1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20 #include "ar9003_eeprom.h"
21 
22 #define COMP_HDR_LEN 4
23 #define COMP_CKSUM_LEN 2
24 
25 #define LE16(x) __constant_cpu_to_le16(x)
26 #define LE32(x) __constant_cpu_to_le32(x)
27 
28 /* Local defines to distinguish between extension and control CTL's */
29 #define EXT_ADDITIVE (0x8000)
30 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
31 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
32 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
33 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
34 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   9  /* 10*log10(3)*2 */
35 #define PWRINCR_3_TO_1_CHAIN      9             /* 10*log(3)*2 */
36 #define PWRINCR_3_TO_2_CHAIN      3             /* floor(10*log(3/2)*2) */
37 #define PWRINCR_2_TO_1_CHAIN      6             /* 10*log(2)*2 */
38 
39 #define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
40 #define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
41 
42 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
43 
44 #define EEPROM_DATA_LEN_9485	1088
45 
46 static int ar9003_hw_power_interpolate(int32_t x,
47 				       int32_t *px, int32_t *py, u_int16_t np);
48 
49 
50 static const struct ar9300_eeprom ar9300_default = {
51 	.eepromVersion = 2,
52 	.templateVersion = 2,
53 	.macAddr = {0, 2, 3, 4, 5, 6},
54 	.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
55 		     0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
56 	.baseEepHeader = {
57 		.regDmn = { LE16(0), LE16(0x1f) },
58 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
59 		.opCapFlags = {
60 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
61 			.eepMisc = 0,
62 		},
63 		.rfSilent = 0,
64 		.blueToothOptions = 0,
65 		.deviceCap = 0,
66 		.deviceType = 5, /* takes lower byte in eeprom location */
67 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
68 		.params_for_tuning_caps = {0, 0},
69 		.featureEnable = 0x0c,
70 		 /*
71 		  * bit0 - enable tx temp comp - disabled
72 		  * bit1 - enable tx volt comp - disabled
73 		  * bit2 - enable fastClock - enabled
74 		  * bit3 - enable doubling - enabled
75 		  * bit4 - enable internal regulator - disabled
76 		  * bit5 - enable pa predistortion - disabled
77 		  */
78 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
79 		.eepromWriteEnableGpio = 3,
80 		.wlanDisableGpio = 0,
81 		.wlanLedGpio = 8,
82 		.rxBandSelectGpio = 0xff,
83 		.txrxgain = 0,
84 		.swreg = 0,
85 	 },
86 	.modalHeader2G = {
87 	/* ar9300_modal_eep_header  2g */
88 		/* 4 idle,t1,t2,b(4 bits per setting) */
89 		.antCtrlCommon = LE32(0x110),
90 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
91 		.antCtrlCommon2 = LE32(0x22222),
92 
93 		/*
94 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
95 		 * rx1, rx12, b (2 bits each)
96 		 */
97 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
98 
99 		/*
100 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
101 		 * for ar9280 (0xa20c/b20c 5:0)
102 		 */
103 		.xatten1DB = {0, 0, 0},
104 
105 		/*
106 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
107 		 * for ar9280 (0xa20c/b20c 16:12
108 		 */
109 		.xatten1Margin = {0, 0, 0},
110 		.tempSlope = 36,
111 		.voltSlope = 0,
112 
113 		/*
114 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
115 		 * channels in usual fbin coding format
116 		 */
117 		.spurChans = {0, 0, 0, 0, 0},
118 
119 		/*
120 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
121 		 * if the register is per chain
122 		 */
123 		.noiseFloorThreshCh = {-1, 0, 0},
124 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
125 		.quick_drop = 0,
126 		.xpaBiasLvl = 0,
127 		.txFrameToDataStart = 0x0e,
128 		.txFrameToPaOn = 0x0e,
129 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
130 		.antennaGain = 0,
131 		.switchSettling = 0x2c,
132 		.adcDesiredSize = -30,
133 		.txEndToXpaOff = 0,
134 		.txEndToRxOn = 0x2,
135 		.txFrameToXpaOn = 0xe,
136 		.thresh62 = 28,
137 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
138 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
139 		.futureModal = {
140 			0, 0, 0, 0, 0, 0, 0, 0,
141 		},
142 	 },
143 	.base_ext1 = {
144 		.ant_div_control = 0,
145 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
146 	},
147 	.calFreqPier2G = {
148 		FREQ2FBIN(2412, 1),
149 		FREQ2FBIN(2437, 1),
150 		FREQ2FBIN(2472, 1),
151 	 },
152 	/* ar9300_cal_data_per_freq_op_loop 2g */
153 	.calPierData2G = {
154 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
155 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
156 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
157 	 },
158 	.calTarget_freqbin_Cck = {
159 		FREQ2FBIN(2412, 1),
160 		FREQ2FBIN(2484, 1),
161 	 },
162 	.calTarget_freqbin_2G = {
163 		FREQ2FBIN(2412, 1),
164 		FREQ2FBIN(2437, 1),
165 		FREQ2FBIN(2472, 1)
166 	 },
167 	.calTarget_freqbin_2GHT20 = {
168 		FREQ2FBIN(2412, 1),
169 		FREQ2FBIN(2437, 1),
170 		FREQ2FBIN(2472, 1)
171 	 },
172 	.calTarget_freqbin_2GHT40 = {
173 		FREQ2FBIN(2412, 1),
174 		FREQ2FBIN(2437, 1),
175 		FREQ2FBIN(2472, 1)
176 	 },
177 	.calTargetPowerCck = {
178 		 /* 1L-5L,5S,11L,11S */
179 		 { {36, 36, 36, 36} },
180 		 { {36, 36, 36, 36} },
181 	},
182 	.calTargetPower2G = {
183 		 /* 6-24,36,48,54 */
184 		 { {32, 32, 28, 24} },
185 		 { {32, 32, 28, 24} },
186 		 { {32, 32, 28, 24} },
187 	},
188 	.calTargetPower2GHT20 = {
189 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
190 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
191 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
192 	},
193 	.calTargetPower2GHT40 = {
194 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
195 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
196 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
197 	},
198 	.ctlIndex_2G =  {
199 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
200 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
201 	},
202 	.ctl_freqbin_2G = {
203 		{
204 			FREQ2FBIN(2412, 1),
205 			FREQ2FBIN(2417, 1),
206 			FREQ2FBIN(2457, 1),
207 			FREQ2FBIN(2462, 1)
208 		},
209 		{
210 			FREQ2FBIN(2412, 1),
211 			FREQ2FBIN(2417, 1),
212 			FREQ2FBIN(2462, 1),
213 			0xFF,
214 		},
215 
216 		{
217 			FREQ2FBIN(2412, 1),
218 			FREQ2FBIN(2417, 1),
219 			FREQ2FBIN(2462, 1),
220 			0xFF,
221 		},
222 		{
223 			FREQ2FBIN(2422, 1),
224 			FREQ2FBIN(2427, 1),
225 			FREQ2FBIN(2447, 1),
226 			FREQ2FBIN(2452, 1)
227 		},
228 
229 		{
230 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
231 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
232 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
233 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
234 		},
235 
236 		{
237 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
238 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
239 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
240 			0,
241 		},
242 
243 		{
244 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
245 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
246 			FREQ2FBIN(2472, 1),
247 			0,
248 		},
249 
250 		{
251 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
252 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
253 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
254 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
255 		},
256 
257 		{
258 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
259 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
260 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
261 		},
262 
263 		{
264 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
265 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
266 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
267 			0
268 		},
269 
270 		{
271 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
272 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
273 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
274 			0
275 		},
276 
277 		{
278 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
279 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
280 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
281 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
282 		}
283 	 },
284 	.ctlPowerData_2G = {
285 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
286 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
287 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
288 
289 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
290 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
291 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
292 
293 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
294 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
295 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
296 
297 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
298 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
299 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
300 	 },
301 	.modalHeader5G = {
302 		/* 4 idle,t1,t2,b (4 bits per setting) */
303 		.antCtrlCommon = LE32(0x110),
304 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
305 		.antCtrlCommon2 = LE32(0x22222),
306 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
307 		.antCtrlChain = {
308 			LE16(0x000), LE16(0x000), LE16(0x000),
309 		},
310 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
311 		.xatten1DB = {0, 0, 0},
312 
313 		/*
314 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
315 		 * for merlin (0xa20c/b20c 16:12
316 		 */
317 		.xatten1Margin = {0, 0, 0},
318 		.tempSlope = 68,
319 		.voltSlope = 0,
320 		/* spurChans spur channels in usual fbin coding format */
321 		.spurChans = {0, 0, 0, 0, 0},
322 		/* noiseFloorThreshCh Check if the register is per chain */
323 		.noiseFloorThreshCh = {-1, 0, 0},
324 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
325 		.quick_drop = 0,
326 		.xpaBiasLvl = 0,
327 		.txFrameToDataStart = 0x0e,
328 		.txFrameToPaOn = 0x0e,
329 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
330 		.antennaGain = 0,
331 		.switchSettling = 0x2d,
332 		.adcDesiredSize = -30,
333 		.txEndToXpaOff = 0,
334 		.txEndToRxOn = 0x2,
335 		.txFrameToXpaOn = 0xe,
336 		.thresh62 = 28,
337 		.papdRateMaskHt20 = LE32(0x0c80c080),
338 		.papdRateMaskHt40 = LE32(0x0080c080),
339 		.futureModal = {
340 			0, 0, 0, 0, 0, 0, 0, 0,
341 		},
342 	 },
343 	.base_ext2 = {
344 		.tempSlopeLow = 0,
345 		.tempSlopeHigh = 0,
346 		.xatten1DBLow = {0, 0, 0},
347 		.xatten1MarginLow = {0, 0, 0},
348 		.xatten1DBHigh = {0, 0, 0},
349 		.xatten1MarginHigh = {0, 0, 0}
350 	},
351 	.calFreqPier5G = {
352 		FREQ2FBIN(5180, 0),
353 		FREQ2FBIN(5220, 0),
354 		FREQ2FBIN(5320, 0),
355 		FREQ2FBIN(5400, 0),
356 		FREQ2FBIN(5500, 0),
357 		FREQ2FBIN(5600, 0),
358 		FREQ2FBIN(5725, 0),
359 		FREQ2FBIN(5825, 0)
360 	},
361 	.calPierData5G = {
362 			{
363 				{0, 0, 0, 0, 0},
364 				{0, 0, 0, 0, 0},
365 				{0, 0, 0, 0, 0},
366 				{0, 0, 0, 0, 0},
367 				{0, 0, 0, 0, 0},
368 				{0, 0, 0, 0, 0},
369 				{0, 0, 0, 0, 0},
370 				{0, 0, 0, 0, 0},
371 			},
372 			{
373 				{0, 0, 0, 0, 0},
374 				{0, 0, 0, 0, 0},
375 				{0, 0, 0, 0, 0},
376 				{0, 0, 0, 0, 0},
377 				{0, 0, 0, 0, 0},
378 				{0, 0, 0, 0, 0},
379 				{0, 0, 0, 0, 0},
380 				{0, 0, 0, 0, 0},
381 			},
382 			{
383 				{0, 0, 0, 0, 0},
384 				{0, 0, 0, 0, 0},
385 				{0, 0, 0, 0, 0},
386 				{0, 0, 0, 0, 0},
387 				{0, 0, 0, 0, 0},
388 				{0, 0, 0, 0, 0},
389 				{0, 0, 0, 0, 0},
390 				{0, 0, 0, 0, 0},
391 			},
392 
393 	},
394 	.calTarget_freqbin_5G = {
395 		FREQ2FBIN(5180, 0),
396 		FREQ2FBIN(5220, 0),
397 		FREQ2FBIN(5320, 0),
398 		FREQ2FBIN(5400, 0),
399 		FREQ2FBIN(5500, 0),
400 		FREQ2FBIN(5600, 0),
401 		FREQ2FBIN(5725, 0),
402 		FREQ2FBIN(5825, 0)
403 	},
404 	.calTarget_freqbin_5GHT20 = {
405 		FREQ2FBIN(5180, 0),
406 		FREQ2FBIN(5240, 0),
407 		FREQ2FBIN(5320, 0),
408 		FREQ2FBIN(5500, 0),
409 		FREQ2FBIN(5700, 0),
410 		FREQ2FBIN(5745, 0),
411 		FREQ2FBIN(5725, 0),
412 		FREQ2FBIN(5825, 0)
413 	},
414 	.calTarget_freqbin_5GHT40 = {
415 		FREQ2FBIN(5180, 0),
416 		FREQ2FBIN(5240, 0),
417 		FREQ2FBIN(5320, 0),
418 		FREQ2FBIN(5500, 0),
419 		FREQ2FBIN(5700, 0),
420 		FREQ2FBIN(5745, 0),
421 		FREQ2FBIN(5725, 0),
422 		FREQ2FBIN(5825, 0)
423 	 },
424 	.calTargetPower5G = {
425 		/* 6-24,36,48,54 */
426 		{ {20, 20, 20, 10} },
427 		{ {20, 20, 20, 10} },
428 		{ {20, 20, 20, 10} },
429 		{ {20, 20, 20, 10} },
430 		{ {20, 20, 20, 10} },
431 		{ {20, 20, 20, 10} },
432 		{ {20, 20, 20, 10} },
433 		{ {20, 20, 20, 10} },
434 	 },
435 	.calTargetPower5GHT20 = {
436 		/*
437 		 * 0_8_16,1-3_9-11_17-19,
438 		 * 4,5,6,7,12,13,14,15,20,21,22,23
439 		 */
440 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
441 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
442 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
444 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
446 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
447 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
448 	 },
449 	.calTargetPower5GHT40 =  {
450 		/*
451 		 * 0_8_16,1-3_9-11_17-19,
452 		 * 4,5,6,7,12,13,14,15,20,21,22,23
453 		 */
454 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
455 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
456 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
458 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
460 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
461 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
462 	 },
463 	.ctlIndex_5G =  {
464 		0x10, 0x16, 0x18, 0x40, 0x46,
465 		0x48, 0x30, 0x36, 0x38
466 	},
467 	.ctl_freqbin_5G =  {
468 		{
469 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
470 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
471 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
472 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
473 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
474 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
475 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
476 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
477 		},
478 		{
479 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
480 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
481 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
482 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
483 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
484 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
485 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
486 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
487 		},
488 
489 		{
490 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
491 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
492 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
493 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
494 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
495 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
496 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
497 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
498 		},
499 
500 		{
501 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
502 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
503 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
504 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
505 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
506 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
507 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
508 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
509 		},
510 
511 		{
512 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
513 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
514 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
515 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
516 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
517 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
518 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
519 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
520 		},
521 
522 		{
523 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
524 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
525 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
526 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
527 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
528 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
529 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
530 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
531 		},
532 
533 		{
534 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
535 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
536 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
537 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
538 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
539 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
540 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
541 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
542 		},
543 
544 		{
545 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
546 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
547 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
548 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
549 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
550 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
551 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
552 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
553 		},
554 
555 		{
556 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
557 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
558 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
559 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
560 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
561 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
562 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
563 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
564 		}
565 	 },
566 	.ctlPowerData_5G = {
567 		{
568 			{
569 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
570 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
571 			}
572 		},
573 		{
574 			{
575 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
576 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
577 			}
578 		},
579 		{
580 			{
581 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
582 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
583 			}
584 		},
585 		{
586 			{
587 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
588 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
589 			}
590 		},
591 		{
592 			{
593 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
594 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
595 			}
596 		},
597 		{
598 			{
599 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
600 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
601 			}
602 		},
603 		{
604 			{
605 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
606 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
607 			}
608 		},
609 		{
610 			{
611 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
612 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
613 			}
614 		},
615 		{
616 			{
617 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
618 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
619 			}
620 		},
621 	 }
622 };
623 
624 static const struct ar9300_eeprom ar9300_x113 = {
625 	.eepromVersion = 2,
626 	.templateVersion = 6,
627 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
628 	.custData = {"x113-023-f0000"},
629 	.baseEepHeader = {
630 		.regDmn = { LE16(0), LE16(0x1f) },
631 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
632 		.opCapFlags = {
633 			.opFlags = AR5416_OPFLAGS_11A,
634 			.eepMisc = 0,
635 		},
636 		.rfSilent = 0,
637 		.blueToothOptions = 0,
638 		.deviceCap = 0,
639 		.deviceType = 5, /* takes lower byte in eeprom location */
640 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
641 		.params_for_tuning_caps = {0, 0},
642 		.featureEnable = 0x0d,
643 		 /*
644 		  * bit0 - enable tx temp comp - disabled
645 		  * bit1 - enable tx volt comp - disabled
646 		  * bit2 - enable fastClock - enabled
647 		  * bit3 - enable doubling - enabled
648 		  * bit4 - enable internal regulator - disabled
649 		  * bit5 - enable pa predistortion - disabled
650 		  */
651 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
652 		.eepromWriteEnableGpio = 6,
653 		.wlanDisableGpio = 0,
654 		.wlanLedGpio = 8,
655 		.rxBandSelectGpio = 0xff,
656 		.txrxgain = 0x21,
657 		.swreg = 0,
658 	 },
659 	.modalHeader2G = {
660 	/* ar9300_modal_eep_header  2g */
661 		/* 4 idle,t1,t2,b(4 bits per setting) */
662 		.antCtrlCommon = LE32(0x110),
663 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
664 		.antCtrlCommon2 = LE32(0x44444),
665 
666 		/*
667 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
668 		 * rx1, rx12, b (2 bits each)
669 		 */
670 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
671 
672 		/*
673 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
674 		 * for ar9280 (0xa20c/b20c 5:0)
675 		 */
676 		.xatten1DB = {0, 0, 0},
677 
678 		/*
679 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
680 		 * for ar9280 (0xa20c/b20c 16:12
681 		 */
682 		.xatten1Margin = {0, 0, 0},
683 		.tempSlope = 25,
684 		.voltSlope = 0,
685 
686 		/*
687 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
688 		 * channels in usual fbin coding format
