1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20 #include "ar9003_eeprom.h"
21 #include "ar9003_mci.h"
22 
23 #define COMP_HDR_LEN 4
24 #define COMP_CKSUM_LEN 2
25 
26 #define LE16(x) __constant_cpu_to_le16(x)
27 #define LE32(x) __constant_cpu_to_le32(x)
28 
29 /* Local defines to distinguish between extension and control CTL's */
30 #define EXT_ADDITIVE (0x8000)
31 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
32 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
33 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
34 
35 #define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
36 #define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
37 
38 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
39 
40 #define EEPROM_DATA_LEN_9485	1088
41 
42 static int ar9003_hw_power_interpolate(int32_t x,
43 				       int32_t *px, int32_t *py, u_int16_t np);
44 
45 static const struct ar9300_eeprom ar9300_default = {
46 	.eepromVersion = 2,
47 	.templateVersion = 2,
48 	.macAddr = {0, 2, 3, 4, 5, 6},
49 	.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
50 		     0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
51 	.baseEepHeader = {
52 		.regDmn = { LE16(0), LE16(0x1f) },
53 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
54 		.opCapFlags = {
55 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
56 			.eepMisc = 0,
57 		},
58 		.rfSilent = 0,
59 		.blueToothOptions = 0,
60 		.deviceCap = 0,
61 		.deviceType = 5, /* takes lower byte in eeprom location */
62 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
63 		.params_for_tuning_caps = {0, 0},
64 		.featureEnable = 0x0c,
65 		 /*
66 		  * bit0 - enable tx temp comp - disabled
67 		  * bit1 - enable tx volt comp - disabled
68 		  * bit2 - enable fastClock - enabled
69 		  * bit3 - enable doubling - enabled
70 		  * bit4 - enable internal regulator - disabled
71 		  * bit5 - enable pa predistortion - disabled
72 		  */
73 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
74 		.eepromWriteEnableGpio = 3,
75 		.wlanDisableGpio = 0,
76 		.wlanLedGpio = 8,
77 		.rxBandSelectGpio = 0xff,
78 		.txrxgain = 0,
79 		.swreg = 0,
80 	 },
81 	.modalHeader2G = {
82 	/* ar9300_modal_eep_header  2g */
83 		/* 4 idle,t1,t2,b(4 bits per setting) */
84 		.antCtrlCommon = LE32(0x110),
85 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
86 		.antCtrlCommon2 = LE32(0x22222),
87 
88 		/*
89 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
90 		 * rx1, rx12, b (2 bits each)
91 		 */
92 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
93 
94 		/*
95 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
96 		 * for ar9280 (0xa20c/b20c 5:0)
97 		 */
98 		.xatten1DB = {0, 0, 0},
99 
100 		/*
101 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
102 		 * for ar9280 (0xa20c/b20c 16:12
103 		 */
104 		.xatten1Margin = {0, 0, 0},
105 		.tempSlope = 36,
106 		.voltSlope = 0,
107 
108 		/*
109 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
110 		 * channels in usual fbin coding format
111 		 */
112 		.spurChans = {0, 0, 0, 0, 0},
113 
114 		/*
115 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
116 		 * if the register is per chain
117 		 */
118 		.noiseFloorThreshCh = {-1, 0, 0},
119 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
120 		.quick_drop = 0,
121 		.xpaBiasLvl = 0,
122 		.txFrameToDataStart = 0x0e,
123 		.txFrameToPaOn = 0x0e,
124 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
125 		.antennaGain = 0,
126 		.switchSettling = 0x2c,
127 		.adcDesiredSize = -30,
128 		.txEndToXpaOff = 0,
129 		.txEndToRxOn = 0x2,
130 		.txFrameToXpaOn = 0xe,
131 		.thresh62 = 28,
132 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
133 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
134 		.switchcomspdt = 0,
135 		.xlna_bias_strength = 0,
136 		.futureModal = {
137 			0, 0, 0, 0, 0, 0, 0,
138 		},
139 	 },
140 	.base_ext1 = {
141 		.ant_div_control = 0,
142 		.future = {0, 0},
143 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
144 	},
145 	.calFreqPier2G = {
146 		FREQ2FBIN(2412, 1),
147 		FREQ2FBIN(2437, 1),
148 		FREQ2FBIN(2472, 1),
149 	 },
150 	/* ar9300_cal_data_per_freq_op_loop 2g */
151 	.calPierData2G = {
152 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
153 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
154 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
155 	 },
156 	.calTarget_freqbin_Cck = {
157 		FREQ2FBIN(2412, 1),
158 		FREQ2FBIN(2484, 1),
159 	 },
160 	.calTarget_freqbin_2G = {
161 		FREQ2FBIN(2412, 1),
162 		FREQ2FBIN(2437, 1),
163 		FREQ2FBIN(2472, 1)
164 	 },
165 	.calTarget_freqbin_2GHT20 = {
166 		FREQ2FBIN(2412, 1),
167 		FREQ2FBIN(2437, 1),
168 		FREQ2FBIN(2472, 1)
169 	 },
170 	.calTarget_freqbin_2GHT40 = {
171 		FREQ2FBIN(2412, 1),
172 		FREQ2FBIN(2437, 1),
173 		FREQ2FBIN(2472, 1)
174 	 },
175 	.calTargetPowerCck = {
176 		 /* 1L-5L,5S,11L,11S */
177 		 { {36, 36, 36, 36} },
178 		 { {36, 36, 36, 36} },
179 	},
180 	.calTargetPower2G = {
181 		 /* 6-24,36,48,54 */
182 		 { {32, 32, 28, 24} },
183 		 { {32, 32, 28, 24} },
184 		 { {32, 32, 28, 24} },
185 	},
186 	.calTargetPower2GHT20 = {
187 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
188 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
189 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
190 	},
191 	.calTargetPower2GHT40 = {
192 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
193 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
194 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
195 	},
196 	.ctlIndex_2G =  {
197 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
198 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
199 	},
200 	.ctl_freqbin_2G = {
201 		{
202 			FREQ2FBIN(2412, 1),
203 			FREQ2FBIN(2417, 1),
204 			FREQ2FBIN(2457, 1),
205 			FREQ2FBIN(2462, 1)
206 		},
207 		{
208 			FREQ2FBIN(2412, 1),
209 			FREQ2FBIN(2417, 1),
210 			FREQ2FBIN(2462, 1),
211 			0xFF,
212 		},
213 
214 		{
215 			FREQ2FBIN(2412, 1),
216 			FREQ2FBIN(2417, 1),
217 			FREQ2FBIN(2462, 1),
218 			0xFF,
219 		},
220 		{
221 			FREQ2FBIN(2422, 1),
222 			FREQ2FBIN(2427, 1),
223 			FREQ2FBIN(2447, 1),
224 			FREQ2FBIN(2452, 1)
225 		},
226 
227 		{
228 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
229 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
230 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
231 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
232 		},
233 
234 		{
235 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
236 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
237 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
238 			0,
239 		},
240 
241 		{
242 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
243 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
244 			FREQ2FBIN(2472, 1),
245 			0,
246 		},
247 
248 		{
249 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
250 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
251 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
252 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
253 		},
254 
255 		{
256 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
257 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
258 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
259 		},
260 
261 		{
262 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
263 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
264 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
265 			0
266 		},
267 
268 		{
269 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
270 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
271 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
272 			0
273 		},
274 
275 		{
276 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
277 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
278 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
279 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
280 		}
281 	 },
282 	.ctlPowerData_2G = {
283 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
284 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
285 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
286 
287 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
288 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
289 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
290 
291 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
292 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
293 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
294 
295 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
296 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
297 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
298 	 },
299 	.modalHeader5G = {
300 		/* 4 idle,t1,t2,b (4 bits per setting) */
301 		.antCtrlCommon = LE32(0x110),
302 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
303 		.antCtrlCommon2 = LE32(0x22222),
304 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
305 		.antCtrlChain = {
306 			LE16(0x000), LE16(0x000), LE16(0x000),
307 		},
308 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
309 		.xatten1DB = {0, 0, 0},
310 
311 		/*
312 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
313 		 * for merlin (0xa20c/b20c 16:12
314 		 */
315 		.xatten1Margin = {0, 0, 0},
316 		.tempSlope = 68,
317 		.voltSlope = 0,
318 		/* spurChans spur channels in usual fbin coding format */
319 		.spurChans = {0, 0, 0, 0, 0},
320 		/* noiseFloorThreshCh Check if the register is per chain */
321 		.noiseFloorThreshCh = {-1, 0, 0},
322 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
323 		.quick_drop = 0,
324 		.xpaBiasLvl = 0,
325 		.txFrameToDataStart = 0x0e,
326 		.txFrameToPaOn = 0x0e,
327 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
328 		.antennaGain = 0,
329 		.switchSettling = 0x2d,
330 		.adcDesiredSize = -30,
331 		.txEndToXpaOff = 0,
332 		.txEndToRxOn = 0x2,
333 		.txFrameToXpaOn = 0xe,
334 		.thresh62 = 28,
335 		.papdRateMaskHt20 = LE32(0x0c80c080),
336 		.papdRateMaskHt40 = LE32(0x0080c080),
337 		.switchcomspdt = 0,
338 		.xlna_bias_strength = 0,
339 		.futureModal = {
340 			0, 0, 0, 0, 0, 0, 0,
341 		},
342 	 },
343 	.base_ext2 = {
344 		.tempSlopeLow = 0,
345 		.tempSlopeHigh = 0,
346 		.xatten1DBLow = {0, 0, 0},
347 		.xatten1MarginLow = {0, 0, 0},
348 		.xatten1DBHigh = {0, 0, 0},
349 		.xatten1MarginHigh = {0, 0, 0}
350 	},
351 	.calFreqPier5G = {
352 		FREQ2FBIN(5180, 0),
353 		FREQ2FBIN(5220, 0),
354 		FREQ2FBIN(5320, 0),
355 		FREQ2FBIN(5400, 0),
356 		FREQ2FBIN(5500, 0),
357 		FREQ2FBIN(5600, 0),
358 		FREQ2FBIN(5725, 0),
359 		FREQ2FBIN(5825, 0)
360 	},
361 	.calPierData5G = {
362 			{
363 				{0, 0, 0, 0, 0},
364 				{0, 0, 0, 0, 0},
365 				{0, 0, 0, 0, 0},
366 				{0, 0, 0, 0, 0},
367 				{0, 0, 0, 0, 0},
368 				{0, 0, 0, 0, 0},
369 				{0, 0, 0, 0, 0},
370 				{0, 0, 0, 0, 0},
371 			},
372 			{
373 				{0, 0, 0, 0, 0},
374 				{0, 0, 0, 0, 0},
375 				{0, 0, 0, 0, 0},
376 				{0, 0, 0, 0, 0},
377 				{0, 0, 0, 0, 0},
378 				{0, 0, 0, 0, 0},
379 				{0, 0, 0, 0, 0},
380 				{0, 0, 0, 0, 0},
381 			},
382 			{
383 				{0, 0, 0, 0, 0},
384 				{0, 0, 0, 0, 0},
385 				{0, 0, 0, 0, 0},
386 				{0, 0, 0, 0, 0},
387 				{0, 0, 0, 0, 0},
388 				{0, 0, 0, 0, 0},
389 				{0, 0, 0, 0, 0},
390 				{0, 0, 0, 0, 0},
391 			},
392 
393 	},
394 	.calTarget_freqbin_5G = {
395 		FREQ2FBIN(5180, 0),
396 		FREQ2FBIN(5220, 0),
397 		FREQ2FBIN(5320, 0),
398 		FREQ2FBIN(5400, 0),
399 		FREQ2FBIN(5500, 0),
400 		FREQ2FBIN(5600, 0),
401 		FREQ2FBIN(5725, 0),
402 		FREQ2FBIN(5825, 0)
403 	},
404 	.calTarget_freqbin_5GHT20 = {
405 		FREQ2FBIN(5180, 0),
406 		FREQ2FBIN(5240, 0),
407 		FREQ2FBIN(5320, 0),
408 		FREQ2FBIN(5500, 0),
409 		FREQ2FBIN(5700, 0),
410 		FREQ2FBIN(5745, 0),
411 		FREQ2FBIN(5725, 0),
412 		FREQ2FBIN(5825, 0)
413 	},
414 	.calTarget_freqbin_5GHT40 = {
415 		FREQ2FBIN(5180, 0),
416 		FREQ2FBIN(5240, 0),
417 		FREQ2FBIN(5320, 0),
418 		FREQ2FBIN(5500, 0),
419 		FREQ2FBIN(5700, 0),
420 		FREQ2FBIN(5745, 0),
421 		FREQ2FBIN(5725, 0),
422 		FREQ2FBIN(5825, 0)
423 	 },
424 	.calTargetPower5G = {
425 		/* 6-24,36,48,54 */
426 		{ {20, 20, 20, 10} },
427 		{ {20, 20, 20, 10} },
428 		{ {20, 20, 20, 10} },
429 		{ {20, 20, 20, 10} },
430 		{ {20, 20, 20, 10} },
431 		{ {20, 20, 20, 10} },
432 		{ {20, 20, 20, 10} },
433 		{ {20, 20, 20, 10} },
434 	 },
435 	.calTargetPower5GHT20 = {
436 		/*
437 		 * 0_8_16,1-3_9-11_17-19,
438 		 * 4,5,6,7,12,13,14,15,20,21,22,23
439 		 */
440 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
441 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
442 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
444 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
446 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
447 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
448 	 },
449 	.calTargetPower5GHT40 =  {
450 		/*
451 		 * 0_8_16,1-3_9-11_17-19,
452 		 * 4,5,6,7,12,13,14,15,20,21,22,23
453 		 */
454 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
455 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
456 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
458 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
460 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
461 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
462 	 },
463 	.ctlIndex_5G =  {
464 		0x10, 0x16, 0x18, 0x40, 0x46,
465 		0x48, 0x30, 0x36, 0x38
466 	},
467 	.ctl_freqbin_5G =  {
468 		{
469 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
470 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
471 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
472 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
473 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
474 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
475 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
476 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
477 		},
478 		{
479 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
480 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
481 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
482 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
483 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
484 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
485 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
486 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
487 		},
488 
489 		{
490 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
491 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
492 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
493 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
494 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
495 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
496 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
497 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
498 		},
499 
500 		{
501 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
502 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
503 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
504 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
505 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
506 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
507 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
508 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
509 		},
510 
511 		{
512 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
513 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
514 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
515 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
516 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
517 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
518 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
519 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
520 		},
521 
522 		{
523 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
524 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
525 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
526 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
527 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
528 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
529 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
530 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
531 		},
532 
533 		{
534 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
535 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
536 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
537 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
538 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
539 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
540 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
541 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
542 		},
543 
544 		{
545 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
546 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
547 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
548 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
549 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
550 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
551 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
552 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
553 		},
554 
555 		{
556 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
557 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
558 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
559 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
560 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
561 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
562 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
563 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
564 		}
565 	 },
566 	.ctlPowerData_5G = {
567 		{
568 			{
569 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
570 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
571 			}
572 		},
573 		{
574 			{
575 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
576 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
577 			}
578 		},
579 		{
580 			{
581 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
582 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
583 			}
584 		},
585 		{
586 			{
587 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
588 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
589 			}
590 		},
591 		{
592 			{
593 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
594 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
595 			}
596 		},
597 		{
598 			{
599 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
600 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
601 			}
602 		},
603 		{
604 			{
605 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
606 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
607 			}
608 		},
609 		{
610 			{
611 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
612 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
613 			}
614 		},
615 		{
616 			{
617 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
618 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
619 			}
620 		},
621 	 }
622 };
623 
624 static const struct ar9300_eeprom ar9300_x113 = {
625 	.eepromVersion = 2,
626 	.templateVersion = 6,
627 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
628 	.custData = {"x113-023-f0000"},
629 	.baseEepHeader = {
630 		.regDmn = { LE16(0), LE16(0x1f) },
631 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
632 		.opCapFlags = {
633 			.opFlags = AR5416_OPFLAGS_11A,
634 			.eepMisc = 0,
635 		},
636 		.rfSilent = 0,
637 		.blueToothOptions = 0,
638 		.deviceCap = 0,
639 		.deviceType = 5, /* takes lower byte in eeprom location */
640 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
641 		.params_for_tuning_caps = {0, 0},
642 		.featureEnable = 0x0d,
643 		 /*
644 		  * bit0 - enable tx temp comp - disabled
645 		  * bit1 - enable tx volt comp - disabled
646 		  * bit2 - enable fastClock - enabled
647 		  * bit3 - enable doubling - enabled
648 		  * bit4 - enable internal regulator - disabled
649 		  * bit5 - enable pa predistortion - disabled
650 		  */
651 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
652 		.eepromWriteEnableGpio = 6,
653 		.wlanDisableGpio = 0,
654 		.wlanLedGpio = 8,
655 		.rxBandSelectGpio = 0xff,
656 		.txrxgain = 0x21,
657 		.swreg = 0,
658 	 },
659 	.modalHeader2G = {
660 	/* ar9300_modal_eep_header  2g */
661 		/* 4 idle,t1,t2,b(4 bits per setting) */
662 		.antCtrlCommon = LE32(0x110),
663 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
664 		.antCtrlCommon2 = LE32(0x44444),
665 
666 		/*
667 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
668 		 * rx1, rx12, b (2 bits each)
669 		 */
670 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
671 
672 		/*
673 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
674 		 * for ar9280 (0xa20c/b20c 5:0)
675 		 */
676 		.xatten1DB = {0, 0, 0},
677 
678 		/*
679 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
680 		 * for ar9280 (0xa20c/b20c 16:12
681 		 */
682 		.xatten1Margin = {0, 0, 0},
683 		.tempSlope = 25,
684 		.voltSlope = 0,
685 
686 		/*
687 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
688 		 * channels in usual fbin coding format
689 		 */
690 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
691 
692 		/*
693 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
694 		 * if the register is per chain
695 		 */
696 		.noiseFloorThreshCh = {-1, 0, 0},
697 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
698 		.quick_drop = 0,
699 		.xpaBiasLvl = 0,
700 		.txFrameToDataStart = 0x0e,
701 		.txFrameToPaOn = 0x0e,
702 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
703 		.antennaGain = 0,
704 		.switchSettling = 0x2c,
705 		.adcDesiredSize = -30,
706 		.txEndToXpaOff = 0,
707 		.txEndToRxOn = 0x2,
708 		.txFrameToXpaOn = 0xe,
709 		.thresh62 = 28,
710 		.papdRateMaskHt20 = LE32(0x0c80c080),
711 		.papdRateMaskHt40 = LE32(0x0080c080),
712 		.switchcomspdt = 0,
713 		.xlna_bias_strength = 0,
714 		.futureModal = {
715 			0, 0, 0, 0, 0, 0, 0,
716 		},
717 	 },
718 	 .base_ext1 = {
719 		.ant_div_control = 0,
720 		.future = {0, 0},
721 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
722 	 },
723 	.calFreqPier2G = {
724 		FREQ2FBIN(2412, 1),
725 		FREQ2FBIN(2437, 1),
726 		FREQ2FBIN(2472, 1),
727 	 },
728 	/* ar9300_cal_data_per_freq_op_loop 2g */
729 	.calPierData2G = {
730 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
731 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
732 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
733 	 },
734 	.calTarget_freqbin_Cck = {
735 		FREQ2FBIN(2412, 1),
736 		FREQ2FBIN(2472, 1),
737 	 },
738 	.calTarget_freqbin_2G = {
739 		FREQ2FBIN(2412, 1),
740 		FREQ2FBIN(2437, 1),
741 		FREQ2FBIN(2472, 1)
742 	 },
743 	.calTarget_freqbin_2GHT20 = {
744 		FREQ2FBIN(2412, 1),
745 		FREQ2FBIN(2437, 1),
746 		FREQ2FBIN(2472, 1)
747 	 },
748 	.calTarget_freqbin_2GHT40 = {
749 		FREQ2FBIN(2412, 1),
750 		FREQ2FBIN(2437, 1),
751 		FREQ2FBIN(2472, 1)
752 	 },
753 	.calTargetPowerCck = {
754 		 /* 1L-5L,5S,11L,11S */
755 		 { {34, 34, 34, 34} },
756 		 { {34, 34, 34, 34} },
757 	},
758 	.calTargetPower2G = {
759 		 /* 6-24,36,48,54 */
