - disabled
1245 		 * bit1 - enable tx volt comp - disabled
1246 		 * bit2 - enable fastClock - enabled
1247 		 * bit3 - enable doubling - enabled
1248 		 * bit4 - enable internal regulator - disabled
1249 		 * bit5 - enable pa predistortion - disabled
1250 		 */
1251 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1252 		.eepromWriteEnableGpio = 6,
1253 		.wlanDisableGpio = 0,
1254 		.wlanLedGpio = 8,
1255 		.rxBandSelectGpio = 0xff,
1256 		.txrxgain = 0x10,
1257 		.swreg = 0,
1258 	},
1259 	.modalHeader2G = {
1260 		/* ar9300_modal_eep_header  2g */
1261 		/* 4 idle,t1,t2,b(4 bits per setting) */
1262 		.antCtrlCommon = LE32(0x110),
1263 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1264 		.antCtrlCommon2 = LE32(0x44444),
1265 
1266 		/*
1267 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1268 		 * rx1, rx12, b (2 bits each)
1269 		 */
1270 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1271 
1272 		/*
1273 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
1274 		 * for ar9280 (0xa20c/b20c 5:0)
1275 		 */
1276 		.xatten1DB = {0, 0, 0},
1277 
1278 		/*
1279 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1280 		 * for ar9280 (0xa20c/b20c 16:12
1281 		 */
1282 		.xatten1Margin = {0, 0, 0},
1283 		.tempSlope = 25,
1284 		.voltSlope = 0,
1285 
1286 		/*
1287 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1288 		 * channels in usual fbin coding format
1289 		 */
1290 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1291 
1292 		/*
1293 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1294 		 * if the register is per chain
1295 		 */
1296 		.noiseFloorThreshCh = {-1, 0, 0},
1297 		.ob = {1, 1, 1},/* 3 chain */
1298 		.db_stage2 = {1, 1, 1}, /* 3 chain  */
1299 		.db_stage3 = {0, 0, 0},
1300 		.db_stage4 = {0, 0, 0},
1301 		.xpaBiasLvl = 0,
1302 		.txFrameToDataStart = 0x0e,
1303 		.txFrameToPaOn = 0x0e,
1304 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1305 		.antennaGain = 0,
1306 		.switchSettling = 0x2c,
1307 		.adcDesiredSize = -30,
1308 		.txEndToXpaOff = 0,
1309 		.txEndToRxOn = 0x2,
1310 		.txFrameToXpaOn = 0xe,
1311 		.thresh62 = 28,
1312 		.papdRateMaskHt20 = LE32(0x80c080),
1313 		.papdRateMaskHt40 = LE32(0x80c080),
1314 		.futureModal = {
1315 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1316 		},
1317 	},
1318 	.base_ext1 = {
1319 		.ant_div_control = 0,
1320 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1321 	},
1322 	.calFreqPier2G = {
1323 		FREQ2FBIN(2412, 1),
1324 		FREQ2FBIN(2437, 1),
1325 		FREQ2FBIN(2472, 1),
1326 	},
1327 	/* ar9300_cal_data_per_freq_op_loop 2g */
1328 	.calPierData2G = {
1329 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1330 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1331 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1332 	},
1333 	.calTarget_freqbin_Cck = {
1334 		FREQ2FBIN(2412, 1),
1335 		FREQ2FBIN(2484, 1),
1336 	},
1337 	.calTarget_freqbin_2G = {
1338 		FREQ2FBIN(2412, 1),
1339 		FREQ2FBIN(2437, 1),
1340 		FREQ2FBIN(2472, 1)
1341 	},
1342 	.calTarget_freqbin_2GHT20 = {
1343 		FREQ2FBIN(2412, 1),
1344 		FREQ2FBIN(2437, 1),
1345 		FREQ2FBIN(2472, 1)
1346 	},
1347 	.calTarget_freqbin_2GHT40 = {
1348 		FREQ2FBIN(2412, 1),
1349 		FREQ2FBIN(2437, 1),
1350 		FREQ2FBIN(2472, 1)
1351 	},
1352 	.calTargetPowerCck = {
1353 		/* 1L-5L,5S,11L,11S */
1354 		{ {34, 34, 34, 34} },
1355 		{ {34, 34, 34, 34} },
1356 	},
1357 	.calTargetPower2G = {
1358 		/* 6-24,36,48,54 */
1359 		{ {34, 34, 32, 32} },
1360 		{ {34, 34, 32, 32} },
1361 		{ {34, 34, 32, 32} },
1362 	},
1363 	.calTargetPower2GHT20 = {
1364 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1365 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1366 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1367 	},
1368 	.calTargetPower2GHT40 = {
1369 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1370 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1371 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1372 	},
1373 	.ctlIndex_2G =  {
1374 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1375 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1376 	},
1377 	.ctl_freqbin_2G = {
1378 		{
1379 			FREQ2FBIN(2412, 1),
1380 			FREQ2FBIN(2417, 1),
1381 			FREQ2FBIN(2457, 1),
1382 			FREQ2FBIN(2462, 1)
1383 		},
1384 		{
1385 			FREQ2FBIN(2412, 1),
1386 			FREQ2FBIN(2417, 1),
1387 			FREQ2FBIN(2462, 1),
1388 			0xFF,
1389 		},
1390 
1391 		{
1392 			FREQ2FBIN(2412, 1),
1393 			FREQ2FBIN(2417, 1),
1394 			FREQ2FBIN(2462, 1),
1395 			0xFF,
1396 		},
1397 		{
1398 			FREQ2FBIN(2422, 1),
1399 			FREQ2FBIN(2427, 1),
1400 			FREQ2FBIN(2447, 1),
1401 			FREQ2FBIN(2452, 1)
1402 		},
1403 
1404 		{
1405 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1406 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1407 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1408 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1409 		},
1410 
1411 		{
1412 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1413 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1414 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1415 			0,
1416 		},
1417 
1418 		{
1419 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1420 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1421 			FREQ2FBIN(2472, 1),
1422 			0,
1423 		},
1424 
1425 		{
1426 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1427 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1428 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1429 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1430 		},
1431 
1432 		{
1433 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1434 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1435 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1436 		},
1437 
1438 		{
1439 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1440 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1441 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1442 			0
1443 		},
1444 
1445 		{
1446 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1447 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1448 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1449 			0
1450 		},
1451 
1452 		{
1453 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1454 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1455 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1456 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1457 		}
1458 	},
1459 	.ctlPowerData_2G = {
1460 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1461 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1462 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1463 
1464 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1465 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1466 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1467 
1468 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1469 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1470 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1471 
1472 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1473 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1474 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1475 	},
1476 	.modalHeader5G = {
1477 		/* 4 idle,t1,t2,b (4 bits per setting) */
1478 		.antCtrlCommon = LE32(0x220),
1479 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1480 		.antCtrlCommon2 = LE32(0x44444),
1481 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1482 		.antCtrlChain = {
1483 			LE16(0x150), LE16(0x150), LE16(0x150),
1484 		},
1485 		/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1486 		.xatten1DB = {0, 0, 0},
1487 
1488 		/*
1489 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1490 		 * for merlin (0xa20c/b20c 16:12
1491 		 */
1492 		.xatten1Margin = {0, 0, 0},
1493 		.tempSlope = 45,
1494 		.voltSlope = 0,
1495 		/* spurChans spur channels in usual fbin coding format */
1496 		.spurChans = {0, 0, 0, 0, 0},
1497 		/* noiseFloorThreshCh Check if the register is per chain */
1498 		.noiseFloorThreshCh = {-1, 0, 0},
1499 		.ob = {3, 3, 3}, /* 3 chain */
1500 		.db_stage2 = {3, 3, 3}, /* 3 chain */
1501 		.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
1502 		.db_stage4 = {3, 3, 3},	 /* don't exist for 2G */
1503 		.xpaBiasLvl = 0,
1504 		.txFrameToDataStart = 0x0e,
1505 		.txFrameToPaOn = 0x0e,
1506 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1507 		.antennaGain = 0,
1508 		.switchSettling = 0x2d,
1509 		.adcDesiredSize = -30,
1510 		.txEndToXpaOff = 0,
1511 		.txEndToRxOn = 0x2,
1512 		.txFrameToXpaOn = 0xe,
1513 		.thresh62 = 28,
1514 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
1515 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
1516 		.futureModal = {
1517 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1518 		},
1519 	},
1520 	.base_ext2 = {
1521 		.tempSlopeLow = 40,
1522 		.tempSlopeHigh = 50,
1523 		.xatten1DBLow = {0, 0, 0},
1524 		.xatten1MarginLow = {0, 0, 0},
1525 		.xatten1DBHigh = {0, 0, 0},
1526 		.xatten1MarginHigh = {0, 0, 0}
1527 	},
1528 	.calFreqPier5G = {
1529 		FREQ2FBIN(5180, 0),
1530 		FREQ2FBIN(5220, 0),
1531 		FREQ2FBIN(5320, 0),
1532 		FREQ2FBIN(5400, 0),
1533 		FREQ2FBIN(5500, 0),
1534 		FREQ2FBIN(5600, 0),
1535 		FREQ2FBIN(5700, 0),
1536 		FREQ2FBIN(5825, 0)
1537 	},
1538 	.calPierData5G = {
1539 		{
1540 			{0, 0, 0, 0, 0},
1541 			{0, 0, 0, 0, 0},
1542 			{0, 0, 0, 0, 0},
1543 			{0, 0, 0, 0, 0},
1544 			{0, 0, 0, 0, 0},
1545 			{0, 0, 0, 0, 0},
1546 			{0, 0, 0, 0, 0},
1547 			{0, 0, 0, 0, 0},
1548 		},
1549 		{
1550 			{0, 0, 0, 0, 0},
1551 			{0, 0, 0, 0, 0},
1552 			{0, 0, 0, 0, 0},
1553 			{0, 0, 0, 0, 0},
1554 			{0, 0, 0, 0, 0},
1555 			{0, 0, 0, 0, 0},
1556 			{0, 0, 0, 0, 0},
1557 			{0, 0, 0, 0, 0},
1558 		},
1559 		{
1560 			{0, 0, 0, 0, 0},
1561 			{0, 0, 0, 0, 0},
1562 			{0, 0, 0, 0, 0},
1563 			{0, 0, 0, 0, 0},
1564 			{0, 0, 0, 0, 0},
1565 			{0, 0, 0, 0, 0},
1566 			{0, 0, 0, 0, 0},
1567 			{0, 0, 0, 0, 0},
1568 		},
1569 
1570 	},
1571 	.calTarget_freqbin_5G = {
1572 		FREQ2FBIN(5180, 0),
1573 		FREQ2FBIN(5240, 0),
1574 		FREQ2FBIN(5320, 0),
1575 		FREQ2FBIN(5400, 0),
1576 		FREQ2FBIN(5500, 0),
1577 		FREQ2FBIN(5600, 0),
1578 		FREQ2FBIN(5700, 0),
1579 		FREQ2FBIN(5825, 0)
1580 	},
1581 	.calTarget_freqbin_5GHT20 = {
1582 		FREQ2FBIN(5180, 0),
1583 		FREQ2FBIN(5240, 0),
1584 		FREQ2FBIN(5320, 0),
1585 		FREQ2FBIN(5400, 0),
1586 		FREQ2FBIN(5500, 0),
1587 		FREQ2FBIN(5700, 0),
1588 		FREQ2FBIN(5745, 0),
1589 		FREQ2FBIN(5825, 0)
1590 	},
1591 	.calTarget_freqbin_5GHT40 = {
1592 		FREQ2FBIN(5180, 0),
1593 		FREQ2FBIN(5240, 0),
1594 		FREQ2FBIN(5320, 0),
1595 		FREQ2FBIN(5400, 0),
1596 		FREQ2FBIN(5500, 0),
1597 		FREQ2FBIN(5700, 0),
1598 		FREQ2FBIN(5745, 0),
1599 		FREQ2FBIN(5825, 0)
1600 	},
1601 	.calTargetPower5G = {
1602 		/* 6-24,36,48,54 */
1603 		{ {30, 30, 28, 24} },
1604 		{ {30, 30, 28, 24} },
1605 		{ {30, 30, 28, 24} },
1606 		{ {30, 30, 28, 24} },
1607 		{ {30, 30, 28, 24} },
1608 		{ {30, 30, 28, 24} },
1609 		{ {30, 30, 28, 24} },
1610 		{ {30, 30, 28, 24} },
1611 	},
1612 	.calTargetPower5GHT20 = {
1613 		/*
1614 		 * 0_8_16,1-3_9-11_17-19,
1615 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1616 		 */
1617 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1618 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1619 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1620 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1621 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1622 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1623 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1624 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1625 	},
1626 	.calTargetPower5GHT40 =  {
1627 		/*
1628 		 * 0_8_16,1-3_9-11_17-19,
1629 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1630 		 */
1631 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1632 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1633 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1634 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1635 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1636 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1637 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1638 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1639 	},
1640 	.ctlIndex_5G =  {
1641 		0x10, 0x16, 0x18, 0x40, 0x46,
1642 		0x48, 0x30, 0x36, 0x38
1643 	},
1644 	.ctl_freqbin_5G =  {
1645 		{
1646 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1647 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1648 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1649 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1650 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1651 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1652 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1653 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1654 		},
1655 		{
1656 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1657 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1658 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1659 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1660 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1661 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1662 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1663 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1664 		},
1665 
1666 		{
1667 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1668 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1669 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1670 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1671 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1672 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1673 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1674 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1675 		},
1676 
1677 		{
1678 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1679 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1680 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1681 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1682 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1683 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1684 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1685 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1686 		},
1687 
1688 		{
1689 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1690 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1691 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1692 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1693 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1694 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1695 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1696 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1697 		},
1698 
1699 		{
1700 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1701 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1702 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1703 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1704 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1705 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1706 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1707 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1708 		},
1709 
1710 		{
1711 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1712 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1713 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1714 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1715 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1716 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1717 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1718 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1719 		},
1720 
1721 		{
1722 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1723 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1724 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1725 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1726 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1727 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1728 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1729 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1730 		},
1731 
1732 		{