689 		 */
690 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
691 
692 		/*
693 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
694 		 * if the register is per chain
695 		 */
696 		.noiseFloorThreshCh = {-1, 0, 0},
697 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
698 		.quick_drop = 0,
699 		.xpaBiasLvl = 0,
700 		.txFrameToDataStart = 0x0e,
701 		.txFrameToPaOn = 0x0e,
702 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
703 		.antennaGain = 0,
704 		.switchSettling = 0x2c,
705 		.adcDesiredSize = -30,
706 		.txEndToXpaOff = 0,
707 		.txEndToRxOn = 0x2,
708 		.txFrameToXpaOn = 0xe,
709 		.thresh62 = 28,
710 		.papdRateMaskHt20 = LE32(0x0c80c080),
711 		.papdRateMaskHt40 = LE32(0x0080c080),
712 		.futureModal = {
713 			0, 0, 0, 0, 0, 0, 0, 0,
714 		},
715 	 },
716 	 .base_ext1 = {
717 		.ant_div_control = 0,
718 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
719 	 },
720 	.calFreqPier2G = {
721 		FREQ2FBIN(2412, 1),
722 		FREQ2FBIN(2437, 1),
723 		FREQ2FBIN(2472, 1),
724 	 },
725 	/* ar9300_cal_data_per_freq_op_loop 2g */
726 	.calPierData2G = {
727 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
728 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
729 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
730 	 },
731 	.calTarget_freqbin_Cck = {
732 		FREQ2FBIN(2412, 1),
733 		FREQ2FBIN(2472, 1),
734 	 },
735 	.calTarget_freqbin_2G = {
736 		FREQ2FBIN(2412, 1),
737 		FREQ2FBIN(2437, 1),
738 		FREQ2FBIN(2472, 1)
739 	 },
740 	.calTarget_freqbin_2GHT20 = {
741 		FREQ2FBIN(2412, 1),
742 		FREQ2FBIN(2437, 1),
743 		FREQ2FBIN(2472, 1)
744 	 },
745 	.calTarget_freqbin_2GHT40 = {
746 		FREQ2FBIN(2412, 1),
747 		FREQ2FBIN(2437, 1),
748 		FREQ2FBIN(2472, 1)
749 	 },
750 	.calTargetPowerCck = {
751 		 /* 1L-5L,5S,11L,11S */
752 		 { {34, 34, 34, 34} },
753 		 { {34, 34, 34, 34} },
754 	},
755 	.calTargetPower2G = {
756 		 /* 6-24,36,48,54 */
757 		 { {34, 34, 32, 32} },
758 		 { {34, 34, 32, 32} },
759 		 { {34, 34, 32, 32} },
760 	},
761 	.calTargetPower2GHT20 = {
762 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
763 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
764 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
765 	},
766 	.calTargetPower2GHT40 = {
767 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
768 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
769 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
770 	},
771 	.ctlIndex_2G =  {
772 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
773 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
774 	},
775 	.ctl_freqbin_2G = {
776 		{
777 			FREQ2FBIN(2412, 1),
778 			FREQ2FBIN(2417, 1),
779 			FREQ2FBIN(2457, 1),
780 			FREQ2FBIN(2462, 1)
781 		},
782 		{
783 			FREQ2FBIN(2412, 1),
784 			FREQ2FBIN(2417, 1),
785 			FREQ2FBIN(2462, 1),
786 			0xFF,
787 		},
788 
789 		{
790 			FREQ2FBIN(2412, 1),
791 			FREQ2FBIN(2417, 1),
792 			FREQ2FBIN(2462, 1),
793 			0xFF,
794 		},
795 		{
796 			FREQ2FBIN(2422, 1),
797 			FREQ2FBIN(2427, 1),
798 			FREQ2FBIN(2447, 1),
799 			FREQ2FBIN(2452, 1)
800 		},
801 
802 		{
803 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
804 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
805 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
806 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
807 		},
808 
809 		{
810 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
811 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
812 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
813 			0,
814 		},
815 
816 		{
817 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
818 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
819 			FREQ2FBIN(2472, 1),
820 			0,
821 		},
822 
823 		{
824 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
825 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
826 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
827 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
828 		},
829 
830 		{
831 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
832 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
833 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
834 		},
835 
836 		{
837 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
838 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
839 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
840 			0
841 		},
842 
843 		{
844 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
845 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
846 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
847 			0
848 		},
849 
850 		{
851 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
852 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
853 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
854 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
855 		}
856 	 },
857 	.ctlPowerData_2G = {
858 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
859 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
860 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
861 
862 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
863 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
864 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
865 
866 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
867 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
868 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
869 
870 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
871 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
872 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
873 	 },
874 	.modalHeader5G = {
875 		/* 4 idle,t1,t2,b (4 bits per setting) */
876 		.antCtrlCommon = LE32(0x220),
877 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
878 		.antCtrlCommon2 = LE32(0x11111),
879 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
880 		.antCtrlChain = {
881 			LE16(0x150), LE16(0x150), LE16(0x150),
882 		},
883 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
884 		.xatten1DB = {0, 0, 0},
885 
886 		/*
887 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
888 		 * for merlin (0xa20c/b20c 16:12
889 		 */
890 		.xatten1Margin = {0, 0, 0},
891 		.tempSlope = 68,
892 		.voltSlope = 0,
893 		/* spurChans spur channels in usual fbin coding format */
894 		.spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
895 		/* noiseFloorThreshCh Check if the register is per chain */
896 		.noiseFloorThreshCh = {-1, 0, 0},
897 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
898 		.quick_drop = 0,
899 		.xpaBiasLvl = 0xf,
900 		.txFrameToDataStart = 0x0e,
901 		.txFrameToPaOn = 0x0e,
902 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
903 		.antennaGain = 0,
904 		.switchSettling = 0x2d,
905 		.adcDesiredSize = -30,
906 		.txEndToXpaOff = 0,
907 		.txEndToRxOn = 0x2,
908 		.txFrameToXpaOn = 0xe,
909 		.thresh62 = 28,
910 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
911 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
912 		.futureModal = {
913 			0, 0, 0, 0, 0, 0, 0, 0,
914 		},
915 	 },
916 	.base_ext2 = {
917 		.tempSlopeLow = 72,
918 		.tempSlopeHigh = 105,
919 		.xatten1DBLow = {0, 0, 0},
920 		.xatten1MarginLow = {0, 0, 0},
921 		.xatten1DBHigh = {0, 0, 0},
922 		.xatten1MarginHigh = {0, 0, 0}
923 	 },
924 	.calFreqPier5G = {
925 		FREQ2FBIN(5180, 0),
926 		FREQ2FBIN(5240, 0),
927 		FREQ2FBIN(5320, 0),
928 		FREQ2FBIN(5400, 0),
929 		FREQ2FBIN(5500, 0),
930 		FREQ2FBIN(5600, 0),
931 		FREQ2FBIN(5745, 0),
932 		FREQ2FBIN(5785, 0)
933 	},
934 	.calPierData5G = {
935 			{
936 				{0, 0, 0, 0, 0},
937 				{0, 0, 0, 0, 0},
938 				{0, 0, 0, 0, 0},
939 				{0, 0, 0, 0, 0},
940 				{0, 0, 0, 0, 0},
941 				{0, 0, 0, 0, 0},
942 				{0, 0, 0, 0, 0},
943 				{0, 0, 0, 0, 0},
944 			},
945 			{
946 				{0, 0, 0, 0, 0},
947 				{0, 0, 0, 0, 0},
948 				{0, 0, 0, 0, 0},
949 				{0, 0, 0, 0, 0},
950 				{0, 0, 0, 0, 0},
951 				{0, 0, 0, 0, 0},
952 				{0, 0, 0, 0, 0},
953 				{0, 0, 0, 0, 0},
954 			},
955 			{
956 				{0, 0, 0, 0, 0},
957 				{0, 0, 0, 0, 0},
958 				{0, 0, 0, 0, 0},
959 				{0, 0, 0, 0, 0},
960 				{0, 0, 0, 0, 0},
961 				{0, 0, 0, 0, 0},
962 				{0, 0, 0, 0, 0},
963 				{0, 0, 0, 0, 0},
964 			},
965 
966 	},
967 	.calTarget_freqbin_5G = {
968 		FREQ2FBIN(5180, 0),
969 		FREQ2FBIN(5220, 0),
970 		FREQ2FBIN(5320, 0),
971 		FREQ2FBIN(5400, 0),
972 		FREQ2FBIN(5500, 0),
973 		FREQ2FBIN(5600, 0),
974 		FREQ2FBIN(5745, 0),
975 		FREQ2FBIN(5785, 0)
976 	},
977 	.calTarget_freqbin_5GHT20 = {
978 		FREQ2FBIN(5180, 0),
979 		FREQ2FBIN(5240, 0),
980 		FREQ2FBIN(5320, 0),
981 		FREQ2FBIN(5400, 0),
982 		FREQ2FBIN(5500, 0),
983 		FREQ2FBIN(5700, 0),
984 		FREQ2FBIN(5745, 0),
985 		FREQ2FBIN(5825, 0)
986 	},
987 	.calTarget_freqbin_5GHT40 = {
988 		FREQ2FBIN(5190, 0),
989 		FREQ2FBIN(5230, 0),
990 		FREQ2FBIN(5320, 0),
991 		FREQ2FBIN(5410, 0),
992 		FREQ2FBIN(5510, 0),
993 		FREQ2FBIN(5670, 0),
994 		FREQ2FBIN(5755, 0),
995 		FREQ2FBIN(5825, 0)
996 	 },
997 	.calTargetPower5G = {
998 		/* 6-24,36,48,54 */
999 		{ {42, 40, 40, 34} },
1000 		{ {42, 40, 40, 34} },
1001 		{ {42, 40, 40, 34} },
1002 		{ {42, 40, 40, 34} },
1003 		{ {42, 40, 40, 34} },
1004 		{ {42, 40, 40, 34} },
1005 		{ {42, 40, 40, 34} },
1006 		{ {42, 40, 40, 34} },
1007 	 },
1008 	.calTargetPower5GHT20 = {
1009 		/*
1010 		 * 0_8_16,1-3_9-11_17-19,
1011 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1012 		 */
1013 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1014 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1015 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1016 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1017 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1018 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1019 		{ {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1020 		{ {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1021 	 },
1022 	.calTargetPower5GHT40 =  {
1023 		/*
1024 		 * 0_8_16,1-3_9-11_17-19,
1025 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1026 		 */
1027 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1028 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1029 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1030 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1031 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1032 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1033 		{ {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1034 		{ {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1035 	 },
1036 	.ctlIndex_5G =  {
1037 		0x10, 0x16, 0x18, 0x40, 0x46,
1038 		0x48, 0x30, 0x36, 0x38
1039 	},
1040 	.ctl_freqbin_5G =  {
1041 		{
1042 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1043 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1044 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1045 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1046 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1047 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1048 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1049 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1050 		},
1051 		{
1052 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1053 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1054 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1055 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1056 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1057 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1058 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1059 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1060 		},
1061 
1062 		{
1063 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1064 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1065 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1066 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1067 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1068 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1069 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1070 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1071 		},
1072 
1073 		{
1074 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1075 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1076 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1077 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1078 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1079 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1080 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1081 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1082 		},
1083 
1084 		{
1085 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1086 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1087 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1088 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1089 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1090 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1091 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1092 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1093 		},
1094 
1095 		{
1096 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1097 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1098 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1099 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1100 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1101 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1102 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1103 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1104 		},
1105 
1106 		{
1107 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1108 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1109 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1110 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1111 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1112 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1113 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1114 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1115 		},
1116 
1117 		{
1118 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1119 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1120 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1121 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1122 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1123 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1124 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1125 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1126 		},
1127 
1128 		{
1129 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1130 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1131 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1132 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1133 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1134 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1135 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1136 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1137 		}
1138 	 },
1139 	.ctlPowerData_5G = {
1140 		{
1141 			{
1142 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1143 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1144 			}
1145 		},
1146 		{
1147 			{
1148 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1149 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1150 			}
1151 		},
1152 		{
1153 			{
1154 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1155 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1156 			}
1157 		},
1158 		{
1159 			{
1160 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1161 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1162 			}
1163 		},
1164 		{
1165 			{
1166 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1167 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1168 			}
1169 		},
1170 		{
1171 			{
1172 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1173 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1174 			}
1175 		},
1176 		{
1177 			{
1178 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1179 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1180 			}
1181 		},
1182 		{
1183 			{
1184 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1185 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1186 			}
1187 		},
1188 		{
1189 			{
1190 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1191 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1192 			}
1193 		},
1194 	 }
1195 };
1196 
1197 
1198 static const struct ar9300_eeprom ar9300_h112 = {
1199 	.eepromVersion = 2,
1200 	.templateVersion = 3,
1201 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1202 	.custData = {"h112-241-f0000"},
1203 	.baseEepHeader = {
1204 		.regDmn = { LE16(0), LE16(0x1f) },
1205 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1206 		.opCapFlags = {
1207 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1208 			.eepMisc = 0,
1209 		},
1210 		.rfSilent = 0,
1211 		.blueToothOptions = 0,
1212 		.deviceCap = 0,
1213 		.deviceType = 5, /* takes lower byte in eeprom location */
1214 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1215 		.params_for_tuning_caps = {0, 0},
1216 		.featureEnable = 0x0d,
1217 		/*
1218 		 * bit0 - enable tx temp comp - disabled
1219 		 * bit1 - enable tx volt comp - disabled
1220 		 * bit2 - enable fastClock - enabled
1221 		 * bit3 - enable doubling - enabled
1222 		 * bit4 - enable internal regulator - disabled
1223 		 * bit5 - enable pa predistortion - disabled
1224 		 */
1225 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1226 		.eepromWriteEnableGpio = 6,
1227 		.wlanDisableGpio = 0,
1228 		.wlanLedGpio = 8,
1229 		.rxBandSelectGpio = 0xff,
1230 		.txrxgain = 0x10,
1231 		.swreg = 0,
1232 	},
1233 	.modalHeader2G = {
1234 		/* ar9300_modal_eep_header  2g */
1235 		/* 4 idle,t1,t2,b(4 bits per setting) */
1236 		.antCtrlCommon = LE32(0x110),
1237 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1238 		.antCtrlCommon2 = LE32(0x44444),
1239 
1240 		/*
1241 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1242 		 * rx1, rx12, b (2 bits each)
1243 		 */
1244 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1245 
1246 		/*
1247 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
1248 		 * for ar9280 (0xa20c/b20c 5:0)
1249 		 */
1250 		.xatten1DB = {0, 0, 0},
1251 
1252 		/*
1253 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1254 		 * for ar9280 (0xa20c/b20c 16:12
1255 		 */
1256 		.xatten1Margin = {0, 0, 0},
1257 		.tempSlope = 25,
1258 		.voltSlope = 0,
1259 
1260 		/*
1261 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1262 		 * channels in usual fbin coding format
1263 		 */
1264 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1265 
1266 		/*
1267 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1268 		 * if the register is per chain
1269 		 */
1270 		.noiseFloorThreshCh = {-1, 0, 0},
1271 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1272 		.quick_drop = 0,
1273 		.xpaBiasLvl = 0,
1274 		.txFrameToDataStart = 0x0e,
1275 		.txFrameToPaOn = 0x0e,
1276 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1277 		.antennaGain = 0,
1278 		.switchSettling = 0x2c,
1279 		.adcDesiredSize = -30,
1280 		.txEndToXpaOff = 0,
1281 		.txEndToRxOn = 0x2,
1282 		.txFrameToXpaOn = 0xe,
1283 		.thresh62 = 28,
1284 		.papdRateMaskHt20 = LE32(0x0c80c080),
1285 		.papdRateMaskHt40 = LE32(0x0080c080),
1286 		.futureModal = {
1287 			0, 0, 0, 0, 0, 0, 0, 0,
1288 		},
1289 	},
1290 	.base_ext1 = {
1291 		.ant_div_control = 0,
1292 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1293 	},
1294 	.calFreqPier2G = {
1295 		FREQ2FBIN(2412, 1),
1296 		FREQ2FBIN(2437, 1),
1297 		FREQ2FBIN(2462, 1),
1298 	},
1299 	/* ar9300_cal_data_per_freq_op_loop 2g */
1300 	.calPierData2G = {
1301 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1302 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1303 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1304 	},
1305 	.calTarget_freqbin_Cck = {
1306 		FREQ2FBIN(2412, 1),
1307 		FREQ2FBIN(2472, 1),
1308 	},
1309 	.calTarget_freqbin_2G = {
1310 		FREQ2FBIN(2412, 1),
1311 		FREQ2FBIN(2437, 1),
1312 		FREQ2FBIN(2472, 1)
1313 	},
1314 	.calTarget_freqbin_2GHT20 = {
1315 		FREQ2FBIN(2412, 1),
1316 		FREQ2FBIN(2437, 1),
1317 		FREQ2FBIN(2472, 1)
1318 	},
1319 	.calTarget_freqbin_2GHT40 = {
1320 		FREQ2FBIN(2412, 1),
1321 		FREQ2FBIN(2437, 1),
1322 		FREQ2FBIN(2472, 1)
1323 	},
1324 	.calTargetPowerCck = {
1325 		/* 1L-5L,5S,11L,11S */
1326 		{ {34, 34, 34, 34} },
1327 		{ {34, 34, 34, 34} },
1328 	},
1329 	.calTargetPower2G = {
1330 		/* 6-24,36,48,54 */
1331 		{ {34, 34, 32, 32} },
1332 		{ {34, 34, 32, 32} },
1333 		{ {34, 34, 32, 32} },
1334 	},
1335 	.calTargetPower2GHT20 = {
1336 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1337 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1338 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1339 	},
1340 	.calTargetPower2GHT40 = {
1341 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1342 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1343 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1344 	},
1345 	.ctlIndex_2G =  {
1346 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1347 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1348 	},
1349 	.ctl_freqbin_2G = {
1350 		{
1351 			FREQ2FBIN(2412, 1),
1352 			FREQ2FBIN(2417, 1),
1353 			FREQ2FBIN(2457, 1),
1354 			FREQ2FBIN(2462, 1)
1355 		},
1356 		{
1357 			FREQ2FBIN(2412, 1),