760 		 { {34, 34, 32, 32} },
761 		 { {34, 34, 32, 32} },
762 		 { {34, 34, 32, 32} },
763 	},
764 	.calTargetPower2GHT20 = {
765 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
766 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
767 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
768 	},
769 	.calTargetPower2GHT40 = {
770 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
771 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
772 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
773 	},
774 	.ctlIndex_2G =  {
775 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
776 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
777 	},
778 	.ctl_freqbin_2G = {
779 		{
780 			FREQ2FBIN(2412, 1),
781 			FREQ2FBIN(2417, 1),
782 			FREQ2FBIN(2457, 1),
783 			FREQ2FBIN(2462, 1)
784 		},
785 		{
786 			FREQ2FBIN(2412, 1),
787 			FREQ2FBIN(2417, 1),
788 			FREQ2FBIN(2462, 1),
789 			0xFF,
790 		},
791 
792 		{
793 			FREQ2FBIN(2412, 1),
794 			FREQ2FBIN(2417, 1),
795 			FREQ2FBIN(2462, 1),
796 			0xFF,
797 		},
798 		{
799 			FREQ2FBIN(2422, 1),
800 			FREQ2FBIN(2427, 1),
801 			FREQ2FBIN(2447, 1),
802 			FREQ2FBIN(2452, 1)
803 		},
804 
805 		{
806 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
807 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
808 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
809 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
810 		},
811 
812 		{
813 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
814 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
815 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
816 			0,
817 		},
818 
819 		{
820 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
821 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
822 			FREQ2FBIN(2472, 1),
823 			0,
824 		},
825 
826 		{
827 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
828 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
829 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
830 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
831 		},
832 
833 		{
834 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
835 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
836 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
837 		},
838 
839 		{
840 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
841 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
842 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
843 			0
844 		},
845 
846 		{
847 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
848 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
849 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
850 			0
851 		},
852 
853 		{
854 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
855 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
856 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
857 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
858 		}
859 	 },
860 	.ctlPowerData_2G = {
861 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
862 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
863 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
864 
865 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
866 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
867 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
868 
869 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
870 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
871 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
872 
873 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
874 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
875 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
876 	 },
877 	.modalHeader5G = {
878 		/* 4 idle,t1,t2,b (4 bits per setting) */
879 		.antCtrlCommon = LE32(0x220),
880 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
881 		.antCtrlCommon2 = LE32(0x11111),
882 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
883 		.antCtrlChain = {
884 			LE16(0x150), LE16(0x150), LE16(0x150),
885 		},
886 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
887 		.xatten1DB = {0, 0, 0},
888 
889 		/*
890 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
891 		 * for merlin (0xa20c/b20c 16:12
892 		 */
893 		.xatten1Margin = {0, 0, 0},
894 		.tempSlope = 68,
895 		.voltSlope = 0,
896 		/* spurChans spur channels in usual fbin coding format */
897 		.spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
898 		/* noiseFloorThreshCh Check if the register is per chain */
899 		.noiseFloorThreshCh = {-1, 0, 0},
900 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
901 		.quick_drop = 0,
902 		.xpaBiasLvl = 0xf,
903 		.txFrameToDataStart = 0x0e,
904 		.txFrameToPaOn = 0x0e,
905 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
906 		.antennaGain = 0,
907 		.switchSettling = 0x2d,
908 		.adcDesiredSize = -30,
909 		.txEndToXpaOff = 0,
910 		.txEndToRxOn = 0x2,
911 		.txFrameToXpaOn = 0xe,
912 		.thresh62 = 28,
913 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
914 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
915 		.switchcomspdt = 0,
916 		.xlna_bias_strength = 0,
917 		.futureModal = {
918 			0, 0, 0, 0, 0, 0, 0,
919 		},
920 	 },
921 	.base_ext2 = {
922 		.tempSlopeLow = 72,
923 		.tempSlopeHigh = 105,
924 		.xatten1DBLow = {0, 0, 0},
925 		.xatten1MarginLow = {0, 0, 0},
926 		.xatten1DBHigh = {0, 0, 0},
927 		.xatten1MarginHigh = {0, 0, 0}
928 	 },
929 	.calFreqPier5G = {
930 		FREQ2FBIN(5180, 0),
931 		FREQ2FBIN(5240, 0),
932 		FREQ2FBIN(5320, 0),
933 		FREQ2FBIN(5400, 0),
934 		FREQ2FBIN(5500, 0),
935 		FREQ2FBIN(5600, 0),
936 		FREQ2FBIN(5745, 0),
937 		FREQ2FBIN(5785, 0)
938 	},
939 	.calPierData5G = {
940 			{
941 				{0, 0, 0, 0, 0},
942 				{0, 0, 0, 0, 0},
943 				{0, 0, 0, 0, 0},
944 				{0, 0, 0, 0, 0},
945 				{0, 0, 0, 0, 0},
946 				{0, 0, 0, 0, 0},
947 				{0, 0, 0, 0, 0},
948 				{0, 0, 0, 0, 0},
949 			},
950 			{
951 				{0, 0, 0, 0, 0},
952 				{0, 0, 0, 0, 0},
953 				{0, 0, 0, 0, 0},
954 				{0, 0, 0, 0, 0},
955 				{0, 0, 0, 0, 0},
956 				{0, 0, 0, 0, 0},
957 				{0, 0, 0, 0, 0},
958 				{0, 0, 0, 0, 0},
959 			},
960 			{
961 				{0, 0, 0, 0, 0},
962 				{0, 0, 0, 0, 0},
963 				{0, 0, 0, 0, 0},
964 				{0, 0, 0, 0, 0},
965 				{0, 0, 0, 0, 0},
966 				{0, 0, 0, 0, 0},
967 				{0, 0, 0, 0, 0},
968 				{0, 0, 0, 0, 0},
969 			},
970 
971 	},
972 	.calTarget_freqbin_5G = {
973 		FREQ2FBIN(5180, 0),
974 		FREQ2FBIN(5220, 0),
975 		FREQ2FBIN(5320, 0),
976 		FREQ2FBIN(5400, 0),
977 		FREQ2FBIN(5500, 0),
978 		FREQ2FBIN(5600, 0),
979 		FREQ2FBIN(5745, 0),
980 		FREQ2FBIN(5785, 0)
981 	},
982 	.calTarget_freqbin_5GHT20 = {
983 		FREQ2FBIN(5180, 0),
984 		FREQ2FBIN(5240, 0),
985 		FREQ2FBIN(5320, 0),
986 		FREQ2FBIN(5400, 0),
987 		FREQ2FBIN(5500, 0),
988 		FREQ2FBIN(5700, 0),
989 		FREQ2FBIN(5745, 0),
990 		FREQ2FBIN(5825, 0)
991 	},
992 	.calTarget_freqbin_5GHT40 = {
993 		FREQ2FBIN(5190, 0),
994 		FREQ2FBIN(5230, 0),
995 		FREQ2FBIN(5320, 0),
996 		FREQ2FBIN(5410, 0),
997 		FREQ2FBIN(5510, 0),
998 		FREQ2FBIN(5670, 0),
999 		FREQ2FBIN(5755, 0),
1000 		FREQ2FBIN(5825, 0)
1001 	 },
1002 	.calTargetPower5G = {
1003 		/* 6-24,36,48,54 */
1004 		{ {42, 40, 40, 34} },
1005 		{ {42, 40, 40, 34} },
1006 		{ {42, 40, 40, 34} },
1007 		{ {42, 40, 40, 34} },
1008 		{ {42, 40, 40, 34} },
1009 		{ {42, 40, 40, 34} },
1010 		{ {42, 40, 40, 34} },
1011 		{ {42, 40, 40, 34} },
1012 	 },
1013 	.calTargetPower5GHT20 = {
1014 		/*
1015 		 * 0_8_16,1-3_9-11_17-19,
1016 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1017 		 */
1018 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1019 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1020 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1021 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1022 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1023 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1024 		{ {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1025 		{ {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1026 	 },
1027 	.calTargetPower5GHT40 =  {
1028 		/*
1029 		 * 0_8_16,1-3_9-11_17-19,
1030 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1031 		 */
1032 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1033 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1034 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1035 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1036 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1037 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1038 		{ {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1039 		{ {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1040 	 },
1041 	.ctlIndex_5G =  {
1042 		0x10, 0x16, 0x18, 0x40, 0x46,
1043 		0x48, 0x30, 0x36, 0x38
1044 	},
1045 	.ctl_freqbin_5G =  {
1046 		{
1047 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1048 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1049 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1050 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1051 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1052 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1053 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1054 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1055 		},
1056 		{
1057 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1058 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1059 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1060 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1061 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1062 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1063 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1064 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1065 		},
1066 
1067 		{
1068 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1069 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1070 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1071 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1072 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1073 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1074 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1075 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1076 		},
1077 
1078 		{
1079 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1080 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1081 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1082 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1083 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1084 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1085 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1086 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1087 		},
1088 
1089 		{
1090 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1091 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1092 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1093 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1094 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1095 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1096 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1097 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1098 		},
1099 
1100 		{
1101 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1102 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1103 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1104 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1105 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1106 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1107 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1108 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1109 		},
1110 
1111 		{
1112 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1113 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1114 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1115 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1116 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1117 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1118 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1119 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1120 		},
1121 
1122 		{
1123 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1124 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1125 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1126 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1127 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1128 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1129 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1130 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1131 		},
1132 
1133 		{
1134 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1135 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1136 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1137 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1138 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1139 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1140 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1141 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1142 		}
1143 	 },
1144 	.ctlPowerData_5G = {
1145 		{
1146 			{
1147 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1148 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1149 			}
1150 		},
1151 		{
1152 			{
1153 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1154 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1155 			}
1156 		},
1157 		{
1158 			{
1159 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1160 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1161 			}
1162 		},
1163 		{
1164 			{
1165 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1166 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1167 			}
1168 		},
1169 		{
1170 			{
1171 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1172 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1173 			}
1174 		},
1175 		{
1176 			{
1177 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1178 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1179 			}
1180 		},
1181 		{
1182 			{
1183 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1184 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1185 			}
1186 		},
1187 		{
1188 			{
1189 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1190 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1191 			}
1192 		},
1193 		{
1194 			{
1195 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1196 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1197 			}
1198 		},
1199 	 }
1200 };
1201 
1202 
1203 static const struct ar9300_eeprom ar9300_h112 = {
1204 	.eepromVersion = 2,
1205 	.templateVersion = 3,
1206 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1207 	.custData = {"h112-241-f0000"},
1208 	.baseEepHeader = {
1209 		.regDmn = { LE16(0), LE16(0x1f) },
1210 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1211 		.opCapFlags = {
1212 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1213 			.eepMisc = 0,
1214 		},
1215 		.rfSilent = 0,
1216 		.blueToothOptions = 0,
1217 		.deviceCap = 0,
1218 		.deviceType = 5, /* takes lower byte in eeprom location */
1219 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1220 		.params_for_tuning_caps = {0, 0},
1221 		.featureEnable = 0x0d,
1222 		/*
1223 		 * bit0 - enable tx temp comp - disabled
1224 		 * bit1 - enable tx volt comp - disabled
1225 		 * bit2 - enable fastClock - enabled
1226 		 * bit3 - enable doubling - enabled
1227 		 * bit4 - enable internal regulator - disabled
1228 		 * bit5 - enable pa predistortion - disabled
1229 		 */
1230 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1231 		.eepromWriteEnableGpio = 6,
1232 		.wlanDisableGpio = 0,
1233 		.wlanLedGpio = 8,
1234 		.rxBandSelectGpio = 0xff,
1235 		.txrxgain = 0x10,
1236 		.swreg = 0,
1237 	},
1238 	.modalHeader2G = {
1239 		/* ar9300_modal_eep_header  2g */
1240 		/* 4 idle,t1,t2,b(4 bits per setting) */
1241 		.antCtrlCommon = LE32(0x110),
1242 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1243 		.antCtrlCommon2 = LE32(0x44444),
1244 
1245 		/*
1246 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1247 		 * rx1, rx12, b (2 bits each)
1248 		 */
1249 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1250 
1251 		/*
1252 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
1253 		 * for ar9280 (0xa20c/b20c 5:0)
1254 		 */
1255 		.xatten1DB = {0, 0, 0},
1256 
1257 		/*
1258 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1259 		 * for ar9280 (0xa20c/b20c 16:12
1260 		 */
1261 		.xatten1Margin = {0, 0, 0},
1262 		.tempSlope = 25,
1263 		.voltSlope = 0,
1264 
1265 		/*
1266 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1267 		 * channels in usual fbin coding format
1268 		 */
1269 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1270 
1271 		/*
1272 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1273 		 * if the register is per chain
1274 		 */
1275 		.noiseFloorThreshCh = {-1, 0, 0},
1276 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1277 		.quick_drop = 0,
1278 		.xpaBiasLvl = 0,
1279 		.txFrameToDataStart = 0x0e,
1280 		.txFrameToPaOn = 0x0e,
1281 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1282 		.antennaGain = 0,
1283 		.switchSettling = 0x2c,
1284 		.adcDesiredSize = -30,
1285 		.txEndToXpaOff = 0,
1286 		.txEndToRxOn = 0x2,
1287 		.txFrameToXpaOn = 0xe,
1288 		.thresh62 = 28,
1289 		.papdRateMaskHt20 = LE32(0x0c80c080),
1290 		.papdRateMaskHt40 = LE32(0x0080c080),
1291 		.switchcomspdt = 0,
1292 		.xlna_bias_strength = 0,
1293 		.futureModal = {
1294 			0, 0, 0, 0, 0, 0, 0,
1295 		},
1296 	},
1297 	.base_ext1 = {
1298 		.ant_div_control = 0,
1299 		.future = {0, 0},
1300 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1301 	},
1302 	.calFreqPier2G = {
1303 		FREQ2FBIN(2412, 1),
1304 		FREQ2FBIN(2437, 1),
1305 		FREQ2FBIN(2462, 1),
1306 	},
1307 	/* ar9300_cal_data_per_freq_op_loop 2g */
1308 	.calPierData2G = {
1309 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1310 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1311 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1312 	},
1313 	.calTarget_freqbin_Cck = {
1314 		FREQ2FBIN(2412, 1),
1315 		FREQ2FBIN(2472, 1),
1316 	},
1317 	.calTarget_freqbin_2G = {
1318 		FREQ2FBIN(2412, 1),
1319 		FREQ2FBIN(2437, 1),
1320 		FREQ2FBIN(2472, 1)
1321 	},
1322 	.calTarget_freqbin_2GHT20 = {
1323 		FREQ2FBIN(2412, 1),
1324 		FREQ2FBIN(2437, 1),
1325 		FREQ2FBIN(2472, 1)
1326 	},
1327 	.calTarget_freqbin_2GHT40 = {
1328 		FREQ2FBIN(2412, 1),
1329 		FREQ2FBIN(2437, 1),
1330 		FREQ2FBIN(2472, 1)
1331 	},
1332 	.calTargetPowerCck = {
1333 		/* 1L-5L,5S,11L,11S */
1334 		{ {34, 34, 34, 34} },
1335 		{ {34, 34, 34, 34} },
1336 	},
1337 	.calTargetPower2G = {
1338 		/* 6-24,36,48,54 */
1339 		{ {34, 34, 32, 32} },
1340 		{ {34, 34, 32, 32} },
1341 		{ {34, 34, 32, 32} },
1342 	},
1343 	.calTargetPower2GHT20 = {
1344 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1345 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1346 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1347 	},
1348 	.calTargetPower2GHT40 = {
1349 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1350 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1351 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1352 	},
1353 	.ctlIndex_2G =  {
1354 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1355 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1356 	},
1357 	.ctl_freqbin_2G = {
1358 		{
1359 			FREQ2FBIN(2412, 1),
1360 			FREQ2FBIN(2417, 1),
1361 			FREQ2FBIN(2457, 1),
1362 			FREQ2FBIN(2462, 1)
1363 		},
1364 		{
1365 			FREQ2FBIN(2412, 1),
1366 			FREQ2FBIN(2417, 1),
1367 			FREQ2FBIN(2462, 1),
1368 			0xFF,
1369 		},
1370 
1371 		{
1372 			FREQ2FBIN(2412, 1),
1373 			FREQ2FBIN(2417, 1),
1374 			FREQ2FBIN(2462, 1),
1375 			0xFF,
1376 		},
1377 		{
1378 			FREQ2FBIN(2422, 1),
1379 			FREQ2FBIN(2427, 1),
1380 			FREQ2FBIN(2447, 1),
1381 			FREQ2FBIN(2452, 1)
1382 		},
1383 
1384 		{
1385 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1386 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1387 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1388 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1389 		},
1390 
1391 		{
1392 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1393 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1394 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1395 			0,
1396 		},
1397 
1398 		{
1399 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1400 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1401 			FREQ2FBIN(2472, 1),
1402 			0,
1403 		},
1404 
1405 		{
1406 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1407 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1408 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1409 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1410 		},
1411 
1412 		{
1413 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1414 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1415 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1416 		},
1417 
1418 		{
1419 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1420 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1421 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1422 			0
1423 		},
1424 
1425 		{
1426 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1427 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1428 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1429 			0
1430 		},
1431 
1432 		{
1433 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1434 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1435 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1436 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1437 		}
1438 	},
1439 	.ctlPowerData_2G = {
1440 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1441 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1442 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1443 
1444 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1445 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1446 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1447 
1448 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1449 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1450 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1451 
1452 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1453 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1454 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1455 	},
1456 	.modalHeader5G = {
1457 		/* 4 idle,t1,t2,b (4 bits per setting) */
1458 		.antCtrlCommon = LE32(0x220),
1459 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1460 		.antCtrlCommon2 = LE32(0x44444),
1461 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1462 		.antCtrlChain = {
1463 			LE16(0x150), LE16(0x150), LE16(0x150),
1464 		},
1465 		/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1466 		.xatten1DB = {0, 0, 0},
1467 
1468 		/*
1469 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1470 		 * for merlin (0xa20c/b20c 16:12
1471 		 */
1472 		.xatten1Margin = {0, 0, 0},
1473 		.tempSlope = 45,
1474 		.voltSlope = 0,
1475 		/* spurChans spur channels in usual fbin coding format */