1733 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1734 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1735 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1736 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1737 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1738 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1739 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1740 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1741 		}
1742 	},
1743 	.ctlPowerData_5G = {
1744 		{
1745 			{
1746 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1747 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1748 			}
1749 		},
1750 		{
1751 			{
1752 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1753 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1754 			}
1755 		},
1756 		{
1757 			{
1758 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1759 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1760 			}
1761 		},
1762 		{
1763 			{
1764 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1765 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1766 			}
1767 		},
1768 		{
1769 			{
1770 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1771 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1772 			}
1773 		},
1774 		{
1775 			{
1776 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1777 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1778 			}
1779 		},
1780 		{
1781 			{
1782 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1783 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1784 			}
1785 		},
1786 		{
1787 			{
1788 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1789 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1790 			}
1791 		},
1792 		{
1793 			{
1794 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1795 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1796 			}
1797 		},
1798 	}
1799 };
1800 
1801 
1802 static const struct ar9300_eeprom ar9300_x112 = {
1803 	.eepromVersion = 2,
1804 	.templateVersion = 5,
1805 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1806 	.custData = {"x112-041-f0000"},
1807 	.baseEepHeader = {
1808 		.regDmn = { LE16(0), LE16(0x1f) },
1809 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1810 		.opCapFlags = {
1811 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1812 			.eepMisc = 0,
1813 		},
1814 		.rfSilent = 0,
1815 		.blueToothOptions = 0,
1816 		.deviceCap = 0,
1817 		.deviceType = 5, /* takes lower byte in eeprom location */
1818 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1819 		.params_for_tuning_caps = {0, 0},
1820 		.featureEnable = 0x0d,
1821 		/*
1822 		 * bit0 - enable tx temp comp - disabled
1823 		 * bit1 - enable tx volt comp - disabled
1824 		 * bit2 - enable fastclock - enabled
1825 		 * bit3 - enable doubling - enabled
1826 		 * bit4 - enable internal regulator - disabled
1827 		 * bit5 - enable pa predistortion - disabled
1828 		 */
1829 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1830 		.eepromWriteEnableGpio = 6,
1831 		.wlanDisableGpio = 0,
1832 		.wlanLedGpio = 8,
1833 		.rxBandSelectGpio = 0xff,
1834 		.txrxgain = 0x0,
1835 		.swreg = 0,
1836 	},
1837 	.modalHeader2G = {
1838 		/* ar9300_modal_eep_header  2g */
1839 		/* 4 idle,t1,t2,b(4 bits per setting) */
1840 		.antCtrlCommon = LE32(0x110),
1841 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1842 		.antCtrlCommon2 = LE32(0x22222),
1843 
1844 		/*
1845 		 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1846 		 * rx1, rx12, b (2 bits each)
1847 		 */
1848 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1849 
1850 		/*
1851 		 * xatten1DB[AR9300_max_chains];  3 xatten1_db
1852 		 * for ar9280 (0xa20c/b20c 5:0)
1853 		 */
1854 		.xatten1DB = {0x1b, 0x1b, 0x1b},
1855 
1856 		/*
1857 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1858 		 * for ar9280 (0xa20c/b20c 16:12
1859 		 */
1860 		.xatten1Margin = {0x15, 0x15, 0x15},
1861 		.tempSlope = 50,
1862 		.voltSlope = 0,
1863 
1864 		/*
1865 		 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1866 		 * channels in usual fbin coding format
1867 		 */
1868 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1869 
1870 		/*
1871 		 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1872 		 * if the register is per chain
1873 		 */
1874 		.noiseFloorThreshCh = {-1, 0, 0},
1875 		.ob = {1, 1, 1},/* 3 chain */
1876 		.db_stage2 = {1, 1, 1}, /* 3 chain  */
1877 		.db_stage3 = {0, 0, 0},
1878 		.db_stage4 = {0, 0, 0},
1879 		.xpaBiasLvl = 0,
1880 		.txFrameToDataStart = 0x0e,
1881 		.txFrameToPaOn = 0x0e,
1882 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1883 		.antennaGain = 0,
1884 		.switchSettling = 0x2c,
1885 		.adcDesiredSize = -30,
1886 		.txEndToXpaOff = 0,
1887 		.txEndToRxOn = 0x2,
1888 		.txFrameToXpaOn = 0xe,
1889 		.thresh62 = 28,
1890 		.papdRateMaskHt20 = LE32(0x0c80c080),
1891 		.papdRateMaskHt40 = LE32(0x0080c080),
1892 		.futureModal = {
1893 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1894 		},
1895 	},
1896 	.base_ext1 = {
1897 		.ant_div_control = 0,
1898 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1899 	},
1900 	.calFreqPier2G = {
1901 		FREQ2FBIN(2412, 1),
1902 		FREQ2FBIN(2437, 1),
1903 		FREQ2FBIN(2472, 1),
1904 	},
1905 	/* ar9300_cal_data_per_freq_op_loop 2g */
1906 	.calPierData2G = {
1907 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1908 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1909 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1910 	},
1911 	.calTarget_freqbin_Cck = {
1912 		FREQ2FBIN(2412, 1),
1913 		FREQ2FBIN(2472, 1),
1914 	},
1915 	.calTarget_freqbin_2G = {
1916 		FREQ2FBIN(2412, 1),
1917 		FREQ2FBIN(2437, 1),
1918 		FREQ2FBIN(2472, 1)
1919 	},
1920 	.calTarget_freqbin_2GHT20 = {
1921 		FREQ2FBIN(2412, 1),
1922 		FREQ2FBIN(2437, 1),
1923 		FREQ2FBIN(2472, 1)
1924 	},
1925 	.calTarget_freqbin_2GHT40 = {
1926 		FREQ2FBIN(2412, 1),
1927 		FREQ2FBIN(2437, 1),
1928 		FREQ2FBIN(2472, 1)
1929 	},
1930 	.calTargetPowerCck = {
1931 		/* 1L-5L,5S,11L,11s */
1932 		{ {38, 38, 38, 38} },
1933 		{ {38, 38, 38, 38} },
1934 	},
1935 	.calTargetPower2G = {
1936 		/* 6-24,36,48,54 */
1937 		{ {38, 38, 36, 34} },
1938 		{ {38, 38, 36, 34} },
1939 		{ {38, 38, 34, 32} },
1940 	},
1941 	.calTargetPower2GHT20 = {
1942 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1943 		{ {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1944 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1945 	},
1946 	.calTargetPower2GHT40 = {
1947 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1948 		{ {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1949 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1950 	},
1951 	.ctlIndex_2G =  {
1952 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1953 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1954 	},
1955 	.ctl_freqbin_2G = {
1956 		{
1957 			FREQ2FBIN(2412, 1),
1958 			FREQ2FBIN(2417, 1),
1959 			FREQ2FBIN(2457, 1),
1960 			FREQ2FBIN(2462, 1)
1961 		},
1962 		{
1963 			FREQ2FBIN(2412, 1),
1964 			FREQ2FBIN(2417, 1),
1965 			FREQ2FBIN(2462, 1),
1966 			0xFF,
1967 		},
1968 
1969 		{
1970 			FREQ2FBIN(2412, 1),
1971 			FREQ2FBIN(2417, 1),
1972 			FREQ2FBIN(2462, 1),
1973 			0xFF,
1974 		},
1975 		{
1976 			FREQ2FBIN(2422, 1),
1977 			FREQ2FBIN(2427, 1),
1978 			FREQ2FBIN(2447, 1),
1979 			FREQ2FBIN(2452, 1)
1980 		},
1981 
1982 		{
1983 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1984 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1985 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1986 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1987 		},
1988 
1989 		{
1990 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1991 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1992 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1993 			0,
1994 		},
1995 
1996 		{
1997 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1998 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1999 			FREQ2FBIN(2472, 1),
2000 			0,
2001 		},
2002 
2003 		{
2004 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2005 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2006 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2007 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2008 		},
2009 
2010 		{
2011 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2012 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2013 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2014 		},
2015 
2016 		{
2017 			/* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2018 			/* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2019 			/* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2020 			0
2021 		},
2022 
2023 		{
2024 			/* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2025 			/* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2026 			/* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2027 			0
2028 		},
2029 
2030 		{
2031 			/* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2032 			/* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2033 			/* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2034 			/* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2035 		}
2036 	},
2037 	.ctlPowerData_2G = {
2038 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2039 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2040 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2041 
2042 		{ { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } },
2043 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2044 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2045 
2046 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2047 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2048 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2049 
2050 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2051 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2052 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2053 	},
2054 	.modalHeader5G = {
2055 		/* 4 idle,t1,t2,b (4 bits per setting) */
2056 		.antCtrlCommon = LE32(0x110),
2057 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2058 		.antCtrlCommon2 = LE32(0x22222),
2059 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2060 		.antCtrlChain = {
2061 			LE16(0x0), LE16(0x0), LE16(0x0),
2062 		},
2063 		/* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2064 		.xatten1DB = {0x13, 0x19, 0x17},
2065 
2066 		/*
2067 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2068 		 * for merlin (0xa20c/b20c 16:12
2069 		 */
2070 		.xatten1Margin = {0x19, 0x19, 0x19},
2071 		.tempSlope = 70,
2072 		.voltSlope = 15,
2073 		/* spurChans spur channels in usual fbin coding format */
2074 		.spurChans = {0, 0, 0, 0, 0},
2075 		/* noiseFloorThreshch check if the register is per chain */
2076 		.noiseFloorThreshCh = {-1, 0, 0},
2077 		.ob = {3, 3, 3}, /* 3 chain */
2078 		.db_stage2 = {3, 3, 3}, /* 3 chain */
2079 		.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
2080 		.db_stage4 = {3, 3, 3},	 /* don't exist for 2G */
2081 		.xpaBiasLvl = 0,
2082 		.txFrameToDataStart = 0x0e,
2083 		.txFrameToPaOn = 0x0e,
2084 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2085 		.antennaGain = 0,
2086 		.switchSettling = 0x2d,
2087 		.adcDesiredSize = -30,
2088 		.txEndToXpaOff = 0,
2089 		.txEndToRxOn = 0x2,
2090 		.txFrameToXpaOn = 0xe,
2091 		.thresh62 = 28,
2092 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2093 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2094 		.futureModal = {
2095 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2096 		},
2097 	},
2098 	.base_ext2 = {
2099 		.tempSlopeLow = 72,
2100 		.tempSlopeHigh = 105,
2101 		.xatten1DBLow = {0x10, 0x14, 0x10},
2102 		.xatten1MarginLow = {0x19, 0x19 , 0x19},
2103 		.xatten1DBHigh = {0x1d, 0x20, 0x24},
2104 		.xatten1MarginHigh = {0x10, 0x10, 0x10}
2105 	},
2106 	.calFreqPier5G = {
2107 		FREQ2FBIN(5180, 0),
2108 		FREQ2FBIN(5220, 0),
2109 		FREQ2FBIN(5320, 0),
2110 		FREQ2FBIN(5400, 0),
2111 		FREQ2FBIN(5500, 0),
2112 		FREQ2FBIN(5600, 0),
2113 		FREQ2FBIN(5700, 0),
2114 		FREQ2FBIN(5785, 0)
2115 	},
2116 	.calPierData5G = {
2117 		{
2118 			{0, 0, 0, 0, 0},
2119 			{0, 0, 0, 0, 0},
2120 			{0, 0, 0, 0, 0},
2121 			{0, 0, 0, 0, 0},
2122 			{0, 0, 0, 0, 0},
2123 			{0, 0, 0, 0, 0},
2124 			{0, 0, 0, 0, 0},
2125 			{0, 0, 0, 0, 0},
2126 		},
2127 		{
2128 			{0, 0, 0, 0, 0},
2129 			{0, 0, 0, 0, 0},
2130 			{0, 0, 0, 0, 0},
2131 			{0, 0, 0, 0, 0},
2132 			{0, 0, 0, 0, 0},
2133 			{0, 0, 0, 0, 0},
2134 			{0, 0, 0, 0, 0},
2135 			{0, 0, 0, 0, 0},
2136 		},
2137 		{
2138 			{0, 0, 0, 0, 0},
2139 			{0, 0, 0, 0, 0},
2140 			{0, 0, 0, 0, 0},
2141 			{0, 0, 0, 0, 0},
2142 			{0, 0, 0, 0, 0},
2143 			{0, 0, 0, 0, 0},
2144 			{0, 0, 0, 0, 0},
2145 			{0, 0, 0, 0, 0},
2146 		},
2147 
2148 	},
2149 	.calTarget_freqbin_5G = {
2150 		FREQ2FBIN(5180, 0),
2151 		FREQ2FBIN(5220, 0),
2152 		FREQ2FBIN(5320, 0),
2153 		FREQ2FBIN(5400, 0),
2154 		FREQ2FBIN(5500, 0),
2155 		FREQ2FBIN(5600, 0),
2156 		FREQ2FBIN(5725, 0),
2157 		FREQ2FBIN(5825, 0)
2158 	},
2159 	.calTarget_freqbin_5GHT20 = {
2160 		FREQ2FBIN(5180, 0),
2161 		FREQ2FBIN(5220, 0),
2162 		FREQ2FBIN(5320, 0),
2163 		FREQ2FBIN(5400, 0),
2164 		FREQ2FBIN(5500, 0),
2165 		FREQ2FBIN(5600, 0),
2166 		FREQ2FBIN(5725, 0),
2167 		FREQ2FBIN(5825, 0)
2168 	},
2169 	.calTarget_freqbin_5GHT40 = {
2170 		FREQ2FBIN(5180, 0),
2171 		FREQ2FBIN(5220, 0),
2172 		FREQ2FBIN(5320, 0),
2173 		FREQ2FBIN(5400, 0),
2174 		FREQ2FBIN(5500, 0),
2175 		FREQ2FBIN(5600, 0),
2176 		FREQ2FBIN(5725, 0),
2177 		FREQ2FBIN(5825, 0)
2178 	},
2179 	.calTargetPower5G = {
2180 		/* 6-24,36,48,54 */
2181 		{ {32, 32, 28, 26} },
2182 		{ {32, 32, 28, 26} },
2183 		{ {32, 32, 28, 26} },
2184 		{ {32, 32, 26, 24} },
2185 		{ {32, 32, 26, 24} },
2186 		{ {32, 32, 24, 22} },
2187 		{ {30, 30, 24, 22} },
2188 		{ {30, 30, 24, 22} },
2189 	},
2190 	.calTargetPower5GHT20 = {
2191 		/*
2192 		 * 0_8_16,1-3_9-11_17-19,
2193 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2194 		 */
2195 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2196 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2197 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2198 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2199 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2200 		{ {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2201 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2202 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2203 	},
2204 	.calTargetPower5GHT40 =  {
2205 		/*
2206 		 * 0_8_16,1-3_9-11_17-19,
2207 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2208 		 */
2209 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2210 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2211 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2212 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2213 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2214 		{ {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2215 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2216 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2217 	},
2218 	.ctlIndex_5G =  {
2219 		0x10, 0x16, 0x18, 0x40, 0x46,
2220 		0x48, 0x30, 0x36, 0x38
2221 	},
2222 	.ctl_freqbin_5G =  {
2223 		{
2224 			/* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2225 			/* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2226 			/* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2227 			/* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2228 			/* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2229 			/* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2230 			/* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2231 			/* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2232 		},
2233 		{
2234 			/* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2235 			/* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2236 			/* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2237 			/* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2238 			/* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2239 			/* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2240 			/* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2241 			/* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2242 		},
2243 
2244 		{
2245 			/* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2246 			/* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2247 			/* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2248 			/* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2249 			/* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2250 			/* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2251 			/* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2252 			/* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2253 		},