1358 			FREQ2FBIN(2417, 1),
1359 			FREQ2FBIN(2462, 1),
1360 			0xFF,
1361 		},
1362 
1363 		{
1364 			FREQ2FBIN(2412, 1),
1365 			FREQ2FBIN(2417, 1),
1366 			FREQ2FBIN(2462, 1),
1367 			0xFF,
1368 		},
1369 		{
1370 			FREQ2FBIN(2422, 1),
1371 			FREQ2FBIN(2427, 1),
1372 			FREQ2FBIN(2447, 1),
1373 			FREQ2FBIN(2452, 1)
1374 		},
1375 
1376 		{
1377 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1378 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1379 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1380 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1381 		},
1382 
1383 		{
1384 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1385 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1386 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1387 			0,
1388 		},
1389 
1390 		{
1391 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1392 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1393 			FREQ2FBIN(2472, 1),
1394 			0,
1395 		},
1396 
1397 		{
1398 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1399 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1400 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1401 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1402 		},
1403 
1404 		{
1405 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1406 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1407 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1408 		},
1409 
1410 		{
1411 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1412 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1413 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1414 			0
1415 		},
1416 
1417 		{
1418 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1419 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1420 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1421 			0
1422 		},
1423 
1424 		{
1425 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1426 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1427 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1428 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1429 		}
1430 	},
1431 	.ctlPowerData_2G = {
1432 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1433 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1434 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1435 
1436 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1437 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1438 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1439 
1440 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1441 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1442 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1443 
1444 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1445 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1446 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1447 	},
1448 	.modalHeader5G = {
1449 		/* 4 idle,t1,t2,b (4 bits per setting) */
1450 		.antCtrlCommon = LE32(0x220),
1451 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1452 		.antCtrlCommon2 = LE32(0x44444),
1453 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1454 		.antCtrlChain = {
1455 			LE16(0x150), LE16(0x150), LE16(0x150),
1456 		},
1457 		/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1458 		.xatten1DB = {0, 0, 0},
1459 
1460 		/*
1461 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1462 		 * for merlin (0xa20c/b20c 16:12
1463 		 */
1464 		.xatten1Margin = {0, 0, 0},
1465 		.tempSlope = 45,
1466 		.voltSlope = 0,
1467 		/* spurChans spur channels in usual fbin coding format */
1468 		.spurChans = {0, 0, 0, 0, 0},
1469 		/* noiseFloorThreshCh Check if the register is per chain */
1470 		.noiseFloorThreshCh = {-1, 0, 0},
1471 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1472 		.quick_drop = 0,
1473 		.xpaBiasLvl = 0,
1474 		.txFrameToDataStart = 0x0e,
1475 		.txFrameToPaOn = 0x0e,
1476 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1477 		.antennaGain = 0,
1478 		.switchSettling = 0x2d,
1479 		.adcDesiredSize = -30,
1480 		.txEndToXpaOff = 0,
1481 		.txEndToRxOn = 0x2,
1482 		.txFrameToXpaOn = 0xe,
1483 		.thresh62 = 28,
1484 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
1485 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
1486 		.futureModal = {
1487 			0, 0, 0, 0, 0, 0, 0, 0,
1488 		},
1489 	},
1490 	.base_ext2 = {
1491 		.tempSlopeLow = 40,
1492 		.tempSlopeHigh = 50,
1493 		.xatten1DBLow = {0, 0, 0},
1494 		.xatten1MarginLow = {0, 0, 0},
1495 		.xatten1DBHigh = {0, 0, 0},
1496 		.xatten1MarginHigh = {0, 0, 0}
1497 	},
1498 	.calFreqPier5G = {
1499 		FREQ2FBIN(5180, 0),
1500 		FREQ2FBIN(5220, 0),
1501 		FREQ2FBIN(5320, 0),
1502 		FREQ2FBIN(5400, 0),
1503 		FREQ2FBIN(5500, 0),
1504 		FREQ2FBIN(5600, 0),
1505 		FREQ2FBIN(5700, 0),
1506 		FREQ2FBIN(5785, 0)
1507 	},
1508 	.calPierData5G = {
1509 		{
1510 			{0, 0, 0, 0, 0},
1511 			{0, 0, 0, 0, 0},
1512 			{0, 0, 0, 0, 0},
1513 			{0, 0, 0, 0, 0},
1514 			{0, 0, 0, 0, 0},
1515 			{0, 0, 0, 0, 0},
1516 			{0, 0, 0, 0, 0},
1517 			{0, 0, 0, 0, 0},
1518 		},
1519 		{
1520 			{0, 0, 0, 0, 0},
1521 			{0, 0, 0, 0, 0},
1522 			{0, 0, 0, 0, 0},
1523 			{0, 0, 0, 0, 0},
1524 			{0, 0, 0, 0, 0},
1525 			{0, 0, 0, 0, 0},
1526 			{0, 0, 0, 0, 0},
1527 			{0, 0, 0, 0, 0},
1528 		},
1529 		{
1530 			{0, 0, 0, 0, 0},
1531 			{0, 0, 0, 0, 0},
1532 			{0, 0, 0, 0, 0},
1533 			{0, 0, 0, 0, 0},
1534 			{0, 0, 0, 0, 0},
1535 			{0, 0, 0, 0, 0},
1536 			{0, 0, 0, 0, 0},
1537 			{0, 0, 0, 0, 0},
1538 		},
1539 
1540 	},
1541 	.calTarget_freqbin_5G = {
1542 		FREQ2FBIN(5180, 0),
1543 		FREQ2FBIN(5240, 0),
1544 		FREQ2FBIN(5320, 0),
1545 		FREQ2FBIN(5400, 0),
1546 		FREQ2FBIN(5500, 0),
1547 		FREQ2FBIN(5600, 0),
1548 		FREQ2FBIN(5700, 0),
1549 		FREQ2FBIN(5825, 0)
1550 	},
1551 	.calTarget_freqbin_5GHT20 = {
1552 		FREQ2FBIN(5180, 0),
1553 		FREQ2FBIN(5240, 0),
1554 		FREQ2FBIN(5320, 0),
1555 		FREQ2FBIN(5400, 0),
1556 		FREQ2FBIN(5500, 0),
1557 		FREQ2FBIN(5700, 0),
1558 		FREQ2FBIN(5745, 0),
1559 		FREQ2FBIN(5825, 0)
1560 	},
1561 	.calTarget_freqbin_5GHT40 = {
1562 		FREQ2FBIN(5180, 0),
1563 		FREQ2FBIN(5240, 0),
1564 		FREQ2FBIN(5320, 0),
1565 		FREQ2FBIN(5400, 0),
1566 		FREQ2FBIN(5500, 0),
1567 		FREQ2FBIN(5700, 0),
1568 		FREQ2FBIN(5745, 0),
1569 		FREQ2FBIN(5825, 0)
1570 	},
1571 	.calTargetPower5G = {
1572 		/* 6-24,36,48,54 */
1573 		{ {30, 30, 28, 24} },
1574 		{ {30, 30, 28, 24} },
1575 		{ {30, 30, 28, 24} },
1576 		{ {30, 30, 28, 24} },
1577 		{ {30, 30, 28, 24} },
1578 		{ {30, 30, 28, 24} },
1579 		{ {30, 30, 28, 24} },
1580 		{ {30, 30, 28, 24} },
1581 	},
1582 	.calTargetPower5GHT20 = {
1583 		/*
1584 		 * 0_8_16,1-3_9-11_17-19,
1585 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1586 		 */
1587 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1588 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1589 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1590 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1591 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1592 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1593 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1594 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1595 	},
1596 	.calTargetPower5GHT40 =  {
1597 		/*
1598 		 * 0_8_16,1-3_9-11_17-19,
1599 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1600 		 */
1601 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1602 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1603 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1604 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1605 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1606 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1607 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1608 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1609 	},
1610 	.ctlIndex_5G =  {
1611 		0x10, 0x16, 0x18, 0x40, 0x46,
1612 		0x48, 0x30, 0x36, 0x38
1613 	},
1614 	.ctl_freqbin_5G =  {
1615 		{
1616 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1617 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1618 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1619 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1620 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1621 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1622 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1623 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1624 		},
1625 		{
1626 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1627 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1628 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1629 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1630 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1631 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1632 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1633 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1634 		},
1635 
1636 		{
1637 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1638 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1639 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1640 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1641 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1642 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1643 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1644 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1645 		},
1646 
1647 		{
1648 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1649 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1650 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1651 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1652 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1653 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1654 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1655 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1656 		},
1657 
1658 		{
1659 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1660 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1661 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1662 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1663 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1664 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1665 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1666 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1667 		},
1668 
1669 		{
1670 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1671 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1672 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1673 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1674 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1675 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1676 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1677 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1678 		},
1679 
1680 		{
1681 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1682 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1683 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1684 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1685 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1686 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1687 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1688 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1689 		},
1690 
1691 		{
1692 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1693 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1694 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1695 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1696 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1697 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1698 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1699 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1700 		},
1701 
1702 		{
1703 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1704 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1705 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1706 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1707 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1708 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1709 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1710 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1711 		}
1712 	},
1713 	.ctlPowerData_5G = {
1714 		{
1715 			{
1716 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1717 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1718 			}
1719 		},
1720 		{
1721 			{
1722 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1723 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1724 			}
1725 		},
1726 		{
1727 			{
1728 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1729 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1730 			}
1731 		},
1732 		{
1733 			{
1734 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1735 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1736 			}
1737 		},
1738 		{
1739 			{
1740 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1741 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1742 			}
1743 		},
1744 		{
1745 			{
1746 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1747 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1748 			}
1749 		},
1750 		{
1751 			{
1752 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1753 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1754 			}
1755 		},
1756 		{
1757 			{
1758 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1759 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1760 			}
1761 		},
1762 		{
1763 			{
1764 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1765 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1766 			}
1767 		},
1768 	}
1769 };
1770 
1771 
1772 static const struct ar9300_eeprom ar9300_x112 = {
1773 	.eepromVersion = 2,
1774 	.templateVersion = 5,
1775 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1776 	.custData = {"x112-041-f0000"},
1777 	.baseEepHeader = {
1778 		.regDmn = { LE16(0), LE16(0x1f) },
1779 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1780 		.opCapFlags = {
1781 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1782 			.eepMisc = 0,
1783 		},
1784 		.rfSilent = 0,
1785 		.blueToothOptions = 0,
1786 		.deviceCap = 0,
1787 		.deviceType = 5, /* takes lower byte in eeprom location */
1788 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1789 		.params_for_tuning_caps = {0, 0},
1790 		.featureEnable = 0x0d,
1791 		/*
1792 		 * bit0 - enable tx temp comp - disabled
1793 		 * bit1 - enable tx volt comp - disabled
1794 		 * bit2 - enable fastclock - enabled
1795 		 * bit3 - enable doubling - enabled
1796 		 * bit4 - enable internal regulator - disabled
1797 		 * bit5 - enable pa predistortion - disabled
1798 		 */
1799 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1800 		.eepromWriteEnableGpio = 6,
1801 		.wlanDisableGpio = 0,
1802 		.wlanLedGpio = 8,
1803 		.rxBandSelectGpio = 0xff,
1804 		.txrxgain = 0x0,
1805 		.swreg = 0,
1806 	},
1807 	.modalHeader2G = {
1808 		/* ar9300_modal_eep_header  2g */
1809 		/* 4 idle,t1,t2,b(4 bits per setting) */
1810 		.antCtrlCommon = LE32(0x110),
1811 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1812 		.antCtrlCommon2 = LE32(0x22222),
1813 
1814 		/*
1815 		 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1816 		 * rx1, rx12, b (2 bits each)
1817 		 */
1818 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1819 
1820 		/*
1821 		 * xatten1DB[AR9300_max_chains];  3 xatten1_db
1822 		 * for ar9280 (0xa20c/b20c 5:0)
1823 		 */
1824 		.xatten1DB = {0x1b, 0x1b, 0x1b},
1825 
1826 		/*
1827 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1828 		 * for ar9280 (0xa20c/b20c 16:12
1829 		 */
1830 		.xatten1Margin = {0x15, 0x15, 0x15},
1831 		.tempSlope = 50,
1832 		.voltSlope = 0,
1833 
1834 		/*
1835 		 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1836 		 * channels in usual fbin coding format
1837 		 */
1838 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1839 
1840 		/*
1841 		 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1842 		 * if the register is per chain
1843 		 */
1844 		.noiseFloorThreshCh = {-1, 0, 0},
1845 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1846 		.quick_drop = 0,
1847 		.xpaBiasLvl = 0,
1848 		.txFrameToDataStart = 0x0e,
1849 		.txFrameToPaOn = 0x0e,
1850 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1851 		.antennaGain = 0,
1852 		.switchSettling = 0x2c,
1853 		.adcDesiredSize = -30,
1854 		.txEndToXpaOff = 0,
1855 		.txEndToRxOn = 0x2,
1856 		.txFrameToXpaOn = 0xe,
1857 		.thresh62 = 28,
1858 		.papdRateMaskHt20 = LE32(0x0c80c080),
1859 		.papdRateMaskHt40 = LE32(0x0080c080),
1860 		.futureModal = {
1861 			0, 0, 0, 0, 0, 0, 0, 0,
1862 		},
1863 	},
1864 	.base_ext1 = {
1865 		.ant_div_control = 0,
1866 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1867 	},
1868 	.calFreqPier2G = {
1869 		FREQ2FBIN(2412, 1),
1870 		FREQ2FBIN(2437, 1),
1871 		FREQ2FBIN(2472, 1),
1872 	},
1873 	/* ar9300_cal_data_per_freq_op_loop 2g */
1874 	.calPierData2G = {
1875 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1876 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1877 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1878 	},
1879 	.calTarget_freqbin_Cck = {
1880 		FREQ2FBIN(2412, 1),
1881 		FREQ2FBIN(2472, 1),
1882 	},
1883 	.calTarget_freqbin_2G = {
1884 		FREQ2FBIN(2412, 1),
1885 		FREQ2FBIN(2437, 1),
1886 		FREQ2FBIN(2472, 1)
1887 	},
1888 	.calTarget_freqbin_2GHT20 = {
1889 		FREQ2FBIN(2412, 1),
1890 		FREQ2FBIN(2437, 1),
1891 		FREQ2FBIN(2472, 1)
1892 	},
1893 	.calTarget_freqbin_2GHT40 = {
1894 		FREQ2FBIN(2412, 1),
1895 		FREQ2FBIN(2437, 1),
1896 		FREQ2FBIN(2472, 1)
1897 	},
1898 	.calTargetPowerCck = {
1899 		/* 1L-5L,5S,11L,11s */
1900 		{ {38, 38, 38, 38} },
1901 		{ {38, 38, 38, 38} },
1902 	},
1903 	.calTargetPower2G = {
1904 		/* 6-24,36,48,54 */
1905 		{ {38, 38, 36, 34} },
1906 		{ {38, 38, 36, 34} },
1907 		{ {38, 38, 34, 32} },
1908 	},
1909 	.calTargetPower2GHT20 = {
1910 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1911 		{ {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1912 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1913 	},
1914 	.calTargetPower2GHT40 = {
1915 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1916 		{ {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1917 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1918 	},
1919 	.ctlIndex_2G =  {
1920 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1921 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1922 	},
1923 	.ctl_freqbin_2G = {
1924 		{
1925 			FREQ2FBIN(2412, 1),
1926 			FREQ2FBIN(2417, 1),
1927 			FREQ2FBIN(2457, 1),
1928 			FREQ2FBIN(2462, 1)
1929 		},
1930 		{
1931 			FREQ2FBIN(2412, 1),
1932 			FREQ2FBIN(2417, 1),
1933 			FREQ2FBIN(2462, 1),
1934 			0xFF,
1935 		},
1936 
1937 		{
1938 			FREQ2FBIN(2412, 1),
1939 			FREQ2FBIN(2417, 1),
1940 			FREQ2FBIN(2462, 1),
1941 			0xFF,
1942 		},
1943 		{
1944 			FREQ2FBIN(2422, 1),
1945 			FREQ2FBIN(2427, 1),
1946 			FREQ2FBIN(2447, 1),
1947 			FREQ2FBIN(2452, 1)
1948 		},
1949 
1950 		{
1951 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1952 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1953 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1954 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1955 		},
1956 
1957 		{
1958 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1959 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1960 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1961 			0,
1962 		},
1963 
1964 		{
1965 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1966 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1967 			FREQ2FBIN(2472, 1),
1968 			0,
1969 		},
1970 
1971 		{
1972 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1973 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1974 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1975 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1976 		},
1977 
1978 		{
1979 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1980 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1981 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1982 		},
1983 
1984 		{
1985 			/* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1986 			/* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1987 			/* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1988 			0
1989 		},
1990 
1991 		{
1992 			/* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1993 			/* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1994 			/* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1995 			0
1996 		},
1997 
1998 		{
1999 			/* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2000 			/* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2001 			/* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2002 			/* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2003 		}
2004 	},
2005 	.ctlPowerData_2G = {
2006 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2007 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2008 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2009 
2010 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2011 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2012 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2013 
2014 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2015 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2016 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2017 