1476 		.spurChans = {0, 0, 0, 0, 0},
1477 		/* noiseFloorThreshCh Check if the register is per chain */
1478 		.noiseFloorThreshCh = {-1, 0, 0},
1479 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1480 		.quick_drop = 0,
1481 		.xpaBiasLvl = 0,
1482 		.txFrameToDataStart = 0x0e,
1483 		.txFrameToPaOn = 0x0e,
1484 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1485 		.antennaGain = 0,
1486 		.switchSettling = 0x2d,
1487 		.adcDesiredSize = -30,
1488 		.txEndToXpaOff = 0,
1489 		.txEndToRxOn = 0x2,
1490 		.txFrameToXpaOn = 0xe,
1491 		.thresh62 = 28,
1492 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
1493 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
1494 		.switchcomspdt = 0,
1495 		.xlna_bias_strength = 0,
1496 		.futureModal = {
1497 			0, 0, 0, 0, 0, 0, 0,
1498 		},
1499 	},
1500 	.base_ext2 = {
1501 		.tempSlopeLow = 40,
1502 		.tempSlopeHigh = 50,
1503 		.xatten1DBLow = {0, 0, 0},
1504 		.xatten1MarginLow = {0, 0, 0},
1505 		.xatten1DBHigh = {0, 0, 0},
1506 		.xatten1MarginHigh = {0, 0, 0}
1507 	},
1508 	.calFreqPier5G = {
1509 		FREQ2FBIN(5180, 0),
1510 		FREQ2FBIN(5220, 0),
1511 		FREQ2FBIN(5320, 0),
1512 		FREQ2FBIN(5400, 0),
1513 		FREQ2FBIN(5500, 0),
1514 		FREQ2FBIN(5600, 0),
1515 		FREQ2FBIN(5700, 0),
1516 		FREQ2FBIN(5785, 0)
1517 	},
1518 	.calPierData5G = {
1519 		{
1520 			{0, 0, 0, 0, 0},
1521 			{0, 0, 0, 0, 0},
1522 			{0, 0, 0, 0, 0},
1523 			{0, 0, 0, 0, 0},
1524 			{0, 0, 0, 0, 0},
1525 			{0, 0, 0, 0, 0},
1526 			{0, 0, 0, 0, 0},
1527 			{0, 0, 0, 0, 0},
1528 		},
1529 		{
1530 			{0, 0, 0, 0, 0},
1531 			{0, 0, 0, 0, 0},
1532 			{0, 0, 0, 0, 0},
1533 			{0, 0, 0, 0, 0},
1534 			{0, 0, 0, 0, 0},
1535 			{0, 0, 0, 0, 0},
1536 			{0, 0, 0, 0, 0},
1537 			{0, 0, 0, 0, 0},
1538 		},
1539 		{
1540 			{0, 0, 0, 0, 0},
1541 			{0, 0, 0, 0, 0},
1542 			{0, 0, 0, 0, 0},
1543 			{0, 0, 0, 0, 0},
1544 			{0, 0, 0, 0, 0},
1545 			{0, 0, 0, 0, 0},
1546 			{0, 0, 0, 0, 0},
1547 			{0, 0, 0, 0, 0},
1548 		},
1549 
1550 	},
1551 	.calTarget_freqbin_5G = {
1552 		FREQ2FBIN(5180, 0),
1553 		FREQ2FBIN(5240, 0),
1554 		FREQ2FBIN(5320, 0),
1555 		FREQ2FBIN(5400, 0),
1556 		FREQ2FBIN(5500, 0),
1557 		FREQ2FBIN(5600, 0),
1558 		FREQ2FBIN(5700, 0),
1559 		FREQ2FBIN(5825, 0)
1560 	},
1561 	.calTarget_freqbin_5GHT20 = {
1562 		FREQ2FBIN(5180, 0),
1563 		FREQ2FBIN(5240, 0),
1564 		FREQ2FBIN(5320, 0),
1565 		FREQ2FBIN(5400, 0),
1566 		FREQ2FBIN(5500, 0),
1567 		FREQ2FBIN(5700, 0),
1568 		FREQ2FBIN(5745, 0),
1569 		FREQ2FBIN(5825, 0)
1570 	},
1571 	.calTarget_freqbin_5GHT40 = {
1572 		FREQ2FBIN(5180, 0),
1573 		FREQ2FBIN(5240, 0),
1574 		FREQ2FBIN(5320, 0),
1575 		FREQ2FBIN(5400, 0),
1576 		FREQ2FBIN(5500, 0),
1577 		FREQ2FBIN(5700, 0),
1578 		FREQ2FBIN(5745, 0),
1579 		FREQ2FBIN(5825, 0)
1580 	},
1581 	.calTargetPower5G = {
1582 		/* 6-24,36,48,54 */
1583 		{ {30, 30, 28, 24} },
1584 		{ {30, 30, 28, 24} },
1585 		{ {30, 30, 28, 24} },
1586 		{ {30, 30, 28, 24} },
1587 		{ {30, 30, 28, 24} },
1588 		{ {30, 30, 28, 24} },
1589 		{ {30, 30, 28, 24} },
1590 		{ {30, 30, 28, 24} },
1591 	},
1592 	.calTargetPower5GHT20 = {
1593 		/*
1594 		 * 0_8_16,1-3_9-11_17-19,
1595 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1596 		 */
1597 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1598 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1599 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1600 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1601 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1602 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1603 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1604 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1605 	},
1606 	.calTargetPower5GHT40 =  {
1607 		/*
1608 		 * 0_8_16,1-3_9-11_17-19,
1609 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1610 		 */
1611 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1612 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1613 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1614 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1615 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1616 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1617 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1618 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1619 	},
1620 	.ctlIndex_5G =  {
1621 		0x10, 0x16, 0x18, 0x40, 0x46,
1622 		0x48, 0x30, 0x36, 0x38
1623 	},
1624 	.ctl_freqbin_5G =  {
1625 		{
1626 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1627 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1628 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1629 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1630 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1631 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1632 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1633 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1634 		},
1635 		{
1636 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1637 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1638 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1639 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1640 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1641 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1642 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1643 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1644 		},
1645 
1646 		{
1647 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1648 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1649 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1650 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1651 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1652 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1653 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1654 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1655 		},
1656 
1657 		{
1658 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1659 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1660 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1661 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1662 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1663 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1664 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1665 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1666 		},
1667 
1668 		{
1669 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1670 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1671 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1672 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1673 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1674 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1675 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1676 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1677 		},
1678 
1679 		{
1680 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1681 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1682 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1683 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1684 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1685 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1686 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1687 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1688 		},
1689 
1690 		{
1691 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1692 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1693 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1694 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1695 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1696 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1697 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1698 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1699 		},
1700 
1701 		{
1702 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1703 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1704 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1705 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1706 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1707 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1708 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1709 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1710 		},
1711 
1712 		{
1713 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1714 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1715 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1716 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1717 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1718 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1719 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1720 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1721 		}
1722 	},
1723 	.ctlPowerData_5G = {
1724 		{
1725 			{
1726 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1727 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1728 			}
1729 		},
1730 		{
1731 			{
1732 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1733 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1734 			}
1735 		},
1736 		{
1737 			{
1738 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1739 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1740 			}
1741 		},
1742 		{
1743 			{
1744 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1745 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1746 			}
1747 		},
1748 		{
1749 			{
1750 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1751 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1752 			}
1753 		},
1754 		{
1755 			{
1756 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1757 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1758 			}
1759 		},
1760 		{
1761 			{
1762 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1763 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1764 			}
1765 		},
1766 		{
1767 			{
1768 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1769 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1770 			}
1771 		},
1772 		{
1773 			{
1774 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1775 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1776 			}
1777 		},
1778 	}
1779 };
1780 
1781 
1782 static const struct ar9300_eeprom ar9300_x112 = {
1783 	.eepromVersion = 2,
1784 	.templateVersion = 5,
1785 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1786 	.custData = {"x112-041-f0000"},
1787 	.baseEepHeader = {
1788 		.regDmn = { LE16(0), LE16(0x1f) },
1789 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1790 		.opCapFlags = {
1791 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1792 			.eepMisc = 0,
1793 		},
1794 		.rfSilent = 0,
1795 		.blueToothOptions = 0,
1796 		.deviceCap = 0,
1797 		.deviceType = 5, /* takes lower byte in eeprom location */
1798 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1799 		.params_for_tuning_caps = {0, 0},
1800 		.featureEnable = 0x0d,
1801 		/*
1802 		 * bit0 - enable tx temp comp - disabled
1803 		 * bit1 - enable tx volt comp - disabled
1804 		 * bit2 - enable fastclock - enabled
1805 		 * bit3 - enable doubling - enabled
1806 		 * bit4 - enable internal regulator - disabled
1807 		 * bit5 - enable pa predistortion - disabled
1808 		 */
1809 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1810 		.eepromWriteEnableGpio = 6,
1811 		.wlanDisableGpio = 0,
1812 		.wlanLedGpio = 8,
1813 		.rxBandSelectGpio = 0xff,
1814 		.txrxgain = 0x0,
1815 		.swreg = 0,
1816 	},
1817 	.modalHeader2G = {
1818 		/* ar9300_modal_eep_header  2g */
1819 		/* 4 idle,t1,t2,b(4 bits per setting) */
1820 		.antCtrlCommon = LE32(0x110),
1821 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1822 		.antCtrlCommon2 = LE32(0x22222),
1823 
1824 		/*
1825 		 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1826 		 * rx1, rx12, b (2 bits each)
1827 		 */
1828 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1829 
1830 		/*
1831 		 * xatten1DB[AR9300_max_chains];  3 xatten1_db
1832 		 * for ar9280 (0xa20c/b20c 5:0)
1833 		 */
1834 		.xatten1DB = {0x1b, 0x1b, 0x1b},
1835 
1836 		/*
1837 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1838 		 * for ar9280 (0xa20c/b20c 16:12
1839 		 */
1840 		.xatten1Margin = {0x15, 0x15, 0x15},
1841 		.tempSlope = 50,
1842 		.voltSlope = 0,
1843 
1844 		/*
1845 		 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1846 		 * channels in usual fbin coding format
1847 		 */
1848 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1849 
1850 		/*
1851 		 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1852 		 * if the register is per chain
1853 		 */
1854 		.noiseFloorThreshCh = {-1, 0, 0},
1855 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1856 		.quick_drop = 0,
1857 		.xpaBiasLvl = 0,
1858 		.txFrameToDataStart = 0x0e,
1859 		.txFrameToPaOn = 0x0e,
1860 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1861 		.antennaGain = 0,
1862 		.switchSettling = 0x2c,
1863 		.adcDesiredSize = -30,
1864 		.txEndToXpaOff = 0,
1865 		.txEndToRxOn = 0x2,
1866 		.txFrameToXpaOn = 0xe,
1867 		.thresh62 = 28,
1868 		.papdRateMaskHt20 = LE32(0x0c80c080),
1869 		.papdRateMaskHt40 = LE32(0x0080c080),
1870 		.switchcomspdt = 0,
1871 		.xlna_bias_strength = 0,
1872 		.futureModal = {
1873 			0, 0, 0, 0, 0, 0, 0,
1874 		},
1875 	},
1876 	.base_ext1 = {
1877 		.ant_div_control = 0,
1878 		.future = {0, 0},
1879 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1880 	},
1881 	.calFreqPier2G = {
1882 		FREQ2FBIN(2412, 1),
1883 		FREQ2FBIN(2437, 1),
1884 		FREQ2FBIN(2472, 1),
1885 	},
1886 	/* ar9300_cal_data_per_freq_op_loop 2g */
1887 	.calPierData2G = {
1888 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1889 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1890 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1891 	},
1892 	.calTarget_freqbin_Cck = {
1893 		FREQ2FBIN(2412, 1),
1894 		FREQ2FBIN(2472, 1),
1895 	},
1896 	.calTarget_freqbin_2G = {
1897 		FREQ2FBIN(2412, 1),
1898 		FREQ2FBIN(2437, 1),
1899 		FREQ2FBIN(2472, 1)
1900 	},
1901 	.calTarget_freqbin_2GHT20 = {
1902 		FREQ2FBIN(2412, 1),
1903 		FREQ2FBIN(2437, 1),
1904 		FREQ2FBIN(2472, 1)
1905 	},
1906 	.calTarget_freqbin_2GHT40 = {
1907 		FREQ2FBIN(2412, 1),
1908 		FREQ2FBIN(2437, 1),
1909 		FREQ2FBIN(2472, 1)
1910 	},
1911 	.calTargetPowerCck = {
1912 		/* 1L-5L,5S,11L,11s */
1913 		{ {38, 38, 38, 38} },
1914 		{ {38, 38, 38, 38} },
1915 	},
1916 	.calTargetPower2G = {
1917 		/* 6-24,36,48,54 */
1918 		{ {38, 38, 36, 34} },
1919 		{ {38, 38, 36, 34} },
1920 		{ {38, 38, 34, 32} },
1921 	},
1922 	.calTargetPower2GHT20 = {
1923 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1924 		{ {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1925 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1926 	},
1927 	.calTargetPower2GHT40 = {
1928 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1929 		{ {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1930 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1931 	},
1932 	.ctlIndex_2G =  {
1933 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1934 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1935 	},
1936 	.ctl_freqbin_2G = {
1937 		{
1938 			FREQ2FBIN(2412, 1),
1939 			FREQ2FBIN(2417, 1),
1940 			FREQ2FBIN(2457, 1),
1941 			FREQ2FBIN(2462, 1)
1942 		},
1943 		{
1944 			FREQ2FBIN(2412, 1),
1945 			FREQ2FBIN(2417, 1),
1946 			FREQ2FBIN(2462, 1),
1947 			0xFF,
1948 		},
1949 
1950 		{
1951 			FREQ2FBIN(2412, 1),
1952 			FREQ2FBIN(2417, 1),
1953 			FREQ2FBIN(2462, 1),
1954 			0xFF,
1955 		},
1956 		{
1957 			FREQ2FBIN(2422, 1),
1958 			FREQ2FBIN(2427, 1),
1959 			FREQ2FBIN(2447, 1),
1960 			FREQ2FBIN(2452, 1)
1961 		},
1962 
1963 		{
1964 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1965 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1966 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1967 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1968 		},
1969 
1970 		{
1971 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1972 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1973 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1974 			0,
1975 		},
1976 
1977 		{
1978 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1979 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1980 			FREQ2FBIN(2472, 1),
1981 			0,
1982 		},
1983 
1984 		{
1985 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1986 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1987 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1988 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1989 		},
1990 
1991 		{
1992 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1993 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1994 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1995 		},
1996 
1997 		{
1998 			/* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1999 			/* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2000 			/* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2001 			0
2002 		},
2003 
2004 		{
2005 			/* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2006 			/* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2007 			/* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2008 			0
2009 		},
2010 
2011 		{
2012 			/* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2013 			/* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2014 			/* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2015 			/* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2016 		}
2017 	},
2018 	.ctlPowerData_2G = {
2019 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2020 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2021 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2022 
2023 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2024 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2025 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2026 
2027 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2028 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2029 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2030 
2031 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2032 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2033 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2034 	},
2035 	.modalHeader5G = {
2036 		/* 4 idle,t1,t2,b (4 bits per setting) */
2037 		.antCtrlCommon = LE32(0x110),
2038 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2039 		.antCtrlCommon2 = LE32(0x22222),
2040 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2041 		.antCtrlChain = {
2042 			LE16(0x0), LE16(0x0), LE16(0x0),
2043 		},
2044 		/* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2045 		.xatten1DB = {0x13, 0x19, 0x17},
2046 
2047 		/*
2048 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2049 		 * for merlin (0xa20c/b20c 16:12
2050 		 */
2051 		.xatten1Margin = {0x19, 0x19, 0x19},
2052 		.tempSlope = 70,
2053 		.voltSlope = 15,
2054 		/* spurChans spur channels in usual fbin coding format */
2055 		.spurChans = {0, 0, 0, 0, 0},
2056 		/* noiseFloorThreshch check if the register is per chain */
2057 		.noiseFloorThreshCh = {-1, 0, 0},
2058 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2059 		.quick_drop = 0,
2060 		.xpaBiasLvl = 0,
2061 		.txFrameToDataStart = 0x0e,
2062 		.txFrameToPaOn = 0x0e,
2063 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2064 		.antennaGain = 0,
2065 		.switchSettling = 0x2d,
2066 		.adcDesiredSize = -30,
2067 		.txEndToXpaOff = 0,
2068 		.txEndToRxOn = 0x2,
2069 		.txFrameToXpaOn = 0xe,
2070 		.thresh62 = 28,
2071 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2072 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2073 		.switchcomspdt = 0,
2074 		.xlna_bias_strength = 0,
2075 		.futureModal = {
2076 			0, 0, 0, 0, 0, 0, 0,
2077 		},
2078 	},
2079 	.base_ext2 = {
2080 		.tempSlopeLow = 72,
2081 		.tempSlopeHigh = 105,
2082 		.xatten1DBLow = {0x10, 0x14, 0x10},
2083 		.xatten1MarginLow = {0x19, 0x19 , 0x19},
2084 		.xatten1DBHigh = {0x1d, 0x20, 0x24},
2085 		.xatten1MarginHigh = {0x10, 0x10, 0x10}
2086 	},
2087 	.calFreqPier5G = {
2088 		FREQ2FBIN(5180, 0),
2089 		FREQ2FBIN(5220, 0),
2090 		FREQ2FBIN(5320, 0),
2091 		FREQ2FBIN(5400, 0),
2092 		FREQ2FBIN(5500, 0),
2093 		FREQ2FBIN(5600, 0),
2094 		FREQ2FBIN(5700, 0),
2095 		FREQ2FBIN(5785, 0)
2096 	},
2097 	.calPierData5G = {
2098 		{
2099 			{0, 0, 0, 0, 0},
2100 			{0, 0, 0, 0, 0},
2101 			{0, 0, 0, 0, 0},
2102 			{0, 0, 0, 0, 0},
2103 			{0, 0, 0, 0, 0},
2104 			{0, 0, 0, 0, 0},
2105 			{0, 0, 0, 0, 0},
2106 			{0, 0, 0, 0, 0},
2107 		},
2108 		{
2109 			{0, 0, 0, 0, 0},
2110 			{0, 0, 0, 0, 0},
2111 			{0, 0, 0, 0, 0},
2112 			{0, 0, 0, 0, 0},
2113 			{0, 0, 0, 0, 0},
2114 			{0, 0, 0, 0, 0},
2115 			{0, 0, 0, 0, 0},
2116 			{0, 0, 0, 0, 0},
2117 		},
2118 		{
2119 			{0, 0, 0, 0, 0},
2120 			{0, 0, 0, 0, 0},
2121 			{0, 0, 0, 0, 0},
2122 			{0, 0, 0, 0, 0},
2123 			{0, 0, 0, 0, 0},
2124 			{0, 0, 0, 0, 0},
2125 			{0, 0, 0, 0, 0},
2126 			{0, 0, 0, 0, 0},
2127 		},
2128 
2129 	},
2130 	.calTarget_freqbin_5G = {
2131 		FREQ2FBIN(5180, 0),
2132 		FREQ2FBIN(5220, 0),
2133 		FREQ2FBIN(5320, 0),
2134 		FREQ2FBIN(5400, 0),
2135 		FREQ2FBIN(5500, 0),
2136 		FREQ2FBIN(5600, 0),
2137 		FREQ2FBIN(5725, 0),
2138 		FREQ2FBIN(5825, 0)
2139 	},
2140 	.calTarget_freqbin_5GHT20 = {
2141 		FREQ2FBIN(5180, 0),
2142 		FREQ2FBIN(5220, 0),
2143 		FREQ2FBIN(5320, 0),
2144 		FREQ2FBIN(5400, 0),
2145 		FREQ2FBIN(5500, 0),
2146 		FREQ2FBIN(5600, 0),
2147 		FREQ2FBIN(5725, 0),
2148 		FREQ2FBIN(5825, 0)
2149 	},
2150 	.calTarget_freqbin_5GHT40 = {
2151 		FREQ2FBIN(5180, 0),
2152 		FREQ2FBIN(5220, 0),
2153 		FREQ2FBIN(5320, 0),
2154 		FREQ2FBIN(5400, 0),
2155 		FREQ2FBIN(5500, 0),
2156 		FREQ2FBIN(5600, 0),
2157 		FREQ2FBIN(5725, 0),
2158 		FREQ2FBIN(5825, 0)
2159 	},
2160 	.calTargetPower5G = {
2161 		/* 6-24,36,48,54 */
2162 		{ {32, 32, 28, 26} },
2163 		{ {32, 32, 28, 26} },
2164 		{ {32, 32, 28, 26} },
2165 		{ {32, 32, 26, 24} },
2166 		{ {32, 32, 26, 24} },
2167 		{ {32, 32, 24, 22} },
2168 		{ {30, 30, 24, 22} },
2169 		{ {30, 30, 24, 22} },
2170 	},
2171 	.calTargetPower5GHT20 = {
2172 		/*
2173 		 * 0_8_16,1-3_9-11_17-19,
2174 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2175 		 */
2176 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2177 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2178 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2179 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2180 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2181 		{ {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2182 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2183 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2184 	},
2185 	.calTargetPower5GHT40 =  {
2186 		/*
2187 		 * 0_8_16,1-3_9-11_17-19,
2188 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2189 		 */
2190 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2191 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2192 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2193 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2194 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2195 		{ {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2196 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2197 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2198 	},