2254 
2255 		{
2256 			/* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2257 			/* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2258 			/* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2259 			/* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2260 			/* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2261 			/* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2262 			/* Data[3].ctledges[6].bchannel */ 0xFF,
2263 			/* Data[3].ctledges[7].bchannel */ 0xFF,
2264 		},
2265 
2266 		{
2267 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2268 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2269 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2270 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2271 			/* Data[4].ctledges[4].bchannel */ 0xFF,
2272 			/* Data[4].ctledges[5].bchannel */ 0xFF,
2273 			/* Data[4].ctledges[6].bchannel */ 0xFF,
2274 			/* Data[4].ctledges[7].bchannel */ 0xFF,
2275 		},
2276 
2277 		{
2278 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2279 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2280 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2281 			/* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2282 			/* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2283 			/* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2284 			/* Data[5].ctledges[6].bchannel */ 0xFF,
2285 			/* Data[5].ctledges[7].bchannel */ 0xFF
2286 		},
2287 
2288 		{
2289 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2290 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2291 			/* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2292 			/* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2293 			/* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2294 			/* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2295 			/* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2296 			/* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2297 		},
2298 
2299 		{
2300 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2301 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2302 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2303 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2304 			/* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2305 			/* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2306 			/* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2307 			/* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2308 		},
2309 
2310 		{
2311 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2312 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2313 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2314 			/* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2315 			/* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2316 			/* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2317 			/* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2318 			/* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2319 		}
2320 	},
2321 	.ctlPowerData_5G = {
2322 		{
2323 			{
2324 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2325 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2326 			}
2327 		},
2328 		{
2329 			{
2330 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2331 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2332 			}
2333 		},
2334 		{
2335 			{
2336 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2337 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2338 			}
2339 		},
2340 		{
2341 			{
2342 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2343 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2344 			}
2345 		},
2346 		{
2347 			{
2348 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2349 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2350 			}
2351 		},
2352 		{
2353 			{
2354 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2355 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2356 			}
2357 		},
2358 		{
2359 			{
2360 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2361 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2362 			}
2363 		},
2364 		{
2365 			{
2366 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2367 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2368 			}
2369 		},
2370 		{
2371 			{
2372 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2373 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2374 			}
2375 		},
2376 	}
2377 };
2378 
2379 static const struct ar9300_eeprom ar9300_h116 = {
2380 	.eepromVersion = 2,
2381 	.templateVersion = 4,
2382 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2383 	.custData = {"h116-041-f0000"},
2384 	.baseEepHeader = {
2385 		.regDmn = { LE16(0), LE16(0x1f) },
2386 		.txrxMask =  0x33, /* 4 bits tx and 4 bits rx */
2387 		.opCapFlags = {
2388 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2389 			.eepMisc = 0,
2390 		},
2391 		.rfSilent = 0,
2392 		.blueToothOptions = 0,
2393 		.deviceCap = 0,
2394 		.deviceType = 5, /* takes lower byte in eeprom location */
2395 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2396 		.params_for_tuning_caps = {0, 0},
2397 		.featureEnable = 0x0d,
2398 		 /*
2399 		  * bit0 - enable tx temp comp - disabled
2400 		  * bit1 - enable tx volt comp - disabled
2401 		  * bit2 - enable fastClock - enabled
2402 		  * bit3 - enable doubling - enabled
2403 		  * bit4 - enable internal regulator - disabled
2404 		  * bit5 - enable pa predistortion - disabled
2405 		  */
2406 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
2407 		.eepromWriteEnableGpio = 6,
2408 		.wlanDisableGpio = 0,
2409 		.wlanLedGpio = 8,
2410 		.rxBandSelectGpio = 0xff,
2411 		.txrxgain = 0x10,
2412 		.swreg = 0,
2413 	 },
2414 	.modalHeader2G = {
2415 	/* ar9300_modal_eep_header  2g */
2416 		/* 4 idle,t1,t2,b(4 bits per setting) */
2417 		.antCtrlCommon = LE32(0x110),
2418 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2419 		.antCtrlCommon2 = LE32(0x44444),
2420 
2421 		/*
2422 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2423 		 * rx1, rx12, b (2 bits each)
2424 		 */
2425 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2426 
2427 		/*
2428 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
2429 		 * for ar9280 (0xa20c/b20c 5:0)
2430 		 */
2431 		.xatten1DB = {0x1f, 0x1f, 0x1f},
2432 
2433 		/*
2434 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2435 		 * for ar9280 (0xa20c/b20c 16:12
2436 		 */
2437 		.xatten1Margin = {0x12, 0x12, 0x12},
2438 		.tempSlope = 25,
2439 		.voltSlope = 0,
2440 
2441 		/*
2442 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2443 		 * channels in usual fbin coding format
2444 		 */
2445 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2446 
2447 		/*
2448 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2449 		 * if the register is per chain
2450 		 */
2451 		.noiseFloorThreshCh = {-1, 0, 0},
2452 		.ob = {1, 1, 1},/* 3 chain */
2453 		.db_stage2 = {1, 1, 1}, /* 3 chain  */
2454 		.db_stage3 = {0, 0, 0},
2455 		.db_stage4 = {0, 0, 0},
2456 		.xpaBiasLvl = 0,
2457 		.txFrameToDataStart = 0x0e,
2458 		.txFrameToPaOn = 0x0e,
2459 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2460 		.antennaGain = 0,
2461 		.switchSettling = 0x2c,
2462 		.adcDesiredSize = -30,
2463 		.txEndToXpaOff = 0,
2464 		.txEndToRxOn = 0x2,
2465 		.txFrameToXpaOn = 0xe,
2466 		.thresh62 = 28,
2467 		.papdRateMaskHt20 = LE32(0x0c80C080),
2468 		.papdRateMaskHt40 = LE32(0x0080C080),
2469 		.futureModal = {
2470 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2471 		},
2472 	 },
2473 	 .base_ext1 = {
2474 		.ant_div_control = 0,
2475 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
2476 	 },
2477 	.calFreqPier2G = {
2478 		FREQ2FBIN(2412, 1),
2479 		FREQ2FBIN(2437, 1),
2480 		FREQ2FBIN(2472, 1),
2481 	 },
2482 	/* ar9300_cal_data_per_freq_op_loop 2g */
2483 	.calPierData2G = {
2484 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2485 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2486 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2487 	 },
2488 	.calTarget_freqbin_Cck = {
2489 		FREQ2FBIN(2412, 1),
2490 		FREQ2FBIN(2472, 1),
2491 	 },
2492 	.calTarget_freqbin_2G = {
2493 		FREQ2FBIN(2412, 1),
2494 		FREQ2FBIN(2437, 1),
2495 		FREQ2FBIN(2472, 1)
2496 	 },
2497 	.calTarget_freqbin_2GHT20 = {
2498 		FREQ2FBIN(2412, 1),
2499 		FREQ2FBIN(2437, 1),
2500 		FREQ2FBIN(2472, 1)
2501 	 },
2502 	.calTarget_freqbin_2GHT40 = {
2503 		FREQ2FBIN(2412, 1),
2504 		FREQ2FBIN(2437, 1),
2505 		FREQ2FBIN(2472, 1)
2506 	 },
2507 	.calTargetPowerCck = {
2508 		 /* 1L-5L,5S,11L,11S */
2509 		 { {34, 34, 34, 34} },
2510 		 { {34, 34, 34, 34} },
2511 	},
2512 	.calTargetPower2G = {
2513 		 /* 6-24,36,48,54 */
2514 		 { {34, 34, 32, 32} },
2515 		 { {34, 34, 32, 32} },
2516 		 { {34, 34, 32, 32} },
2517 	},
2518 	.calTargetPower2GHT20 = {
2519 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2520 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2521 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2522 	},
2523 	.calTargetPower2GHT40 = {
2524 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2525 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2526 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2527 	},
2528 	.ctlIndex_2G =  {
2529 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2530 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2531 	},
2532 	.ctl_freqbin_2G = {
2533 		{
2534 			FREQ2FBIN(2412, 1),
2535 			FREQ2FBIN(2417, 1),
2536 			FREQ2FBIN(2457, 1),
2537 			FREQ2FBIN(2462, 1)
2538 		},
2539 		{
2540 			FREQ2FBIN(2412, 1),
2541 			FREQ2FBIN(2417, 1),
2542 			FREQ2FBIN(2462, 1),
2543 			0xFF,
2544 		},
2545 
2546 		{
2547 			FREQ2FBIN(2412, 1),
2548 			FREQ2FBIN(2417, 1),
2549 			FREQ2FBIN(2462, 1),
2550 			0xFF,
2551 		},
2552 		{
2553 			FREQ2FBIN(2422, 1),
2554 			FREQ2FBIN(2427, 1),
2555 			FREQ2FBIN(2447, 1),
2556 			FREQ2FBIN(2452, 1)
2557 		},
2558 
2559 		{
2560 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2561 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2562 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2563 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2564 		},
2565 
2566 		{
2567 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2568 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2569 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2570 			0,
2571 		},
2572 
2573 		{
2574 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2575 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2576 			FREQ2FBIN(2472, 1),
2577 			0,
2578 		},
2579 
2580 		{
2581 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2582 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2583 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2584 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2585 		},
2586 
2587 		{
2588 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2589 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2590 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2591 		},
2592 
2593 		{
2594 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2595 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2596 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2597 			0
2598 		},
2599 
2600 		{
2601 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2602 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2603 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2604 			0
2605 		},
2606 
2607 		{
2608 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2609 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2610 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2611 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2612 		}
2613 	 },
2614 	.ctlPowerData_2G = {
2615 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2616 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2617 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2618 
2619 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2620 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2621 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2622 
2623 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2624 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2625 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2626 
2627 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2628 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2629 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2630 	 },
2631 	.modalHeader5G = {
2632 		/* 4 idle,t1,t2,b (4 bits per setting) */
2633 		.antCtrlCommon = LE32(0x220),
2634 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2635 		.antCtrlCommon2 = LE32(0x44444),
2636 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2637 		.antCtrlChain = {
2638 			LE16(0x150), LE16(0x150), LE16(0x150),
2639 		},
2640 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2641 		.xatten1DB = {0x19, 0x19, 0x19},
2642 
2643 		/*
2644 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2645 		 * for merlin (0xa20c/b20c 16:12
2646 		 */
2647 		.xatten1Margin = {0x14, 0x14, 0x14},
2648 		.tempSlope = 70,
2649 		.voltSlope = 0,
2650 		/* spurChans spur channels in usual fbin coding format */
2651 		.spurChans = {0, 0, 0, 0, 0},
2652 		/* noiseFloorThreshCh Check if the register is per chain */
2653 		.noiseFloorThreshCh = {-1, 0, 0},
2654 		.ob = {3, 3, 3}, /* 3 chain */
2655 		.db_stage2 = {3, 3, 3}, /* 3 chain */
2656 		.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
2657 		.db_stage4 = {3, 3, 3},	 /* don't exist for 2G */
2658 		.xpaBiasLvl = 0,
2659 		.txFrameToDataStart = 0x0e,
2660 		.txFrameToPaOn = 0x0e,
2661 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2662 		.antennaGain = 0,
2663 		.switchSettling = 0x2d,
2664 		.adcDesiredSize = -30,
2665 		.txEndToXpaOff = 0,
2666 		.txEndToRxOn = 0x2,
2667 		.txFrameToXpaOn = 0xe,
2668 		.thresh62 = 28,
2669 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2670 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2671 		.futureModal = {
2672 			0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2673 		},
2674 	 },
2675 	.base_ext2 = {
2676 		.tempSlopeLow = 35,
2677 		.tempSlopeHigh = 50,
2678 		.xatten1DBLow = {0, 0, 0},
2679 		.xatten1MarginLow = {0, 0, 0},
2680 		.xatten1DBHigh = {0, 0, 0},
2681 		.xatten1MarginHigh = {0, 0, 0}
2682 	 },
2683 	.calFreqPier5G = {
2684 		FREQ2FBIN(5180, 0),
2685 		FREQ2FBIN(5220, 0),
2686 		FREQ2FBIN(5320, 0),
2687 		FREQ2FBIN(5400, 0),
2688 		FREQ2FBIN(5500, 0),
2689 		FREQ2FBIN(5600, 0),
2690 		FREQ2FBIN(5700, 0),
2691 		FREQ2FBIN(5785, 0)
2692 	},
2693 	.calPierData5G = {
2694 			{
2695 				{0, 0, 0, 0, 0},
2696 				{0, 0, 0, 0, 0},
2697 				{0, 0, 0, 0, 0},
2698 				{0, 0, 0, 0, 0},
2699 				{0, 0, 0, 0, 0},
2700 				{0, 0, 0, 0, 0},
2701 				{0, 0, 0, 0, 0},
2702 				{0, 0, 0, 0, 0},
2703 			},
2704 			{
2705 				{0, 0, 0, 0, 0},
2706 				{0, 0, 0, 0, 0},
2707 				{0, 0, 0, 0, 0},
2708 				{0, 0, 0, 0, 0},
2709 				{0, 0, 0, 0, 0},
2710 				{0, 0, 0, 0, 0},
2711 				{0, 0, 0, 0, 0},
2712 				{0, 0, 0, 0, 0},
2713 			},
2714 			{
2715 				{0, 0, 0, 0, 0},
2716 				{0, 0, 0, 0, 0},
2717 				{0, 0, 0, 0, 0},
2718 				{0, 0, 0, 0, 0},
2719 				{0, 0, 0, 0, 0},
2720 				{0, 0, 0, 0, 0},
2721 				{0, 0, 0, 0, 0},
2722 				{0, 0, 0, 0, 0},
2723 			},
2724 
2725 	},
2726 	.calTarget_freqbin_5G = {
2727 		FREQ2FBIN(5180, 0),
2728 		FREQ2FBIN(5240, 0),
2729 		FREQ2FBIN(5320, 0),
2730 		FREQ2FBIN(5400, 0),
2731 		FREQ2FBIN(5500, 0),
2732 		FREQ2FBIN(5600, 0),
2733 		FREQ2FBIN(5700, 0),
2734 		FREQ2FBIN(5825, 0)
2735 	},
2736 	.calTarget_freqbin_5GHT20 = {
2737 		FREQ2FBIN(5180, 0),
2738 		FREQ2FBIN(5240, 0),
2739 		FREQ2FBIN(5320, 0),
2740 		FREQ2FBIN(5400, 0),
2741 		FREQ2FBIN(5500, 0),
2742 		FREQ2FBIN(5700, 0),
2743 		FREQ2FBIN(5745, 0),
2744 		FREQ2FBIN(5825, 0)
2745 	},
2746 	.calTarget_freqbin_5GHT40 = {
2747 		FREQ2FBIN(5180, 0),
2748 		FREQ2FBIN(5240, 0),
2749 		FREQ2FBIN(5320, 0),
2750 		FREQ2FBIN(5400, 0),
2751 		FREQ2FBIN(5500, 0),
2752 		FREQ2FBIN(5700, 0),
2753 		FREQ2FBIN(5745, 0),
2754 		FREQ2FBIN(5825, 0)
2755 	 },
2756 	.calTargetPower5G = {
2757 		/* 6-24,36,48,54 */
2758 		{ {30, 30, 28, 24} },
2759 		{ {30, 30, 28, 24} },
2760 		{ {30, 30, 28, 24} },
2761 		{ {30, 30, 28, 24} },
2762 		{ {30, 30, 28, 24} },
2763 		{ {30, 30, 28, 24} },
2764 		{ {30, 30, 28, 24} },
2765 		{ {30, 30, 28, 24} },
2766 	 },