2018 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2019 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2020 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2021 	},
2022 	.modalHeader5G = {
2023 		/* 4 idle,t1,t2,b (4 bits per setting) */
2024 		.antCtrlCommon = LE32(0x110),
2025 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2026 		.antCtrlCommon2 = LE32(0x22222),
2027 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2028 		.antCtrlChain = {
2029 			LE16(0x0), LE16(0x0), LE16(0x0),
2030 		},
2031 		/* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2032 		.xatten1DB = {0x13, 0x19, 0x17},
2033 
2034 		/*
2035 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2036 		 * for merlin (0xa20c/b20c 16:12
2037 		 */
2038 		.xatten1Margin = {0x19, 0x19, 0x19},
2039 		.tempSlope = 70,
2040 		.voltSlope = 15,
2041 		/* spurChans spur channels in usual fbin coding format */
2042 		.spurChans = {0, 0, 0, 0, 0},
2043 		/* noiseFloorThreshch check if the register is per chain */
2044 		.noiseFloorThreshCh = {-1, 0, 0},
2045 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2046 		.quick_drop = 0,
2047 		.xpaBiasLvl = 0,
2048 		.txFrameToDataStart = 0x0e,
2049 		.txFrameToPaOn = 0x0e,
2050 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2051 		.antennaGain = 0,
2052 		.switchSettling = 0x2d,
2053 		.adcDesiredSize = -30,
2054 		.txEndToXpaOff = 0,
2055 		.txEndToRxOn = 0x2,
2056 		.txFrameToXpaOn = 0xe,
2057 		.thresh62 = 28,
2058 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2059 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2060 		.futureModal = {
2061 			0, 0, 0, 0, 0, 0, 0, 0,
2062 		},
2063 	},
2064 	.base_ext2 = {
2065 		.tempSlopeLow = 72,
2066 		.tempSlopeHigh = 105,
2067 		.xatten1DBLow = {0x10, 0x14, 0x10},
2068 		.xatten1MarginLow = {0x19, 0x19 , 0x19},
2069 		.xatten1DBHigh = {0x1d, 0x20, 0x24},
2070 		.xatten1MarginHigh = {0x10, 0x10, 0x10}
2071 	},
2072 	.calFreqPier5G = {
2073 		FREQ2FBIN(5180, 0),
2074 		FREQ2FBIN(5220, 0),
2075 		FREQ2FBIN(5320, 0),
2076 		FREQ2FBIN(5400, 0),
2077 		FREQ2FBIN(5500, 0),
2078 		FREQ2FBIN(5600, 0),
2079 		FREQ2FBIN(5700, 0),
2080 		FREQ2FBIN(5785, 0)
2081 	},
2082 	.calPierData5G = {
2083 		{
2084 			{0, 0, 0, 0, 0},
2085 			{0, 0, 0, 0, 0},
2086 			{0, 0, 0, 0, 0},
2087 			{0, 0, 0, 0, 0},
2088 			{0, 0, 0, 0, 0},
2089 			{0, 0, 0, 0, 0},
2090 			{0, 0, 0, 0, 0},
2091 			{0, 0, 0, 0, 0},
2092 		},
2093 		{
2094 			{0, 0, 0, 0, 0},
2095 			{0, 0, 0, 0, 0},
2096 			{0, 0, 0, 0, 0},
2097 			{0, 0, 0, 0, 0},
2098 			{0, 0, 0, 0, 0},
2099 			{0, 0, 0, 0, 0},
2100 			{0, 0, 0, 0, 0},
2101 			{0, 0, 0, 0, 0},
2102 		},
2103 		{
2104 			{0, 0, 0, 0, 0},
2105 			{0, 0, 0, 0, 0},
2106 			{0, 0, 0, 0, 0},
2107 			{0, 0, 0, 0, 0},
2108 			{0, 0, 0, 0, 0},
2109 			{0, 0, 0, 0, 0},
2110 			{0, 0, 0, 0, 0},
2111 			{0, 0, 0, 0, 0},
2112 		},
2113 
2114 	},
2115 	.calTarget_freqbin_5G = {
2116 		FREQ2FBIN(5180, 0),
2117 		FREQ2FBIN(5220, 0),
2118 		FREQ2FBIN(5320, 0),
2119 		FREQ2FBIN(5400, 0),
2120 		FREQ2FBIN(5500, 0),
2121 		FREQ2FBIN(5600, 0),
2122 		FREQ2FBIN(5725, 0),
2123 		FREQ2FBIN(5825, 0)
2124 	},
2125 	.calTarget_freqbin_5GHT20 = {
2126 		FREQ2FBIN(5180, 0),
2127 		FREQ2FBIN(5220, 0),
2128 		FREQ2FBIN(5320, 0),
2129 		FREQ2FBIN(5400, 0),
2130 		FREQ2FBIN(5500, 0),
2131 		FREQ2FBIN(5600, 0),
2132 		FREQ2FBIN(5725, 0),
2133 		FREQ2FBIN(5825, 0)
2134 	},
2135 	.calTarget_freqbin_5GHT40 = {
2136 		FREQ2FBIN(5180, 0),
2137 		FREQ2FBIN(5220, 0),
2138 		FREQ2FBIN(5320, 0),
2139 		FREQ2FBIN(5400, 0),
2140 		FREQ2FBIN(5500, 0),
2141 		FREQ2FBIN(5600, 0),
2142 		FREQ2FBIN(5725, 0),
2143 		FREQ2FBIN(5825, 0)
2144 	},
2145 	.calTargetPower5G = {
2146 		/* 6-24,36,48,54 */
2147 		{ {32, 32, 28, 26} },
2148 		{ {32, 32, 28, 26} },
2149 		{ {32, 32, 28, 26} },
2150 		{ {32, 32, 26, 24} },
2151 		{ {32, 32, 26, 24} },
2152 		{ {32, 32, 24, 22} },
2153 		{ {30, 30, 24, 22} },
2154 		{ {30, 30, 24, 22} },
2155 	},
2156 	.calTargetPower5GHT20 = {
2157 		/*
2158 		 * 0_8_16,1-3_9-11_17-19,
2159 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2160 		 */
2161 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2162 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2163 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2164 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2165 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2166 		{ {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2167 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2168 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2169 	},
2170 	.calTargetPower5GHT40 =  {
2171 		/*
2172 		 * 0_8_16,1-3_9-11_17-19,
2173 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2174 		 */
2175 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2176 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2177 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2178 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2179 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2180 		{ {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2181 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2182 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2183 	},
2184 	.ctlIndex_5G =  {
2185 		0x10, 0x16, 0x18, 0x40, 0x46,
2186 		0x48, 0x30, 0x36, 0x38
2187 	},
2188 	.ctl_freqbin_5G =  {
2189 		{
2190 			/* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2191 			/* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2192 			/* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2193 			/* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2194 			/* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2195 			/* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2196 			/* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2197 			/* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2198 		},
2199 		{
2200 			/* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2201 			/* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2202 			/* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2203 			/* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2204 			/* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2205 			/* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2206 			/* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2207 			/* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2208 		},
2209 
2210 		{
2211 			/* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2212 			/* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2213 			/* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2214 			/* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2215 			/* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2216 			/* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2217 			/* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2218 			/* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2219 		},
2220 
2221 		{
2222 			/* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2223 			/* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2224 			/* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2225 			/* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2226 			/* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2227 			/* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2228 			/* Data[3].ctledges[6].bchannel */ 0xFF,
2229 			/* Data[3].ctledges[7].bchannel */ 0xFF,
2230 		},
2231 
2232 		{
2233 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2234 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2235 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2236 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2237 			/* Data[4].ctledges[4].bchannel */ 0xFF,
2238 			/* Data[4].ctledges[5].bchannel */ 0xFF,
2239 			/* Data[4].ctledges[6].bchannel */ 0xFF,
2240 			/* Data[4].ctledges[7].bchannel */ 0xFF,
2241 		},
2242 
2243 		{
2244 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2245 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2246 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2247 			/* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2248 			/* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2249 			/* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2250 			/* Data[5].ctledges[6].bchannel */ 0xFF,
2251 			/* Data[5].ctledges[7].bchannel */ 0xFF
2252 		},
2253 
2254 		{
2255 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2256 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2257 			/* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2258 			/* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2259 			/* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2260 			/* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2261 			/* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2262 			/* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2263 		},
2264 
2265 		{
2266 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2267 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2268 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2269 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2270 			/* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2271 			/* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2272 			/* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2273 			/* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2274 		},
2275 
2276 		{
2277 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2278 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2279 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2280 			/* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2281 			/* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2282 			/* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2283 			/* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2284 			/* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2285 		}
2286 	},
2287 	.ctlPowerData_5G = {
2288 		{
2289 			{
2290 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2291 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2292 			}
2293 		},
2294 		{
2295 			{
2296 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2297 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2298 			}
2299 		},
2300 		{
2301 			{
2302 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2303 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2304 			}
2305 		},
2306 		{
2307 			{
2308 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2309 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2310 			}
2311 		},
2312 		{
2313 			{
2314 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2315 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2316 			}
2317 		},
2318 		{
2319 			{
2320 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2321 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2322 			}
2323 		},
2324 		{
2325 			{
2326 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2327 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2328 			}
2329 		},
2330 		{
2331 			{
2332 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2333 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2334 			}
2335 		},
2336 		{
2337 			{
2338 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2339 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2340 			}
2341 		},
2342 	}
2343 };
2344 
2345 static const struct ar9300_eeprom ar9300_h116 = {
2346 	.eepromVersion = 2,
2347 	.templateVersion = 4,
2348 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2349 	.custData = {"h116-041-f0000"},
2350 	.baseEepHeader = {
2351 		.regDmn = { LE16(0), LE16(0x1f) },
2352 		.txrxMask =  0x33, /* 4 bits tx and 4 bits rx */
2353 		.opCapFlags = {
2354 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2355 			.eepMisc = 0,
2356 		},
2357 		.rfSilent = 0,
2358 		.blueToothOptions = 0,
2359 		.deviceCap = 0,
2360 		.deviceType = 5, /* takes lower byte in eeprom location */
2361 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2362 		.params_for_tuning_caps = {0, 0},
2363 		.featureEnable = 0x0d,
2364 		 /*
2365 		  * bit0 - enable tx temp comp - disabled
2366 		  * bit1 - enable tx volt comp - disabled
2367 		  * bit2 - enable fastClock - enabled
2368 		  * bit3 - enable doubling - enabled
2369 		  * bit4 - enable internal regulator - disabled
2370 		  * bit5 - enable pa predistortion - disabled
2371 		  */
2372 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
2373 		.eepromWriteEnableGpio = 6,
2374 		.wlanDisableGpio = 0,
2375 		.wlanLedGpio = 8,
2376 		.rxBandSelectGpio = 0xff,
2377 		.txrxgain = 0x10,
2378 		.swreg = 0,
2379 	 },
2380 	.modalHeader2G = {
2381 	/* ar9300_modal_eep_header  2g */
2382 		/* 4 idle,t1,t2,b(4 bits per setting) */
2383 		.antCtrlCommon = LE32(0x110),
2384 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2385 		.antCtrlCommon2 = LE32(0x44444),
2386 
2387 		/*
2388 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2389 		 * rx1, rx12, b (2 bits each)
2390 		 */
2391 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2392 
2393 		/*
2394 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
2395 		 * for ar9280 (0xa20c/b20c 5:0)
2396 		 */
2397 		.xatten1DB = {0x1f, 0x1f, 0x1f},
2398 
2399 		/*
2400 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2401 		 * for ar9280 (0xa20c/b20c 16:12
2402 		 */
2403 		.xatten1Margin = {0x12, 0x12, 0x12},
2404 		.tempSlope = 25,
2405 		.voltSlope = 0,
2406 
2407 		/*
2408 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2409 		 * channels in usual fbin coding format
2410 		 */
2411 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2412 
2413 		/*
2414 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2415 		 * if the register is per chain
2416 		 */
2417 		.noiseFloorThreshCh = {-1, 0, 0},
2418 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2419 		.quick_drop = 0,
2420 		.xpaBiasLvl = 0,
2421 		.txFrameToDataStart = 0x0e,
2422 		.txFrameToPaOn = 0x0e,
2423 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2424 		.antennaGain = 0,
2425 		.switchSettling = 0x2c,
2426 		.adcDesiredSize = -30,
2427 		.txEndToXpaOff = 0,
2428 		.txEndToRxOn = 0x2,
2429 		.txFrameToXpaOn = 0xe,
2430 		.thresh62 = 28,
2431 		.papdRateMaskHt20 = LE32(0x0c80C080),
2432 		.papdRateMaskHt40 = LE32(0x0080C080),
2433 		.futureModal = {
2434 			0, 0, 0, 0, 0, 0, 0, 0,
2435 		},
2436 	 },
2437 	 .base_ext1 = {
2438 		.ant_div_control = 0,
2439 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
2440 	 },
2441 	.calFreqPier2G = {
2442 		FREQ2FBIN(2412, 1),
2443 		FREQ2FBIN(2437, 1),
2444 		FREQ2FBIN(2462, 1),
2445 	 },
2446 	/* ar9300_cal_data_per_freq_op_loop 2g */
2447 	.calPierData2G = {
2448 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2449 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2450 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2451 	 },
2452 	.calTarget_freqbin_Cck = {
2453 		FREQ2FBIN(2412, 1),
2454 		FREQ2FBIN(2472, 1),
2455 	 },
2456 	.calTarget_freqbin_2G = {
2457 		FREQ2FBIN(2412, 1),
2458 		FREQ2FBIN(2437, 1),
2459 		FREQ2FBIN(2472, 1)
2460 	 },
2461 	.calTarget_freqbin_2GHT20 = {
2462 		FREQ2FBIN(2412, 1),
2463 		FREQ2FBIN(2437, 1),
2464 		FREQ2FBIN(2472, 1)
2465 	 },
2466 	.calTarget_freqbin_2GHT40 = {
2467 		FREQ2FBIN(2412, 1),
2468 		FREQ2FBIN(2437, 1),
2469 		FREQ2FBIN(2472, 1)
2470 	 },
2471 	.calTargetPowerCck = {
2472 		 /* 1L-5L,5S,11L,11S */
2473 		 { {34, 34, 34, 34} },
2474 		 { {34, 34, 34, 34} },
2475 	},
2476 	.calTargetPower2G = {
2477 		 /* 6-24,36,48,54 */
2478 		 { {34, 34, 32, 32} },
2479 		 { {34, 34, 32, 32} },
2480 		 { {34, 34, 32, 32} },
2481 	},
2482 	.calTargetPower2GHT20 = {
2483 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2484 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2485 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2486 	},
2487 	.calTargetPower2GHT40 = {
2488 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2489 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2490 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2491 	},
2492 	.ctlIndex_2G =  {
2493 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2494 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2495 	},
2496 	.ctl_freqbin_2G = {
2497 		{
2498 			FREQ2FBIN(2412, 1),
2499 			FREQ2FBIN(2417, 1),
2500 			FREQ2FBIN(2457, 1),
2501 			FREQ2FBIN(2462, 1)
2502 		},
2503 		{
2504 			FREQ2FBIN(2412, 1),
2505 			FREQ2FBIN(2417, 1),
2506 			FREQ2FBIN(2462, 1),
2507 			0xFF,
2508 		},
2509 
2510 		{
2511 			FREQ2FBIN(2412, 1),
2512 			FREQ2FBIN(2417, 1),
2513 			FREQ2FBIN(2462, 1),
2514 			0xFF,
2515 		},
2516 		{
2517 			FREQ2FBIN(2422, 1),
2518 			FREQ2FBIN(2427, 1),
2519 			FREQ2FBIN(2447, 1),
2520 			FREQ2FBIN(2452, 1)
2521 		},
2522 
2523 		{
2524 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2525 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2526 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2527 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2528 		},
2529 
2530 		{
2531 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2532 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2533 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2534 			0,
2535 		},
2536 
2537 		{
2538 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2539 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2540 			FREQ2FBIN(2472, 1),
2541 			0,
2542 		},
2543 
2544 		{
2545 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2546 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2547 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2548 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2549 		},
2550 
2551 		{
2552 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2553 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2554 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2555 		},
2556 
2557 		{
2558 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2559 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2560 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2561 			0
2562 		},
2563 
2564 		{
2565 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2566 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2567 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2568 			0
2569 		},
2570 
2571 		{
2572 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2573 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2574 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2575 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2576 		}
2577 	 },
2578 	.ctlPowerData_2G = {
2579 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2580 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2581 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2582 
2583 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2584 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2585 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2586 
2587 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2588 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2589 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2590 
2591 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2592 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2593 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2594 	 },
2595 	.modalHeader5G = {
2596 		/* 4 idle,t1,t2,b (4 bits per setting) */
2597 		.antCtrlCommon = LE32(0x220),
2598 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2599 		.antCtrlCommon2 = LE32(0x44444),
2600 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2601 		.antCtrlChain = {
2602 			LE16(0x150), LE16(0x150), LE16(0x150),
2603 		},
2604 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2605 		.xatten1DB = {0x19, 0x19, 0x19},
2606 
2607 		/*
2608 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2609 		 * for merlin (0xa20c/b20c 16:12
2610 		 */
2611 		.xatten1Margin = {0x14, 0x14, 0x14},
2612 		.tempSlope = 70,
2613 		.voltSlope = 0,
2614 		/* spurChans spur channels in usual fbin coding format */
2615 		.spurChans = {0, 0, 0, 0, 0},
2616 		/* noiseFloorThreshCh Check if the register is per chain */
2617 		.noiseFloorThreshCh = {-1, 0, 0},
2618 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2619 		.quick_drop = 0,
2620 		.xpaBiasLvl = 0,
2621 		.txFrameToDataStart = 0x0e,
2622 		.txFrameToPaOn = 0x0e,
2623 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2624 		.antennaGain = 0,
2625 		.switchSettling = 0x2d,
2626 		.adcDesiredSize = -30,
2627 		.txEndToXpaOff = 0,
2628 		.txEndToRxOn = 0x2,
2629 		.txFrameToXpaOn = 0xe,
2630 		.thresh62 = 28,
2631 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2632 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2633 		.futureModal = {
2634 			0, 0, 0, 0, 0, 0, 0, 0,
2635 		},
2636 	 },
2637 	.base_ext2 = {
2638 		.tempSlopeLow = 35,
2639 		.tempSlopeHigh = 50,
2640 		.xatten1DBLow = {0, 0, 0},
2641 		.xatten1MarginLow = {0, 0, 0},
2642 		.xatten1DBHigh = {0, 0, 0},
2643 		.xatten1MarginHigh = {0, 0, 0}
2644 	 },
2645 	.calFreqPier5G = {
2646 		FREQ2FBIN(5160, 0),
2647 		FREQ2FBIN(5220, 0),
2648 		FREQ2FBIN(5320, 0),
2649 		FREQ2FBIN(5400, 0),
2650 		FREQ2FBIN(5500, 0),
2651 		FREQ2FBIN(5600, 0),
2652 		FREQ2FBIN(5700, 0),
2653 		FREQ2FBIN(5785, 0)
2654 	},
2655 	.calPierData5G = {
2656 			{
2657 				{0, 0, 0, 0, 0},
2658 				{0, 0, 0, 0, 0},
2659 				{0, 0, 0, 0, 0},
2660 				{0, 0, 0, 0, 0},
2661 				{0, 0, 0, 0, 0},
2662 				{0, 0, 0, 0, 0},