2199 	.ctlIndex_5G =  {
2200 		0x10, 0x16, 0x18, 0x40, 0x46,
2201 		0x48, 0x30, 0x36, 0x38
2202 	},
2203 	.ctl_freqbin_5G =  {
2204 		{
2205 			/* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2206 			/* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2207 			/* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2208 			/* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2209 			/* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2210 			/* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2211 			/* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2212 			/* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2213 		},
2214 		{
2215 			/* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2216 			/* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2217 			/* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2218 			/* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2219 			/* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2220 			/* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2221 			/* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2222 			/* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2223 		},
2224 
2225 		{
2226 			/* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2227 			/* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2228 			/* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2229 			/* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2230 			/* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2231 			/* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2232 			/* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2233 			/* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2234 		},
2235 
2236 		{
2237 			/* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2238 			/* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2239 			/* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2240 			/* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2241 			/* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2242 			/* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2243 			/* Data[3].ctledges[6].bchannel */ 0xFF,
2244 			/* Data[3].ctledges[7].bchannel */ 0xFF,
2245 		},
2246 
2247 		{
2248 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2249 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2250 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2251 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2252 			/* Data[4].ctledges[4].bchannel */ 0xFF,
2253 			/* Data[4].ctledges[5].bchannel */ 0xFF,
2254 			/* Data[4].ctledges[6].bchannel */ 0xFF,
2255 			/* Data[4].ctledges[7].bchannel */ 0xFF,
2256 		},
2257 
2258 		{
2259 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2260 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2261 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2262 			/* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2263 			/* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2264 			/* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2265 			/* Data[5].ctledges[6].bchannel */ 0xFF,
2266 			/* Data[5].ctledges[7].bchannel */ 0xFF
2267 		},
2268 
2269 		{
2270 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2271 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2272 			/* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2273 			/* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2274 			/* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2275 			/* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2276 			/* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2277 			/* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2278 		},
2279 
2280 		{
2281 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2282 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2283 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2284 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2285 			/* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2286 			/* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2287 			/* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2288 			/* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2289 		},
2290 
2291 		{
2292 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2293 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2294 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2295 			/* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2296 			/* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2297 			/* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2298 			/* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2299 			/* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2300 		}
2301 	},
2302 	.ctlPowerData_5G = {
2303 		{
2304 			{
2305 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2306 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2307 			}
2308 		},
2309 		{
2310 			{
2311 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2312 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2313 			}
2314 		},
2315 		{
2316 			{
2317 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2318 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2319 			}
2320 		},
2321 		{
2322 			{
2323 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2324 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2325 			}
2326 		},
2327 		{
2328 			{
2329 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2330 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2331 			}
2332 		},
2333 		{
2334 			{
2335 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2336 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2337 			}
2338 		},
2339 		{
2340 			{
2341 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2342 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2343 			}
2344 		},
2345 		{
2346 			{
2347 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2348 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2349 			}
2350 		},
2351 		{
2352 			{
2353 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2354 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2355 			}
2356 		},
2357 	}
2358 };
2359 
2360 static const struct ar9300_eeprom ar9300_h116 = {
2361 	.eepromVersion = 2,
2362 	.templateVersion = 4,
2363 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2364 	.custData = {"h116-041-f0000"},
2365 	.baseEepHeader = {
2366 		.regDmn = { LE16(0), LE16(0x1f) },
2367 		.txrxMask =  0x33, /* 4 bits tx and 4 bits rx */
2368 		.opCapFlags = {
2369 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2370 			.eepMisc = 0,
2371 		},
2372 		.rfSilent = 0,
2373 		.blueToothOptions = 0,
2374 		.deviceCap = 0,
2375 		.deviceType = 5, /* takes lower byte in eeprom location */
2376 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2377 		.params_for_tuning_caps = {0, 0},
2378 		.featureEnable = 0x0d,
2379 		 /*
2380 		  * bit0 - enable tx temp comp - disabled
2381 		  * bit1 - enable tx volt comp - disabled
2382 		  * bit2 - enable fastClock - enabled
2383 		  * bit3 - enable doubling - enabled
2384 		  * bit4 - enable internal regulator - disabled
2385 		  * bit5 - enable pa predistortion - disabled
2386 		  */
2387 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
2388 		.eepromWriteEnableGpio = 6,
2389 		.wlanDisableGpio = 0,
2390 		.wlanLedGpio = 8,
2391 		.rxBandSelectGpio = 0xff,
2392 		.txrxgain = 0x10,
2393 		.swreg = 0,
2394 	 },
2395 	.modalHeader2G = {
2396 	/* ar9300_modal_eep_header  2g */
2397 		/* 4 idle,t1,t2,b(4 bits per setting) */
2398 		.antCtrlCommon = LE32(0x110),
2399 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2400 		.antCtrlCommon2 = LE32(0x44444),
2401 
2402 		/*
2403 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2404 		 * rx1, rx12, b (2 bits each)
2405 		 */
2406 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2407 
2408 		/*
2409 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
2410 		 * for ar9280 (0xa20c/b20c 5:0)
2411 		 */
2412 		.xatten1DB = {0x1f, 0x1f, 0x1f},
2413 
2414 		/*
2415 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2416 		 * for ar9280 (0xa20c/b20c 16:12
2417 		 */
2418 		.xatten1Margin = {0x12, 0x12, 0x12},
2419 		.tempSlope = 25,
2420 		.voltSlope = 0,
2421 
2422 		/*
2423 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2424 		 * channels in usual fbin coding format
2425 		 */
2426 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2427 
2428 		/*
2429 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2430 		 * if the register is per chain
2431 		 */
2432 		.noiseFloorThreshCh = {-1, 0, 0},
2433 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2434 		.quick_drop = 0,
2435 		.xpaBiasLvl = 0,
2436 		.txFrameToDataStart = 0x0e,
2437 		.txFrameToPaOn = 0x0e,
2438 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2439 		.antennaGain = 0,
2440 		.switchSettling = 0x2c,
2441 		.adcDesiredSize = -30,
2442 		.txEndToXpaOff = 0,
2443 		.txEndToRxOn = 0x2,
2444 		.txFrameToXpaOn = 0xe,
2445 		.thresh62 = 28,
2446 		.papdRateMaskHt20 = LE32(0x0c80C080),
2447 		.papdRateMaskHt40 = LE32(0x0080C080),
2448 		.switchcomspdt = 0,
2449 		.xlna_bias_strength = 0,
2450 		.futureModal = {
2451 			0, 0, 0, 0, 0, 0, 0,
2452 		},
2453 	 },
2454 	 .base_ext1 = {
2455 		.ant_div_control = 0,
2456 		.future = {0, 0},
2457 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
2458 	 },
2459 	.calFreqPier2G = {
2460 		FREQ2FBIN(2412, 1),
2461 		FREQ2FBIN(2437, 1),
2462 		FREQ2FBIN(2462, 1),
2463 	 },
2464 	/* ar9300_cal_data_per_freq_op_loop 2g */
2465 	.calPierData2G = {
2466 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2467 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2468 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2469 	 },
2470 	.calTarget_freqbin_Cck = {
2471 		FREQ2FBIN(2412, 1),
2472 		FREQ2FBIN(2472, 1),
2473 	 },
2474 	.calTarget_freqbin_2G = {
2475 		FREQ2FBIN(2412, 1),
2476 		FREQ2FBIN(2437, 1),
2477 		FREQ2FBIN(2472, 1)
2478 	 },
2479 	.calTarget_freqbin_2GHT20 = {
2480 		FREQ2FBIN(2412, 1),
2481 		FREQ2FBIN(2437, 1),
2482 		FREQ2FBIN(2472, 1)
2483 	 },
2484 	.calTarget_freqbin_2GHT40 = {
2485 		FREQ2FBIN(2412, 1),
2486 		FREQ2FBIN(2437, 1),
2487 		FREQ2FBIN(2472, 1)
2488 	 },
2489 	.calTargetPowerCck = {
2490 		 /* 1L-5L,5S,11L,11S */
2491 		 { {34, 34, 34, 34} },
2492 		 { {34, 34, 34, 34} },
2493 	},
2494 	.calTargetPower2G = {
2495 		 /* 6-24,36,48,54 */
2496 		 { {34, 34, 32, 32} },
2497 		 { {34, 34, 32, 32} },
2498 		 { {34, 34, 32, 32} },
2499 	},
2500 	.calTargetPower2GHT20 = {
2501 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2502 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2503 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2504 	},
2505 	.calTargetPower2GHT40 = {
2506 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2507 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2508 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2509 	},
2510 	.ctlIndex_2G =  {
2511 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2512 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2513 	},
2514 	.ctl_freqbin_2G = {
2515 		{
2516 			FREQ2FBIN(2412, 1),
2517 			FREQ2FBIN(2417, 1),
2518 			FREQ2FBIN(2457, 1),
2519 			FREQ2FBIN(2462, 1)
2520 		},
2521 		{
2522 			FREQ2FBIN(2412, 1),
2523 			FREQ2FBIN(2417, 1),
2524 			FREQ2FBIN(2462, 1),
2525 			0xFF,
2526 		},
2527 
2528 		{
2529 			FREQ2FBIN(2412, 1),
2530 			FREQ2FBIN(2417, 1),
2531 			FREQ2FBIN(2462, 1),
2532 			0xFF,
2533 		},
2534 		{
2535 			FREQ2FBIN(2422, 1),
2536 			FREQ2FBIN(2427, 1),
2537 			FREQ2FBIN(2447, 1),
2538 			FREQ2FBIN(2452, 1)
2539 		},
2540 
2541 		{
2542 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2543 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2544 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2545 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2546 		},
2547 
2548 		{
2549 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2550 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2551 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2552 			0,
2553 		},
2554 
2555 		{
2556 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2557 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2558 			FREQ2FBIN(2472, 1),
2559 			0,
2560 		},
2561 
2562 		{
2563 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2564 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2565 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2566 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2567 		},
2568 
2569 		{
2570 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2571 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2572 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2573 		},
2574 
2575 		{
2576 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2577 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2578 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2579 			0
2580 		},
2581 
2582 		{
2583 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2584 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2585 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2586 			0
2587 		},
2588 
2589 		{
2590 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2591 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2592 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2593 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2594 		}
2595 	 },
2596 	.ctlPowerData_2G = {
2597 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2598 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2599 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2600 
2601 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2602 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2603 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2604 
2605 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2606 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2607 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2608 
2609 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2610 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2611 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2612 	 },
2613 	.modalHeader5G = {
2614 		/* 4 idle,t1,t2,b (4 bits per setting) */
2615 		.antCtrlCommon = LE32(0x220),
2616 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2617 		.antCtrlCommon2 = LE32(0x44444),
2618 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2619 		.antCtrlChain = {
2620 			LE16(0x150), LE16(0x150), LE16(0x150),
2621 		},
2622 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2623 		.xatten1DB = {0x19, 0x19, 0x19},
2624 
2625 		/*
2626 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2627 		 * for merlin (0xa20c/b20c 16:12
2628 		 */
2629 		.xatten1Margin = {0x14, 0x14, 0x14},
2630 		.tempSlope = 70,
2631 		.voltSlope = 0,
2632 		/* spurChans spur channels in usual fbin coding format */
2633 		.spurChans = {0, 0, 0, 0, 0},
2634 		/* noiseFloorThreshCh Check if the register is per chain */
2635 		.noiseFloorThreshCh = {-1, 0, 0},
2636 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2637 		.quick_drop = 0,
2638 		.xpaBiasLvl = 0,
2639 		.txFrameToDataStart = 0x0e,
2640 		.txFrameToPaOn = 0x0e,
2641 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2642 		.antennaGain = 0,
2643 		.switchSettling = 0x2d,
2644 		.adcDesiredSize = -30,
2645 		.txEndToXpaOff = 0,
2646 		.txEndToRxOn = 0x2,
2647 		.txFrameToXpaOn = 0xe,
2648 		.thresh62 = 28,
2649 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2650 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2651 		.switchcomspdt = 0,
2652 		.xlna_bias_strength = 0,
2653 		.futureModal = {
2654 			0, 0, 0, 0, 0, 0, 0,
2655 		},
2656 	 },
2657 	.base_ext2 = {
2658 		.tempSlopeLow = 35,
2659 		.tempSlopeHigh = 50,
2660 		.xatten1DBLow = {0, 0, 0},
2661 		.xatten1MarginLow = {0, 0, 0},
2662 		.xatten1DBHigh = {0, 0, 0},
2663 		.xatten1MarginHigh = {0, 0, 0}
2664 	 },
2665 	.calFreqPier5G = {
2666 		FREQ2FBIN(5160, 0),
2667 		FREQ2FBIN(5220, 0),
2668 		FREQ2FBIN(5320, 0),
2669 		FREQ2FBIN(5400, 0),
2670 		FREQ2FBIN(5500, 0),
2671 		FREQ2FBIN(5600, 0),
2672 		FREQ2FBIN(5700, 0),
2673 		FREQ2FBIN(5785, 0)
2674 	},
2675 	.calPierData5G = {
2676 			{
2677 				{0, 0, 0, 0, 0},
2678 				{0, 0, 0, 0, 0},
2679 				{0, 0, 0, 0, 0},
2680 				{0, 0, 0, 0, 0},
2681 				{0, 0, 0, 0, 0},
2682 				{0, 0, 0, 0, 0},
2683 				{0, 0, 0, 0, 0},
2684 				{0, 0, 0, 0, 0},
2685 			},
2686 			{
2687 				{0, 0, 0, 0, 0},
2688 				{0, 0, 0, 0, 0},
2689 				{0, 0, 0, 0, 0},
2690 				{0, 0, 0, 0, 0},
2691 				{0, 0, 0, 0, 0},
2692 				{0, 0, 0, 0, 0},
2693 				{0, 0, 0, 0, 0},
2694 				{0, 0, 0, 0, 0},
2695 			},
2696 			{
2697 				{0, 0, 0, 0, 0},
2698 				{0, 0, 0, 0, 0},
2699 				{0, 0, 0, 0, 0},
2700 				{0, 0, 0, 0, 0},
2701 				{0, 0, 0, 0, 0},
2702 				{0, 0, 0, 0, 0},
2703 				{0, 0, 0, 0, 0},
2704 				{0, 0, 0, 0, 0},
2705 			},
2706 
2707 	},
2708 	.calTarget_freqbin_5G = {
2709 		FREQ2FBIN(5180, 0),
2710 		FREQ2FBIN(5240, 0),
2711 		FREQ2FBIN(5320, 0),
2712 		FREQ2FBIN(5400, 0),
2713 		FREQ2FBIN(5500, 0),
2714 		FREQ2FBIN(5600, 0),
2715 		FREQ2FBIN(5700, 0),
2716 		FREQ2FBIN(5825, 0)
2717 	},
2718 	.calTarget_freqbin_5GHT20 = {
2719 		FREQ2FBIN(5180, 0),
2720 		FREQ2FBIN(5240, 0),
2721 		FREQ2FBIN(5320, 0),
2722 		FREQ2FBIN(5400, 0),
2723 		FREQ2FBIN(5500, 0),
2724 		FREQ2FBIN(5700, 0),
2725 		FREQ2FBIN(5745, 0),
2726 		FREQ2FBIN(5825, 0)
2727 	},
2728 	.calTarget_freqbin_5GHT40 = {
2729 		FREQ2FBIN(5180, 0),
2730 		FREQ2FBIN(5240, 0),
2731 		FREQ2FBIN(5320, 0),
2732 		FREQ2FBIN(5400, 0),
2733 		FREQ2FBIN(5500, 0),
2734 		FREQ2FBIN(5700, 0),
2735 		FREQ2FBIN(5745, 0),
2736 		FREQ2FBIN(5825, 0)
2737 	 },
2738 	.calTargetPower5G = {
2739 		/* 6-24,36,48,54 */
2740 		{ {30, 30, 28, 24} },
2741 		{ {30, 30, 28, 24} },
2742 		{ {30, 30, 28, 24} },
2743 		{ {30, 30, 28, 24} },
2744 		{ {30, 30, 28, 24} },
2745 		{ {30, 30, 28, 24} },
2746 		{ {30, 30, 28, 24} },
2747 		{ {30, 30, 28, 24} },
2748 	 },
2749 	.calTargetPower5GHT20 = {
2750 		/*
2751 		 * 0_8_16,1-3_9-11_17-19,
2752 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2753 		 */
2754 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2755 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2756 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2757 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2758 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2759 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2760 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2761 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2762 	 },
2763 	.calTargetPower5GHT40 =  {
2764 		/*
2765 		 * 0_8_16,1-3_9-11_17-19,
2766 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2767 		 */
2768 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2769 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2770 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2771 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2772 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2773 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2774 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2775 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2776 	 },
2777 	.ctlIndex_5G =  {
2778 		0x10, 0x16, 0x18, 0x40, 0x46,
2779 		0x48, 0x30, 0x36, 0x38
2780 	},
2781 	.ctl_freqbin_5G =  {
2782 		{
2783 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2784 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2785 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2786 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2787 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2788 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2789 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2790 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2791 		},
2792 		{
2793 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2794 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2795 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2796 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2797 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2798 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2799 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2800 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2801 		},
2802 
2803 		{
2804 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2805 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2806 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2807 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2808 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2809 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2810 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2811 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2812 		},
2813 
2814 		{
2815 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2816 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2817 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2818 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2819 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2820 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2821 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
2822 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
2823 		},
2824 
2825 		{
2826 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2827 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2828 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2829 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2830 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
2831 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
2832 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
2833 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
2834 		},
2835 
2836 		{
2837 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2838 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2839 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2840 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2841 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2842 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2843 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
2844 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
2845 		},
2846 
2847 		{
2848 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2849 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2850 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2851 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2852 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2853 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2854 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2855 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2856 		},
2857 
2858 		{
2859 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2860 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2861 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2862 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2863 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2864 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2865 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2866 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2867 		},