2767 	.calTargetPower5GHT20 = {
2768 		/*
2769 		 * 0_8_16,1-3_9-11_17-19,
2770 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2771 		 */
2772 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2773 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2774 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2775 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2776 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2777 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2778 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2779 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2780 	 },
2781 	.calTargetPower5GHT40 =  {
2782 		/*
2783 		 * 0_8_16,1-3_9-11_17-19,
2784 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2785 		 */
2786 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2787 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2788 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2789 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2790 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2791 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2792 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2793 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2794 	 },
2795 	.ctlIndex_5G =  {
2796 		0x10, 0x16, 0x18, 0x40, 0x46,
2797 		0x48, 0x30, 0x36, 0x38
2798 	},
2799 	.ctl_freqbin_5G =  {
2800 		{
2801 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2802 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2803 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2804 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2805 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2806 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2807 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2808 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2809 		},
2810 		{
2811 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2812 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2813 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2814 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2815 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2816 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2817 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2818 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2819 		},
2820 
2821 		{
2822 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2823 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2824 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2825 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2826 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2827 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2828 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2829 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2830 		},
2831 
2832 		{
2833 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2834 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2835 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2836 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2837 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2838 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2839 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
2840 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
2841 		},
2842 
2843 		{
2844 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2845 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2846 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2847 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2848 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
2849 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
2850 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
2851 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
2852 		},
2853 
2854 		{
2855 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2856 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2857 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2858 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2859 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2860 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2861 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
2862 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
2863 		},
2864 
2865 		{
2866 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2867 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2868 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2869 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2870 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2871 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2872 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2873 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2874 		},
2875 
2876 		{
2877 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2878 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2879 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2880 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2881 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2882 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2883 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2884 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2885 		},
2886 
2887 		{
2888 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2889 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2890 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2891 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2892 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2893 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2894 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2895 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2896 		}
2897 	 },
2898 	.ctlPowerData_5G = {
2899 		{
2900 			{
2901 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2902 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2903 			}
2904 		},
2905 		{
2906 			{
2907 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2908 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2909 			}
2910 		},
2911 		{
2912 			{
2913 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2914 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2915 			}
2916 		},
2917 		{
2918 			{
2919 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2920 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2921 			}
2922 		},
2923 		{
2924 			{
2925 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2926 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2927 			}
2928 		},
2929 		{
2930 			{
2931 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2932 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2933 			}
2934 		},
2935 		{
2936 			{
2937 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2938 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2939 			}
2940 		},
2941 		{
2942 			{
2943 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2944 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2945 			}
2946 		},
2947 		{
2948 			{
2949 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2950 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2951 			}
2952 		},
2953 	 }
2954 };
2955 
2956 
2957 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2958 	&ar9300_default,
2959 	&ar9300_x112,
2960 	&ar9300_h116,
2961 	&ar9300_h112,
2962 	&ar9300_x113,
2963 };
2964 
2965 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2966 {
2967 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2968 	int it;
2969 
2970 	for (it = 0; it < N_LOOP; it++)
2971 		if (ar9300_eep_templates[it]->templateVersion == id)
2972 			return ar9300_eep_templates[it];
2973 	return NULL;
2974 #undef N_LOOP
2975 }
2976 
2977 
2978 static u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
2979 {
2980 	if (fbin == AR5416_BCHAN_UNUSED)
2981 		return fbin;
2982 
2983 	return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2984 }
2985 
2986 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2987 {
2988 	return 0;
2989 }
2990 
2991 static int interpolate(int x, int xa, int xb, int ya, int yb)
2992 {
2993 	int bf, factor, plus;
2994 
2995 	bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2996 	factor = bf / 2;
2997 	plus = bf % 2;
2998 	return ya + factor + plus;
2999 }
3000 
3001 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
3002 				      enum eeprom_param param)
3003 {
3004 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3005 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3006 
3007 	switch (param) {
3008 	case EEP_MAC_LSW:
3009 		return eep->macAddr[0] << 8 | eep->macAddr[1];
3010 	case EEP_MAC_MID:
3011 		return eep->macAddr[2] << 8 | eep->macAddr[3];
3012 	case EEP_MAC_MSW:
3013 		return eep->macAddr[4] << 8 | eep->macAddr[5];
3014 	case EEP_REG_0:
3015 		return le16_to_cpu(pBase->regDmn[0]);
3016 	case EEP_REG_1:
3017 		return le16_to_cpu(pBase->regDmn[1]);
3018 	case EEP_OP_CAP:
3019 		return pBase->deviceCap;
3020 	case EEP_OP_MODE:
3021 		return pBase->opCapFlags.opFlags;
3022 	case EEP_RF_SILENT:
3023 		return pBase->rfSilent;
3024 	case EEP_TX_MASK:
3025 		return (pBase->txrxMask >> 4) & 0xf;
3026 	case EEP_RX_MASK:
3027 		return pBase->txrxMask & 0xf;
3028 	case EEP_DRIVE_STRENGTH:
3029 #define AR9300_EEP_BASE_DRIV_STRENGTH	0x1
3030 		return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH;
3031 	case EEP_INTERNAL_REGULATOR:
3032 		/* Bit 4 is internal regulator flag */
3033 		return (pBase->featureEnable & 0x10) >> 4;
3034 	case EEP_SWREG:
3035 		return le32_to_cpu(pBase->swreg);
3036 	case EEP_PAPRD:
3037 		return !!(pBase->featureEnable & BIT(5));
3038 	case EEP_CHAIN_MASK_REDUCE:
3039 		return (pBase->miscConfiguration >> 0x3) & 0x1;
3040 	case EEP_ANT_DIV_CTL1:
3041 		return le32_to_cpu(eep->base_ext1.ant_div_control);
3042 	default:
3043 		return 0;
3044 	}
3045 }
3046 
3047 static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
3048 				    u8 *buffer)
3049 {
3050 	u16 val;
3051 
3052 	if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3053 		return false;
3054 
3055 	*buffer = (val >> (8 * (address % 2))) & 0xff;
3056 	return true;
3057 }
3058 
3059 static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
3060 				    u8 *buffer)
3061 {
3062 	u16 val;
3063 
3064 	if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3065 		return false;
3066 
3067 	buffer[0] = val >> 8;
3068 	buffer[1] = val & 0xff;
3069 
3070 	return true;
3071 }
3072 
3073 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3074 			       int count)
3075 {
3076 	struct ath_common *common = ath9k_hw_common(ah);
3077 	int i;
3078 
3079 	if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3080 		ath_dbg(common, ATH_DBG_EEPROM,
3081 			"eeprom address not in range\n");
3082 		return false;
3083 	}
3084 
3085 	/*
3086 	 * Since we're reading the bytes in reverse order from a little-endian
3087 	 * word stream, an even address means we only use the lower half of
3088 	 * the 16-bit word at that address
3089 	 */
3090 	if (address % 2 == 0) {
3091 		if (!ar9300_eeprom_read_byte(common, address--, buffer++))
3092 			goto error;
3093 
3094 		count--;
3095 	}
3096 
3097 	for (i = 0; i < count / 2; i++) {
3098 		if (!ar9300_eeprom_read_word(common, address, buffer))
3099 			goto error;
3100 
3101 		address -= 2;
3102 		buffer += 2;
3103 	}
3104 
3105 	if (count % 2)
3106 		if (!ar9300_eeprom_read_byte(common, address, buffer))
3107 			goto error;
3108 
3109 	return true;
3110 
3111 error:
3112 	ath_dbg(common, ATH_DBG_EEPROM,
3113 		"unable to read eeprom region at offset %d\n", address);
3114 	return false;
3115 }
3116 
3117 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3118 {
3119 	REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3120 
3121 	if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3122 			   AR9300_OTP_STATUS_VALID, 1000))
3123 		return false;
3124 
3125 	*data = REG_READ(ah, AR9300_OTP_READ_DATA);
3126 	return true;
3127 }
3128 
3129 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3130 			    int count)
3131 {
3132 	u32 data;
3133 	int i;
3134 
3135 	for (i = 0; i < count; i++) {
3136 		int offset = 8 * ((address - i) % 4);
3137 		if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3138 			return false;
3139 
3140 		buffer[i] = (data >> offset) & 0xff;
3141 	}
3142 
3143 	return true;
3144 }
3145 
3146 
3147 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3148 				   int *length, int *major, int *minor)
3149 {
3150 	unsigned long value[4];
3151 
3152 	value[0] = best[0];
3153 	value[1] = best[1];
3154 	value[2] = best[2];
3155 	value[3] = best[3];
3156 	*code = ((value[0] >> 5) & 0x0007);
3157 	*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3158 	*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3159 	*major = (value[2] & 0x000f);
3160 	*minor = (value[3] & 0x00ff);
3161 }
3162 
3163 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3164 {
3165 	int it, checksum = 0;
3166 
3167 	for (it = 0; it < dsize; it++) {
3168 		checksum += data[it];
3169 		checksum &= 0xffff;
3170 	}
3171 
3172 	return checksum;
3173 }
3174 
3175 static bool ar9300_uncompress_block(struct ath_hw *ah,
3176 				    u8 *mptr,
3177 				    int mdataSize,
3178 				    u8 *block,
3179 				    int size)
3180 {
3181 	int it;
3182 	int spot;
3183 	int offset;
3184 	int length;
3185 	struct ath_common *common = ath9k_hw_common(ah);
3186 
3187 	spot = 0;
3188 
3189 	for (it = 0; it < size; it += (length+2)) {
3190 		offset = block[it];
3191 		offset &= 0xff;
3192 		spot += offset;
3193 		length = block[it+1];
3194 		length &= 0xff;
3195 
3196 		if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3197 			ath_dbg(common, ATH_DBG_EEPROM,
3198 				"Restore at %d: spot=%d offset=%d length=%d\n",
3199 				it, spot, offset, length);
3200 			memcpy(&mptr[spot], &block[it+2], length);
3201 			spot += length;
3202 		} else if (length > 0) {
3203 			ath_dbg(common, ATH_DBG_EEPROM,
3204 				"Bad restore at %d: spot=%d offset=%d length=%d\n",
3205 				it, spot, offset, length);
3206 			return false;
3207 		}
3208 	}
3209 	return true;
3210 }
3211 
3212 static int ar9300_compress_decision(struct ath_hw *ah,
3213 				    int it,
3214 				    int code,
3215 				    int reference,
3216 				    u8 *mptr,
3217 				    u8 *word, int length, int mdata_size)
3218 {
3219 	struct ath_common *common = ath9k_hw_common(ah);
3220 	const struct ar9300_eeprom *eep = NULL;
3221 
3222 	switch (code) {
3223 	case _CompressNone:
3224 		if (length != mdata_size) {
3225 			ath_dbg(common, ATH_DBG_EEPROM,
3226 				"EEPROM structure size mismatch memory=%d eeprom=%d\n",
3227 				mdata_size, length);
3228 			return -1;
3229 		}
3230 		memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length);
3231 		ath_dbg(common, ATH_DBG_EEPROM,
3232 			"restored eeprom %d: uncompressed, length %d\n",
3233 			it, length);
3234 		break;
3235 	case _CompressBlock:
3236 		if (reference == 0) {
3237 		} else {
3238 			eep = ar9003_eeprom_struct_find_by_id(reference);
3239 			if (eep == NULL) {
3240 				ath_dbg(common, ATH_DBG_EEPROM,
3241 					"can't find reference eeprom struct %d\n",
3242 					reference);
3243 				return -1;
3244 			}
3245 			memcpy(mptr, eep, mdata_size);
3246 		}
3247 		ath_dbg(common, ATH_DBG_EEPROM,
3248 			"restore eeprom %d: block, reference %d, length %d\n",
3249 			it, reference, length);
3250 		ar9300_uncompress_block(ah, mptr, mdata_size,
3251 					(u8 *) (word + COMP_HDR_LEN), length);
3252 		break;
3253 	default:
3254 		ath_dbg(common, ATH_DBG_EEPROM,
3255 			"unknown compression code %d\n", code);
3256 		return -1;
3257 	}
3258 	return 0;
3259 }
3260 
3261 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3262 			       int count);
3263 
3264 static bool ar9300_check_header(void *data)
3265 {
3266 	u32 *word = data;
3267 	return !(*word == 0 || *word == ~0);
3268 }
3269 
3270 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3271 				       int base_addr)
3272 {
3273 	u8 header[4];
3274 
3275 	if (!read(ah, base_addr, header, 4))
3276 		return false;
3277 
3278 	return ar9300_check_header(header);
3279 }
3280 
3281 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3282 				       int mdata_size)
3283 {
3284 	struct ath_common *common = ath9k_hw_common(ah);
3285 	u16 *data = (u16 *) mptr;
3286 	int i;
3287 
3288 	for (i = 0; i < mdata_size / 2; i++, data++)
3289 		ath9k_hw_nvram_read(common, i, data);
3290 
3291 	return 0;
3292 }
3293 /*
3294  * Read the configuration data from the eeprom.