2663 				{0, 0, 0, 0, 0},
2664 				{0, 0, 0, 0, 0},
2665 			},
2666 			{
2667 				{0, 0, 0, 0, 0},
2668 				{0, 0, 0, 0, 0},
2669 				{0, 0, 0, 0, 0},
2670 				{0, 0, 0, 0, 0},
2671 				{0, 0, 0, 0, 0},
2672 				{0, 0, 0, 0, 0},
2673 				{0, 0, 0, 0, 0},
2674 				{0, 0, 0, 0, 0},
2675 			},
2676 			{
2677 				{0, 0, 0, 0, 0},
2678 				{0, 0, 0, 0, 0},
2679 				{0, 0, 0, 0, 0},
2680 				{0, 0, 0, 0, 0},
2681 				{0, 0, 0, 0, 0},
2682 				{0, 0, 0, 0, 0},
2683 				{0, 0, 0, 0, 0},
2684 				{0, 0, 0, 0, 0},
2685 			},
2686 
2687 	},
2688 	.calTarget_freqbin_5G = {
2689 		FREQ2FBIN(5180, 0),
2690 		FREQ2FBIN(5240, 0),
2691 		FREQ2FBIN(5320, 0),
2692 		FREQ2FBIN(5400, 0),
2693 		FREQ2FBIN(5500, 0),
2694 		FREQ2FBIN(5600, 0),
2695 		FREQ2FBIN(5700, 0),
2696 		FREQ2FBIN(5825, 0)
2697 	},
2698 	.calTarget_freqbin_5GHT20 = {
2699 		FREQ2FBIN(5180, 0),
2700 		FREQ2FBIN(5240, 0),
2701 		FREQ2FBIN(5320, 0),
2702 		FREQ2FBIN(5400, 0),
2703 		FREQ2FBIN(5500, 0),
2704 		FREQ2FBIN(5700, 0),
2705 		FREQ2FBIN(5745, 0),
2706 		FREQ2FBIN(5825, 0)
2707 	},
2708 	.calTarget_freqbin_5GHT40 = {
2709 		FREQ2FBIN(5180, 0),
2710 		FREQ2FBIN(5240, 0),
2711 		FREQ2FBIN(5320, 0),
2712 		FREQ2FBIN(5400, 0),
2713 		FREQ2FBIN(5500, 0),
2714 		FREQ2FBIN(5700, 0),
2715 		FREQ2FBIN(5745, 0),
2716 		FREQ2FBIN(5825, 0)
2717 	 },
2718 	.calTargetPower5G = {
2719 		/* 6-24,36,48,54 */
2720 		{ {30, 30, 28, 24} },
2721 		{ {30, 30, 28, 24} },
2722 		{ {30, 30, 28, 24} },
2723 		{ {30, 30, 28, 24} },
2724 		{ {30, 30, 28, 24} },
2725 		{ {30, 30, 28, 24} },
2726 		{ {30, 30, 28, 24} },
2727 		{ {30, 30, 28, 24} },
2728 	 },
2729 	.calTargetPower5GHT20 = {
2730 		/*
2731 		 * 0_8_16,1-3_9-11_17-19,
2732 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2733 		 */
2734 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2735 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2736 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2737 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2738 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2739 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2740 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2741 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2742 	 },
2743 	.calTargetPower5GHT40 =  {
2744 		/*
2745 		 * 0_8_16,1-3_9-11_17-19,
2746 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2747 		 */
2748 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2749 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2750 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2751 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2752 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2753 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2754 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2755 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2756 	 },
2757 	.ctlIndex_5G =  {
2758 		0x10, 0x16, 0x18, 0x40, 0x46,
2759 		0x48, 0x30, 0x36, 0x38
2760 	},
2761 	.ctl_freqbin_5G =  {
2762 		{
2763 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2764 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2765 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2766 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2767 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2768 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2769 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2770 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2771 		},
2772 		{
2773 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2774 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2775 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2776 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2777 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2778 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2779 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2780 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2781 		},
2782 
2783 		{
2784 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2785 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2786 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2787 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2788 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2789 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2790 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2791 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2792 		},
2793 
2794 		{
2795 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2796 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2797 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2798 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2799 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2800 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2801 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
2802 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
2803 		},
2804 
2805 		{
2806 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2807 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2808 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2809 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2810 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
2811 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
2812 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
2813 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
2814 		},
2815 
2816 		{
2817 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2818 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2819 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2820 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2821 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2822 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2823 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
2824 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
2825 		},
2826 
2827 		{
2828 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2829 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2830 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2831 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2832 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2833 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2834 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2835 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2836 		},
2837 
2838 		{
2839 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2840 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2841 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2842 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2843 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2844 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2845 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2846 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2847 		},
2848 
2849 		{
2850 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2851 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2852 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2853 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2854 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2855 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2856 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2857 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2858 		}
2859 	 },
2860 	.ctlPowerData_5G = {
2861 		{
2862 			{
2863 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2864 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2865 			}
2866 		},
2867 		{
2868 			{
2869 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2870 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2871 			}
2872 		},
2873 		{
2874 			{
2875 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2876 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2877 			}
2878 		},
2879 		{
2880 			{
2881 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2882 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2883 			}
2884 		},
2885 		{
2886 			{
2887 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2888 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2889 			}
2890 		},
2891 		{
2892 			{
2893 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2894 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2895 			}
2896 		},
2897 		{
2898 			{
2899 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2900 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2901 			}
2902 		},
2903 		{
2904 			{
2905 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2906 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2907 			}
2908 		},
2909 		{
2910 			{
2911 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2912 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2913 			}
2914 		},
2915 	 }
2916 };
2917 
2918 
2919 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2920 	&ar9300_default,
2921 	&ar9300_x112,
2922 	&ar9300_h116,
2923 	&ar9300_h112,
2924 	&ar9300_x113,
2925 };
2926 
2927 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2928 {
2929 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2930 	int it;
2931 
2932 	for (it = 0; it < N_LOOP; it++)
2933 		if (ar9300_eep_templates[it]->templateVersion == id)
2934 			return ar9300_eep_templates[it];
2935 	return NULL;
2936 #undef N_LOOP
2937 }
2938 
2939 
2940 static u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
2941 {
2942 	if (fbin == AR5416_BCHAN_UNUSED)
2943 		return fbin;
2944 
2945 	return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2946 }
2947 
2948 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2949 {
2950 	return 0;
2951 }
2952 
2953 static int interpolate(int x, int xa, int xb, int ya, int yb)
2954 {
2955 	int bf, factor, plus;
2956 
2957 	bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2958 	factor = bf / 2;
2959 	plus = bf % 2;
2960 	return ya + factor + plus;
2961 }
2962 
2963 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
2964 				      enum eeprom_param param)
2965 {
2966 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2967 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
2968 
2969 	switch (param) {
2970 	case EEP_MAC_LSW:
2971 		return get_unaligned_be16(eep->macAddr);
2972 	case EEP_MAC_MID:
2973 		return get_unaligned_be16(eep->macAddr + 2);
2974 	case EEP_MAC_MSW:
2975 		return get_unaligned_be16(eep->macAddr + 4);
2976 	case EEP_REG_0:
2977 		return le16_to_cpu(pBase->regDmn[0]);
2978 	case EEP_OP_CAP:
2979 		return pBase->deviceCap;
2980 	case EEP_OP_MODE:
2981 		return pBase->opCapFlags.opFlags;
2982 	case EEP_RF_SILENT:
2983 		return pBase->rfSilent;
2984 	case EEP_TX_MASK:
2985 		return (pBase->txrxMask >> 4) & 0xf;
2986 	case EEP_RX_MASK:
2987 		return pBase->txrxMask & 0xf;
2988 	case EEP_DRIVE_STRENGTH:
2989 #define AR9300_EEP_BASE_DRIV_STRENGTH	0x1
2990 		return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH;
2991 	case EEP_INTERNAL_REGULATOR:
2992 		/* Bit 4 is internal regulator flag */
2993 		return (pBase->featureEnable & 0x10) >> 4;
2994 	case EEP_SWREG:
2995 		return le32_to_cpu(pBase->swreg);
2996 	case EEP_PAPRD:
2997 		return !!(pBase->featureEnable & BIT(5));
2998 	case EEP_CHAIN_MASK_REDUCE:
2999 		return (pBase->miscConfiguration >> 0x3) & 0x1;
3000 	case EEP_ANT_DIV_CTL1:
3001 		return eep->base_ext1.ant_div_control;
3002 	case EEP_ANTENNA_GAIN_5G:
3003 		return eep->modalHeader5G.antennaGain;
3004 	case EEP_ANTENNA_GAIN_2G:
3005 		return eep->modalHeader2G.antennaGain;
3006 	case EEP_QUICK_DROP:
3007 		return pBase->miscConfiguration & BIT(1);
3008 	default:
3009 		return 0;
3010 	}
3011 }
3012 
3013 static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
3014 				    u8 *buffer)
3015 {
3016 	u16 val;
3017 
3018 	if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3019 		return false;
3020 
3021 	*buffer = (val >> (8 * (address % 2))) & 0xff;
3022 	return true;
3023 }
3024 
3025 static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
3026 				    u8 *buffer)
3027 {
3028 	u16 val;
3029 
3030 	if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3031 		return false;
3032 
3033 	buffer[0] = val >> 8;
3034 	buffer[1] = val & 0xff;
3035 
3036 	return true;
3037 }
3038 
3039 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3040 			       int count)
3041 {
3042 	struct ath_common *common = ath9k_hw_common(ah);
3043 	int i;
3044 
3045 	if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3046 		ath_dbg(common, EEPROM, "eeprom address not in range\n");
3047 		return false;
3048 	}
3049 
3050 	/*
3051 	 * Since we're reading the bytes in reverse order from a little-endian
3052 	 * word stream, an even address means we only use the lower half of
3053 	 * the 16-bit word at that address
3054 	 */
3055 	if (address % 2 == 0) {
3056 		if (!ar9300_eeprom_read_byte(common, address--, buffer++))
3057 			goto error;
3058 
3059 		count--;
3060 	}
3061 
3062 	for (i = 0; i < count / 2; i++) {
3063 		if (!ar9300_eeprom_read_word(common, address, buffer))
3064 			goto error;
3065 
3066 		address -= 2;
3067 		buffer += 2;
3068 	}
3069 
3070 	if (count % 2)
3071 		if (!ar9300_eeprom_read_byte(common, address, buffer))
3072 			goto error;
3073 
3074 	return true;
3075 
3076 error:
3077 	ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
3078 		address);
3079 	return false;
3080 }
3081 
3082 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3083 {
3084 	REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3085 
3086 	if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3087 			   AR9300_OTP_STATUS_VALID, 1000))
3088 		return false;
3089 
3090 	*data = REG_READ(ah, AR9300_OTP_READ_DATA);
3091 	return true;
3092 }
3093 
3094 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3095 			    int count)
3096 {
3097 	u32 data;
3098 	int i;
3099 
3100 	for (i = 0; i < count; i++) {
3101 		int offset = 8 * ((address - i) % 4);
3102 		if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3103 			return false;
3104 
3105 		buffer[i] = (data >> offset) & 0xff;
3106 	}
3107 
3108 	return true;
3109 }
3110 
3111 
3112 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3113 				   int *length, int *major, int *minor)
3114 {
3115 	unsigned long value[4];
3116 
3117 	value[0] = best[0];
3118 	value[1] = best[1];
3119 	value[2] = best[2];
3120 	value[3] = best[3];
3121 	*code = ((value[0] >> 5) & 0x0007);
3122 	*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3123 	*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3124 	*major = (value[2] & 0x000f);
3125 	*minor = (value[3] & 0x00ff);
3126 }
3127 
3128 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3129 {
3130 	int it, checksum = 0;
3131 
3132 	for (it = 0; it < dsize; it++) {
3133 		checksum += data[it];
3134 		checksum &= 0xffff;
3135 	}
3136 
3137 	return checksum;
3138 }
3139 
3140 static bool ar9300_uncompress_block(struct ath_hw *ah,
3141 				    u8 *mptr,
3142 				    int mdataSize,
3143 				    u8 *block,
3144 				    int size)
3145 {
3146 	int it;
3147 	int spot;
3148 	int offset;
3149 	int length;
3150 	struct ath_common *common = ath9k_hw_common(ah);
3151 
3152 	spot = 0;
3153 
3154 	for (it = 0; it < size; it += (length+2)) {
3155 		offset = block[it];
3156 		offset &= 0xff;
3157 		spot += offset;
3158 		length = block[it+1];
3159 		length &= 0xff;
3160 
3161 		if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3162 			ath_dbg(common, EEPROM,
3163 				"Restore at %d: spot=%d offset=%d length=%d\n",
3164 				it, spot, offset, length);
3165 			memcpy(&mptr[spot], &block[it+2], length);
3166 			spot += length;
3167 		} else if (length > 0) {
3168 			ath_dbg(common, EEPROM,
3169 				"Bad restore at %d: spot=%d offset=%d length=%d\n",
3170 				it, spot, offset, length);
3171 			return false;
3172 		}
3173 	}
3174 	return true;
3175 }
3176 
3177 static int ar9300_compress_decision(struct ath_hw *ah,
3178 				    int it,
3179 				    int code,
3180 				    int reference,
3181 				    u8 *mptr,
3182 				    u8 *word, int length, int mdata_size)
3183 {
3184 	struct ath_common *common = ath9k_hw_common(ah);
3185 	const struct ar9300_eeprom *eep = NULL;
3186 
3187 	switch (code) {
3188 	case _CompressNone:
3189 		if (length != mdata_size) {
3190 			ath_dbg(common, EEPROM,
3191 				"EEPROM structure size mismatch memory=%d eeprom=%d\n",
3192 				mdata_size, length);
3193 			return -1;
3194 		}
3195 		memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length);
3196 		ath_dbg(common, EEPROM,
3197 			"restored eeprom %d: uncompressed, length %d\n",
3198 			it, length);
3199 		break;
3200 	case _CompressBlock:
3201 		if (reference == 0) {
3202 		} else {
3203 			eep = ar9003_eeprom_struct_find_by_id(reference);
3204 			if (eep == NULL) {
3205 				ath_dbg(common, EEPROM,
3206 					"can't find reference eeprom struct %d\n",
3207 					reference);
3208 				return -1;
3209 			}
3210 			memcpy(mptr, eep, mdata_size);
3211 		}
3212 		ath_dbg(common, EEPROM,
3213 			"restore eeprom %d: block, reference %d, length %d\n",
3214 			it, reference, length);
3215 		ar9300_uncompress_block(ah, mptr, mdata_size,
3216 					(u8 *) (word + COMP_HDR_LEN), length);
3217 		break;
3218 	default:
3219 		ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
3220 		return -1;
3221 	}
3222 	return 0;
3223 }
3224 
3225 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3226 			       int count);
3227 
3228 static bool ar9300_check_header(void *data)
3229 {
3230 	u32 *word = data;
3231 	return !(*word == 0 || *word == ~0);
3232 }
3233 
3234 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3235 				       int base_addr)
3236 {
3237 	u8 header[4];
3238 
3239 	if (!read(ah, base_addr, header, 4))
3240 		return false;
3241 
3242 	return ar9300_check_header(header);
3243 }
3244 
3245 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3246 				       int mdata_size)
3247 {
3248 	struct ath_common *common = ath9k_hw_common(ah);
3249 	u16 *data = (u16 *) mptr;
3250 	int i;
3251 
3252 	for (i = 0; i < mdata_size / 2; i++, data++)
3253 		ath9k_hw_nvram_read(common, i, data);
3254 
3255 	return 0;
3256 }
3257 /*
3258  * Read the configuration data from the eeprom.
3259  * The data can be put in any specified memory buffer.
3260  *
3261  * Returns -1 on error.
3262  * Returns address of next memory location on success.
3263  */
3264 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3265 					  u8 *mptr, int mdata_size)
3266 {
3267 #define MDEFAULT 15
3268 #define MSTATE 100
3269 	int cptr;
3270 	u8 *word;
3271 	int code;
3272 	int reference, length, major, minor;
3273 	int osize;
3274 	int it;
3275 	u16 checksum, mchecksum;
3276 	struct ath_common *common = ath9k_hw_common(ah);
3277 	eeprom_read_op read;
3278 
3279 	if (ath9k_hw_use_flash(ah))
3280 		return ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3281 
3282 	word = kzalloc(2048, GFP_KERNEL);
3283 	if (!word)
3284 		return -ENOMEM;
3285 
3286 	memcpy(mptr, &ar9300_default, mdata_size);
3287 
3288 	read = ar9300_read_eeprom;
3289 	if (AR_SREV_9485(ah))
3290 		cptr = AR9300_BASE_ADDR_4K;
3291 	else if (AR_SREV_9330(ah))
3292 		cptr = AR9300_BASE_ADDR_512;
3293 	else
3294 		cptr = AR9300_BASE_ADDR;
3295 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3296 		cptr);
3297 	if (ar9300_check_eeprom_header(ah, read, cptr))
3298 		goto found;
3299 
3300 	cptr = AR9300_BASE_ADDR_512;
3301 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3302 		cptr);
3303 	if (ar9300_check_eeprom_header(ah, read, cptr))
3304 		goto found;
3305 
3306 	read = ar9300_read_otp;
3307 	cptr = AR9300_BASE_ADDR;
3308 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3309 	if (ar9300_check_eeprom_header(ah, read, cptr))
3310 		goto found;
3311 
3312 	cptr = AR9300_BASE_ADDR_512;
3313 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3314 	if (ar9300_check_eeprom_header(ah, read, cptr))
3315 		goto found;
3316 
3317 	goto fail;
3318 
3319 found:
3320 	ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
3321 
3322 	for (it = 0; it < MSTATE; it++) {
3323 		if (!read(ah, cptr, word, COMP_HDR_LEN))
3324 			goto fail;
3325 
3326 		if (!ar9300_check_header(word))
3327 			break;
3328 
3329 		ar9300_comp_hdr_unpack(word, &code, &reference,
3330 				       &length, &major, &minor);
3331 		ath_dbg(common, EEPROM,
3332 			"Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3333 			cptr, code, reference, length, major, minor);
3334 		if ((!AR_SREV_9485(ah) && length >= 1024) ||
3335 		    (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3336 			ath_dbg(common, EEPROM, "Skipping bad header\n");
3337 			cptr -= COMP_HDR_LEN;
3338 			continue;
3339 		}
3340 
3341 		osize = length;
3342 		read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3343 		checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3344 		mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3345 		ath_dbg(common, EEPROM, "checksum %x %x\n",
3346 			checksum, mchecksum);
3347 		if (checksum == mchecksum) {
3348 			ar9300_compress_decision(ah, it, code, reference, mptr,
3349 						 word, length, mdata_size);
3350 		} else {
3351 			ath_dbg(common, EEPROM,
3352 				"skipping block with bad checksum\n");
3353 		}
3354 		cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3355 	}
3356 
3357 	kfree(word);
3358 	return cptr;
3359 
3360 fail:
3361 	kfree(word);
3362 	return -1;
3363 }
3364 
3365 /*
3366  * Restore the configuration structure by reading the eeprom.
3367  * This function destroys any existing in-memory structure
3368  * content.