2868 
2869 		{
2870 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2871 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2872 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2873 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2874 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2875 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2876 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2877 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2878 		}
2879 	 },
2880 	.ctlPowerData_5G = {
2881 		{
2882 			{
2883 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2884 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2885 			}
2886 		},
2887 		{
2888 			{
2889 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2890 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2891 			}
2892 		},
2893 		{
2894 			{
2895 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2896 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2897 			}
2898 		},
2899 		{
2900 			{
2901 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2902 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2903 			}
2904 		},
2905 		{
2906 			{
2907 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2908 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2909 			}
2910 		},
2911 		{
2912 			{
2913 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2914 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2915 			}
2916 		},
2917 		{
2918 			{
2919 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2920 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2921 			}
2922 		},
2923 		{
2924 			{
2925 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2926 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2927 			}
2928 		},
2929 		{
2930 			{
2931 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2932 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2933 			}
2934 		},
2935 	 }
2936 };
2937 
2938 
2939 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2940 	&ar9300_default,
2941 	&ar9300_x112,
2942 	&ar9300_h116,
2943 	&ar9300_h112,
2944 	&ar9300_x113,
2945 };
2946 
2947 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2948 {
2949 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2950 	int it;
2951 
2952 	for (it = 0; it < N_LOOP; it++)
2953 		if (ar9300_eep_templates[it]->templateVersion == id)
2954 			return ar9300_eep_templates[it];
2955 	return NULL;
2956 #undef N_LOOP
2957 }
2958 
2959 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2960 {
2961 	return 0;
2962 }
2963 
2964 static int interpolate(int x, int xa, int xb, int ya, int yb)
2965 {
2966 	int bf, factor, plus;
2967 
2968 	bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2969 	factor = bf / 2;
2970 	plus = bf % 2;
2971 	return ya + factor + plus;
2972 }
2973 
2974 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
2975 				      enum eeprom_param param)
2976 {
2977 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2978 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
2979 
2980 	switch (param) {
2981 	case EEP_MAC_LSW:
2982 		return get_unaligned_be16(eep->macAddr);
2983 	case EEP_MAC_MID:
2984 		return get_unaligned_be16(eep->macAddr + 2);
2985 	case EEP_MAC_MSW:
2986 		return get_unaligned_be16(eep->macAddr + 4);
2987 	case EEP_REG_0:
2988 		return le16_to_cpu(pBase->regDmn[0]);
2989 	case EEP_OP_CAP:
2990 		return pBase->deviceCap;
2991 	case EEP_OP_MODE:
2992 		return pBase->opCapFlags.opFlags;
2993 	case EEP_RF_SILENT:
2994 		return pBase->rfSilent;
2995 	case EEP_TX_MASK:
2996 		return (pBase->txrxMask >> 4) & 0xf;
2997 	case EEP_RX_MASK:
2998 		return pBase->txrxMask & 0xf;
2999 	case EEP_PAPRD:
3000 		return !!(pBase->featureEnable & BIT(5));
3001 	case EEP_CHAIN_MASK_REDUCE:
3002 		return (pBase->miscConfiguration >> 0x3) & 0x1;
3003 	case EEP_ANT_DIV_CTL1:
3004 		if (AR_SREV_9565(ah))
3005 			return AR9300_EEP_ANTDIV_CONTROL_DEFAULT_VALUE;
3006 		else
3007 			return eep->base_ext1.ant_div_control;
3008 	case EEP_ANTENNA_GAIN_5G:
3009 		return eep->modalHeader5G.antennaGain;
3010 	case EEP_ANTENNA_GAIN_2G:
3011 		return eep->modalHeader2G.antennaGain;
3012 	default:
3013 		return 0;
3014 	}
3015 }
3016 
3017 static bool ar9300_eeprom_read_byte(struct ath_hw *ah, int address,
3018 				    u8 *buffer)
3019 {
3020 	u16 val;
3021 
3022 	if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
3023 		return false;
3024 
3025 	*buffer = (val >> (8 * (address % 2))) & 0xff;
3026 	return true;
3027 }
3028 
3029 static bool ar9300_eeprom_read_word(struct ath_hw *ah, int address,
3030 				    u8 *buffer)
3031 {
3032 	u16 val;
3033 
3034 	if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
3035 		return false;
3036 
3037 	buffer[0] = val >> 8;
3038 	buffer[1] = val & 0xff;
3039 
3040 	return true;
3041 }
3042 
3043 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3044 			       int count)
3045 {
3046 	struct ath_common *common = ath9k_hw_common(ah);
3047 	int i;
3048 
3049 	if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3050 		ath_dbg(common, EEPROM, "eeprom address not in range\n");
3051 		return false;
3052 	}
3053 
3054 	/*
3055 	 * Since we're reading the bytes in reverse order from a little-endian
3056 	 * word stream, an even address means we only use the lower half of
3057 	 * the 16-bit word at that address
3058 	 */
3059 	if (address % 2 == 0) {
3060 		if (!ar9300_eeprom_read_byte(ah, address--, buffer++))
3061 			goto error;
3062 
3063 		count--;
3064 	}
3065 
3066 	for (i = 0; i < count / 2; i++) {
3067 		if (!ar9300_eeprom_read_word(ah, address, buffer))
3068 			goto error;
3069 
3070 		address -= 2;
3071 		buffer += 2;
3072 	}
3073 
3074 	if (count % 2)
3075 		if (!ar9300_eeprom_read_byte(ah, address, buffer))
3076 			goto error;
3077 
3078 	return true;
3079 
3080 error:
3081 	ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
3082 		address);
3083 	return false;
3084 }
3085 
3086 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3087 {
3088 	REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3089 
3090 	if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3091 			   AR9300_OTP_STATUS_VALID, 1000))
3092 		return false;
3093 
3094 	*data = REG_READ(ah, AR9300_OTP_READ_DATA);
3095 	return true;
3096 }
3097 
3098 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3099 			    int count)
3100 {
3101 	u32 data;
3102 	int i;
3103 
3104 	for (i = 0; i < count; i++) {
3105 		int offset = 8 * ((address - i) % 4);
3106 		if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3107 			return false;
3108 
3109 		buffer[i] = (data >> offset) & 0xff;
3110 	}
3111 
3112 	return true;
3113 }
3114 
3115 
3116 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3117 				   int *length, int *major, int *minor)
3118 {
3119 	unsigned long value[4];
3120 
3121 	value[0] = best[0];
3122 	value[1] = best[1];
3123 	value[2] = best[2];
3124 	value[3] = best[3];
3125 	*code = ((value[0] >> 5) & 0x0007);
3126 	*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3127 	*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3128 	*major = (value[2] & 0x000f);
3129 	*minor = (value[3] & 0x00ff);
3130 }
3131 
3132 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3133 {
3134 	int it, checksum = 0;
3135 
3136 	for (it = 0; it < dsize; it++) {
3137 		checksum += data[it];
3138 		checksum &= 0xffff;
3139 	}
3140 
3141 	return checksum;
3142 }
3143 
3144 static bool ar9300_uncompress_block(struct ath_hw *ah,
3145 				    u8 *mptr,
3146 				    int mdataSize,
3147 				    u8 *block,
3148 				    int size)
3149 {
3150 	int it;
3151 	int spot;
3152 	int offset;
3153 	int length;
3154 	struct ath_common *common = ath9k_hw_common(ah);
3155 
3156 	spot = 0;
3157 
3158 	for (it = 0; it < size; it += (length+2)) {
3159 		offset = block[it];
3160 		offset &= 0xff;
3161 		spot += offset;
3162 		length = block[it+1];
3163 		length &= 0xff;
3164 
3165 		if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3166 			ath_dbg(common, EEPROM,
3167 				"Restore at %d: spot=%d offset=%d length=%d\n",
3168 				it, spot, offset, length);
3169 			memcpy(&mptr[spot], &block[it+2], length);
3170 			spot += length;
3171 		} else if (length > 0) {
3172 			ath_dbg(common, EEPROM,
3173 				"Bad restore at %d: spot=%d offset=%d length=%d\n",
3174 				it, spot, offset, length);
3175 			return false;
3176 		}
3177 	}
3178 	return true;
3179 }
3180 
3181 static int ar9300_compress_decision(struct ath_hw *ah,
3182 				    int it,
3183 				    int code,
3184 				    int reference,
3185 				    u8 *mptr,
3186 				    u8 *word, int length, int mdata_size)
3187 {
3188 	struct ath_common *common = ath9k_hw_common(ah);
3189 	const struct ar9300_eeprom *eep = NULL;
3190 
3191 	switch (code) {
3192 	case _CompressNone:
3193 		if (length != mdata_size) {
3194 			ath_dbg(common, EEPROM,
3195 				"EEPROM structure size mismatch memory=%d eeprom=%d\n",
3196 				mdata_size, length);
3197 			return -1;
3198 		}
3199 		memcpy(mptr, word + COMP_HDR_LEN, length);
3200 		ath_dbg(common, EEPROM,
3201 			"restored eeprom %d: uncompressed, length %d\n",
3202 			it, length);
3203 		break;
3204 	case _CompressBlock:
3205 		if (reference == 0) {
3206 		} else {
3207 			eep = ar9003_eeprom_struct_find_by_id(reference);
3208 			if (eep == NULL) {
3209 				ath_dbg(common, EEPROM,
3210 					"can't find reference eeprom struct %d\n",
3211 					reference);
3212 				return -1;
3213 			}
3214 			memcpy(mptr, eep, mdata_size);
3215 		}
3216 		ath_dbg(common, EEPROM,
3217 			"restore eeprom %d: block, reference %d, length %d\n",
3218 			it, reference, length);
3219 		ar9300_uncompress_block(ah, mptr, mdata_size,
3220 					(word + COMP_HDR_LEN), length);
3221 		break;
3222 	default:
3223 		ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
3224 		return -1;
3225 	}
3226 	return 0;
3227 }
3228 
3229 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3230 			       int count);
3231 
3232 static bool ar9300_check_header(void *data)
3233 {
3234 	u32 *word = data;
3235 	return !(*word == 0 || *word == ~0);
3236 }
3237 
3238 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3239 				       int base_addr)
3240 {
3241 	u8 header[4];
3242 
3243 	if (!read(ah, base_addr, header, 4))
3244 		return false;
3245 
3246 	return ar9300_check_header(header);
3247 }
3248 
3249 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3250 				       int mdata_size)
3251 {
3252 	u16 *data = (u16 *) mptr;
3253 	int i;
3254 
3255 	for (i = 0; i < mdata_size / 2; i++, data++)
3256 		ath9k_hw_nvram_read(ah, i, data);
3257 
3258 	return 0;
3259 }
3260 /*
3261  * Read the configuration data from the eeprom.
3262  * The data can be put in any specified memory buffer.
3263  *
3264  * Returns -1 on error.
3265  * Returns address of next memory location on success.
3266  */
3267 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3268 					  u8 *mptr, int mdata_size)
3269 {
3270 #define MDEFAULT 15
3271 #define MSTATE 100
3272 	int cptr;
3273 	u8 *word;
3274 	int code;
3275 	int reference, length, major, minor;
3276 	int osize;
3277 	int it;
3278 	u16 checksum, mchecksum;
3279 	struct ath_common *common = ath9k_hw_common(ah);
3280 	struct ar9300_eeprom *eep;
3281 	eeprom_read_op read;
3282 
3283 	if (ath9k_hw_use_flash(ah)) {
3284 		u8 txrx;
3285 
3286 		ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3287 
3288 		/* check if eeprom contains valid data */
3289 		eep = (struct ar9300_eeprom *) mptr;
3290 		txrx = eep->baseEepHeader.txrxMask;
3291 		if (txrx != 0 && txrx != 0xff)
3292 			return 0;
3293 	}
3294 
3295 	word = kzalloc(2048, GFP_KERNEL);
3296 	if (!word)
3297 		return -ENOMEM;
3298 
3299 	memcpy(mptr, &ar9300_default, mdata_size);
3300 
3301 	read = ar9300_read_eeprom;
3302 	if (AR_SREV_9485(ah))
3303 		cptr = AR9300_BASE_ADDR_4K;
3304 	else if (AR_SREV_9330(ah))
3305 		cptr = AR9300_BASE_ADDR_512;
3306 	else
3307 		cptr = AR9300_BASE_ADDR;
3308 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3309 		cptr);
3310 	if (ar9300_check_eeprom_header(ah, read, cptr))
3311 		goto found;
3312 
3313 	cptr = AR9300_BASE_ADDR_512;
3314 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3315 		cptr);
3316 	if (ar9300_check_eeprom_header(ah, read, cptr))
3317 		goto found;
3318 
3319 	read = ar9300_read_otp;
3320 	cptr = AR9300_BASE_ADDR;
3321 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3322 	if (ar9300_check_eeprom_header(ah, read, cptr))
3323 		goto found;
3324 
3325 	cptr = AR9300_BASE_ADDR_512;
3326 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3327 	if (ar9300_check_eeprom_header(ah, read, cptr))
3328 		goto found;
3329 
3330 	goto fail;
3331 
3332 found:
3333 	ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
3334 
3335 	for (it = 0; it < MSTATE; it++) {
3336 		if (!read(ah, cptr, word, COMP_HDR_LEN))
3337 			goto fail;
3338 
3339 		if (!ar9300_check_header(word))
3340 			break;
3341 
3342 		ar9300_comp_hdr_unpack(word, &code, &reference,
3343 				       &length, &major, &minor);
3344 		ath_dbg(common, EEPROM,
3345 			"Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3346 			cptr, code, reference, length, major, minor);
3347 		if ((!AR_SREV_9485(ah) && length >= 1024) ||
3348 		    (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3349 			ath_dbg(common, EEPROM, "Skipping bad header\n");
3350 			cptr -= COMP_HDR_LEN;
3351 			continue;
3352 		}
3353 
3354 		osize = length;
3355 		read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3356 		checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3357 		mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3358 		ath_dbg(common, EEPROM, "checksum %x %x\n",
3359 			checksum, mchecksum);
3360 		if (checksum == mchecksum) {
3361 			ar9300_compress_decision(ah, it, code, reference, mptr,
3362 						 word, length, mdata_size);
3363 		} else {
3364 			ath_dbg(common, EEPROM,
3365 				"skipping block with bad checksum\n");
3366 		}
3367 		cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3368 	}
3369 
3370 	kfree(word);
3371 	return cptr;
3372 
3373 fail:
3374 	kfree(word);
3375 	return -1;
3376 }
3377 
3378 /*
3379  * Restore the configuration structure by reading the eeprom.
3380  * This function destroys any existing in-memory structure
3381  * content.
3382  */
3383 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3384 {
3385 	u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3386 
3387 	if (ar9300_eeprom_restore_internal(ah, mptr,
3388 			sizeof(struct ar9300_eeprom)) < 0)
3389 		return false;
3390 
3391 	return true;
3392 }
3393 
3394 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
3395 static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
3396 				    struct ar9300_modal_eep_header *modal_hdr)
3397 {
3398 	PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
3399 	PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
3400 	PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
3401 	PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
3402 	PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
3403 	PR_EEP("Ant. Gain", modal_hdr->antennaGain);
3404 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
3405 	PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
3406 	PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
3407 	PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
3408 	PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
3409 	PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
3410 	PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
3411 	PR_EEP("Temp Slope", modal_hdr->tempSlope);
3412 	PR_EEP("Volt Slope", modal_hdr->voltSlope);
3413 	PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
3414 	PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
3415 	PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
3416 	PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
3417 	PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
3418 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
3419 	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
3420 	PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3421 	PR_EEP("Quick Drop", modal_hdr->quick_drop);
3422 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
3423 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
3424 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
3425 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
3426 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
3427 	PR_EEP("txClip", modal_hdr->txClip);
3428 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
3429 
3430 	return len;
3431 }
3432 
3433 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3434 				       u8 *buf, u32 len, u32 size)
3435 {
3436 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3437 	struct ar9300_base_eep_hdr *pBase;
3438 
3439 	if (!dump_base_hdr) {
3440 		len += scnprintf(buf + len, size - len,
3441 				 "%20s :\n", "2GHz modal Header");
3442 		len = ar9003_dump_modal_eeprom(buf, len, size,
3443 						&eep->modalHeader2G);
3444 		len += scnprintf(buf + len, size - len,
3445 				 "%20s :\n", "5GHz modal Header");
3446 		len = ar9003_dump_modal_eeprom(buf, len, size,
3447 						&eep->modalHeader5G);
3448 		goto out;
3449 	}
3450 
3451 	pBase = &eep->baseEepHeader;
3452 
3453 	PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
3454 	PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
3455 	PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
3456 	PR_EEP("TX Mask", (pBase->txrxMask >> 4));
3457 	PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
3458 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
3459 				AR5416_OPFLAGS_11A));
3460 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
3461 				AR5416_OPFLAGS_11G));
3462 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
3463 					AR5416_OPFLAGS_N_2G_HT20));
3464 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
3465 					AR5416_OPFLAGS_N_2G_HT40));
3466 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
3467 					AR5416_OPFLAGS_N_5G_HT20));
3468 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
3469 					AR5416_OPFLAGS_N_5G_HT40));
3470 	PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc & 0x01));
3471 	PR_EEP("RF Silent", pBase->rfSilent);
3472 	PR_EEP("BT option", pBase->blueToothOptions);
3473 	PR_EEP("Device Cap", pBase->deviceCap);
3474 	PR_EEP("Device Type", pBase->deviceType);
3475 	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
3476 	PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
3477 	PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
3478 	PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
3479 	PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
3480 	PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
3481 	PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
3482 	PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
3483 	PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
3484 	PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3485 	PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
3486 	PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
3487 	PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
3488 	PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
3489 	PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
3490 	PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
3491 	PR_EEP("Tx Gain", pBase->txrxgain >> 4);
3492 	PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
3493 	PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
3494 
3495 	len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
3496 			 ah->eeprom.ar9300_eep.macAddr);
3497 out:
3498 	if (len > size)
3499 		len = size;
3500 
3501 	return len;
3502 }
3503 #else
3504 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3505 				       u8 *buf, u32 len, u32 size)
3506 {
3507 	return 0;
3508 }
3509 #endif
3510 
3511 /* XXX: review hardware docs */
3512 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3513 {
3514 	return ah->eeprom.ar9300_eep.eepromVersion;
3515 }
3516 
3517 /* XXX: could be read from the eepromVersion, not sure yet */
3518 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3519 {
3520 	return 0;
3521 }
3522 
3523 static struct ar9300_modal_eep_header *ar9003_modal_header(struct ath_hw *ah,
3524 							   bool is2ghz)
3525 {
3526 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3527 
3528 	if (is2ghz)
3529 		return &eep->modalHeader2G;
3530 	else
3531 		return &eep->modalHeader5G;
3532 }
3533 
3534 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3535 {
3536 	int bias = ar9003_modal_header(ah, is2ghz)->xpaBiasLvl;
3537 
3538 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3539 		REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3540 	else if (AR_SREV_9462(ah) || AR_SREV_9550(ah) || AR_SREV_9565(ah))
3541 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3542 	else {
3543 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3544 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3545 				AR_CH0_THERM_XPABIASLVL_MSB,
3546 				bias >> 2);
3547 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3548 				AR_CH0_THERM_XPASHORT2GND, 1);
3549 	}
3550 }
3551 
3552 static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is2ghz)
3553 {
3554 	return le16_to_cpu(ar9003_modal_header(ah, is2ghz)->switchcomspdt);
3555 }
3556 
3557 u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3558 {
3559 	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon);
3560 }
3561 
3562 u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3563 {
3564 	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon2);
3565 }
3566 
3567 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah, int chain,
3568 					bool is2ghz)
3569 {
3570 	__le16 val = ar9003_modal_header(ah, is2ghz)->antCtrlChain[chain];
3571 	return le16_to_cpu(val);
3572 }
3573 
3574 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3575 {
3576 	struct ath_common *common = ath9k_hw_common(ah);
3577 	struct ath9k_hw_capabilities *pCap = &ah->caps;
3578 	int chain;
3579 	u32 regval, value, gpio;
3580 	static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3581 			AR_PHY_SWITCH_CHAIN_0,
3582 			AR_PHY_SWITCH_CHAIN_1,
3583 			AR_PHY_SWITCH_CHAIN_2,
3584 	};
3585 
3586 	if (AR_SREV_9485(ah) && (ar9003_hw_get_rx_gain_idx(ah) == 0)) {
3587 		if (ah->config.xlna_gpio)
3588 			gpio = ah->config.xlna_gpio;
3589 		else
3590 			gpio = AR9300_EXT_LNA_CTL_GPIO_AR9485;
3591 
3592 		ath9k_hw_cfg_output(ah, gpio,
3593 				    AR_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED);
3594 	}
3595 
3596 	value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3597 
3598 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3599 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3600 				AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3601 	} else if (AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
3602 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3603 				AR_SWITCH_TABLE_COM_AR9550_ALL, value);
3604 	} else
3605 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3606 			      AR_SWITCH_TABLE_COM_ALL, value);
3607 
3608 
3609 	/*
3610 	 *   AR9462 defines new switch table for BT/WLAN,
3611 	 *       here's new field name in XXX.ref for both 2G and 5G.