3295  * The data can be put in any specified memory buffer.
3296  *
3297  * Returns -1 on error.
3298  * Returns address of next memory location on success.
3299  */
3300 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3301 					  u8 *mptr, int mdata_size)
3302 {
3303 #define MDEFAULT 15
3304 #define MSTATE 100
3305 	int cptr;
3306 	u8 *word;
3307 	int code;
3308 	int reference, length, major, minor;
3309 	int osize;
3310 	int it;
3311 	u16 checksum, mchecksum;
3312 	struct ath_common *common = ath9k_hw_common(ah);
3313 	eeprom_read_op read;
3314 
3315 	if (ath9k_hw_use_flash(ah))
3316 		return ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3317 
3318 	word = kzalloc(2048, GFP_KERNEL);
3319 	if (!word)
3320 		return -1;
3321 
3322 	memcpy(mptr, &ar9300_default, mdata_size);
3323 
3324 	read = ar9300_read_eeprom;
3325 	if (AR_SREV_9485(ah))
3326 		cptr = AR9300_BASE_ADDR_4K;
3327 	else if (AR_SREV_9330(ah))
3328 		cptr = AR9300_BASE_ADDR_512;
3329 	else
3330 		cptr = AR9300_BASE_ADDR;
3331 	ath_dbg(common, ATH_DBG_EEPROM,
3332 		"Trying EEPROM access at Address 0x%04x\n", cptr);
3333 	if (ar9300_check_eeprom_header(ah, read, cptr))
3334 		goto found;
3335 
3336 	cptr = AR9300_BASE_ADDR_512;
3337 	ath_dbg(common, ATH_DBG_EEPROM,
3338 		"Trying EEPROM access at Address 0x%04x\n", cptr);
3339 	if (ar9300_check_eeprom_header(ah, read, cptr))
3340 		goto found;
3341 
3342 	read = ar9300_read_otp;
3343 	cptr = AR9300_BASE_ADDR;
3344 	ath_dbg(common, ATH_DBG_EEPROM,
3345 		"Trying OTP access at Address 0x%04x\n", cptr);
3346 	if (ar9300_check_eeprom_header(ah, read, cptr))
3347 		goto found;
3348 
3349 	cptr = AR9300_BASE_ADDR_512;
3350 	ath_dbg(common, ATH_DBG_EEPROM,
3351 		"Trying OTP access at Address 0x%04x\n", cptr);
3352 	if (ar9300_check_eeprom_header(ah, read, cptr))
3353 		goto found;
3354 
3355 	goto fail;
3356 
3357 found:
3358 	ath_dbg(common, ATH_DBG_EEPROM, "Found valid EEPROM data\n");
3359 
3360 	for (it = 0; it < MSTATE; it++) {
3361 		if (!read(ah, cptr, word, COMP_HDR_LEN))
3362 			goto fail;
3363 
3364 		if (!ar9300_check_header(word))
3365 			break;
3366 
3367 		ar9300_comp_hdr_unpack(word, &code, &reference,
3368 				       &length, &major, &minor);
3369 		ath_dbg(common, ATH_DBG_EEPROM,
3370 			"Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3371 			cptr, code, reference, length, major, minor);
3372 		if ((!AR_SREV_9485(ah) && length >= 1024) ||
3373 		    (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3374 			ath_dbg(common, ATH_DBG_EEPROM,
3375 				"Skipping bad header\n");
3376 			cptr -= COMP_HDR_LEN;
3377 			continue;
3378 		}
3379 
3380 		osize = length;
3381 		read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3382 		checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3383 		mchecksum = word[COMP_HDR_LEN + osize] |
3384 		    (word[COMP_HDR_LEN + osize + 1] << 8);
3385 		ath_dbg(common, ATH_DBG_EEPROM,
3386 			"checksum %x %x\n", checksum, mchecksum);
3387 		if (checksum == mchecksum) {
3388 			ar9300_compress_decision(ah, it, code, reference, mptr,
3389 						 word, length, mdata_size);
3390 		} else {
3391 			ath_dbg(common, ATH_DBG_EEPROM,
3392 				"skipping block with bad checksum\n");
3393 		}
3394 		cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3395 	}
3396 
3397 	kfree(word);
3398 	return cptr;
3399 
3400 fail:
3401 	kfree(word);
3402 	return -1;
3403 }
3404 
3405 /*
3406  * Restore the configuration structure by reading the eeprom.
3407  * This function destroys any existing in-memory structure
3408  * content.
3409  */
3410 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3411 {
3412 	u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3413 
3414 	if (ar9300_eeprom_restore_internal(ah, mptr,
3415 			sizeof(struct ar9300_eeprom)) < 0)
3416 		return false;
3417 
3418 	return true;
3419 }
3420 
3421 /* XXX: review hardware docs */
3422 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3423 {
3424 	return ah->eeprom.ar9300_eep.eepromVersion;
3425 }
3426 
3427 /* XXX: could be read from the eepromVersion, not sure yet */
3428 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3429 {
3430 	return 0;
3431 }
3432 
3433 static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz)
3434 {
3435 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3436 
3437 	if (is2ghz)
3438 		return eep->modalHeader2G.xpaBiasLvl;
3439 	else
3440 		return eep->modalHeader5G.xpaBiasLvl;
3441 }
3442 
3443 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3444 {
3445 	int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz);
3446 
3447 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3448 		REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3449 	else {
3450 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3451 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3452 				AR_CH0_THERM_XPABIASLVL_MSB,
3453 				bias >> 2);
3454 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3455 				AR_CH0_THERM_XPASHORT2GND, 1);
3456 	}
3457 }
3458 
3459 static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3460 {
3461 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3462 	__le32 val;
3463 
3464 	if (is2ghz)
3465 		val = eep->modalHeader2G.antCtrlCommon;
3466 	else
3467 		val = eep->modalHeader5G.antCtrlCommon;
3468 	return le32_to_cpu(val);
3469 }
3470 
3471 static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3472 {
3473 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3474 	__le32 val;
3475 
3476 	if (is2ghz)
3477 		val = eep->modalHeader2G.antCtrlCommon2;
3478 	else
3479 		val = eep->modalHeader5G.antCtrlCommon2;
3480 	return le32_to_cpu(val);
3481 }
3482 
3483 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah,
3484 					int chain,
3485 					bool is2ghz)
3486 {
3487 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3488 	__le16 val = 0;
3489 
3490 	if (chain >= 0 && chain < AR9300_MAX_CHAINS) {
3491 		if (is2ghz)
3492 			val = eep->modalHeader2G.antCtrlChain[chain];
3493 		else
3494 			val = eep->modalHeader5G.antCtrlChain[chain];
3495 	}
3496 
3497 	return le16_to_cpu(val);
3498 }
3499 
3500 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3501 {
3502 	int chain;
3503 	u32 regval;
3504 	u32 ant_div_ctl1;
3505 	static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3506 			AR_PHY_SWITCH_CHAIN_0,
3507 			AR_PHY_SWITCH_CHAIN_1,
3508 			AR_PHY_SWITCH_CHAIN_2,
3509 	};
3510 
3511 	u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3512 
3513 	REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_ALL, value);
3514 
3515 	value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3516 	REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3517 
3518 	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3519 		if ((ah->rxchainmask & BIT(chain)) ||
3520 		    (ah->txchainmask & BIT(chain))) {
3521 			value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3522 							     is2ghz);
3523 			REG_RMW_FIELD(ah, switch_chain_reg[chain],
3524 				      AR_SWITCH_TABLE_ALL, value);
3525 		}
3526 	}
3527 
3528 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3529 		value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3530 		/*
3531 		 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3532 		 * are the fields present
3533 		 */
3534 		regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3535 		regval &= (~AR_ANT_DIV_CTRL_ALL);
3536 		regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3537 		/* enable_lnadiv */
3538 		regval &= (~AR_PHY_9485_ANT_DIV_LNADIV);
3539 		regval |= ((value >> 6) & 0x1) <<
3540 				AR_PHY_9485_ANT_DIV_LNADIV_S;
3541 		REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3542 
3543 		/*enable fast_div */
3544 		regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3545 		regval &= (~AR_FAST_DIV_ENABLE);
3546 		regval |= ((value >> 7) & 0x1) <<
3547 				AR_FAST_DIV_ENABLE_S;
3548 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3549 		ant_div_ctl1 =
3550 			ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
3551 		/* check whether antenna diversity is enabled */
3552 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
3553 			regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3554 			/*
3555 			 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3556 			 * main_tb, alt_tb
3557 			 */
3558 			regval &= (~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
3559 					AR_PHY_9485_ANT_DIV_ALT_LNACONF |
3560 					AR_PHY_9485_ANT_DIV_ALT_GAINTB |
3561 					AR_PHY_9485_ANT_DIV_MAIN_GAINTB));
3562 			/* by default use LNA1 for the main antenna */
3563 			regval |= (AR_PHY_9485_ANT_DIV_LNA1 <<
3564 					AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S);
3565 			regval |= (AR_PHY_9485_ANT_DIV_LNA2 <<
3566 					AR_PHY_9485_ANT_DIV_ALT_LNACONF_S);
3567 			REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3568 		}
3569 
3570 
3571 	}
3572 
3573 }
3574 
3575 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3576 {
3577 	int drive_strength;
3578 	unsigned long reg;
3579 
3580 	drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH);
3581 
3582 	if (!drive_strength)
3583 		return;
3584 
3585 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3586 	reg &= ~0x00ffffc0;
3587 	reg |= 0x5 << 21;
3588 	reg |= 0x5 << 18;
3589 	reg |= 0x5 << 15;
3590 	reg |= 0x5 << 12;
3591 	reg |= 0x5 << 9;
3592 	reg |= 0x5 << 6;
3593 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3594 
3595 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3596 	reg &= ~0xffffffe0;
3597 	reg |= 0x5 << 29;
3598 	reg |= 0x5 << 26;
3599 	reg |= 0x5 << 23;
3600 	reg |= 0x5 << 20;
3601 	reg |= 0x5 << 17;
3602 	reg |= 0x5 << 14;
3603 	reg |= 0x5 << 11;
3604 	reg |= 0x5 << 8;
3605 	reg |= 0x5 << 5;
3606 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3607 
3608 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3609 	reg &= ~0xff800000;
3610 	reg |= 0x5 << 29;
3611 	reg |= 0x5 << 26;
3612 	reg |= 0x5 << 23;
3613 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3614 }
3615 
3616 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3617 				     struct ath9k_channel *chan)
3618 {
3619 	int f[3], t[3];
3620 	u16 value;
3621 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3622 
3623 	if (chain >= 0 && chain < 3) {
3624 		if (IS_CHAN_2GHZ(chan))
3625 			return eep->modalHeader2G.xatten1DB[chain];
3626 		else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3627 			t[0] = eep->base_ext2.xatten1DBLow[chain];
3628 			f[0] = 5180;
3629 			t[1] = eep->modalHeader5G.xatten1DB[chain];
3630 			f[1] = 5500;
3631 			t[2] = eep->base_ext2.xatten1DBHigh[chain];
3632 			f[2] = 5785;
3633 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3634 							    f, t, 3);
3635 			return value;
3636 		} else
3637 			return eep->modalHeader5G.xatten1DB[chain];
3638 	}
3639 
3640 	return 0;
3641 }
3642 
3643 
3644 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3645 					    struct ath9k_channel *chan)
3646 {
3647 	int f[3], t[3];
3648 	u16 value;
3649 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3650 
3651 	if (chain >= 0 && chain < 3) {
3652 		if (IS_CHAN_2GHZ(chan))
3653 			return eep->modalHeader2G.xatten1Margin[chain];
3654 		else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3655 			t[0] = eep->base_ext2.xatten1MarginLow[chain];
3656 			f[0] = 5180;
3657 			t[1] = eep->modalHeader5G.xatten1Margin[chain];
3658 			f[1] = 5500;
3659 			t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3660 			f[2] = 5785;
3661 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3662 							    f, t, 3);
3663 			return value;
3664 		} else
3665 			return eep->modalHeader5G.xatten1Margin[chain];
3666 	}
3667 
3668 	return 0;
3669 }
3670 
3671 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3672 {
3673 	int i;
3674 	u16 value;
3675 	unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3676 					  AR_PHY_EXT_ATTEN_CTL_1,
3677 					  AR_PHY_EXT_ATTEN_CTL_2,
3678 					 };
3679 
3680 	/* Test value. if 0 then attenuation is unused. Don't load anything. */
3681 	for (i = 0; i < 3; i++) {
3682 		if (ah->txchainmask & BIT(i)) {
3683 			value = ar9003_hw_atten_chain_get(ah, i, chan);
3684 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3685 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3686 
3687 			value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3688 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3689 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3690 				      value);
3691 		}
3692 	}
3693 }
3694 
3695 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3696 {
3697 	int timeout = 100;
3698 
3699 	while (pmu_set != REG_READ(ah, pmu_reg)) {
3700 		if (timeout-- == 0)
3701 			return false;
3702 		REG_WRITE(ah, pmu_reg, pmu_set);
3703 		udelay(10);
3704 	}
3705 
3706 	return true;
3707 }
3708 
3709 static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3710 {
3711 	int internal_regulator =
3712 		ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR);
3713 
3714 	if (internal_regulator) {
3715 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3716 			int reg_pmu_set;
3717 
3718 			reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3719 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3720 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3721 				return;
3722 
3723 			if (AR_SREV_9330(ah)) {
3724 				if (ah->is_clk_25mhz) {
3725 					reg_pmu_set = (3 << 1) | (8 << 4) |
3726 						      (3 << 8) | (1 << 14) |
3727 						      (6 << 17) | (1 << 20) |
3728 						      (3 << 24);
3729 				} else {
3730 					reg_pmu_set = (4 << 1)  | (7 << 4) |
3731 						      (3 << 8)  | (1 << 14) |
3732 						      (6 << 17) | (1 << 20) |
3733 						      (3 << 24);
3734 				}
3735 			} else {
3736 				reg_pmu_set = (5 << 1) | (7 << 4) |
3737 					      (1 << 8) | (2 << 14) |
3738 					      (6 << 17) | (1 << 20) |
3739 					      (3 << 24) | (1 << 28);
3740 			}
3741 
3742 			REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3743 			if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3744 				return;
3745 
3746 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3747 					| (4 << 26);
3748 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3749 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3750 				return;
3751 
3752 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3753 					| (1 << 21);
3754 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3755 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3756 				return;
3757 		} else {
3758 			/* Internal regulator is ON. Write swreg register. */
3759 			int swreg = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
3760 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3761 				  REG_READ(ah, AR_RTC_REG_CONTROL1) &
3762 				  (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3763 			REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg);
3764 			/* Set REG_CONTROL1.SWREG_PROGRAM */
3765 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3766 				  REG_READ(ah,
3767 					   AR_RTC_REG_CONTROL1) |
3768 					   AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3769 		}
3770 	} else {
3771 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3772 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3773 			while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3774 					      AR_PHY_PMU2_PGM))
3775 				udelay(10);
3776 
3777 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3778 			while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3779 					       AR_PHY_PMU1_PWD))
3780 				udelay(10);
3781 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3782 			while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3783 					      AR_PHY_PMU2_PGM))
3784 				udelay(10);
3785 		} else
3786 			REG_WRITE(ah, AR_RTC_SLEEP_CLK,
3787 				  (REG_READ(ah,
3788 				   AR_RTC_SLEEP_CLK) |
3789 				   AR_RTC_FORCE_SWREG_PRD));
3790 	}
3791 
3792 }
3793 
3794 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3795 {
3796 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3797 	u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3798 
3799 	if (eep->baseEepHeader.featureEnable & 0x40) {
3800 		tuning_caps_param &= 0x7f;
3801 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3802 			      tuning_caps_param);
3803 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3804 			      tuning_caps_param);
3805 	}
3806 }
3807 
3808 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
3809 					     struct ath9k_channel *chan)
3810 {
3811 	ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
3812 	ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
3813 	ar9003_hw_drive_strength_apply(ah);
3814 	ar9003_hw_atten_apply(ah, chan);
3815 	if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah))
3816 		ar9003_hw_internal_regulator_apply(ah);
3817 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3818 		ar9003_hw_apply_tuning_caps(ah);
3819 }
3820 
3821 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
3822 				      struct ath9k_channel *chan)
3823 {
3824 }
3825 
3826 /*
3827  * Returns the interpolated y value corresponding to the specified x value
3828  * from the np ordered pairs of data (px,py).