3369  */
3370 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3371 {
3372 	u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3373 
3374 	if (ar9300_eeprom_restore_internal(ah, mptr,
3375 			sizeof(struct ar9300_eeprom)) < 0)
3376 		return false;
3377 
3378 	return true;
3379 }
3380 
3381 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
3382 static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
3383 				    struct ar9300_modal_eep_header *modal_hdr)
3384 {
3385 	PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
3386 	PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
3387 	PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
3388 	PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
3389 	PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
3390 	PR_EEP("Ant. Gain", modal_hdr->antennaGain);
3391 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
3392 	PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
3393 	PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
3394 	PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
3395 	PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
3396 	PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
3397 	PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
3398 	PR_EEP("Temp Slope", modal_hdr->tempSlope);
3399 	PR_EEP("Volt Slope", modal_hdr->voltSlope);
3400 	PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
3401 	PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
3402 	PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
3403 	PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
3404 	PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
3405 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
3406 	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
3407 	PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3408 	PR_EEP("Quick Drop", modal_hdr->quick_drop);
3409 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
3410 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
3411 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
3412 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
3413 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
3414 	PR_EEP("txClip", modal_hdr->txClip);
3415 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
3416 
3417 	return len;
3418 }
3419 
3420 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3421 				       u8 *buf, u32 len, u32 size)
3422 {
3423 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3424 	struct ar9300_base_eep_hdr *pBase;
3425 
3426 	if (!dump_base_hdr) {
3427 		len += snprintf(buf + len, size - len,
3428 				"%20s :\n", "2GHz modal Header");
3429 		len += ar9003_dump_modal_eeprom(buf, len, size,
3430 						&eep->modalHeader2G);
3431 		len += snprintf(buf + len, size - len,
3432 				"%20s :\n", "5GHz modal Header");
3433 		len += ar9003_dump_modal_eeprom(buf, len, size,
3434 						&eep->modalHeader5G);
3435 		goto out;
3436 	}
3437 
3438 	pBase = &eep->baseEepHeader;
3439 
3440 	PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
3441 	PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
3442 	PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
3443 	PR_EEP("TX Mask", (pBase->txrxMask >> 4));
3444 	PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
3445 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
3446 				AR5416_OPFLAGS_11A));
3447 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
3448 				AR5416_OPFLAGS_11G));
3449 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
3450 					AR5416_OPFLAGS_N_2G_HT20));
3451 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
3452 					AR5416_OPFLAGS_N_2G_HT40));
3453 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
3454 					AR5416_OPFLAGS_N_5G_HT20));
3455 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
3456 					AR5416_OPFLAGS_N_5G_HT40));
3457 	PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc & 0x01));
3458 	PR_EEP("RF Silent", pBase->rfSilent);
3459 	PR_EEP("BT option", pBase->blueToothOptions);
3460 	PR_EEP("Device Cap", pBase->deviceCap);
3461 	PR_EEP("Device Type", pBase->deviceType);
3462 	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
3463 	PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
3464 	PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
3465 	PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
3466 	PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
3467 	PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
3468 	PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
3469 	PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
3470 	PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
3471 	PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3472 	PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
3473 	PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
3474 	PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
3475 	PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
3476 	PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
3477 	PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
3478 	PR_EEP("Tx Gain", pBase->txrxgain >> 4);
3479 	PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
3480 	PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
3481 
3482 	len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
3483 			ah->eeprom.ar9300_eep.macAddr);
3484 out:
3485 	if (len > size)
3486 		len = size;
3487 
3488 	return len;
3489 }
3490 #else
3491 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3492 				       u8 *buf, u32 len, u32 size)
3493 {
3494 	return 0;
3495 }
3496 #endif
3497 
3498 /* XXX: review hardware docs */
3499 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3500 {
3501 	return ah->eeprom.ar9300_eep.eepromVersion;
3502 }
3503 
3504 /* XXX: could be read from the eepromVersion, not sure yet */
3505 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3506 {
3507 	return 0;
3508 }
3509 
3510 static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz)
3511 {
3512 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3513 
3514 	if (is2ghz)
3515 		return eep->modalHeader2G.xpaBiasLvl;
3516 	else
3517 		return eep->modalHeader5G.xpaBiasLvl;
3518 }
3519 
3520 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3521 {
3522 	int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz);
3523 
3524 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3525 		REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3526 	else if (AR_SREV_9462(ah))
3527 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3528 	else {
3529 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3530 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3531 				AR_CH0_THERM_XPABIASLVL_MSB,
3532 				bias >> 2);
3533 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3534 				AR_CH0_THERM_XPASHORT2GND, 1);
3535 	}
3536 }
3537 
3538 static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is_2ghz)
3539 {
3540 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3541 	__le16 val;
3542 
3543 	if (is_2ghz)
3544 		val = eep->modalHeader2G.switchcomspdt;
3545 	else
3546 		val = eep->modalHeader5G.switchcomspdt;
3547 	return le16_to_cpu(val);
3548 }
3549 
3550 
3551 static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3552 {
3553 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3554 	__le32 val;
3555 
3556 	if (is2ghz)
3557 		val = eep->modalHeader2G.antCtrlCommon;
3558 	else
3559 		val = eep->modalHeader5G.antCtrlCommon;
3560 	return le32_to_cpu(val);
3561 }
3562 
3563 static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3564 {
3565 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3566 	__le32 val;
3567 
3568 	if (is2ghz)
3569 		val = eep->modalHeader2G.antCtrlCommon2;
3570 	else
3571 		val = eep->modalHeader5G.antCtrlCommon2;
3572 	return le32_to_cpu(val);
3573 }
3574 
3575 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah,
3576 					int chain,
3577 					bool is2ghz)
3578 {
3579 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3580 	__le16 val = 0;
3581 
3582 	if (chain >= 0 && chain < AR9300_MAX_CHAINS) {
3583 		if (is2ghz)
3584 			val = eep->modalHeader2G.antCtrlChain[chain];
3585 		else
3586 			val = eep->modalHeader5G.antCtrlChain[chain];
3587 	}
3588 
3589 	return le16_to_cpu(val);
3590 }
3591 
3592 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3593 {
3594 	int chain;
3595 	u32 regval;
3596 	u32 ant_div_ctl1;
3597 	static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3598 			AR_PHY_SWITCH_CHAIN_0,
3599 			AR_PHY_SWITCH_CHAIN_1,
3600 			AR_PHY_SWITCH_CHAIN_2,
3601 	};
3602 
3603 	u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3604 
3605 	if (AR_SREV_9462(ah)) {
3606 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3607 				AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3608 	} else
3609 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3610 			      AR_SWITCH_TABLE_COM_ALL, value);
3611 
3612 
3613 	/*
3614 	 *   AR9462 defines new switch table for BT/WLAN,
3615 	 *       here's new field name in XXX.ref for both 2G and 5G.
3616 	 *   Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3617 	 *   15:12   R/W     SWITCH_TABLE_COM_SPDT_WLAN_RX
3618 	 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3619 	 *
3620 	 *   11:8     R/W     SWITCH_TABLE_COM_SPDT_WLAN_TX
3621 	 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3622 	 *
3623 	 *   7:4 R/W  SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3624 	 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3625 	 */
3626 	if (AR_SREV_9462_20_OR_LATER(ah)) {
3627 		value = ar9003_switch_com_spdt_get(ah, is2ghz);
3628 		REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
3629 				AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3630 	}
3631 
3632 	value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3633 	REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3634 
3635 	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3636 		if ((ah->rxchainmask & BIT(chain)) ||
3637 		    (ah->txchainmask & BIT(chain))) {
3638 			value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3639 							     is2ghz);
3640 			REG_RMW_FIELD(ah, switch_chain_reg[chain],
3641 				      AR_SWITCH_TABLE_ALL, value);
3642 		}
3643 	}
3644 
3645 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3646 		value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3647 		/*
3648 		 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3649 		 * are the fields present
3650 		 */
3651 		regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3652 		regval &= (~AR_ANT_DIV_CTRL_ALL);
3653 		regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3654 		/* enable_lnadiv */
3655 		regval &= (~AR_PHY_9485_ANT_DIV_LNADIV);
3656 		regval |= ((value >> 6) & 0x1) <<
3657 				AR_PHY_9485_ANT_DIV_LNADIV_S;
3658 		REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3659 
3660 		/*enable fast_div */
3661 		regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3662 		regval &= (~AR_FAST_DIV_ENABLE);
3663 		regval |= ((value >> 7) & 0x1) <<
3664 				AR_FAST_DIV_ENABLE_S;
3665 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3666 		ant_div_ctl1 =
3667 			ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
3668 		/* check whether antenna diversity is enabled */
3669 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
3670 			regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3671 			/*
3672 			 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3673 			 * main_tb, alt_tb
3674 			 */
3675 			regval &= (~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
3676 					AR_PHY_9485_ANT_DIV_ALT_LNACONF |
3677 					AR_PHY_9485_ANT_DIV_ALT_GAINTB |
3678 					AR_PHY_9485_ANT_DIV_MAIN_GAINTB));
3679 			/* by default use LNA1 for the main antenna */
3680 			regval |= (AR_PHY_9485_ANT_DIV_LNA1 <<
3681 					AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S);
3682 			regval |= (AR_PHY_9485_ANT_DIV_LNA2 <<
3683 					AR_PHY_9485_ANT_DIV_ALT_LNACONF_S);
3684 			REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3685 		}
3686 
3687 
3688 	}
3689 
3690 }
3691 
3692 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3693 {
3694 	int drive_strength;
3695 	unsigned long reg;
3696 
3697 	drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH);
3698 
3699 	if (!drive_strength)
3700 		return;
3701 
3702 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3703 	reg &= ~0x00ffffc0;
3704 	reg |= 0x5 << 21;
3705 	reg |= 0x5 << 18;
3706 	reg |= 0x5 << 15;
3707 	reg |= 0x5 << 12;
3708 	reg |= 0x5 << 9;
3709 	reg |= 0x5 << 6;
3710 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3711 
3712 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3713 	reg &= ~0xffffffe0;
3714 	reg |= 0x5 << 29;
3715 	reg |= 0x5 << 26;
3716 	reg |= 0x5 << 23;
3717 	reg |= 0x5 << 20;
3718 	reg |= 0x5 << 17;
3719 	reg |= 0x5 << 14;
3720 	reg |= 0x5 << 11;
3721 	reg |= 0x5 << 8;
3722 	reg |= 0x5 << 5;
3723 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3724 
3725 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3726 	reg &= ~0xff800000;
3727 	reg |= 0x5 << 29;
3728 	reg |= 0x5 << 26;
3729 	reg |= 0x5 << 23;
3730 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3731 }
3732 
3733 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3734 				     struct ath9k_channel *chan)
3735 {
3736 	int f[3], t[3];
3737 	u16 value;
3738 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3739 
3740 	if (chain >= 0 && chain < 3) {
3741 		if (IS_CHAN_2GHZ(chan))
3742 			return eep->modalHeader2G.xatten1DB[chain];
3743 		else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3744 			t[0] = eep->base_ext2.xatten1DBLow[chain];
3745 			f[0] = 5180;
3746 			t[1] = eep->modalHeader5G.xatten1DB[chain];
3747 			f[1] = 5500;
3748 			t[2] = eep->base_ext2.xatten1DBHigh[chain];
3749 			f[2] = 5785;
3750 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3751 							    f, t, 3);
3752 			return value;
3753 		} else
3754 			return eep->modalHeader5G.xatten1DB[chain];
3755 	}
3756 
3757 	return 0;
3758 }
3759 
3760 
3761 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3762 					    struct ath9k_channel *chan)
3763 {
3764 	int f[3], t[3];
3765 	u16 value;
3766 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3767 
3768 	if (chain >= 0 && chain < 3) {
3769 		if (IS_CHAN_2GHZ(chan))
3770 			return eep->modalHeader2G.xatten1Margin[chain];
3771 		else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3772 			t[0] = eep->base_ext2.xatten1MarginLow[chain];
3773 			f[0] = 5180;
3774 			t[1] = eep->modalHeader5G.xatten1Margin[chain];
3775 			f[1] = 5500;
3776 			t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3777 			f[2] = 5785;
3778 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3779 							    f, t, 3);
3780 			return value;
3781 		} else
3782 			return eep->modalHeader5G.xatten1Margin[chain];
3783 	}
3784 
3785 	return 0;
3786 }
3787 
3788 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3789 {
3790 	int i;
3791 	u16 value;
3792 	unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3793 					  AR_PHY_EXT_ATTEN_CTL_1,
3794 					  AR_PHY_EXT_ATTEN_CTL_2,
3795 					 };
3796 
3797 	/* Test value. if 0 then attenuation is unused. Don't load anything. */
3798 	for (i = 0; i < 3; i++) {
3799 		if (ah->txchainmask & BIT(i)) {
3800 			value = ar9003_hw_atten_chain_get(ah, i, chan);
3801 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3802 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3803 
3804 			value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3805 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3806 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3807 				      value);
3808 		}
3809 	}
3810 }
3811 
3812 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3813 {
3814 	int timeout = 100;
3815 
3816 	while (pmu_set != REG_READ(ah, pmu_reg)) {
3817 		if (timeout-- == 0)
3818 			return false;
3819 		REG_WRITE(ah, pmu_reg, pmu_set);
3820 		udelay(10);
3821 	}
3822 
3823 	return true;
3824 }
3825 
3826 static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3827 {
3828 	int internal_regulator =
3829 		ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR);
3830 	u32 reg_val;
3831 
3832 	if (internal_regulator) {
3833 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3834 			int reg_pmu_set;
3835 
3836 			reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3837 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3838 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3839 				return;
3840 
3841 			if (AR_SREV_9330(ah)) {
3842 				if (ah->is_clk_25mhz) {
3843 					reg_pmu_set = (3 << 1) | (8 << 4) |
3844 						      (3 << 8) | (1 << 14) |
3845 						      (6 << 17) | (1 << 20) |
3846 						      (3 << 24);
3847 				} else {
3848 					reg_pmu_set = (4 << 1)  | (7 << 4) |
3849 						      (3 << 8)  | (1 << 14) |
3850 						      (6 << 17) | (1 << 20) |
3851 						      (3 << 24);
3852 				}
3853 			} else {
3854 				reg_pmu_set = (5 << 1) | (7 << 4) |
3855 					      (2 << 8) | (2 << 14) |
3856 					      (6 << 17) | (1 << 20) |
3857 					      (3 << 24) | (1 << 28);
3858 			}
3859 
3860 			REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3861 			if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3862 				return;
3863 
3864 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3865 					| (4 << 26);
3866 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3867 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3868 				return;
3869 
3870 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3871 					| (1 << 21);
3872 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3873 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3874 				return;
3875 		} else if (AR_SREV_9462(ah)) {
3876 			reg_val = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
3877 			REG_WRITE(ah, AR_PHY_PMU1, reg_val);
3878 		} else {
3879 			/* Internal regulator is ON. Write swreg register. */
3880 			reg_val = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
3881 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3882 				  REG_READ(ah, AR_RTC_REG_CONTROL1) &
3883 				  (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3884 			REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
3885 			/* Set REG_CONTROL1.SWREG_PROGRAM */
3886 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3887 				  REG_READ(ah,
3888 					   AR_RTC_REG_CONTROL1) |
3889 					   AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3890 		}
3891 	} else {
3892 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3893 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3894 			while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3895 						AR_PHY_PMU2_PGM))
3896 				udelay(10);
3897 
3898 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3899 			while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3900 						AR_PHY_PMU1_PWD))
3901 				udelay(10);
3902 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3903 			while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3904 						AR_PHY_PMU2_PGM))
3905 				udelay(10);
3906 		} else if (AR_SREV_9462(ah))
3907 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3908 		else {
3909 			reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
3910 				AR_RTC_FORCE_SWREG_PRD;
3911 			REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
3912 		}
3913 	}
3914 
3915 }
3916 
3917 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3918 {
3919 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3920 	u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3921 
3922 	if (eep->baseEepHeader.featureEnable & 0x40) {
3923 		tuning_caps_param &= 0x7f;
3924 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3925 			      tuning_caps_param);
3926 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3927 			      tuning_caps_param);
3928 	}
3929 }
3930 
3931 static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
3932 {
3933 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3934 	int quick_drop = ath9k_hw_ar9300_get_eeprom(ah, EEP_QUICK_DROP);
3935 	s32 t[3], f[3] = {5180, 5500, 5785};
3936 
3937 	if (!quick_drop)
3938 		return;
3939 
3940 	if (freq < 4000)
3941 		quick_drop = eep->modalHeader2G.quick_drop;
3942 	else {
3943 		t[0] = eep->base_ext1.quick_drop_low;
3944 		t[1] = eep->modalHeader5G.quick_drop;
3945 		t[2] = eep->base_ext1.quick_drop_high;
3946 		quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
3947 	}
3948 	REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
3949 }
3950 
3951 static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, u16 freq)
3952 {
3953 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3954 	u32 value;
3955 
3956 	value = (freq < 4000) ? eep->modalHeader2G.txEndToXpaOff :
3957 				eep->modalHeader5G.txEndToXpaOff;
3958 
3959 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3960 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
3961 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3962 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
3963 }
3964 
3965 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
3966 					     struct ath9k_channel *chan)
3967 {
3968 	ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
3969 	ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
3970 	ar9003_hw_drive_strength_apply(ah);
3971 	ar9003_hw_atten_apply(ah, chan);
3972 	ar9003_hw_quick_drop_apply(ah, chan->channel);
3973 	if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah))
3974 		ar9003_hw_internal_regulator_apply(ah);
3975 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3976 		ar9003_hw_apply_tuning_caps(ah);
3977 	ar9003_hw_txend_to_xpa_off_apply(ah, chan->channel);
3978 }
3979 
3980 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
3981 				      struct ath9k_channel *chan)
3982 {
3983 }
3984 
3985 /*
3986  * Returns the interpolated y value corresponding to the specified x value
3987  * from the np ordered pairs of data (px,py).
3988  * The pairs do not have to be in any order.
3989  * If the specified x value is less than any of the px,
3990  * the returned y value is equal to the py for the lowest px.
3991  * If the specified x value is greater than any of the px,
3992  * the returned y value is equal to the py for the highest px.