3612 	 *   Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3613 	 *   15:12   R/W     SWITCH_TABLE_COM_SPDT_WLAN_RX
3614 	 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3615 	 *
3616 	 *   11:8     R/W     SWITCH_TABLE_COM_SPDT_WLAN_TX
3617 	 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3618 	 *
3619 	 *   7:4 R/W  SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3620 	 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3621 	 */
3622 	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565(ah)) {
3623 		value = ar9003_switch_com_spdt_get(ah, is2ghz);
3624 		REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
3625 				AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3626 		REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE);
3627 	}
3628 
3629 	value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3630 	if (AR_SREV_9485(ah) && common->bt_ant_diversity) {
3631 		value &= ~AR_SWITCH_TABLE_COM2_ALL;
3632 		value |= ah->config.ant_ctrl_comm2g_switch_enable;
3633 
3634 	}
3635 	REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3636 
3637 	if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
3638 		value = ar9003_hw_ant_ctrl_chain_get(ah, 1, is2ghz);
3639 		REG_RMW_FIELD(ah, switch_chain_reg[0],
3640 			      AR_SWITCH_TABLE_ALL, value);
3641 	}
3642 
3643 	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3644 		if ((ah->rxchainmask & BIT(chain)) ||
3645 		    (ah->txchainmask & BIT(chain))) {
3646 			value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3647 							     is2ghz);
3648 			REG_RMW_FIELD(ah, switch_chain_reg[chain],
3649 				      AR_SWITCH_TABLE_ALL, value);
3650 		}
3651 	}
3652 
3653 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
3654 		value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3655 		/*
3656 		 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3657 		 * are the fields present
3658 		 */
3659 		regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3660 		regval &= (~AR_ANT_DIV_CTRL_ALL);
3661 		regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3662 		/* enable_lnadiv */
3663 		regval &= (~AR_PHY_ANT_DIV_LNADIV);
3664 		regval |= ((value >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S;
3665 
3666 		if (AR_SREV_9485(ah) && common->bt_ant_diversity)
3667 			regval |= AR_ANT_DIV_ENABLE;
3668 
3669 		if (AR_SREV_9565(ah)) {
3670 			if (common->bt_ant_diversity) {
3671 				regval |= (1 << AR_PHY_ANT_SW_RX_PROT_S);
3672 
3673 				REG_SET_BIT(ah, AR_PHY_RESTART,
3674 					    AR_PHY_RESTART_ENABLE_DIV_M2FLAG);
3675 
3676 				/* Force WLAN LNA diversity ON */
3677 				REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV,
3678 					    AR_BTCOEX_WL_LNADIV_FORCE_ON);
3679 			} else {
3680 				regval &= ~(1 << AR_PHY_ANT_DIV_LNADIV_S);
3681 				regval &= ~(1 << AR_PHY_ANT_SW_RX_PROT_S);
3682 
3683 				REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL,
3684 					    (1 << AR_PHY_ANT_SW_RX_PROT_S));
3685 
3686 				/* Force WLAN LNA diversity OFF */
3687 				REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV,
3688 					    AR_BTCOEX_WL_LNADIV_FORCE_ON);
3689 			}
3690 		}
3691 
3692 		REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3693 
3694 		/* enable fast_div */
3695 		regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3696 		regval &= (~AR_FAST_DIV_ENABLE);
3697 		regval |= ((value >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S;
3698 
3699 		if ((AR_SREV_9485(ah) || AR_SREV_9565(ah))
3700 		    && common->bt_ant_diversity)
3701 			regval |= AR_FAST_DIV_ENABLE;
3702 
3703 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3704 
3705 		if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
3706 			regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3707 			/*
3708 			 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3709 			 * main_tb, alt_tb
3710 			 */
3711 			regval &= (~(AR_PHY_ANT_DIV_MAIN_LNACONF |
3712 				     AR_PHY_ANT_DIV_ALT_LNACONF |
3713 				     AR_PHY_ANT_DIV_ALT_GAINTB |
3714 				     AR_PHY_ANT_DIV_MAIN_GAINTB));
3715 			/* by default use LNA1 for the main antenna */
3716 			regval |= (ATH_ANT_DIV_COMB_LNA1 <<
3717 				   AR_PHY_ANT_DIV_MAIN_LNACONF_S);
3718 			regval |= (ATH_ANT_DIV_COMB_LNA2 <<
3719 				   AR_PHY_ANT_DIV_ALT_LNACONF_S);
3720 			REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3721 		}
3722 	}
3723 }
3724 
3725 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3726 {
3727 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3728 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3729 	int drive_strength;
3730 	unsigned long reg;
3731 
3732 	drive_strength = pBase->miscConfiguration & BIT(0);
3733 	if (!drive_strength)
3734 		return;
3735 
3736 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3737 	reg &= ~0x00ffffc0;
3738 	reg |= 0x5 << 21;
3739 	reg |= 0x5 << 18;
3740 	reg |= 0x5 << 15;
3741 	reg |= 0x5 << 12;
3742 	reg |= 0x5 << 9;
3743 	reg |= 0x5 << 6;
3744 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3745 
3746 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3747 	reg &= ~0xffffffe0;
3748 	reg |= 0x5 << 29;
3749 	reg |= 0x5 << 26;
3750 	reg |= 0x5 << 23;
3751 	reg |= 0x5 << 20;
3752 	reg |= 0x5 << 17;
3753 	reg |= 0x5 << 14;
3754 	reg |= 0x5 << 11;
3755 	reg |= 0x5 << 8;
3756 	reg |= 0x5 << 5;
3757 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3758 
3759 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3760 	reg &= ~0xff800000;
3761 	reg |= 0x5 << 29;
3762 	reg |= 0x5 << 26;
3763 	reg |= 0x5 << 23;
3764 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3765 }
3766 
3767 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3768 				     struct ath9k_channel *chan)
3769 {
3770 	int f[3], t[3];
3771 	u16 value;
3772 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3773 
3774 	if (chain >= 0 && chain < 3) {
3775 		if (IS_CHAN_2GHZ(chan))
3776 			return eep->modalHeader2G.xatten1DB[chain];
3777 		else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3778 			t[0] = eep->base_ext2.xatten1DBLow[chain];
3779 			f[0] = 5180;
3780 			t[1] = eep->modalHeader5G.xatten1DB[chain];
3781 			f[1] = 5500;
3782 			t[2] = eep->base_ext2.xatten1DBHigh[chain];
3783 			f[2] = 5785;
3784 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3785 							    f, t, 3);
3786 			return value;
3787 		} else
3788 			return eep->modalHeader5G.xatten1DB[chain];
3789 	}
3790 
3791 	return 0;
3792 }
3793 
3794 
3795 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3796 					    struct ath9k_channel *chan)
3797 {
3798 	int f[3], t[3];
3799 	u16 value;
3800 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3801 
3802 	if (chain >= 0 && chain < 3) {
3803 		if (IS_CHAN_2GHZ(chan))
3804 			return eep->modalHeader2G.xatten1Margin[chain];
3805 		else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3806 			t[0] = eep->base_ext2.xatten1MarginLow[chain];
3807 			f[0] = 5180;
3808 			t[1] = eep->modalHeader5G.xatten1Margin[chain];
3809 			f[1] = 5500;
3810 			t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3811 			f[2] = 5785;
3812 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3813 							    f, t, 3);
3814 			return value;
3815 		} else
3816 			return eep->modalHeader5G.xatten1Margin[chain];
3817 	}
3818 
3819 	return 0;
3820 }
3821 
3822 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3823 {
3824 	int i;
3825 	u16 value;
3826 	unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3827 					  AR_PHY_EXT_ATTEN_CTL_1,
3828 					  AR_PHY_EXT_ATTEN_CTL_2,
3829 					 };
3830 
3831 	if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
3832 		value = ar9003_hw_atten_chain_get(ah, 1, chan);
3833 		REG_RMW_FIELD(ah, ext_atten_reg[0],
3834 			      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3835 
3836 		value = ar9003_hw_atten_chain_get_margin(ah, 1, chan);
3837 		REG_RMW_FIELD(ah, ext_atten_reg[0],
3838 			      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3839 			      value);
3840 	}
3841 
3842 	/* Test value. if 0 then attenuation is unused. Don't load anything. */
3843 	for (i = 0; i < 3; i++) {
3844 		if (ah->txchainmask & BIT(i)) {
3845 			value = ar9003_hw_atten_chain_get(ah, i, chan);
3846 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3847 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3848 
3849 			if (AR_SREV_9485(ah) &&
3850 			    (ar9003_hw_get_rx_gain_idx(ah) == 0) &&
3851 			    ah->config.xatten_margin_cfg)
3852 				value = 5;
3853 			else
3854 				value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3855 
3856 			if (ah->config.alt_mingainidx)
3857 				REG_RMW_FIELD(ah, AR_PHY_EXT_ATTEN_CTL_0,
3858 					      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3859 					      value);
3860 
3861 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3862 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3863 				      value);
3864 		}
3865 	}
3866 }
3867 
3868 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3869 {
3870 	int timeout = 100;
3871 
3872 	while (pmu_set != REG_READ(ah, pmu_reg)) {
3873 		if (timeout-- == 0)
3874 			return false;
3875 		REG_WRITE(ah, pmu_reg, pmu_set);
3876 		udelay(10);
3877 	}
3878 
3879 	return true;
3880 }
3881 
3882 void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3883 {
3884 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3885 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3886 	u32 reg_val;
3887 
3888 	if (pBase->featureEnable & BIT(4)) {
3889 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3890 			int reg_pmu_set;
3891 
3892 			reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3893 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3894 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3895 				return;
3896 
3897 			if (AR_SREV_9330(ah)) {
3898 				if (ah->is_clk_25mhz) {
3899 					reg_pmu_set = (3 << 1) | (8 << 4) |
3900 						      (3 << 8) | (1 << 14) |
3901 						      (6 << 17) | (1 << 20) |
3902 						      (3 << 24);
3903 				} else {
3904 					reg_pmu_set = (4 << 1)  | (7 << 4) |
3905 						      (3 << 8)  | (1 << 14) |
3906 						      (6 << 17) | (1 << 20) |
3907 						      (3 << 24);
3908 				}
3909 			} else {
3910 				reg_pmu_set = (5 << 1) | (7 << 4) |
3911 					      (2 << 8) | (2 << 14) |
3912 					      (6 << 17) | (1 << 20) |
3913 					      (3 << 24) | (1 << 28);
3914 			}
3915 
3916 			REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3917 			if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3918 				return;
3919 
3920 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3921 					| (4 << 26);
3922 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3923 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3924 				return;
3925 
3926 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3927 					| (1 << 21);
3928 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3929 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3930 				return;
3931 		} else if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3932 			reg_val = le32_to_cpu(pBase->swreg);
3933 			REG_WRITE(ah, AR_PHY_PMU1, reg_val);
3934 		} else {
3935 			/* Internal regulator is ON. Write swreg register. */
3936 			reg_val = le32_to_cpu(pBase->swreg);
3937 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3938 				  REG_READ(ah, AR_RTC_REG_CONTROL1) &
3939 				  (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3940 			REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
3941 			/* Set REG_CONTROL1.SWREG_PROGRAM */
3942 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3943 				  REG_READ(ah,
3944 					   AR_RTC_REG_CONTROL1) |
3945 					   AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3946 		}
3947 	} else {
3948 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3949 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3950 			while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3951 						AR_PHY_PMU2_PGM))
3952 				udelay(10);
3953 
3954 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3955 			while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3956 						AR_PHY_PMU1_PWD))
3957 				udelay(10);
3958 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3959 			while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3960 						AR_PHY_PMU2_PGM))
3961 				udelay(10);
3962 		} else if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
3963 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3964 		else {
3965 			reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
3966 				AR_RTC_FORCE_SWREG_PRD;
3967 			REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
3968 		}
3969 	}
3970 
3971 }
3972 
3973 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3974 {
3975 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3976 	u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3977 
3978 	if (AR_SREV_9340(ah) || AR_SREV_9531(ah))
3979 		return;
3980 
3981 	if (eep->baseEepHeader.featureEnable & 0x40) {
3982 		tuning_caps_param &= 0x7f;
3983 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3984 			      tuning_caps_param);
3985 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3986 			      tuning_caps_param);
3987 	}
3988 }
3989 
3990 static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
3991 {
3992 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3993 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3994 	int quick_drop;
3995 	s32 t[3], f[3] = {5180, 5500, 5785};
3996 
3997 	if (!(pBase->miscConfiguration & BIT(4)))
3998 		return;
3999 
4000 	if (AR_SREV_9300(ah) || AR_SREV_9580(ah) || AR_SREV_9340(ah)) {
4001 		if (freq < 4000) {
4002 			quick_drop = eep->modalHeader2G.quick_drop;
4003 		} else {
4004 			t[0] = eep->base_ext1.quick_drop_low;
4005 			t[1] = eep->modalHeader5G.quick_drop;
4006 			t[2] = eep->base_ext1.quick_drop_high;
4007 			quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
4008 		}
4009 		REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
4010 	}
4011 }
4012 
4013 static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, bool is2ghz)
4014 {
4015 	u32 value;
4016 
4017 	value = ar9003_modal_header(ah, is2ghz)->txEndToXpaOff;
4018 
4019 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4020 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
4021 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4022 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
4023 }
4024 
4025 static void ar9003_hw_xpa_timing_control_apply(struct ath_hw *ah, bool is2ghz)
4026 {
4027 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4028 	u8 xpa_ctl;
4029 
4030 	if (!(eep->baseEepHeader.featureEnable & 0x80))
4031 		return;
4032 
4033 	if (!AR_SREV_9300(ah) &&
4034 	    !AR_SREV_9340(ah) &&
4035 	    !AR_SREV_9580(ah) &&
4036 	    !AR_SREV_9531(ah))
4037 		return;
4038 
4039 	xpa_ctl = ar9003_modal_header(ah, is2ghz)->txFrameToXpaOn;
4040 	if (is2ghz)
4041 		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4042 			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON, xpa_ctl);
4043 	else
4044 		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4045 			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON, xpa_ctl);
4046 }
4047 
4048 static void ar9003_hw_xlna_bias_strength_apply(struct ath_hw *ah, bool is2ghz)
4049 {
4050 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4051 	u8 bias;
4052 
4053 	if (!(eep->baseEepHeader.miscConfiguration & 0x40))
4054 		return;
4055 
4056 	if (!AR_SREV_9300(ah))
4057 		return;
4058 
4059 	bias = ar9003_modal_header(ah, is2ghz)->xlna_bias_strength;
4060 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4061 		      bias & 0x3);
4062 	bias >>= 2;
4063 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4064 		      bias & 0x3);
4065 	bias >>= 2;
4066 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4067 		      bias & 0x3);
4068 }
4069 
4070 static int ar9003_hw_get_thermometer(struct ath_hw *ah)
4071 {
4072 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4073 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
4074 	int thermometer =  (pBase->miscConfiguration >> 1) & 0x3;
4075 
4076 	return --thermometer;
4077 }
4078 
4079 static void ar9003_hw_thermometer_apply(struct ath_hw *ah)
4080 {
4081 	int thermometer = ar9003_hw_get_thermometer(ah);
4082 	u8 therm_on = (thermometer < 0) ? 0 : 1;
4083 
4084 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4085 		      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4086 	if (ah->caps.tx_chainmask & BIT(1))
4087 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4088 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4089 	if (ah->caps.tx_chainmask & BIT(2))
4090 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4091 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4092 
4093 	therm_on = (thermometer < 0) ? 0 : (thermometer == 0);
4094 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4095 		      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4096 	if (ah->caps.tx_chainmask & BIT(1)) {
4097 		therm_on = (thermometer < 0) ? 0 : (thermometer == 1);
4098 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4099 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4100 	}
4101 	if (ah->caps.tx_chainmask & BIT(2)) {
4102 		therm_on = (thermometer < 0) ? 0 : (thermometer == 2);
4103 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4104 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4105 	}
4106 }
4107 
4108 static void ar9003_hw_thermo_cal_apply(struct ath_hw *ah)
4109 {
4110 	u32 data, ko, kg;
4111 
4112 	if (!AR_SREV_9462_20_OR_LATER(ah))
4113 		return;
4114 
4115 	ar9300_otp_read_word(ah, 1, &data);
4116 	ko = data & 0xff;
4117 	kg = (data >> 8) & 0xff;
4118 	if (ko || kg) {
4119 		REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4120 			      AR_PHY_BB_THERM_ADC_3_THERM_ADC_OFFSET, ko);
4121 		REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4122 			      AR_PHY_BB_THERM_ADC_3_THERM_ADC_SCALE_GAIN,
4123 			      kg + 256);
4124 	}
4125 }
4126 
4127 static void ar9003_hw_apply_minccapwr_thresh(struct ath_hw *ah,
4128 					     bool is2ghz)
4129 {
4130 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4131 	const u_int32_t cca_ctrl[AR9300_MAX_CHAINS] = {
4132 		AR_PHY_CCA_CTRL_0,
4133 		AR_PHY_CCA_CTRL_1,
4134 		AR_PHY_CCA_CTRL_2,
4135 	};
4136 	int chain;
4137 	u32 val;
4138 
4139 	if (is2ghz) {
4140 		if (!(eep->base_ext1.misc_enable & BIT(2)))
4141 			return;
4142 	} else {
4143 		if (!(eep->base_ext1.misc_enable & BIT(3)))
4144 			return;
4145 	}
4146 
4147 	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
4148 		if (!(ah->caps.tx_chainmask & BIT(chain)))
4149 			continue;
4150 
4151 		val = ar9003_modal_header(ah, is2ghz)->noiseFloorThreshCh[chain];
4152 		REG_RMW_FIELD(ah, cca_ctrl[chain],
4153 			      AR_PHY_EXT_CCA0_THRESH62_1, val);
4154 	}
4155 
4156 }
4157 
4158 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
4159 					     struct ath9k_channel *chan)
4160 {
4161 	bool is2ghz = IS_CHAN_2GHZ(chan);
4162 	ar9003_hw_xpa_timing_control_apply(ah, is2ghz);
4163 	ar9003_hw_xpa_bias_level_apply(ah, is2ghz);
4164 	ar9003_hw_ant_ctrl_apply(ah, is2ghz);
4165 	ar9003_hw_drive_strength_apply(ah);
4166 	ar9003_hw_xlna_bias_strength_apply(ah, is2ghz);
4167 	ar9003_hw_atten_apply(ah, chan);
4168 	ar9003_hw_quick_drop_apply(ah, chan->channel);
4169 	if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) && !AR_SREV_9531(ah))
4170 		ar9003_hw_internal_regulator_apply(ah);
4171 	ar9003_hw_apply_tuning_caps(ah);
4172 	ar9003_hw_apply_minccapwr_thresh(ah, chan);
4173 	ar9003_hw_txend_to_xpa_off_apply(ah, is2ghz);
4174 	ar9003_hw_thermometer_apply(ah);
4175 	ar9003_hw_thermo_cal_apply(ah);
4176 }
4177 
4178 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
4179 				      struct ath9k_channel *chan)
4180 {
4181 }
4182 
4183 /*
4184  * Returns the interpolated y value corresponding to the specified x value
4185  * from the np ordered pairs of data (px,py).