3829  * The pairs do not have to be in any order.
3830  * If the specified x value is less than any of the px,
3831  * the returned y value is equal to the py for the lowest px.
3832  * If the specified x value is greater than any of the px,
3833  * the returned y value is equal to the py for the highest px.
3834  */
3835 static int ar9003_hw_power_interpolate(int32_t x,
3836 				       int32_t *px, int32_t *py, u_int16_t np)
3837 {
3838 	int ip = 0;
3839 	int lx = 0, ly = 0, lhave = 0;
3840 	int hx = 0, hy = 0, hhave = 0;
3841 	int dx = 0;
3842 	int y = 0;
3843 
3844 	lhave = 0;
3845 	hhave = 0;
3846 
3847 	/* identify best lower and higher x calibration measurement */
3848 	for (ip = 0; ip < np; ip++) {
3849 		dx = x - px[ip];
3850 
3851 		/* this measurement is higher than our desired x */
3852 		if (dx <= 0) {
3853 			if (!hhave || dx > (x - hx)) {
3854 				/* new best higher x measurement */
3855 				hx = px[ip];
3856 				hy = py[ip];
3857 				hhave = 1;
3858 			}
3859 		}
3860 		/* this measurement is lower than our desired x */
3861 		if (dx >= 0) {
3862 			if (!lhave || dx < (x - lx)) {
3863 				/* new best lower x measurement */
3864 				lx = px[ip];
3865 				ly = py[ip];
3866 				lhave = 1;
3867 			}
3868 		}
3869 	}
3870 
3871 	/* the low x is good */
3872 	if (lhave) {
3873 		/* so is the high x */
3874 		if (hhave) {
3875 			/* they're the same, so just pick one */
3876 			if (hx == lx)
3877 				y = ly;
3878 			else	/* interpolate  */
3879 				y = interpolate(x, lx, hx, ly, hy);
3880 		} else		/* only low is good, use it */
3881 			y = ly;
3882 	} else if (hhave)	/* only high is good, use it */
3883 		y = hy;
3884 	else /* nothing is good,this should never happen unless np=0, ???? */
3885 		y = -(1 << 30);
3886 	return y;
3887 }
3888 
3889 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
3890 				       u16 rateIndex, u16 freq, bool is2GHz)
3891 {
3892 	u16 numPiers, i;
3893 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
3894 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
3895 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3896 	struct cal_tgt_pow_legacy *pEepromTargetPwr;
3897 	u8 *pFreqBin;
3898 
3899 	if (is2GHz) {
3900 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
3901 		pEepromTargetPwr = eep->calTargetPower2G;
3902 		pFreqBin = eep->calTarget_freqbin_2G;
3903 	} else {
3904 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
3905 		pEepromTargetPwr = eep->calTargetPower5G;
3906 		pFreqBin = eep->calTarget_freqbin_5G;
3907 	}
3908 
3909 	/*
3910 	 * create array of channels and targetpower from
3911 	 * targetpower piers stored on eeprom
3912 	 */
3913 	for (i = 0; i < numPiers; i++) {
3914 		freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
3915 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3916 	}
3917 
3918 	/* interpolate to get target power for given frequency */
3919 	return (u8) ar9003_hw_power_interpolate((s32) freq,
3920 						 freqArray,
3921 						 targetPowerArray, numPiers);
3922 }
3923 
3924 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
3925 					    u16 rateIndex,
3926 					    u16 freq, bool is2GHz)
3927 {
3928 	u16 numPiers, i;
3929 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
3930 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
3931 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3932 	struct cal_tgt_pow_ht *pEepromTargetPwr;
3933 	u8 *pFreqBin;
3934 
3935 	if (is2GHz) {
3936 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
3937 		pEepromTargetPwr = eep->calTargetPower2GHT20;
3938 		pFreqBin = eep->calTarget_freqbin_2GHT20;
3939 	} else {
3940 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
3941 		pEepromTargetPwr = eep->calTargetPower5GHT20;
3942 		pFreqBin = eep->calTarget_freqbin_5GHT20;
3943 	}
3944 
3945 	/*
3946 	 * create array of channels and targetpower
3947 	 * from targetpower piers stored on eeprom
3948 	 */
3949 	for (i = 0; i < numPiers; i++) {
3950 		freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
3951 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3952 	}
3953 
3954 	/* interpolate to get target power for given frequency */
3955 	return (u8) ar9003_hw_power_interpolate((s32) freq,
3956 						 freqArray,
3957 						 targetPowerArray, numPiers);
3958 }
3959 
3960 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
3961 					    u16 rateIndex,
3962 					    u16 freq, bool is2GHz)
3963 {
3964 	u16 numPiers, i;
3965 	s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
3966 	s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
3967 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3968 	struct cal_tgt_pow_ht *pEepromTargetPwr;
3969 	u8 *pFreqBin;
3970 
3971 	if (is2GHz) {
3972 		numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
3973 		pEepromTargetPwr = eep->calTargetPower2GHT40;
3974 		pFreqBin = eep->calTarget_freqbin_2GHT40;
3975 	} else {
3976 		numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
3977 		pEepromTargetPwr = eep->calTargetPower5GHT40;
3978 		pFreqBin = eep->calTarget_freqbin_5GHT40;
3979 	}
3980 
3981 	/*
3982 	 * create array of channels and targetpower from
3983 	 * targetpower piers stored on eeprom
3984 	 */
3985 	for (i = 0; i < numPiers; i++) {
3986 		freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
3987 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
3988 	}
3989 
3990 	/* interpolate to get target power for given frequency */
3991 	return (u8) ar9003_hw_power_interpolate((s32) freq,
3992 						 freqArray,
3993 						 targetPowerArray, numPiers);
3994 }
3995 
3996 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
3997 					   u16 rateIndex, u16 freq)
3998 {
3999 	u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4000 	s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4001 	s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4002 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4003 	struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4004 	u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4005 
4006 	/*
4007 	 * create array of channels and targetpower from
4008 	 * targetpower piers stored on eeprom
4009 	 */
4010 	for (i = 0; i < numPiers; i++) {
4011 		freqArray[i] = FBIN2FREQ(pFreqBin[i], 1);
4012 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4013 	}
4014 
4015 	/* interpolate to get target power for given frequency */
4016 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4017 						 freqArray,
4018 						 targetPowerArray, numPiers);
4019 }
4020 
4021 /* Set tx power registers to array of values passed in */
4022 static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4023 {
4024 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
4025 	/* make sure forced gain is not set */
4026 	REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4027 
4028 	/* Write the OFDM power per rate set */
4029 
4030 	/* 6 (LSB), 9, 12, 18 (MSB) */
4031 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4032 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4033 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4034 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4035 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4036 
4037 	/* 24 (LSB), 36, 48, 54 (MSB) */
4038 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4039 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4040 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4041 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4042 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4043 
4044 	/* Write the CCK power per rate set */
4045 
4046 	/* 1L (LSB), reserved, 2L, 2S (MSB) */
4047 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4048 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4049 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4050 		  /* POW_SM(txPowerTimes2,  8) | this is reserved for AR9003 */
4051 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4052 
4053 	/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4054 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4055 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4056 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4057 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4058 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4059 	    );
4060 
4061         /* Write the power for duplicated frames - HT40 */
4062 
4063         /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4064 	REG_WRITE(ah, 0xa3e0,
4065 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4066 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4067 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24],  8) |
4068 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L],  0)
4069 	    );
4070 
4071 	/* Write the HT20 power per rate set */
4072 
4073 	/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4074 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4075 		  POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4076 		  POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4077 		  POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4078 		  POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4079 	    );
4080 
4081 	/* 6 (LSB), 7, 12, 13 (MSB) */
4082 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4083 		  POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4084 		  POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4085 		  POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4086 		  POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4087 	    );
4088 
4089 	/* 14 (LSB), 15, 20, 21 */
4090 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4091 		  POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4092 		  POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4093 		  POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4094 		  POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4095 	    );
4096 
4097 	/* Mixed HT20 and HT40 rates */
4098 
4099 	/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4100 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4101 		  POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4102 		  POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4103 		  POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4104 		  POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4105 	    );
4106 
4107 	/*
4108 	 * Write the HT40 power per rate set
4109 	 * correct PAR difference between HT40 and HT20/LEGACY
4110 	 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4111 	 */
4112 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4113 		  POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4114 		  POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4115 		  POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4116 		  POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4117 	    );
4118 
4119 	/* 6 (LSB), 7, 12, 13 (MSB) */
4120 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4121 		  POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4122 		  POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4123 		  POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4124 		  POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4125 	    );
4126 
4127 	/* 14 (LSB), 15, 20, 21 */
4128 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4129 		  POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4130 		  POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4131 		  POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4132 		  POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4133 	    );
4134 
4135 	return 0;
4136 #undef POW_SM
4137 }
4138 
4139 static void ar9003_hw_set_target_power_eeprom(struct ath_hw *ah, u16 freq,
4140 					      u8 *targetPowerValT2)
4141 {
4142 	/* XXX: hard code for now, need to get from eeprom struct */
4143 	u8 ht40PowerIncForPdadc = 0;
4144 	bool is2GHz = false;
4145 	unsigned int i = 0;
4146 	struct ath_common *common = ath9k_hw_common(ah);
4147 
4148 	if (freq < 4000)
4149 		is2GHz = true;
4150 
4151 	targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4152 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4153 					 is2GHz);
4154 	targetPowerValT2[ALL_TARGET_LEGACY_36] =
4155 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4156 					 is2GHz);
4157 	targetPowerValT2[ALL_TARGET_LEGACY_48] =
4158 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4159 					 is2GHz);
4160 	targetPowerValT2[ALL_TARGET_LEGACY_54] =
4161 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4162 					 is2GHz);
4163 	targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4164 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4165 					     freq);
4166 	targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4167 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4168 	targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4169 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4170 	targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4171 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4172 	targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4173 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4174 					      is2GHz);
4175 	targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4176 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4177 					      freq, is2GHz);
4178 	targetPowerValT2[ALL_TARGET_HT20_4] =
4179 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4180 					      is2GHz);
4181 	targetPowerValT2[ALL_TARGET_HT20_5] =
4182 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4183 					      is2GHz);
4184 	targetPowerValT2[ALL_TARGET_HT20_6] =
4185 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4186 					      is2GHz);