3993  */
3994 static int ar9003_hw_power_interpolate(int32_t x,
3995 				       int32_t *px, int32_t *py, u_int16_t np)
3996 {
3997 	int ip = 0;
3998 	int lx = 0, ly = 0, lhave = 0;
3999 	int hx = 0, hy = 0, hhave = 0;
4000 	int dx = 0;
4001 	int y = 0;
4002 
4003 	lhave = 0;
4004 	hhave = 0;
4005 
4006 	/* identify best lower and higher x calibration measurement */
4007 	for (ip = 0; ip < np; ip++) {
4008 		dx = x - px[ip];
4009 
4010 		/* this measurement is higher than our desired x */
4011 		if (dx <= 0) {
4012 			if (!hhave || dx > (x - hx)) {
4013 				/* new best higher x measurement */
4014 				hx = px[ip];
4015 				hy = py[ip];
4016 				hhave = 1;
4017 			}
4018 		}
4019 		/* this measurement is lower than our desired x */
4020 		if (dx >= 0) {
4021 			if (!lhave || dx < (x - lx)) {
4022 				/* new best lower x measurement */
4023 				lx = px[ip];
4024 				ly = py[ip];
4025 				lhave = 1;
4026 			}
4027 		}
4028 	}
4029 
4030 	/* the low x is good */
4031 	if (lhave) {
4032 		/* so is the high x */
4033 		if (hhave) {
4034 			/* they're the same, so just pick one */
4035 			if (hx == lx)
4036 				y = ly;
4037 			else	/* interpolate  */
4038 				y = interpolate(x, lx, hx, ly, hy);
4039 		} else		/* only low is good, use it */
4040 			y = ly;
4041 	} else if (hhave)	/* only high is good, use it */
4042 		y = hy;
4043 	else /* nothing is good,this should never happen unless np=0, ???? */
4044 		y = -(1 << 30);
4045 	return y;
4046 }
4047 
4048 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
4049 				       u16 rateIndex, u16 freq, bool is2GHz)
4050 {
4051 	u16 numPiers, i;
4052 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4053 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4054 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4055 	struct cal_tgt_pow_legacy *pEepromTargetPwr;
4056 	u8 *pFreqBin;
4057 
4058 	if (is2GHz) {
4059 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4060 		pEepromTargetPwr = eep->calTargetPower2G;
4061 		pFreqBin = eep->calTarget_freqbin_2G;
4062 	} else {
4063 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4064 		pEepromTargetPwr = eep->calTargetPower5G;
4065 		pFreqBin = eep->calTarget_freqbin_5G;
4066 	}
4067 
4068 	/*
4069 	 * create array of channels and targetpower from
4070 	 * targetpower piers stored on eeprom
4071 	 */
4072 	for (i = 0; i < numPiers; i++) {
4073 		freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
4074 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4075 	}
4076 
4077 	/* interpolate to get target power for given frequency */
4078 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4079 						 freqArray,
4080 						 targetPowerArray, numPiers);
4081 }
4082 
4083 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
4084 					    u16 rateIndex,
4085 					    u16 freq, bool is2GHz)
4086 {
4087 	u16 numPiers, i;
4088 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4089 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4090 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4091 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4092 	u8 *pFreqBin;
4093 
4094 	if (is2GHz) {
4095 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4096 		pEepromTargetPwr = eep->calTargetPower2GHT20;
4097 		pFreqBin = eep->calTarget_freqbin_2GHT20;
4098 	} else {
4099 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4100 		pEepromTargetPwr = eep->calTargetPower5GHT20;
4101 		pFreqBin = eep->calTarget_freqbin_5GHT20;
4102 	}
4103 
4104 	/*
4105 	 * create array of channels and targetpower
4106 	 * from targetpower piers stored on eeprom
4107 	 */
4108 	for (i = 0; i < numPiers; i++) {
4109 		freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
4110 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4111 	}
4112 
4113 	/* interpolate to get target power for given frequency */
4114 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4115 						 freqArray,
4116 						 targetPowerArray, numPiers);
4117 }
4118 
4119 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
4120 					    u16 rateIndex,
4121 					    u16 freq, bool is2GHz)
4122 {
4123 	u16 numPiers, i;
4124 	s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
4125 	s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
4126 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4127 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4128 	u8 *pFreqBin;
4129 
4130 	if (is2GHz) {
4131 		numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
4132 		pEepromTargetPwr = eep->calTargetPower2GHT40;
4133 		pFreqBin = eep->calTarget_freqbin_2GHT40;
4134 	} else {
4135 		numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
4136 		pEepromTargetPwr = eep->calTargetPower5GHT40;
4137 		pFreqBin = eep->calTarget_freqbin_5GHT40;
4138 	}
4139 
4140 	/*
4141 	 * create array of channels and targetpower from
4142 	 * targetpower piers stored on eeprom
4143 	 */
4144 	for (i = 0; i < numPiers; i++) {
4145 		freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
4146 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4147 	}
4148 
4149 	/* interpolate to get target power for given frequency */
4150 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4151 						 freqArray,
4152 						 targetPowerArray, numPiers);
4153 }
4154 
4155 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
4156 					   u16 rateIndex, u16 freq)
4157 {
4158 	u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4159 	s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4160 	s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4161 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4162 	struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4163 	u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4164 
4165 	/*
4166 	 * create array of channels and targetpower from
4167 	 * targetpower piers stored on eeprom
4168 	 */
4169 	for (i = 0; i < numPiers; i++) {
4170 		freqArray[i] = FBIN2FREQ(pFreqBin[i], 1);
4171 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4172 	}
4173 
4174 	/* interpolate to get target power for given frequency */
4175 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4176 						 freqArray,
4177 						 targetPowerArray, numPiers);
4178 }
4179 
4180 /* Set tx power registers to array of values passed in */
4181 static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4182 {
4183 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
4184 	/* make sure forced gain is not set */
4185 	REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4186 
4187 	/* Write the OFDM power per rate set */
4188 
4189 	/* 6 (LSB), 9, 12, 18 (MSB) */
4190 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4191 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4192 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4193 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4194 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4195 
4196 	/* 24 (LSB), 36, 48, 54 (MSB) */
4197 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4198 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4199 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4200 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4201 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4202 
4203 	/* Write the CCK power per rate set */
4204 
4205 	/* 1L (LSB), reserved, 2L, 2S (MSB) */
4206 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4207 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4208 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4209 		  /* POW_SM(txPowerTimes2,  8) | this is reserved for AR9003 */
4210 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4211 
4212 	/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4213 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4214 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4215 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4216 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4217 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4218 	    );
4219 
4220         /* Write the power for duplicated frames - HT40 */
4221 
4222         /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4223 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4224 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4225 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4226 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24],  8) |
4227 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L],  0)
4228 	    );
4229 
4230 	/* Write the HT20 power per rate set */
4231 
4232 	/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4233 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4234 		  POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4235 		  POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4236 		  POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4237 		  POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4238 	    );
4239 
4240 	/* 6 (LSB), 7, 12, 13 (MSB) */
4241 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4242 		  POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4243 		  POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4244 		  POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4245 		  POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4246 	    );
4247 
4248 	/* 14 (LSB), 15, 20, 21 */
4249 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4250 		  POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4251 		  POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4252 		  POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4253 		  POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4254 	    );
4255 
4256 	/* Mixed HT20 and HT40 rates */
4257 
4258 	/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4259 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4260 		  POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4261 		  POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4262 		  POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4263 		  POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4264 	    );
4265 
4266 	/*
4267 	 * Write the HT40 power per rate set
4268 	 * correct PAR difference between HT40 and HT20/LEGACY
4269 	 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4270 	 */
4271 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4272 		  POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4273 		  POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4274 		  POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4275 		  POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4276 	    );
4277 
4278 	/* 6 (LSB), 7, 12, 13 (MSB) */
4279 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4280 		  POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4281 		  POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4282 		  POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4283 		  POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4284 	    );
4285 
4286 	/* 14 (LSB), 15, 20, 21 */
4287 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4288 		  POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4289 		  POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4290 		  POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4291 		  POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4292 	    );
4293 
4294 	return 0;
4295 #undef POW_SM
4296 }
4297 
4298 static void ar9003_hw_set_target_power_eeprom(struct ath_hw *ah, u16 freq,
4299 					      u8 *targetPowerValT2)
4300 {
4301 	/* XXX: hard code for now, need to get from eeprom struct */
4302 	u8 ht40PowerIncForPdadc = 0;
4303 	bool is2GHz = false;
4304 	unsigned int i = 0;
4305 	struct ath_common *common = ath9k_hw_common(ah);
4306 
4307 	if (freq < 4000)
4308 		is2GHz = true;
4309 
4310 	targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4311 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4312 					 is2GHz);
4313 	targetPowerValT2[ALL_TARGET_LEGACY_36] =
4314 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4315 					 is2GHz);
4316 	targetPowerValT2[ALL_TARGET_LEGACY_48] =
4317 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4318 					 is2GHz);
4319 	targetPowerValT2[ALL_TARGET_LEGACY_54] =
4320 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4321 					 is2GHz);
4322 	targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4323 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4324 					     freq);
4325 	targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4326 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4327 	targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4328 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4329 	targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4330 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4331 	targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4332 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4333 					      is2GHz);
4334 	targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4335 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4336 					      freq, is2GHz);
4337 	targetPowerValT2[ALL_TARGET_HT20_4] =
4338 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4339 					      is2GHz);
4340 	targetPowerValT2[ALL_TARGET_HT20_5] =
4341 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4342 					      is2GHz);
4343 	targetPowerValT2[ALL_TARGET_HT20_6] =
4344 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4345 					      is2GHz);
4346 	targetPowerValT2[ALL_TARGET_HT20_7] =
4347 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4348 					      is2GHz);
4349 	targetPowerValT2[ALL_TARGET_HT20_12] =
4350 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4351 					      is2GHz);
4352 	targetPowerValT2[ALL_TARGET_HT20_13] =
4353 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4354 					      is2GHz);
4355 	targetPowerValT2[ALL_TARGET_HT20_14] =
4356 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4357 					      is2GHz);
4358 	targetPowerValT2[ALL_TARGET_HT20_15] =
4359 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4360 					      is2GHz);
4361 	targetPowerValT2[ALL_TARGET_HT20_20] =
4362 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4363 					      is2GHz);
4364 	targetPowerValT2[ALL_TARGET_HT20_21] =
4365 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4366 					      is2GHz);
4367 	targetPowerValT2[ALL_TARGET_HT20_22] =
4368 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4369 					      is2GHz);
4370 	targetPowerValT2[ALL_TARGET_HT20_23] =
4371 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4372 					      is2GHz);
4373 	targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4374 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4375 					      is2GHz) + ht40PowerIncForPdadc;
4376 	targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4377 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4378 					      freq,
4379 					      is2GHz) + ht40PowerIncForPdadc;
4380 	targetPowerValT2[ALL_TARGET_HT40_4] =
4381 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4382 					      is2GHz) + ht40PowerIncForPdadc;
4383 	targetPowerValT2[ALL_TARGET_HT40_5] =
4384 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4385 					      is2GHz) + ht40PowerIncForPdadc;
4386 	targetPowerValT2[ALL_TARGET_HT40_6] =
4387 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4388 					      is2GHz) + ht40PowerIncForPdadc;
4389 	targetPowerValT2[ALL_TARGET_HT40_7] =
4390 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4391 					      is2GHz) + ht40PowerIncForPdadc;
4392 	targetPowerValT2[ALL_TARGET_HT40_12] =
4393 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4394 					      is2GHz) + ht40PowerIncForPdadc;
4395 	targetPowerValT2[ALL_TARGET_HT40_13] =
4396 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4397 					      is2GHz) + ht40PowerIncForPdadc;
4398 	targetPowerValT2[ALL_TARGET_HT40_14] =
4399 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4400 					      is2GHz) + ht40PowerIncForPdadc;
4401 	targetPowerValT2[ALL_TARGET_HT40_15] =
4402 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4403 					      is2GHz) + ht40PowerIncForPdadc;
4404 	targetPowerValT2[ALL_TARGET_HT40_20] =
4405 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4406 					      is2GHz) + ht40PowerIncForPdadc;
4407 	targetPowerValT2[ALL_TARGET_HT40_21] =
4408 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4409 					      is2GHz) + ht40PowerIncForPdadc;
4410 	targetPowerValT2[ALL_TARGET_HT40_22] =
4411 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4412 					      is2GHz) + ht40PowerIncForPdadc;
4413 	targetPowerValT2[ALL_TARGET_HT40_23] =
4414 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4415 					      is2GHz) + ht40PowerIncForPdadc;
4416 
4417 	for (i = 0; i < ar9300RateSize; i++) {
4418 		ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
4419 			i, targetPowerValT2[i]);
4420 	}
4421 }
4422 
4423 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4424 				  int mode,
4425 				  int ipier,
4426 				  int ichain,
4427 				  int *pfrequency,
4428 				  int *pcorrection,
4429 				  int *ptemperature, int *pvoltage)
4430 {
4431 	u8 *pCalPier;
4432 	struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4433 	int is2GHz;
4434 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4435 	struct ath_common *common = ath9k_hw_common(ah);
4436 
4437 	if (ichain >= AR9300_MAX_CHAINS) {
4438 		ath_dbg(common, EEPROM,
4439 			"Invalid chain index, must be less than %d\n",
4440 			AR9300_MAX_CHAINS);
4441 		return -1;
4442 	}
4443 
4444 	if (mode) {		/* 5GHz */
4445 		if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4446 			ath_dbg(common, EEPROM,
4447 				"Invalid 5GHz cal pier index, must be less than %d\n",
4448 				AR9300_NUM_5G_CAL_PIERS);
4449 			return -1;
4450 		}
4451 		pCalPier = &(eep->calFreqPier5G[ipier]);
4452 		pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4453 		is2GHz = 0;
4454 	} else {
4455 		if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4456 			ath_dbg(common, EEPROM,
4457 				"Invalid 2GHz cal pier index, must be less than %d\n",
4458 				AR9300_NUM_2G_CAL_PIERS);
4459 			return -1;
4460 		}
4461 
4462 		pCalPier = &(eep->calFreqPier2G[ipier]);
4463 		pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4464 		is2GHz = 1;
4465 	}
4466 
4467 	*pfrequency = FBIN2FREQ(*pCalPier, is2GHz);
4468 	*pcorrection = pCalPierStruct->refPower;
4469 	*ptemperature = pCalPierStruct->tempMeas;
4470 	*pvoltage = pCalPierStruct->voltMeas;
4471 
4472 	return 0;
4473 }
4474 
4475 static int ar9003_hw_power_control_override(struct ath_hw *ah,
4476 					    int frequency,
4477 					    int *correction,
4478 					    int *voltage, int *temperature)
4479 {
4480 	int tempSlope = 0;
4481 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4482 	int f[3], t[3];
4483 
4484 	REG_RMW(ah, AR_PHY_TPC_11_B0,
4485 		(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4486 		AR_PHY_TPC_OLPC_GAIN_DELTA);
4487 	if (ah->caps.tx_chainmask & BIT(1))
4488 		REG_RMW(ah, AR_PHY_TPC_11_B1,
4489 			(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4490 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4491 	if (ah->caps.tx_chainmask & BIT(2))
4492 		REG_RMW(ah, AR_PHY_TPC_11_B2,
4493 			(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4494 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4495 
4496 	/* enable open loop power control on chip */
4497 	REG_RMW(ah, AR_PHY_TPC_6_B0,
4498 		(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4499 		AR_PHY_TPC_6_ERROR_EST_MODE);
4500 	if (ah->caps.tx_chainmask & BIT(1))
4501 		REG_RMW(ah, AR_PHY_TPC_6_B1,
4502 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4503 			AR_PHY_TPC_6_ERROR_EST_MODE);
4504 	if (ah->caps.tx_chainmask & BIT(2))
4505 		REG_RMW(ah, AR_PHY_TPC_6_B2,
4506 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4507 			AR_PHY_TPC_6_ERROR_EST_MODE);
4508 
4509 	/*
4510 	 * enable temperature compensation
4511 	 * Need to use register names
4512 	 */
4513 	if (frequency < 4000)
4514 		tempSlope = eep->modalHeader2G.tempSlope;
4515 	else if (eep->base_ext2.tempSlopeLow != 0) {
4516 		t[0] = eep->base_ext2.tempSlopeLow;
4517 		f[0] = 5180;
4518 		t[1] = eep->modalHeader5G.tempSlope;
4519 		f[1] = 5500;
4520 		t[2] = eep->base_ext2.tempSlopeHigh;
4521 		f[2] = 5785;
4522 		tempSlope = ar9003_hw_power_interpolate((s32) frequency,
4523 							f, t, 3);
4524 	} else
4525 		tempSlope = eep->modalHeader5G.tempSlope;
4526 
4527 	REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
4528 
4529 	if (AR_SREV_9462_20(ah))
4530 		REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4531 			      AR_PHY_TPC_19_B1_ALPHA_THERM, tempSlope);
4532 
4533 
4534 	REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4535 		      temperature[0]);
4536 
4537 	return 0;
4538 }
4539 
4540 /* Apply the recorded correction values. */
4541 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4542 {
4543 	int ichain, ipier, npier;
4544 	int mode;
4545 	int lfrequency[AR9300_MAX_CHAINS],
4546 	    lcorrection[AR9300_MAX_CHAINS],
4547 	    ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4548 	int hfrequency[AR9300_MAX_CHAINS],
4549 	    hcorrection[AR9300_MAX_CHAINS],
4550 	    htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4551 	int fdiff;
4552 	int correction[AR9300_MAX_CHAINS],
4553 	    voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4554 	int pfrequency, pcorrection, ptemperature, pvoltage;
4555 	struct ath_common *common = ath9k_hw_common(ah);
4556 
4557 	mode = (frequency >= 4000);
4558 	if (mode)
4559 		npier = AR9300_NUM_5G_CAL_PIERS;
4560 	else
4561 		npier = AR9300_NUM_2G_CAL_PIERS;
4562 
4563 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4564 		lfrequency[ichain] = 0;
4565 		hfrequency[ichain] = 100000;
4566 	}
4567 	/* identify best lower and higher frequency calibration measurement */
4568 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4569 		for (ipier = 0; ipier < npier; ipier++) {
4570 			if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4571 						    &pfrequency, &pcorrection,
4572 						    &ptemperature, &pvoltage)) {
4573 				fdiff = frequency - pfrequency;
4574 
4575 				/*
4576 				 * this measurement is higher than
4577 				 * our desired frequency
4578 				 */
4579 				if (fdiff <= 0) {
4580 					if (hfrequency[ichain] <= 0 ||
4581 					    hfrequency[ichain] >= 100000 ||
4582 					    fdiff >
4583 					    (frequency - hfrequency[ichain])) {
4584 						/*
4585 						 * new best higher
4586 						 * frequency measurement
4587 						 */
4588 						hfrequency[ichain] = pfrequency;
4589 						hcorrection[ichain] =
4590 						    pcorrection;
4591 						htemperature[ichain] =
4592 						    ptemperature;
4593 						hvoltage[ichain] = pvoltage;
4594 					}
4595 				}
4596 				if (fdiff >= 0) {
4597 					if (lfrequency[ichain] <= 0
4598 					    || fdiff <
4599 					    (frequency - lfrequency[ichain])) {
4600 						/*
4601 						 * new best lower
4602 						 * frequency measurement
4603 						 */
4604 						lfrequency[ichain] = pfrequency;
4605 						lcorrection[ichain] =
4606 						    pcorrection;
4607 						ltemperature[ichain] =
4608 						    ptemperature;
4609 						lvoltage[ichain] = pvoltage;
4610 					}
4611 				}
4612 			}
4613 		}
4614 	}
4615 
4616 	/* interpolate  */
4617 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4618 		ath_dbg(common, EEPROM, "ch=%d f=%d low=%d %d h=%d %d\n",
4619 			ichain, frequency, lfrequency[ichain],
4620 			lcorrection[ichain], hfrequency[ichain],
4621 			hcorrection[ichain]);
4622 		/* they're the same, so just pick one */
4623 		if (hfrequency[ichain] == lfrequency[ichain]) {
4624 			correction[ichain] = lcorrection[ichain];
4625 			voltage[ichain] = lvoltage[ichain];
4626 			temperature[ichain] = ltemperature[ichain];
4627 		}
4628 		/* the low frequency is good */
4629 		else if (frequency - lfrequency[ichain] < 1000) {
4630 			/* so is the high frequency, interpolate */
4631 			if (hfrequency[ichain] - frequency < 1000) {
4632 
4633 				correction[ichain] = interpolate(frequency,
4634 						lfrequency[ichain],
4635 						hfrequency[ichain],
4636 						lcorrection[ichain],
4637 						hcorrection[ichain]);
4638 
4639 				temperature[ichain] = interpolate(frequency,
4640 						lfrequency[ichain],
4641 						hfrequency[ichain],
4642 						ltemperature[ichain],
4643 						htemperature[ichain]);
4644 
4645 				voltage[ichain] = interpolate(frequency,
4646 						lfrequency[ichain],
4647 						hfrequency[ichain],
4648 						lvoltage[ichain],
4649 						hvoltage[ichain]);
4650 			}
4651 			/* only low is good, use it */
4652 			else {
4653 				correction[ichain] = lcorrection[ichain];
4654 				temperature[ichain] = ltemperature[ichain];
4655 				voltage[ichain] = lvoltage[ichain];
4656 			}
4657 		}
4658 		/* only high is good, use it */
4659 		else if (hfrequency[ichain] - frequency < 1000) {
4660 			correction[ichain] = hcorrection[ichain];
4661 			temperature[ichain] = htemperature[ichain];
4662 			voltage[ichain] = hvoltage[ichain];
4663 		} else {	/* nothing is good, presume 0???? */
4664 			correction[ichain] = 0;
4665 			temperature[ichain] = 0;
4666 			voltage[ichain] = 0;
4667 		}
4668 	}
4669 
4670 	ar9003_hw_power_control_override(ah, frequency, correction, voltage,
4671 					 temperature);
4672 
4673 	ath_dbg(common, EEPROM,
4674 		"for frequency=%d, calibration correction = %d %d %d\n",
4675 		frequency, correction[0], correction[1], correction[2]);
4676 
4677 	return 0;
4678 }
4679 
4680 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
4681 					   int idx,
4682 					   int edge,
4683 					   bool is2GHz)
4684 {
4685 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4686 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4687 
4688 	if (is2GHz)
4689 		return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
4690 	else
4691 		return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
4692 }
4693 
4694 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
4695 					     int idx,
4696 					     unsigned int edge,
4697 					     u16 freq,
4698 					     bool is2GHz)
4699 {
4700 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4701 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4702 
4703 	u8 *ctl_freqbin = is2GHz ?