4186  * The pairs do not have to be in any order.
4187  * If the specified x value is less than any of the px,
4188  * the returned y value is equal to the py for the lowest px.
4189  * If the specified x value is greater than any of the px,
4190  * the returned y value is equal to the py for the highest px.
4191  */
4192 static int ar9003_hw_power_interpolate(int32_t x,
4193 				       int32_t *px, int32_t *py, u_int16_t np)
4194 {
4195 	int ip = 0;
4196 	int lx = 0, ly = 0, lhave = 0;
4197 	int hx = 0, hy = 0, hhave = 0;
4198 	int dx = 0;
4199 	int y = 0;
4200 
4201 	lhave = 0;
4202 	hhave = 0;
4203 
4204 	/* identify best lower and higher x calibration measurement */
4205 	for (ip = 0; ip < np; ip++) {
4206 		dx = x - px[ip];
4207 
4208 		/* this measurement is higher than our desired x */
4209 		if (dx <= 0) {
4210 			if (!hhave || dx > (x - hx)) {
4211 				/* new best higher x measurement */
4212 				hx = px[ip];
4213 				hy = py[ip];
4214 				hhave = 1;
4215 			}
4216 		}
4217 		/* this measurement is lower than our desired x */
4218 		if (dx >= 0) {
4219 			if (!lhave || dx < (x - lx)) {
4220 				/* new best lower x measurement */
4221 				lx = px[ip];
4222 				ly = py[ip];
4223 				lhave = 1;
4224 			}
4225 		}
4226 	}
4227 
4228 	/* the low x is good */
4229 	if (lhave) {
4230 		/* so is the high x */
4231 		if (hhave) {
4232 			/* they're the same, so just pick one */
4233 			if (hx == lx)
4234 				y = ly;
4235 			else	/* interpolate  */
4236 				y = interpolate(x, lx, hx, ly, hy);
4237 		} else		/* only low is good, use it */
4238 			y = ly;
4239 	} else if (hhave)	/* only high is good, use it */
4240 		y = hy;
4241 	else /* nothing is good,this should never happen unless np=0, ???? */
4242 		y = -(1 << 30);
4243 	return y;
4244 }
4245 
4246 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
4247 				       u16 rateIndex, u16 freq, bool is2GHz)
4248 {
4249 	u16 numPiers, i;
4250 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4251 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4252 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4253 	struct cal_tgt_pow_legacy *pEepromTargetPwr;
4254 	u8 *pFreqBin;
4255 
4256 	if (is2GHz) {
4257 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4258 		pEepromTargetPwr = eep->calTargetPower2G;
4259 		pFreqBin = eep->calTarget_freqbin_2G;
4260 	} else {
4261 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4262 		pEepromTargetPwr = eep->calTargetPower5G;
4263 		pFreqBin = eep->calTarget_freqbin_5G;
4264 	}
4265 
4266 	/*
4267 	 * create array of channels and targetpower from
4268 	 * targetpower piers stored on eeprom
4269 	 */
4270 	for (i = 0; i < numPiers; i++) {
4271 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4272 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4273 	}
4274 
4275 	/* interpolate to get target power for given frequency */
4276 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4277 						 freqArray,
4278 						 targetPowerArray, numPiers);
4279 }
4280 
4281 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
4282 					    u16 rateIndex,
4283 					    u16 freq, bool is2GHz)
4284 {
4285 	u16 numPiers, i;
4286 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4287 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4288 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4289 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4290 	u8 *pFreqBin;
4291 
4292 	if (is2GHz) {
4293 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4294 		pEepromTargetPwr = eep->calTargetPower2GHT20;
4295 		pFreqBin = eep->calTarget_freqbin_2GHT20;
4296 	} else {
4297 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4298 		pEepromTargetPwr = eep->calTargetPower5GHT20;
4299 		pFreqBin = eep->calTarget_freqbin_5GHT20;
4300 	}
4301 
4302 	/*
4303 	 * create array of channels and targetpower
4304 	 * from targetpower piers stored on eeprom
4305 	 */
4306 	for (i = 0; i < numPiers; i++) {
4307 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4308 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4309 	}
4310 
4311 	/* interpolate to get target power for given frequency */
4312 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4313 						 freqArray,
4314 						 targetPowerArray, numPiers);
4315 }
4316 
4317 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
4318 					    u16 rateIndex,
4319 					    u16 freq, bool is2GHz)
4320 {
4321 	u16 numPiers, i;
4322 	s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
4323 	s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
4324 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4325 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4326 	u8 *pFreqBin;
4327 
4328 	if (is2GHz) {
4329 		numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
4330 		pEepromTargetPwr = eep->calTargetPower2GHT40;
4331 		pFreqBin = eep->calTarget_freqbin_2GHT40;
4332 	} else {
4333 		numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
4334 		pEepromTargetPwr = eep->calTargetPower5GHT40;
4335 		pFreqBin = eep->calTarget_freqbin_5GHT40;
4336 	}
4337 
4338 	/*
4339 	 * create array of channels and targetpower from
4340 	 * targetpower piers stored on eeprom
4341 	 */
4342 	for (i = 0; i < numPiers; i++) {
4343 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4344 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4345 	}
4346 
4347 	/* interpolate to get target power for given frequency */
4348 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4349 						 freqArray,
4350 						 targetPowerArray, numPiers);
4351 }
4352 
4353 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
4354 					   u16 rateIndex, u16 freq)
4355 {
4356 	u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4357 	s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4358 	s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4359 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4360 	struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4361 	u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4362 
4363 	/*
4364 	 * create array of channels and targetpower from
4365 	 * targetpower piers stored on eeprom
4366 	 */
4367 	for (i = 0; i < numPiers; i++) {
4368 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], 1);
4369 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4370 	}
4371 
4372 	/* interpolate to get target power for given frequency */
4373 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4374 						 freqArray,
4375 						 targetPowerArray, numPiers);
4376 }
4377 
4378 /* Set tx power registers to array of values passed in */
4379 static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4380 {
4381 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
4382 	/* make sure forced gain is not set */
4383 	REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4384 
4385 	/* Write the OFDM power per rate set */
4386 
4387 	/* 6 (LSB), 9, 12, 18 (MSB) */
4388 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4389 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4390 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4391 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4392 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4393 
4394 	/* 24 (LSB), 36, 48, 54 (MSB) */
4395 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4396 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4397 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4398 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4399 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4400 
4401 	/* Write the CCK power per rate set */
4402 
4403 	/* 1L (LSB), reserved, 2L, 2S (MSB) */
4404 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4405 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4406 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4407 		  /* POW_SM(txPowerTimes2,  8) | this is reserved for AR9003 */
4408 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4409 
4410 	/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4411 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4412 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4413 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4414 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4415 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4416 	    );
4417 
4418         /* Write the power for duplicated frames - HT40 */
4419 
4420         /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4421 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4422 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4423 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4424 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24],  8) |
4425 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L],  0)
4426 	    );
4427 
4428 	/* Write the HT20 power per rate set */
4429 
4430 	/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4431 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4432 		  POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4433 		  POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4434 		  POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4435 		  POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4436 	    );
4437 
4438 	/* 6 (LSB), 7, 12, 13 (MSB) */
4439 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4440 		  POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4441 		  POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4442 		  POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4443 		  POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4444 	    );
4445 
4446 	/* 14 (LSB), 15, 20, 21 */
4447 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4448 		  POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4449 		  POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4450 		  POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4451 		  POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4452 	    );
4453 
4454 	/* Mixed HT20 and HT40 rates */
4455 
4456 	/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4457 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4458 		  POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4459 		  POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4460 		  POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4461 		  POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4462 	    );
4463 
4464 	/*
4465 	 * Write the HT40 power per rate set
4466 	 * correct PAR difference between HT40 and HT20/LEGACY
4467 	 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4468 	 */
4469 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4470 		  POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4471 		  POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4472 		  POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4473 		  POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4474 	    );
4475 
4476 	/* 6 (LSB), 7, 12, 13 (MSB) */
4477 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4478 		  POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4479 		  POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4480 		  POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4481 		  POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4482 	    );
4483 
4484 	/* 14 (LSB), 15, 20, 21 */
4485 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4486 		  POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4487 		  POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4488 		  POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4489 		  POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4490 	    );
4491 
4492 	return 0;
4493 #undef POW_SM
4494 }
4495 
4496 static void ar9003_hw_get_legacy_target_powers(struct ath_hw *ah, u16 freq,
4497 					       u8 *targetPowerValT2,
4498 					       bool is2GHz)
4499 {
4500 	targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4501 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4502 					 is2GHz);
4503 	targetPowerValT2[ALL_TARGET_LEGACY_36] =
4504 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4505 					 is2GHz);
4506 	targetPowerValT2[ALL_TARGET_LEGACY_48] =
4507 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4508 					 is2GHz);
4509 	targetPowerValT2[ALL_TARGET_LEGACY_54] =
4510 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4511 					 is2GHz);
4512 }
4513 
4514 static void ar9003_hw_get_cck_target_powers(struct ath_hw *ah, u16 freq,
4515 					    u8 *targetPowerValT2)
4516 {
4517 	targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4518 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4519 					     freq);
4520 	targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4521 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4522 	targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4523 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4524 	targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4525 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4526 }
4527 
4528 static void ar9003_hw_get_ht20_target_powers(struct ath_hw *ah, u16 freq,
4529 					     u8 *targetPowerValT2, bool is2GHz)
4530 {
4531 	targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4532 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4533 					      is2GHz);
4534 	targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4535 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4536 					      freq, is2GHz);
4537 	targetPowerValT2[ALL_TARGET_HT20_4] =
4538 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4539 					      is2GHz);
4540 	targetPowerValT2[ALL_TARGET_HT20_5] =
4541 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4542 					      is2GHz);
4543 	targetPowerValT2[ALL_TARGET_HT20_6] =
4544 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4545 					      is2GHz);
4546 	targetPowerValT2[ALL_TARGET_HT20_7] =
4547 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4548 					      is2GHz);
4549 	targetPowerValT2[ALL_TARGET_HT20_12] =
4550 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4551 					      is2GHz);
4552 	targetPowerValT2[ALL_TARGET_HT20_13] =
4553 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4554 					      is2GHz);
4555 	targetPowerValT2[ALL_TARGET_HT20_14] =
4556 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4557 					      is2GHz);
4558 	targetPowerValT2[ALL_TARGET_HT20_15] =
4559 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4560 					      is2GHz);
4561 	targetPowerValT2[ALL_TARGET_HT20_20] =
4562 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4563 					      is2GHz);
4564 	targetPowerValT2[ALL_TARGET_HT20_21] =
4565 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4566 					      is2GHz);
4567 	targetPowerValT2[ALL_TARGET_HT20_22] =
4568 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4569 					      is2GHz);
4570 	targetPowerValT2[ALL_TARGET_HT20_23] =
4571 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4572 					      is2GHz);
4573 }
4574 
4575 static void ar9003_hw_get_ht40_target_powers(struct ath_hw *ah,
4576 						   u16 freq,
4577 						   u8 *targetPowerValT2,
4578 						   bool is2GHz)
4579 {
4580 	/* XXX: hard code for now, need to get from eeprom struct */
4581 	u8 ht40PowerIncForPdadc = 0;
4582 
4583 	targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4584 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4585 					      is2GHz) + ht40PowerIncForPdadc;
4586 	targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4587 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4588 					      freq,
4589 					      is2GHz) + ht40PowerIncForPdadc;
4590 	targetPowerValT2[ALL_TARGET_HT40_4] =
4591 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4592 					      is2GHz) + ht40PowerIncForPdadc;
4593 	targetPowerValT2[ALL_TARGET_HT40_5] =
4594 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4595 					      is2GHz) + ht40PowerIncForPdadc;
4596 	targetPowerValT2[ALL_TARGET_HT40_6] =
4597 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4598 					      is2GHz) + ht40PowerIncForPdadc;
4599 	targetPowerValT2[ALL_TARGET_HT40_7] =
4600 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4601 					      is2GHz) + ht40PowerIncForPdadc;
4602 	targetPowerValT2[ALL_TARGET_HT40_12] =
4603 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4604 					      is2GHz) + ht40PowerIncForPdadc;
4605 	targetPowerValT2[ALL_TARGET_HT40_13] =
4606 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4607 					      is2GHz) + ht40PowerIncForPdadc;
4608 	targetPowerValT2[ALL_TARGET_HT40_14] =
4609 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4610 					      is2GHz) + ht40PowerIncForPdadc;
4611 	targetPowerValT2[ALL_TARGET_HT40_15] =
4612 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4613 					      is2GHz) + ht40PowerIncForPdadc;
4614 	targetPowerValT2[ALL_TARGET_HT40_20] =
4615 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4616 					      is2GHz) + ht40PowerIncForPdadc;
4617 	targetPowerValT2[ALL_TARGET_HT40_21] =
4618 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4619 					      is2GHz) + ht40PowerIncForPdadc;
4620 	targetPowerValT2[ALL_TARGET_HT40_22] =
4621 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4622 					      is2GHz) + ht40PowerIncForPdadc;
4623 	targetPowerValT2[ALL_TARGET_HT40_23] =
4624 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4625 					      is2GHz) + ht40PowerIncForPdadc;
4626 }
4627 
4628 static void ar9003_hw_get_target_power_eeprom(struct ath_hw *ah,
4629 					      struct ath9k_channel *chan,
4630 					      u8 *targetPowerValT2)
4631 {
4632 	bool is2GHz = IS_CHAN_2GHZ(chan);
4633 	unsigned int i = 0;
4634 	struct ath_common *common = ath9k_hw_common(ah);
4635 	u16 freq = chan->channel;
4636 
4637 	if (is2GHz)
4638 		ar9003_hw_get_cck_target_powers(ah, freq, targetPowerValT2);
4639 
4640 	ar9003_hw_get_legacy_target_powers(ah, freq, targetPowerValT2, is2GHz);
4641 	ar9003_hw_get_ht20_target_powers(ah, freq, targetPowerValT2, is2GHz);
4642 
4643 	if (IS_CHAN_HT40(chan))
4644 		ar9003_hw_get_ht40_target_powers(ah, freq, targetPowerValT2,
4645 						 is2GHz);
4646 
4647 	for (i = 0; i < ar9300RateSize; i++) {
4648 		ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
4649 			i, targetPowerValT2[i]);
4650 	}
4651 }
4652 
4653 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4654 				  int mode,
4655 				  int ipier,
4656 				  int ichain,
4657 				  int *pfrequency,
4658 				  int *pcorrection,
4659 				  int *ptemperature, int *pvoltage)
4660 {
4661 	u8 *pCalPier;
4662 	struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4663 	int is2GHz;
4664 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4665 	struct ath_common *common = ath9k_hw_common(ah);
4666 
4667 	if (ichain >= AR9300_MAX_CHAINS) {
4668 		ath_dbg(common, EEPROM,
4669 			"Invalid chain index, must be less than %d\n",
4670 			AR9300_MAX_CHAINS);
4671 		return -1;
4672 	}
4673 
4674 	if (mode) {		/* 5GHz */
4675 		if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4676 			ath_dbg(common, EEPROM,
4677 				"Invalid 5GHz cal pier index, must be less than %d\n",
4678 				AR9300_NUM_5G_CAL_PIERS);
4679 			return -1;
4680 		}
4681 		pCalPier = &(eep->calFreqPier5G[ipier]);
4682 		pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4683 		is2GHz = 0;
4684 	} else {
4685 		if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4686 			ath_dbg(common, EEPROM,
4687 				"Invalid 2GHz cal pier index, must be less than %d\n",
4688 				AR9300_NUM_2G_CAL_PIERS);
4689 			return -1;
4690 		}
4691 
4692 		pCalPier = &(eep->calFreqPier2G[ipier]);
4693 		pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4694 		is2GHz = 1;
4695 	}
4696 
4697 	*pfrequency = ath9k_hw_fbin2freq(*pCalPier, is2GHz);
4698 	*pcorrection = pCalPierStruct->refPower;
4699 	*ptemperature = pCalPierStruct->tempMeas;
4700 	*pvoltage = pCalPierStruct->voltMeas;
4701 
4702 	return 0;
4703 }
4704 
4705 static void ar9003_hw_power_control_override(struct ath_hw *ah,
4706 					     int frequency,
4707 					     int *correction,
4708 					     int *voltage, int *temperature)
4709 {
4710 	int temp_slope = 0, temp_slope1 = 0, temp_slope2 = 0;
4711 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4712 	int f[8], t[8], t1[3], t2[3], i;
4713 
4714 	REG_RMW(ah, AR_PHY_TPC_11_B0,
4715 		(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4716 		AR_PHY_TPC_OLPC_GAIN_DELTA);
4717 	if (ah->caps.tx_chainmask & BIT(1))
4718 		REG_RMW(ah, AR_PHY_TPC_11_B1,
4719 			(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4720 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4721 	if (ah->caps.tx_chainmask & BIT(2))
4722 		REG_RMW(ah, AR_PHY_TPC_11_B2,
4723 			(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4724 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4725 
4726 	/* enable open loop power control on chip */
4727 	REG_RMW(ah, AR_PHY_TPC_6_B0,
4728 		(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4729 		AR_PHY_TPC_6_ERROR_EST_MODE);
4730 	if (ah->caps.tx_chainmask & BIT(1))
4731 		REG_RMW(ah, AR_PHY_TPC_6_B1,
4732 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4733 			AR_PHY_TPC_6_ERROR_EST_MODE);
4734 	if (ah->caps.tx_chainmask & BIT(2))
4735 		REG_RMW(ah, AR_PHY_TPC_6_B2,
4736 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4737 			AR_PHY_TPC_6_ERROR_EST_MODE);
4738 
4739 	/*
4740 	 * enable temperature compensation
4741 	 * Need to use register names
4742 	 */
4743 	if (frequency < 4000) {
4744 		temp_slope = eep->modalHeader2G.tempSlope;
4745 	} else {
4746 		if (AR_SREV_9550(ah)) {
4747 			t[0] = eep->base_ext1.tempslopextension[2];
4748 			t1[0] = eep->base_ext1.tempslopextension[3];
4749 			t2[0] = eep->base_ext1.tempslopextension[4];
4750 			f[0] = 5180;
4751 
4752 			t[1] = eep->modalHeader5G.tempSlope;
4753 			t1[1] = eep->base_ext1.tempslopextension[0];
4754 			t2[1] = eep->base_ext1.tempslopextension[1];
4755 			f[1] = 5500;
4756 
4757 			t[2] = eep->base_ext1.tempslopextension[5];
4758 			t1[2] = eep->base_ext1.tempslopextension[6];
4759 			t2[2] = eep->base_ext1.tempslopextension[7];
4760 			f[2] = 5785;
4761 
4762 			temp_slope = ar9003_hw_power_interpolate(frequency,
4763 								 f, t, 3);
4764 			temp_slope1 = ar9003_hw_power_interpolate(frequency,
4765 								   f, t1, 3);
4766 			temp_slope2 = ar9003_hw_power_interpolate(frequency,
4767 								   f, t2, 3);
4768 
4769 			goto tempslope;
4770 		}
4771 
4772 		if ((eep->baseEepHeader.miscConfiguration & 0x20) != 0) {
4773 			for (i = 0; i < 8; i++) {
4774 				t[i] = eep->base_ext1.tempslopextension[i];
4775 				f[i] = FBIN2FREQ(eep->calFreqPier5G[i], 0);
4776 			}
4777 			temp_slope = ar9003_hw_power_interpolate((s32) frequency,
4778 								 f, t, 8);
4779 		} else if (eep->base_ext2.tempSlopeLow != 0) {
4780 			t[0] = eep->base_ext2.tempSlopeLow;
4781 			f[0] = 5180;
4782 			t[1] = eep->modalHeader5G.tempSlope;
4783 			f[1] = 5500;
4784 			t[2] = eep->base_ext2.tempSlopeHigh;
4785 			f[2] = 5785;
4786 			temp_slope = ar9003_hw_power_interpolate((s32) frequency,
4787 								 f, t, 3);
4788 		} else {
4789 			temp_slope = eep->modalHeader5G.tempSlope;
4790 		}
4791 	}
4792 
4793 tempslope:
4794 	if (AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
4795 		/*
4796 		 * AR955x has tempSlope register for each chain.