4187 	targetPowerValT2[ALL_TARGET_HT20_7] =
4188 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4189 					      is2GHz);
4190 	targetPowerValT2[ALL_TARGET_HT20_12] =
4191 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4192 					      is2GHz);
4193 	targetPowerValT2[ALL_TARGET_HT20_13] =
4194 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4195 					      is2GHz);
4196 	targetPowerValT2[ALL_TARGET_HT20_14] =
4197 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4198 					      is2GHz);
4199 	targetPowerValT2[ALL_TARGET_HT20_15] =
4200 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4201 					      is2GHz);
4202 	targetPowerValT2[ALL_TARGET_HT20_20] =
4203 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4204 					      is2GHz);
4205 	targetPowerValT2[ALL_TARGET_HT20_21] =
4206 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4207 					      is2GHz);
4208 	targetPowerValT2[ALL_TARGET_HT20_22] =
4209 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4210 					      is2GHz);
4211 	targetPowerValT2[ALL_TARGET_HT20_23] =
4212 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4213 					      is2GHz);
4214 	targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4215 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4216 					      is2GHz) + ht40PowerIncForPdadc;
4217 	targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4218 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4219 					      freq,
4220 					      is2GHz) + ht40PowerIncForPdadc;
4221 	targetPowerValT2[ALL_TARGET_HT40_4] =
4222 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4223 					      is2GHz) + ht40PowerIncForPdadc;
4224 	targetPowerValT2[ALL_TARGET_HT40_5] =
4225 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4226 					      is2GHz) + ht40PowerIncForPdadc;
4227 	targetPowerValT2[ALL_TARGET_HT40_6] =
4228 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4229 					      is2GHz) + ht40PowerIncForPdadc;
4230 	targetPowerValT2[ALL_TARGET_HT40_7] =
4231 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4232 					      is2GHz) + ht40PowerIncForPdadc;
4233 	targetPowerValT2[ALL_TARGET_HT40_12] =
4234 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4235 					      is2GHz) + ht40PowerIncForPdadc;
4236 	targetPowerValT2[ALL_TARGET_HT40_13] =
4237 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4238 					      is2GHz) + ht40PowerIncForPdadc;
4239 	targetPowerValT2[ALL_TARGET_HT40_14] =
4240 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4241 					      is2GHz) + ht40PowerIncForPdadc;
4242 	targetPowerValT2[ALL_TARGET_HT40_15] =
4243 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4244 					      is2GHz) + ht40PowerIncForPdadc;
4245 	targetPowerValT2[ALL_TARGET_HT40_20] =
4246 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4247 					      is2GHz) + ht40PowerIncForPdadc;
4248 	targetPowerValT2[ALL_TARGET_HT40_21] =
4249 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4250 					      is2GHz) + ht40PowerIncForPdadc;
4251 	targetPowerValT2[ALL_TARGET_HT40_22] =
4252 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4253 					      is2GHz) + ht40PowerIncForPdadc;
4254 	targetPowerValT2[ALL_TARGET_HT40_23] =
4255 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4256 					      is2GHz) + ht40PowerIncForPdadc;
4257 
4258 	for (i = 0; i < ar9300RateSize; i++) {
4259 		ath_dbg(common, ATH_DBG_EEPROM,
4260 			"TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
4261 	}
4262 }
4263 
4264 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4265 				  int mode,
4266 				  int ipier,
4267 				  int ichain,
4268 				  int *pfrequency,
4269 				  int *pcorrection,
4270 				  int *ptemperature, int *pvoltage)
4271 {
4272 	u8 *pCalPier;
4273 	struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4274 	int is2GHz;
4275 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4276 	struct ath_common *common = ath9k_hw_common(ah);
4277 
4278 	if (ichain >= AR9300_MAX_CHAINS) {
4279 		ath_dbg(common, ATH_DBG_EEPROM,
4280 			"Invalid chain index, must be less than %d\n",
4281 			AR9300_MAX_CHAINS);
4282 		return -1;
4283 	}
4284 
4285 	if (mode) {		/* 5GHz */
4286 		if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4287 			ath_dbg(common, ATH_DBG_EEPROM,
4288 				"Invalid 5GHz cal pier index, must be less than %d\n",
4289 				AR9300_NUM_5G_CAL_PIERS);
4290 			return -1;
4291 		}
4292 		pCalPier = &(eep->calFreqPier5G[ipier]);
4293 		pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4294 		is2GHz = 0;
4295 	} else {
4296 		if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4297 			ath_dbg(common, ATH_DBG_EEPROM,
4298 				"Invalid 2GHz cal pier index, must be less than %d\n",
4299 				AR9300_NUM_2G_CAL_PIERS);
4300 			return -1;
4301 		}
4302 
4303 		pCalPier = &(eep->calFreqPier2G[ipier]);
4304 		pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4305 		is2GHz = 1;
4306 	}
4307 
4308 	*pfrequency = FBIN2FREQ(*pCalPier, is2GHz);
4309 	*pcorrection = pCalPierStruct->refPower;
4310 	*ptemperature = pCalPierStruct->tempMeas;
4311 	*pvoltage = pCalPierStruct->voltMeas;
4312 
4313 	return 0;
4314 }
4315 
4316 static int ar9003_hw_power_control_override(struct ath_hw *ah,
4317 					    int frequency,
4318 					    int *correction,
4319 					    int *voltage, int *temperature)
4320 {
4321 	int tempSlope = 0;
4322 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4323 	int f[3], t[3];
4324 
4325 	REG_RMW(ah, AR_PHY_TPC_11_B0,
4326 		(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4327 		AR_PHY_TPC_OLPC_GAIN_DELTA);
4328 	if (ah->caps.tx_chainmask & BIT(1))
4329 		REG_RMW(ah, AR_PHY_TPC_11_B1,
4330 			(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4331 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4332 	if (ah->caps.tx_chainmask & BIT(2))
4333 		REG_RMW(ah, AR_PHY_TPC_11_B2,
4334 			(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4335 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4336 
4337 	/* enable open loop power control on chip */
4338 	REG_RMW(ah, AR_PHY_TPC_6_B0,
4339 		(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4340 		AR_PHY_TPC_6_ERROR_EST_MODE);
4341 	if (ah->caps.tx_chainmask & BIT(1))
4342 		REG_RMW(ah, AR_PHY_TPC_6_B1,
4343 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4344 			AR_PHY_TPC_6_ERROR_EST_MODE);
4345 	if (ah->caps.tx_chainmask & BIT(2))
4346 		REG_RMW(ah, AR_PHY_TPC_6_B2,
4347 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4348 			AR_PHY_TPC_6_ERROR_EST_MODE);
4349 
4350 	/*
4351 	 * enable temperature compensation
4352 	 * Need to use register names
4353 	 */
4354 	if (frequency < 4000)
4355 		tempSlope = eep->modalHeader2G.tempSlope;
4356 	else if (eep->base_ext2.tempSlopeLow != 0) {
4357 		t[0] = eep->base_ext2.tempSlopeLow;
4358 		f[0] = 5180;
4359 		t[1] = eep->modalHeader5G.tempSlope;
4360 		f[1] = 5500;
4361 		t[2] = eep->base_ext2.tempSlopeHigh;
4362 		f[2] = 5785;
4363 		tempSlope = ar9003_hw_power_interpolate((s32) frequency,
4364 							f, t, 3);
4365 	} else
4366 		tempSlope = eep->modalHeader5G.tempSlope;
4367 
4368 	REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
4369 	REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4370 		      temperature[0]);
4371 
4372 	return 0;
4373 }
4374 
4375 /* Apply the recorded correction values. */
4376 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4377 {
4378 	int ichain, ipier, npier;
4379 	int mode;
4380 	int lfrequency[AR9300_MAX_CHAINS],
4381 	    lcorrection[AR9300_MAX_CHAINS],
4382 	    ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4383 	int hfrequency[AR9300_MAX_CHAINS],
4384 	    hcorrection[AR9300_MAX_CHAINS],
4385 	    htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4386 	int fdiff;
4387 	int correction[AR9300_MAX_CHAINS],
4388 	    voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4389 	int pfrequency, pcorrection, ptemperature, pvoltage;
4390 	struct ath_common *common = ath9k_hw_common(ah);
4391 
4392 	mode = (frequency >= 4000);
4393 	if (mode)
4394 		npier = AR9300_NUM_5G_CAL_PIERS;
4395 	else
4396 		npier = AR9300_NUM_2G_CAL_PIERS;
4397 
4398 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4399 		lfrequency[ichain] = 0;
4400 		hfrequency[ichain] = 100000;
4401 	}
4402 	/* identify best lower and higher frequency calibration measurement */
4403 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4404 		for (ipier = 0; ipier < npier; ipier++) {
4405 			if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4406 						    &pfrequency, &pcorrection,
4407 						    &ptemperature, &pvoltage)) {
4408 				fdiff = frequency - pfrequency;
4409 
4410 				/*
4411 				 * this measurement is higher than
4412 				 * our desired frequency
4413 				 */
4414 				if (fdiff <= 0) {
4415 					if (hfrequency[ichain] <= 0 ||
4416 					    hfrequency[ichain] >= 100000 ||
4417 					    fdiff >
4418 					    (frequency - hfrequency[ichain])) {
4419 						/*
4420 						 * new best higher
4421 						 * frequency measurement
4422 						 */
4423 						hfrequency[ichain] = pfrequency;
4424 						hcorrection[ichain] =
4425 						    pcorrection;
4426 						htemperature[ichain] =
4427 						    ptemperature;
4428 						hvoltage[ichain] = pvoltage;
4429 					}
4430 				}
4431 				if (fdiff >= 0) {
4432 					if (lfrequency[ichain] <= 0
4433 					    || fdiff <
4434 					    (frequency - lfrequency[ichain])) {
4435 						/*
4436 						 * new best lower
4437 						 * frequency measurement
4438 						 */
4439 						lfrequency[ichain] = pfrequency;
4440 						lcorrection[ichain] =
4441 						    pcorrection;
4442 						ltemperature[ichain] =
4443 						    ptemperature;
4444 						lvoltage[ichain] = pvoltage;
4445 					}
4446 				}
4447 			}
4448 		}
4449 	}
4450 
4451 	/* interpolate  */
4452 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4453 		ath_dbg(common, ATH_DBG_EEPROM,
4454 			"ch=%d f=%d low=%d %d h=%d %d\n",
4455 			ichain, frequency, lfrequency[ichain],
4456 			lcorrection[ichain], hfrequency[ichain],
4457 			hcorrection[ichain]);
4458 		/* they're the same, so just pick one */
4459 		if (hfrequency[ichain] == lfrequency[ichain]) {
4460 			correction[ichain] = lcorrection[ichain];
4461 			voltage[ichain] = lvoltage[ichain];
4462 			temperature[ichain] = ltemperature[ichain];
4463 		}
4464 		/* the low frequency is good */
4465 		else if (frequency - lfrequency[ichain] < 1000) {
4466 			/* so is the high frequency, interpolate */
4467 			if (hfrequency[ichain] - frequency < 1000) {
4468 
4469 				correction[ichain] = interpolate(frequency,
4470 						lfrequency[ichain],
4471 						hfrequency[ichain],
4472 						lcorrection[ichain],
4473 						hcorrection[ichain]);
4474 
4475 				temperature[ichain] = interpolate(frequency,
4476 						lfrequency[ichain],
4477 						hfrequency[ichain],
4478 						ltemperature[ichain],
4479 						htemperature[ichain]);
4480 
4481 				voltage[ichain] = interpolate(frequency,
4482 						lfrequency[ichain],
4483 						hfrequency[ichain],
4484 						lvoltage[ichain],
4485 						hvoltage[ichain]);
4486 			}
4487 			/* only low is good, use it */
4488 			else {
4489 				correction[ichain] = lcorrection[ichain];
4490 				temperature[ichain] = ltemperature[ichain];
4491 				voltage[ichain] = lvoltage[ichain];
4492 			}
4493 		}
4494 		/* only high is good, use it */
4495 		else if (hfrequency[ichain] - frequency < 1000) {
4496 			correction[ichain] = hcorrection[ichain];
4497 			temperature[ichain] = htemperature[ichain];
4498 			voltage[ichain] = hvoltage[ichain];
4499 		} else {	/* nothing is good, presume 0???? */
4500 			correction[ichain] = 0;
4501 			temperature[ichain] = 0;
4502 			voltage[ichain] = 0;
4503 		}
4504 	}
4505 
4506 	ar9003_hw_power_control_override(ah, frequency, correction, voltage,
4507 					 temperature);
4508 
4509 	ath_dbg(common, ATH_DBG_EEPROM,
4510 		"for frequency=%d, calibration correction = %d %d %d\n",
4511 		frequency, correction[0], correction[1], correction[2]);
4512 
4513 	return 0;
4514 }
4515 
4516 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
4517 					   int idx,
4518 					   int edge,
4519 					   bool is2GHz)
4520 {
4521 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4522 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4523 
4524 	if (is2GHz)
4525 		return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
4526 	else
4527 		return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
4528 }
4529 
4530 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
4531 					     int idx,
4532 					     unsigned int edge,
4533 					     u16 freq,
4534 					     bool is2GHz)
4535 {
4536 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4537 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4538 
4539 	u8 *ctl_freqbin = is2GHz ?
4540 		&eep->ctl_freqbin_2G[idx][0] :
4541 		&eep->ctl_freqbin_5G[idx][0];
4542 
4543 	if (is2GHz) {
4544 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
4545 		    CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
4546 			return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
4547 	} else {
4548 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
4549 		    CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
4550 			return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
4551 	}
4552 
4553 	return MAX_RATE_POWER;
4554 }
4555 
4556 /*
4557  * Find the maximum conformance test limit for the given channel and CTL info
4558  */
4559 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
4560 					u16 freq, int idx, bool is2GHz)
4561 {
4562 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
4563 	u8 *ctl_freqbin = is2GHz ?
4564 		&eep->ctl_freqbin_2G[idx][0] :
4565 		&eep->ctl_freqbin_5G[idx][0];
4566 	u16 num_edges = is2GHz ?