4704 		&eep->ctl_freqbin_2G[idx][0] :
4705 		&eep->ctl_freqbin_5G[idx][0];
4706 
4707 	if (is2GHz) {
4708 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
4709 		    CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
4710 			return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
4711 	} else {
4712 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
4713 		    CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
4714 			return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
4715 	}
4716 
4717 	return MAX_RATE_POWER;
4718 }
4719 
4720 /*
4721  * Find the maximum conformance test limit for the given channel and CTL info
4722  */
4723 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
4724 					u16 freq, int idx, bool is2GHz)
4725 {
4726 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
4727 	u8 *ctl_freqbin = is2GHz ?
4728 		&eep->ctl_freqbin_2G[idx][0] :
4729 		&eep->ctl_freqbin_5G[idx][0];
4730 	u16 num_edges = is2GHz ?
4731 		AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
4732 	unsigned int edge;
4733 
4734 	/* Get the edge power */
4735 	for (edge = 0;
4736 	     (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
4737 	     edge++) {
4738 		/*
4739 		 * If there's an exact channel match or an inband flag set
4740 		 * on the lower channel use the given rdEdgePower
4741 		 */
4742 		if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
4743 			twiceMaxEdgePower =
4744 				ar9003_hw_get_direct_edge_power(eep, idx,
4745 								edge, is2GHz);
4746 			break;
4747 		} else if ((edge > 0) &&
4748 			   (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
4749 						      is2GHz))) {
4750 			twiceMaxEdgePower =
4751 				ar9003_hw_get_indirect_edge_power(eep, idx,
4752 								  edge, freq,
4753 								  is2GHz);
4754 			/*
4755 			 * Leave loop - no more affecting edges possible in
4756 			 * this monotonic increasing list
4757 			 */
4758 			break;
4759 		}
4760 	}
4761 	return twiceMaxEdgePower;
4762 }
4763 
4764 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
4765 					       struct ath9k_channel *chan,
4766 					       u8 *pPwrArray, u16 cfgCtl,
4767 					       u8 antenna_reduction,
4768 					       u16 powerLimit)
4769 {
4770 	struct ath_common *common = ath9k_hw_common(ah);
4771 	struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
4772 	u16 twiceMaxEdgePower;
4773 	int i;
4774 	u16 scaledPower = 0, minCtlPower;
4775 	static const u16 ctlModesFor11a[] = {
4776 		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
4777 	};
4778 	static const u16 ctlModesFor11g[] = {
4779 		CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
4780 		CTL_11G_EXT, CTL_2GHT40
4781 	};
4782 	u16 numCtlModes;
4783 	const u16 *pCtlMode;
4784 	u16 ctlMode, freq;
4785 	struct chan_centers centers;
4786 	u8 *ctlIndex;
4787 	u8 ctlNum;
4788 	u16 twiceMinEdgePower;
4789 	bool is2ghz = IS_CHAN_2GHZ(chan);
4790 
4791 	ath9k_hw_get_channel_centers(ah, chan, &centers);
4792 	scaledPower = powerLimit - antenna_reduction;
4793 
4794 	/*
4795 	 * Reduce scaled Power by number of chains active to get
4796 	 * to per chain tx power level
4797 	 */
4798 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
4799 	case 1:
4800 		break;
4801 	case 2:
4802 		if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
4803 			scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
4804 		else
4805 			scaledPower = 0;
4806 		break;
4807 	case 3:
4808 		if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
4809 			scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
4810 		else
4811 			scaledPower = 0;
4812 		break;
4813 	}
4814 
4815 	scaledPower = max((u16)0, scaledPower);
4816 
4817 	/*
4818 	 * Get target powers from EEPROM - our baseline for TX Power
4819 	 */
4820 	if (is2ghz) {
4821 		/* Setup for CTL modes */
4822 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
4823 		numCtlModes =
4824 			ARRAY_SIZE(ctlModesFor11g) -
4825 				   SUB_NUM_CTL_MODES_AT_2G_40;
4826 		pCtlMode = ctlModesFor11g;
4827 		if (IS_CHAN_HT40(chan))
4828 			/* All 2G CTL's */
4829 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
4830 	} else {
4831 		/* Setup for CTL modes */
4832 		/* CTL_11A, CTL_5GHT20 */
4833 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
4834 					 SUB_NUM_CTL_MODES_AT_5G_40;
4835 		pCtlMode = ctlModesFor11a;
4836 		if (IS_CHAN_HT40(chan))
4837 			/* All 5G CTL's */
4838 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
4839 	}
4840 
4841 	/*
4842 	 * For MIMO, need to apply regulatory caps individually across
4843 	 * dynamically running modes: CCK, OFDM, HT20, HT40
4844 	 *
4845 	 * The outer loop walks through each possible applicable runtime mode.
4846 	 * The inner loop walks through each ctlIndex entry in EEPROM.
4847 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
4848 	 */
4849 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
4850 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
4851 			(pCtlMode[ctlMode] == CTL_2GHT40);
4852 		if (isHt40CtlMode)
4853 			freq = centers.synth_center;
4854 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
4855 			freq = centers.ext_center;
4856 		else
4857 			freq = centers.ctl_center;
4858 
4859 		ath_dbg(common, REGULATORY,
4860 			"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
4861 			ctlMode, numCtlModes, isHt40CtlMode,
4862 			(pCtlMode[ctlMode] & EXT_ADDITIVE));
4863 
4864 		/* walk through each CTL index stored in EEPROM */
4865 		if (is2ghz) {
4866 			ctlIndex = pEepData->ctlIndex_2G;
4867 			ctlNum = AR9300_NUM_CTLS_2G;
4868 		} else {
4869 			ctlIndex = pEepData->ctlIndex_5G;
4870 			ctlNum = AR9300_NUM_CTLS_5G;
4871 		}
4872 
4873 		twiceMaxEdgePower = MAX_RATE_POWER;
4874 		for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
4875 			ath_dbg(common, REGULATORY,
4876 				"LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
4877 				i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
4878 				chan->channel);
4879 
4880 				/*
4881 				 * compare test group from regulatory
4882 				 * channel list with test mode from pCtlMode
4883 				 * list
4884 				 */
4885 				if ((((cfgCtl & ~CTL_MODE_M) |
4886 				       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4887 					ctlIndex[i]) ||
4888 				    (((cfgCtl & ~CTL_MODE_M) |
4889 				       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4890 				     ((ctlIndex[i] & CTL_MODE_M) |
4891 				       SD_NO_CTL))) {
4892 					twiceMinEdgePower =
4893 					  ar9003_hw_get_max_edge_power(pEepData,
4894 								       freq, i,
4895 								       is2ghz);
4896 
4897 					if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
4898 						/*
4899 						 * Find the minimum of all CTL
4900 						 * edge powers that apply to
4901 						 * this channel
4902 						 */
4903 						twiceMaxEdgePower =
4904 							min(twiceMaxEdgePower,
4905 							    twiceMinEdgePower);
4906 						else {
4907 							/* specific */
4908 							twiceMaxEdgePower =
4909 							  twiceMinEdgePower;
4910 							break;
4911 						}
4912 				}
4913 			}
4914 
4915 			minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
4916 
4917 			ath_dbg(common, REGULATORY,
4918 				"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
4919 				ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
4920 				scaledPower, minCtlPower);
4921 
4922 			/* Apply ctl mode to correct target power set */
4923 			switch (pCtlMode[ctlMode]) {
4924 			case CTL_11B:
4925 				for (i = ALL_TARGET_LEGACY_1L_5L;
4926 				     i <= ALL_TARGET_LEGACY_11S; i++)
4927 					pPwrArray[i] =
4928 					  (u8)min((u16)pPwrArray[i],
4929 						  minCtlPower);
4930 				break;
4931 			case CTL_11A:
4932 			case CTL_11G:
4933 				for (i = ALL_TARGET_LEGACY_6_24;
4934 				     i <= ALL_TARGET_LEGACY_54; i++)
4935 					pPwrArray[i] =
4936 					  (u8)min((u16)pPwrArray[i],
4937 						  minCtlPower);
4938 				break;
4939 			case CTL_5GHT20:
4940 			case CTL_2GHT20:
4941 				for (i = ALL_TARGET_HT20_0_8_16;
4942 				     i <= ALL_TARGET_HT20_21; i++)
4943 					pPwrArray[i] =
4944 					  (u8)min((u16)pPwrArray[i],
4945 						  minCtlPower);
4946 				pPwrArray[ALL_TARGET_HT20_22] =
4947 				  (u8)min((u16)pPwrArray[ALL_TARGET_HT20_22],
4948 					  minCtlPower);
4949 				pPwrArray[ALL_TARGET_HT20_23] =
4950 				  (u8)min((u16)pPwrArray[ALL_TARGET_HT20_23],
4951 					   minCtlPower);
4952 				break;
4953 			case CTL_5GHT40:
4954 			case CTL_2GHT40:
4955 				for (i = ALL_TARGET_HT40_0_8_16;
4956 				     i <= ALL_TARGET_HT40_23; i++)
4957 					pPwrArray[i] =
4958 					  (u8)min((u16)pPwrArray[i],
4959 						  minCtlPower);
4960 				break;
4961 			default:
4962 			    break;
4963 			}
4964 	} /* end ctl mode checking */
4965 }
4966 
4967 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
4968 {
4969 	u8 mod_idx = mcs_idx % 8;
4970 
4971 	if (mod_idx <= 3)
4972 		return mod_idx ? (base_pwridx + 1) : base_pwridx;
4973 	else
4974 		return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
4975 }
4976 
4977 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
4978 					struct ath9k_channel *chan, u16 cfgCtl,
4979 					u8 twiceAntennaReduction,
4980 					u8 powerLimit, bool test)
4981 {
4982 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4983 	struct ath_common *common = ath9k_hw_common(ah);
4984 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4985 	struct ar9300_modal_eep_header *modal_hdr;
4986 	u8 targetPowerValT2[ar9300RateSize];
4987 	u8 target_power_val_t2_eep[ar9300RateSize];
4988 	unsigned int i = 0, paprd_scale_factor = 0;
4989 	u8 pwr_idx, min_pwridx = 0;
4990 
4991 	ar9003_hw_set_target_power_eeprom(ah, chan->channel, targetPowerValT2);
4992 
4993 	if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
4994 		if (IS_CHAN_2GHZ(chan))
4995 			modal_hdr = &eep->modalHeader2G;
4996 		else
4997 			modal_hdr = &eep->modalHeader5G;
4998 
4999 		ah->paprd_ratemask =
5000 			le32_to_cpu(modal_hdr->papdRateMaskHt20) &
5001 			AR9300_PAPRD_RATE_MASK;
5002 
5003 		ah->paprd_ratemask_ht40 =
5004 			le32_to_cpu(modal_hdr->papdRateMaskHt40) &
5005 			AR9300_PAPRD_RATE_MASK;
5006 
5007 		paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
5008 		min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
5009 						  ALL_TARGET_HT20_0_8_16;
5010 
5011 		if (!ah->paprd_table_write_done) {
5012 			memcpy(target_power_val_t2_eep, targetPowerValT2,
5013 			       sizeof(targetPowerValT2));
5014 			for (i = 0; i < 24; i++) {
5015 				pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
5016 				if (ah->paprd_ratemask & (1 << i)) {
5017 					if (targetPowerValT2[pwr_idx] &&
5018 					    targetPowerValT2[pwr_idx] ==
5019 					    target_power_val_t2_eep[pwr_idx])
5020 						targetPowerValT2[pwr_idx] -=
5021 							paprd_scale_factor;
5022 				}
5023 			}
5024 		}
5025 		memcpy(target_power_val_t2_eep, targetPowerValT2,
5026 		       sizeof(targetPowerValT2));
5027 	}
5028 
5029 	ar9003_hw_set_power_per_rate_table(ah, chan,
5030 					   targetPowerValT2, cfgCtl,
5031 					   twiceAntennaReduction,
5032 					   powerLimit);
5033 
5034 	if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
5035 		for (i = 0; i < ar9300RateSize; i++) {
5036 			if ((ah->paprd_ratemask & (1 << i)) &&
5037 			    (abs(targetPowerValT2[i] -
5038 				target_power_val_t2_eep[i]) >
5039 			    paprd_scale_factor)) {
5040 				ah->paprd_ratemask &= ~(1 << i);
5041 				ath_dbg(common, EEPROM,
5042 					"paprd disabled for mcs %d\n", i);
5043 			}
5044 		}
5045 	}
5046 
5047 	regulatory->max_power_level = 0;
5048 	for (i = 0; i < ar9300RateSize; i++) {
5049 		if (targetPowerValT2[i] > regulatory->max_power_level)
5050 			regulatory->max_power_level = targetPowerValT2[i];
5051 	}
5052 
5053 	ath9k_hw_update_regulatory_maxpower(ah);
5054 
5055 	if (test)
5056 		return;
5057 
5058 	for (i = 0; i < ar9300RateSize; i++) {
5059 		ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
5060 			i, targetPowerValT2[i]);
5061 	}
5062 
5063 	ah->txpower_limit = regulatory->max_power_level;
5064 
5065 	/* Write target power array to registers */
5066 	ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5067 	ar9003_hw_calibration_apply(ah, chan->channel);
5068 
5069 	if (IS_CHAN_2GHZ(chan)) {
5070 		if (IS_CHAN_HT40(chan))
5071 			i = ALL_TARGET_HT40_0_8_16;
5072 		else
5073 			i = ALL_TARGET_HT20_0_8_16;
5074 	} else {
5075 		if (IS_CHAN_HT40(chan))
5076 			i = ALL_TARGET_HT40_7;
5077 		else
5078 			i = ALL_TARGET_HT20_7;
5079 	}
5080 	ah->paprd_target_power = targetPowerValT2[i];
5081 }
5082 
5083 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
5084 					    u16 i, bool is2GHz)
5085 {
5086 	return AR_NO_SPUR;
5087 }
5088 
5089 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
5090 {
5091 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5092 
5093 	return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
5094 }
5095 
5096 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
5097 {
5098 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5099 
5100 	return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
5101 }
5102 
5103 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is_2ghz)
5104 {
5105 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5106 
5107 	if (is_2ghz)
5108 		return eep->modalHeader2G.spurChans;
5109 	else
5110 		return eep->modalHeader5G.spurChans;
5111 }
5112 
5113 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
5114 					   struct ath9k_channel *chan)
5115 {
5116 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5117 
5118 	if (IS_CHAN_2GHZ(chan))
5119 		return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5120 			  AR9300_PAPRD_SCALE_1);
5121 	else {
5122 		if (chan->channel >= 5700)
5123 		return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5124 			  AR9300_PAPRD_SCALE_1);
5125 		else if (chan->channel >= 5400)
5126 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5127 				   AR9300_PAPRD_SCALE_2);
5128 		else
5129 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5130 				  AR9300_PAPRD_SCALE_1);
5131 	}
5132 }
5133 
5134 const struct eeprom_ops eep_ar9300_ops = {
5135 	.check_eeprom = ath9k_hw_ar9300_check_eeprom,
5136 	.get_eeprom = ath9k_hw_ar9300_get_eeprom,
5137 	.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5138 	.dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5139 	.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5140 	.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5141 	.set_board_values = ath9k_hw_ar9300_set_board_values,
5142 	.set_addac = ath9k_hw_ar9300_set_addac,
5143 	.set_txpower = ath9k_hw_ar9300_set_txpower,
5144 	.get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5145 };
5146