4567 		AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
4568 	unsigned int edge;
4569 
4570 	/* Get the edge power */
4571 	for (edge = 0;
4572 	     (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
4573 	     edge++) {
4574 		/*
4575 		 * If there's an exact channel match or an inband flag set
4576 		 * on the lower channel use the given rdEdgePower
4577 		 */
4578 		if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
4579 			twiceMaxEdgePower =
4580 				ar9003_hw_get_direct_edge_power(eep, idx,
4581 								edge, is2GHz);
4582 			break;
4583 		} else if ((edge > 0) &&
4584 			   (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
4585 						      is2GHz))) {
4586 			twiceMaxEdgePower =
4587 				ar9003_hw_get_indirect_edge_power(eep, idx,
4588 								  edge, freq,
4589 								  is2GHz);
4590 			/*
4591 			 * Leave loop - no more affecting edges possible in
4592 			 * this monotonic increasing list
4593 			 */
4594 			break;
4595 		}
4596 	}
4597 	return twiceMaxEdgePower;
4598 }
4599 
4600 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
4601 					       struct ath9k_channel *chan,
4602 					       u8 *pPwrArray, u16 cfgCtl,
4603 					       u8 twiceAntennaReduction,
4604 					       u8 twiceMaxRegulatoryPower,
4605 					       u16 powerLimit)
4606 {
4607 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4608 	struct ath_common *common = ath9k_hw_common(ah);
4609 	struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
4610 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
4611 	static const u16 tpScaleReductionTable[5] = {
4612 		0, 3, 6, 9, MAX_RATE_POWER
4613 	};
4614 	int i;
4615 	int16_t  twiceLargestAntenna;
4616 	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
4617 	static const u16 ctlModesFor11a[] = {
4618 		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
4619 	};
4620 	static const u16 ctlModesFor11g[] = {
4621 		CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
4622 		CTL_11G_EXT, CTL_2GHT40
4623 	};
4624 	u16 numCtlModes;
4625 	const u16 *pCtlMode;
4626 	u16 ctlMode, freq;
4627 	struct chan_centers centers;
4628 	u8 *ctlIndex;
4629 	u8 ctlNum;
4630 	u16 twiceMinEdgePower;
4631 	bool is2ghz = IS_CHAN_2GHZ(chan);
4632 
4633 	ath9k_hw_get_channel_centers(ah, chan, &centers);
4634 
4635 	/* Compute TxPower reduction due to Antenna Gain */
4636 	if (is2ghz)
4637 		twiceLargestAntenna = pEepData->modalHeader2G.antennaGain;
4638 	else
4639 		twiceLargestAntenna = pEepData->modalHeader5G.antennaGain;
4640 
4641 	twiceLargestAntenna = (int16_t)min((twiceAntennaReduction) -
4642 				twiceLargestAntenna, 0);
4643 
4644 	/*
4645 	 * scaledPower is the minimum of the user input power level
4646 	 * and the regulatory allowed power level
4647 	 */
4648 	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
4649 
4650 	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
4651 		maxRegAllowedPower -=
4652 			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
4653 	}
4654 
4655 	scaledPower = min(powerLimit, maxRegAllowedPower);
4656 
4657 	/*
4658 	 * Reduce scaled Power by number of chains active to get
4659 	 * to per chain tx power level
4660 	 */
4661 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
4662 	case 1:
4663 		break;
4664 	case 2:
4665 		if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
4666 			scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
4667 		else
4668 			scaledPower = 0;
4669 		break;
4670 	case 3:
4671 		if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
4672 			scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
4673 		else
4674 			scaledPower = 0;
4675 		break;
4676 	}
4677 
4678 	scaledPower = max((u16)0, scaledPower);
4679 
4680 	/*
4681 	 * Get target powers from EEPROM - our baseline for TX Power
4682 	 */
4683 	if (is2ghz) {
4684 		/* Setup for CTL modes */
4685 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
4686 		numCtlModes =
4687 			ARRAY_SIZE(ctlModesFor11g) -
4688 				   SUB_NUM_CTL_MODES_AT_2G_40;
4689 		pCtlMode = ctlModesFor11g;
4690 		if (IS_CHAN_HT40(chan))
4691 			/* All 2G CTL's */
4692 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
4693 	} else {
4694 		/* Setup for CTL modes */
4695 		/* CTL_11A, CTL_5GHT20 */
4696 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
4697 					 SUB_NUM_CTL_MODES_AT_5G_40;
4698 		pCtlMode = ctlModesFor11a;
4699 		if (IS_CHAN_HT40(chan))
4700 			/* All 5G CTL's */
4701 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
4702 	}
4703 
4704 	/*
4705 	 * For MIMO, need to apply regulatory caps individually across
4706 	 * dynamically running modes: CCK, OFDM, HT20, HT40
4707 	 *
4708 	 * The outer loop walks through each possible applicable runtime mode.
4709 	 * The inner loop walks through each ctlIndex entry in EEPROM.
4710 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
4711 	 */
4712 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
4713 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
4714 			(pCtlMode[ctlMode] == CTL_2GHT40);
4715 		if (isHt40CtlMode)
4716 			freq = centers.synth_center;
4717 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
4718 			freq = centers.ext_center;
4719 		else
4720 			freq = centers.ctl_center;
4721 
4722 		ath_dbg(common, ATH_DBG_REGULATORY,
4723 			"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
4724 			ctlMode, numCtlModes, isHt40CtlMode,
4725 			(pCtlMode[ctlMode] & EXT_ADDITIVE));
4726 
4727 		/* walk through each CTL index stored in EEPROM */
4728 		if (is2ghz) {
4729 			ctlIndex = pEepData->ctlIndex_2G;
4730 			ctlNum = AR9300_NUM_CTLS_2G;
4731 		} else {
4732 			ctlIndex = pEepData->ctlIndex_5G;
4733 			ctlNum = AR9300_NUM_CTLS_5G;
4734 		}
4735 
4736 		for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
4737 			ath_dbg(common, ATH_DBG_REGULATORY,
4738 				"LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
4739 				i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
4740 				chan->channel);
4741 
4742 				/*
4743 				 * compare test group from regulatory
4744 				 * channel list with test mode from pCtlMode
4745 				 * list
4746 				 */
4747 				if ((((cfgCtl & ~CTL_MODE_M) |
4748 				       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4749 					ctlIndex[i]) ||
4750 				    (((cfgCtl & ~CTL_MODE_M) |
4751 				       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4752 				     ((ctlIndex[i] & CTL_MODE_M) |
4753 				       SD_NO_CTL))) {
4754 					twiceMinEdgePower =
4755 					  ar9003_hw_get_max_edge_power(pEepData,
4756 								       freq, i,
4757 								       is2ghz);
4758 
4759 					if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
4760 						/*
4761 						 * Find the minimum of all CTL
4762 						 * edge powers that apply to
4763 						 * this channel
4764 						 */
4765 						twiceMaxEdgePower =
4766 							min(twiceMaxEdgePower,
4767 							    twiceMinEdgePower);
4768 						else {
4769 							/* specific */
4770 							twiceMaxEdgePower =
4771 							  twiceMinEdgePower;
4772 							break;
4773 						}
4774 				}
4775 			}
4776 
4777 			minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
4778 
4779 			ath_dbg(common, ATH_DBG_REGULATORY,
4780 				"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
4781 				ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
4782 				scaledPower, minCtlPower);
4783 
4784 			/* Apply ctl mode to correct target power set */
4785 			switch (pCtlMode[ctlMode]) {
4786 			case CTL_11B:
4787 				for (i = ALL_TARGET_LEGACY_1L_5L;
4788 				     i <= ALL_TARGET_LEGACY_11S; i++)
4789 					pPwrArray[i] =
4790 					  (u8)min((u16)pPwrArray[i],
4791 						  minCtlPower);
4792 				break;
4793 			case CTL_11A:
4794 			case CTL_11G:
4795 				for (i = ALL_TARGET_LEGACY_6_24;
4796 				     i <= ALL_TARGET_LEGACY_54; i++)
4797 					pPwrArray[i] =
4798 					  (u8)min((u16)pPwrArray[i],
4799 						  minCtlPower);
4800 				break;
4801 			case CTL_5GHT20:
4802 			case CTL_2GHT20:
4803 				for (i = ALL_TARGET_HT20_0_8_16;
4804 				     i <= ALL_TARGET_HT20_21; i++)
4805 					pPwrArray[i] =
4806 					  (u8)min((u16)pPwrArray[i],
4807 						  minCtlPower);
4808 				pPwrArray[ALL_TARGET_HT20_22] =
4809 				  (u8)min((u16)pPwrArray[ALL_TARGET_HT20_22],
4810 					  minCtlPower);
4811 				pPwrArray[ALL_TARGET_HT20_23] =
4812 				  (u8)min((u16)pPwrArray[ALL_TARGET_HT20_23],
4813 					   minCtlPower);
4814 				break;
4815 			case CTL_5GHT40:
4816 			case CTL_2GHT40:
4817 				for (i = ALL_TARGET_HT40_0_8_16;
4818 				     i <= ALL_TARGET_HT40_23; i++)
4819 					pPwrArray[i] =
4820 					  (u8)min((u16)pPwrArray[i],
4821 						  minCtlPower);
4822 				break;
4823 			default:
4824 			    break;
4825 			}
4826 	} /* end ctl mode checking */
4827 }
4828 
4829 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
4830 {
4831 	u8 mod_idx = mcs_idx % 8;
4832 
4833 	if (mod_idx <= 3)
4834 		return mod_idx ? (base_pwridx + 1) : base_pwridx;
4835 	else
4836 		return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
4837 }
4838 
4839 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
4840 					struct ath9k_channel *chan, u16 cfgCtl,
4841 					u8 twiceAntennaReduction,
4842 					u8 twiceMaxRegulatoryPower,
4843 					u8 powerLimit, bool test)
4844 {
4845 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4846 	struct ath_common *common = ath9k_hw_common(ah);
4847 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4848 	struct ar9300_modal_eep_header *modal_hdr;
4849 	u8 targetPowerValT2[ar9300RateSize];
4850 	u8 target_power_val_t2_eep[ar9300RateSize];
4851 	unsigned int i = 0, paprd_scale_factor = 0;
4852 	u8 pwr_idx, min_pwridx = 0;
4853 
4854 	ar9003_hw_set_target_power_eeprom(ah, chan->channel, targetPowerValT2);
4855 
4856 	if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
4857 		if (IS_CHAN_2GHZ(chan))
4858 			modal_hdr = &eep->modalHeader2G;
4859 		else
4860 			modal_hdr = &eep->modalHeader5G;
4861 
4862 		ah->paprd_ratemask =
4863 			le32_to_cpu(modal_hdr->papdRateMaskHt20) &
4864 			AR9300_PAPRD_RATE_MASK;
4865 
4866 		ah->paprd_ratemask_ht40 =
4867 			le32_to_cpu(modal_hdr->papdRateMaskHt40) &
4868 			AR9300_PAPRD_RATE_MASK;
4869 
4870 		paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
4871 		min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
4872 						  ALL_TARGET_HT20_0_8_16;
4873 
4874 		if (!ah->paprd_table_write_done) {
4875 			memcpy(target_power_val_t2_eep, targetPowerValT2,
4876 			       sizeof(targetPowerValT2));
4877 			for (i = 0; i < 24; i++) {
4878 				pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
4879 				if (ah->paprd_ratemask & (1 << i)) {
4880 					if (targetPowerValT2[pwr_idx] &&
4881 					    targetPowerValT2[pwr_idx] ==
4882 					    target_power_val_t2_eep[pwr_idx])
4883 						targetPowerValT2[pwr_idx] -=
4884 							paprd_scale_factor;
4885 				}
4886 			}
4887 		}
4888 		memcpy(target_power_val_t2_eep, targetPowerValT2,
4889 		       sizeof(targetPowerValT2));
4890 	}
4891 
4892 	ar9003_hw_set_power_per_rate_table(ah, chan,
4893 					   targetPowerValT2, cfgCtl,
4894 					   twiceAntennaReduction,
4895 					   twiceMaxRegulatoryPower,
4896 					   powerLimit);
4897 
4898 	if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
4899 		for (i = 0; i < ar9300RateSize; i++) {
4900 			if ((ah->paprd_ratemask & (1 << i)) &&
4901 			    (abs(targetPowerValT2[i] -
4902 				target_power_val_t2_eep[i]) >
4903 			    paprd_scale_factor)) {
4904 				ah->paprd_ratemask &= ~(1 << i);
4905 				ath_dbg(common, ATH_DBG_EEPROM,
4906 					"paprd disabled for mcs %d\n", i);
4907 			}
4908 		}
4909 	}
4910 
4911 	regulatory->max_power_level = 0;
4912 	for (i = 0; i < ar9300RateSize; i++) {
4913 		if (targetPowerValT2[i] > regulatory->max_power_level)
4914 			regulatory->max_power_level = targetPowerValT2[i];
4915 	}
4916 
4917 	if (test)
4918 		return;
4919 
4920 	for (i = 0; i < ar9300RateSize; i++) {
4921 		ath_dbg(common, ATH_DBG_EEPROM,
4922 			"TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
4923 	}
4924 
4925 	/*
4926 	 * This is the TX power we send back to driver core,
4927 	 * and it can use to pass to userspace to display our
4928 	 * currently configured TX power setting.
4929 	 *
4930 	 * Since power is rate dependent, use one of the indices
4931 	 * from the AR9300_Rates enum to select an entry from
4932 	 * targetPowerValT2[] to report. Currently returns the
4933 	 * power for HT40 MCS 0, HT20 MCS 0, or OFDM 6 Mbps
4934 	 * as CCK power is less interesting (?).
4935 	 */
4936 	i = ALL_TARGET_LEGACY_6_24; /* legacy */
4937 	if (IS_CHAN_HT40(chan))
4938 		i = ALL_TARGET_HT40_0_8_16; /* ht40 */
4939 	else if (IS_CHAN_HT20(chan))
4940 		i = ALL_TARGET_HT20_0_8_16; /* ht20 */
4941 
4942 	ah->txpower_limit = targetPowerValT2[i];
4943 	regulatory->max_power_level = targetPowerValT2[i];
4944 
4945 	/* Write target power array to registers */
4946 	ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
4947 	ar9003_hw_calibration_apply(ah, chan->channel);
4948 
4949 	if (IS_CHAN_2GHZ(chan)) {
4950 		if (IS_CHAN_HT40(chan))
4951 			i = ALL_TARGET_HT40_0_8_16;
4952 		else
4953 			i = ALL_TARGET_HT20_0_8_16;
4954 	} else {
4955 		if (IS_CHAN_HT40(chan))
4956 			i = ALL_TARGET_HT40_7;
4957 		else
4958 			i = ALL_TARGET_HT20_7;
4959 	}
4960 	ah->paprd_target_power = targetPowerValT2[i];
4961 }
4962 
4963 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
4964 					    u16 i, bool is2GHz)
4965 {
4966 	return AR_NO_SPUR;
4967 }
4968 
4969 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
4970 {
4971 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4972 
4973 	return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
4974 }
4975 
4976 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
4977 {
4978 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4979 
4980 	return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
4981 }
4982 
4983 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is_2ghz)
4984 {
4985 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4986 
4987 	if (is_2ghz)
4988 		return eep->modalHeader2G.spurChans;
4989 	else
4990 		return eep->modalHeader5G.spurChans;
4991 }
4992 
4993 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
4994 					   struct ath9k_channel *chan)
4995 {
4996 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4997 
4998 	if (IS_CHAN_2GHZ(chan))
4999 		return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5000 			  AR9300_PAPRD_SCALE_1);
5001 	else {
5002 		if (chan->channel >= 5700)
5003 		return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5004 			  AR9300_PAPRD_SCALE_1);
5005 		else if (chan->channel >= 5400)
5006 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5007 				   AR9300_PAPRD_SCALE_2);
5008 		else
5009 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5010 				  AR9300_PAPRD_SCALE_1);
5011 	}
5012 }
5013 
5014 const struct eeprom_ops eep_ar9300_ops = {
5015 	.check_eeprom = ath9k_hw_ar9300_check_eeprom,
5016 	.get_eeprom = ath9k_hw_ar9300_get_eeprom,
5017 	.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5018 	.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5019 	.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5020 	.set_board_values = ath9k_hw_ar9300_set_board_values,
5021 	.set_addac = ath9k_hw_ar9300_set_addac,
5022 	.set_txpower = ath9k_hw_ar9300_set_txpower,
5023 	.get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5024 };
5025