4797 		 * Check whether temp_compensation feature is enabled or not.
4798 		 */
4799 		if (eep->baseEepHeader.featureEnable & 0x1) {
4800 			if (frequency < 4000) {
4801 				REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4802 					      AR_PHY_TPC_19_ALPHA_THERM,
4803 					      eep->base_ext2.tempSlopeLow);
4804 				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4805 					      AR_PHY_TPC_19_ALPHA_THERM,
4806 					      temp_slope);
4807 				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4808 					      AR_PHY_TPC_19_ALPHA_THERM,
4809 					      eep->base_ext2.tempSlopeHigh);
4810 			} else {
4811 				REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4812 					      AR_PHY_TPC_19_ALPHA_THERM,
4813 					      temp_slope);
4814 				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4815 					      AR_PHY_TPC_19_ALPHA_THERM,
4816 					      temp_slope1);
4817 				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4818 					      AR_PHY_TPC_19_ALPHA_THERM,
4819 					      temp_slope2);
4820 			}
4821 		} else {
4822 			/*
4823 			 * If temp compensation is not enabled,
4824 			 * set all registers to 0.
4825 			 */
4826 			REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4827 				      AR_PHY_TPC_19_ALPHA_THERM, 0);
4828 			REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4829 				      AR_PHY_TPC_19_ALPHA_THERM, 0);
4830 			REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4831 				      AR_PHY_TPC_19_ALPHA_THERM, 0);
4832 		}
4833 	} else {
4834 		REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4835 			      AR_PHY_TPC_19_ALPHA_THERM, temp_slope);
4836 	}
4837 
4838 	if (AR_SREV_9462_20_OR_LATER(ah))
4839 		REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4840 			      AR_PHY_TPC_19_B1_ALPHA_THERM, temp_slope);
4841 
4842 
4843 	REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4844 		      temperature[0]);
4845 }
4846 
4847 /* Apply the recorded correction values. */
4848 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4849 {
4850 	int ichain, ipier, npier;
4851 	int mode;
4852 	int lfrequency[AR9300_MAX_CHAINS],
4853 	    lcorrection[AR9300_MAX_CHAINS],
4854 	    ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4855 	int hfrequency[AR9300_MAX_CHAINS],
4856 	    hcorrection[AR9300_MAX_CHAINS],
4857 	    htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4858 	int fdiff;
4859 	int correction[AR9300_MAX_CHAINS],
4860 	    voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4861 	int pfrequency, pcorrection, ptemperature, pvoltage;
4862 	struct ath_common *common = ath9k_hw_common(ah);
4863 
4864 	mode = (frequency >= 4000);
4865 	if (mode)
4866 		npier = AR9300_NUM_5G_CAL_PIERS;
4867 	else
4868 		npier = AR9300_NUM_2G_CAL_PIERS;
4869 
4870 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4871 		lfrequency[ichain] = 0;
4872 		hfrequency[ichain] = 100000;
4873 	}
4874 	/* identify best lower and higher frequency calibration measurement */
4875 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4876 		for (ipier = 0; ipier < npier; ipier++) {
4877 			if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4878 						    &pfrequency, &pcorrection,
4879 						    &ptemperature, &pvoltage)) {
4880 				fdiff = frequency - pfrequency;
4881 
4882 				/*
4883 				 * this measurement is higher than
4884 				 * our desired frequency
4885 				 */
4886 				if (fdiff <= 0) {
4887 					if (hfrequency[ichain] <= 0 ||
4888 					    hfrequency[ichain] >= 100000 ||
4889 					    fdiff >
4890 					    (frequency - hfrequency[ichain])) {
4891 						/*
4892 						 * new best higher
4893 						 * frequency measurement
4894 						 */
4895 						hfrequency[ichain] = pfrequency;
4896 						hcorrection[ichain] =
4897 						    pcorrection;
4898 						htemperature[ichain] =
4899 						    ptemperature;
4900 						hvoltage[ichain] = pvoltage;
4901 					}
4902 				}
4903 				if (fdiff >= 0) {
4904 					if (lfrequency[ichain] <= 0
4905 					    || fdiff <
4906 					    (frequency - lfrequency[ichain])) {
4907 						/*
4908 						 * new best lower
4909 						 * frequency measurement
4910 						 */
4911 						lfrequency[ichain] = pfrequency;
4912 						lcorrection[ichain] =
4913 						    pcorrection;
4914 						ltemperature[ichain] =
4915 						    ptemperature;
4916 						lvoltage[ichain] = pvoltage;
4917 					}
4918 				}
4919 			}
4920 		}
4921 	}
4922 
4923 	/* interpolate  */
4924 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4925 		ath_dbg(common, EEPROM, "ch=%d f=%d low=%d %d h=%d %d\n",
4926 			ichain, frequency, lfrequency[ichain],
4927 			lcorrection[ichain], hfrequency[ichain],
4928 			hcorrection[ichain]);
4929 		/* they're the same, so just pick one */
4930 		if (hfrequency[ichain] == lfrequency[ichain]) {
4931 			correction[ichain] = lcorrection[ichain];
4932 			voltage[ichain] = lvoltage[ichain];
4933 			temperature[ichain] = ltemperature[ichain];
4934 		}
4935 		/* the low frequency is good */
4936 		else if (frequency - lfrequency[ichain] < 1000) {
4937 			/* so is the high frequency, interpolate */
4938 			if (hfrequency[ichain] - frequency < 1000) {
4939 
4940 				correction[ichain] = interpolate(frequency,
4941 						lfrequency[ichain],
4942 						hfrequency[ichain],
4943 						lcorrection[ichain],
4944 						hcorrection[ichain]);
4945 
4946 				temperature[ichain] = interpolate(frequency,
4947 						lfrequency[ichain],
4948 						hfrequency[ichain],
4949 						ltemperature[ichain],
4950 						htemperature[ichain]);
4951 
4952 				voltage[ichain] = interpolate(frequency,
4953 						lfrequency[ichain],
4954 						hfrequency[ichain],
4955 						lvoltage[ichain],
4956 						hvoltage[ichain]);
4957 			}
4958 			/* only low is good, use it */
4959 			else {
4960 				correction[ichain] = lcorrection[ichain];
4961 				temperature[ichain] = ltemperature[ichain];
4962 				voltage[ichain] = lvoltage[ichain];
4963 			}
4964 		}
4965 		/* only high is good, use it */
4966 		else if (hfrequency[ichain] - frequency < 1000) {
4967 			correction[ichain] = hcorrection[ichain];
4968 			temperature[ichain] = htemperature[ichain];
4969 			voltage[ichain] = hvoltage[ichain];
4970 		} else {	/* nothing is good, presume 0???? */
4971 			correction[ichain] = 0;
4972 			temperature[ichain] = 0;
4973 			voltage[ichain] = 0;
4974 		}
4975 	}
4976 
4977 	ar9003_hw_power_control_override(ah, frequency, correction, voltage,
4978 					 temperature);
4979 
4980 	ath_dbg(common, EEPROM,
4981 		"for frequency=%d, calibration correction = %d %d %d\n",
4982 		frequency, correction[0], correction[1], correction[2]);
4983 
4984 	return 0;
4985 }
4986 
4987 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
4988 					   int idx,
4989 					   int edge,
4990 					   bool is2GHz)
4991 {
4992 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4993 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4994 
4995 	if (is2GHz)
4996 		return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
4997 	else
4998 		return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
4999 }
5000 
5001 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
5002 					     int idx,
5003 					     unsigned int edge,
5004 					     u16 freq,
5005 					     bool is2GHz)
5006 {
5007 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
5008 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
5009 
5010 	u8 *ctl_freqbin = is2GHz ?
5011 		&eep->ctl_freqbin_2G[idx][0] :
5012 		&eep->ctl_freqbin_5G[idx][0];
5013 
5014 	if (is2GHz) {
5015 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
5016 		    CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
5017 			return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
5018 	} else {
5019 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
5020 		    CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
5021 			return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
5022 	}
5023 
5024 	return MAX_RATE_POWER;
5025 }
5026 
5027 /*
5028  * Find the maximum conformance test limit for the given channel and CTL info
5029  */
5030 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
5031 					u16 freq, int idx, bool is2GHz)
5032 {
5033 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
5034 	u8 *ctl_freqbin = is2GHz ?
5035 		&eep->ctl_freqbin_2G[idx][0] :
5036 		&eep->ctl_freqbin_5G[idx][0];
5037 	u16 num_edges = is2GHz ?
5038 		AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
5039 	unsigned int edge;
5040 
5041 	/* Get the edge power */
5042 	for (edge = 0;
5043 	     (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
5044 	     edge++) {
5045 		/*
5046 		 * If there's an exact channel match or an inband flag set
5047 		 * on the lower channel use the given rdEdgePower
5048 		 */
5049 		if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
5050 			twiceMaxEdgePower =
5051 				ar9003_hw_get_direct_edge_power(eep, idx,
5052 								edge, is2GHz);
5053 			break;
5054 		} else if ((edge > 0) &&
5055 			   (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
5056 						      is2GHz))) {
5057 			twiceMaxEdgePower =
5058 				ar9003_hw_get_indirect_edge_power(eep, idx,
5059 								  edge, freq,
5060 								  is2GHz);
5061 			/*
5062 			 * Leave loop - no more affecting edges possible in
5063 			 * this monotonic increasing list
5064 			 */
5065 			break;
5066 		}
5067 	}
5068 	return twiceMaxEdgePower;
5069 }
5070 
5071 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
5072 					       struct ath9k_channel *chan,
5073 					       u8 *pPwrArray, u16 cfgCtl,
5074 					       u8 antenna_reduction,
5075 					       u16 powerLimit)
5076 {
5077 	struct ath_common *common = ath9k_hw_common(ah);
5078 	struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
5079 	u16 twiceMaxEdgePower;
5080 	int i;
5081 	u16 scaledPower = 0, minCtlPower;
5082 	static const u16 ctlModesFor11a[] = {
5083 		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
5084 	};
5085 	static const u16 ctlModesFor11g[] = {
5086 		CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
5087 		CTL_11G_EXT, CTL_2GHT40
5088 	};
5089 	u16 numCtlModes;
5090 	const u16 *pCtlMode;
5091 	u16 ctlMode, freq;
5092 	struct chan_centers centers;
5093 	u8 *ctlIndex;
5094 	u8 ctlNum;
5095 	u16 twiceMinEdgePower;
5096 	bool is2ghz = IS_CHAN_2GHZ(chan);
5097 
5098 	ath9k_hw_get_channel_centers(ah, chan, &centers);
5099 	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
5100 						antenna_reduction);
5101 
5102 	if (is2ghz) {
5103 		/* Setup for CTL modes */
5104 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
5105 		numCtlModes =
5106 			ARRAY_SIZE(ctlModesFor11g) -
5107 				   SUB_NUM_CTL_MODES_AT_2G_40;
5108 		pCtlMode = ctlModesFor11g;
5109 		if (IS_CHAN_HT40(chan))
5110 			/* All 2G CTL's */
5111 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
5112 	} else {
5113 		/* Setup for CTL modes */
5114 		/* CTL_11A, CTL_5GHT20 */
5115 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
5116 					 SUB_NUM_CTL_MODES_AT_5G_40;
5117 		pCtlMode = ctlModesFor11a;
5118 		if (IS_CHAN_HT40(chan))
5119 			/* All 5G CTL's */
5120 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
5121 	}
5122 
5123 	/*
5124 	 * For MIMO, need to apply regulatory caps individually across
5125 	 * dynamically running modes: CCK, OFDM, HT20, HT40
5126 	 *
5127 	 * The outer loop walks through each possible applicable runtime mode.
5128 	 * The inner loop walks through each ctlIndex entry in EEPROM.
5129 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
5130 	 */
5131 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
5132 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
5133 			(pCtlMode[ctlMode] == CTL_2GHT40);
5134 		if (isHt40CtlMode)
5135 			freq = centers.synth_center;
5136 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
5137 			freq = centers.ext_center;
5138 		else
5139 			freq = centers.ctl_center;
5140 
5141 		ath_dbg(common, REGULATORY,
5142 			"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
5143 			ctlMode, numCtlModes, isHt40CtlMode,
5144 			(pCtlMode[ctlMode] & EXT_ADDITIVE));
5145 
5146 		/* walk through each CTL index stored in EEPROM */
5147 		if (is2ghz) {
5148 			ctlIndex = pEepData->ctlIndex_2G;
5149 			ctlNum = AR9300_NUM_CTLS_2G;
5150 		} else {
5151 			ctlIndex = pEepData->ctlIndex_5G;
5152 			ctlNum = AR9300_NUM_CTLS_5G;
5153 		}
5154 
5155 		twiceMaxEdgePower = MAX_RATE_POWER;
5156 		for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
5157 			ath_dbg(common, REGULATORY,
5158 				"LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
5159 				i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
5160 				chan->channel);
5161 
5162 			/*
5163 			 * compare test group from regulatory
5164 			 * channel list with test mode from pCtlMode
5165 			 * list
5166 			 */
5167 			if ((((cfgCtl & ~CTL_MODE_M) |
5168 			       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
5169 				ctlIndex[i]) ||
5170 			    (((cfgCtl & ~CTL_MODE_M) |
5171 			       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
5172 			     ((ctlIndex[i] & CTL_MODE_M) |
5173 			       SD_NO_CTL))) {
5174 				twiceMinEdgePower =
5175 				  ar9003_hw_get_max_edge_power(pEepData,
5176 							       freq, i,
5177 							       is2ghz);
5178 
5179 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
5180 					/*
5181 					 * Find the minimum of all CTL
5182 					 * edge powers that apply to
5183 					 * this channel
5184 					 */
5185 					twiceMaxEdgePower =
5186 						min(twiceMaxEdgePower,
5187 						    twiceMinEdgePower);
5188 				else {
5189 					/* specific */
5190 					twiceMaxEdgePower = twiceMinEdgePower;
5191 					break;
5192 				}
5193 			}
5194 		}
5195 
5196 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
5197 
5198 		ath_dbg(common, REGULATORY,
5199 			"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
5200 			ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
5201 			scaledPower, minCtlPower);
5202 
5203 		/* Apply ctl mode to correct target power set */
5204 		switch (pCtlMode[ctlMode]) {
5205 		case CTL_11B:
5206 			for (i = ALL_TARGET_LEGACY_1L_5L;
5207 			     i <= ALL_TARGET_LEGACY_11S; i++)
5208 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5209 						       minCtlPower);
5210 			break;
5211 		case CTL_11A:
5212 		case CTL_11G:
5213 			for (i = ALL_TARGET_LEGACY_6_24;
5214 			     i <= ALL_TARGET_LEGACY_54; i++)
5215 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5216 						       minCtlPower);
5217 			break;
5218 		case CTL_5GHT20:
5219 		case CTL_2GHT20:
5220 			for (i = ALL_TARGET_HT20_0_8_16;
5221 			     i <= ALL_TARGET_HT20_23; i++) {
5222 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5223 						       minCtlPower);
5224 				if (ath9k_hw_mci_is_enabled(ah))
5225 					pPwrArray[i] =
5226 						(u8)min((u16)pPwrArray[i],
5227 						ar9003_mci_get_max_txpower(ah,
5228 							pCtlMode[ctlMode]));
5229 			}
5230 			break;
5231 		case CTL_5GHT40:
5232 		case CTL_2GHT40:
5233 			for (i = ALL_TARGET_HT40_0_8_16;
5234 			     i <= ALL_TARGET_HT40_23; i++) {
5235 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5236 						       minCtlPower);
5237 				if (ath9k_hw_mci_is_enabled(ah))
5238 					pPwrArray[i] =
5239 						(u8)min((u16)pPwrArray[i],
5240 						ar9003_mci_get_max_txpower(ah,
5241 							pCtlMode[ctlMode]));
5242 			}
5243 			break;
5244 		default:
5245 			break;
5246 		}
5247 	} /* end ctl mode checking */
5248 }
5249 
5250 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
5251 {
5252 	u8 mod_idx = mcs_idx % 8;
5253 
5254 	if (mod_idx <= 3)
5255 		return mod_idx ? (base_pwridx + 1) : base_pwridx;
5256 	else
5257 		return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
5258 }
5259 
5260 static void ar9003_paprd_set_txpower(struct ath_hw *ah,
5261 				     struct ath9k_channel *chan,
5262 				     u8 *targetPowerValT2)
5263 {
5264 	int i;
5265 
5266 	if (!ar9003_is_paprd_enabled(ah))
5267 		return;
5268 
5269 	if (IS_CHAN_HT40(chan))
5270 		i = ALL_TARGET_HT40_7;
5271 	else
5272 		i = ALL_TARGET_HT20_7;
5273 
5274 	if (IS_CHAN_2GHZ(chan)) {
5275 		if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) &&
5276 		    !AR_SREV_9462(ah) && !AR_SREV_9565(ah)) {
5277 			if (IS_CHAN_HT40(chan))
5278 				i = ALL_TARGET_HT40_0_8_16;
5279 			else
5280 				i = ALL_TARGET_HT20_0_8_16;
5281 		}
5282 	}
5283 
5284 	ah->paprd_target_power = targetPowerValT2[i];
5285 }
5286 
5287 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
5288 					struct ath9k_channel *chan, u16 cfgCtl,
5289 					u8 twiceAntennaReduction,
5290 					u8 powerLimit, bool test)
5291 {
5292 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
5293 	struct ath_common *common = ath9k_hw_common(ah);
5294 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5295 	struct ar9300_modal_eep_header *modal_hdr;
5296 	u8 targetPowerValT2[ar9300RateSize];
5297 	u8 target_power_val_t2_eep[ar9300RateSize];
5298 	unsigned int i = 0, paprd_scale_factor = 0;
5299 	u8 pwr_idx, min_pwridx = 0;
5300 
5301 	memset(targetPowerValT2, 0 , sizeof(targetPowerValT2));
5302 
5303 	/*
5304 	 * Get target powers from EEPROM - our baseline for TX Power
5305 	 */
5306 	ar9003_hw_get_target_power_eeprom(ah, chan, targetPowerValT2);
5307 
5308 	if (ar9003_is_paprd_enabled(ah)) {
5309 		if (IS_CHAN_2GHZ(chan))
5310 			modal_hdr = &eep->modalHeader2G;
5311 		else
5312 			modal_hdr = &eep->modalHeader5G;
5313 
5314 		ah->paprd_ratemask =
5315 			le32_to_cpu(modal_hdr->papdRateMaskHt20) &
5316 			AR9300_PAPRD_RATE_MASK;
5317 
5318 		ah->paprd_ratemask_ht40 =
5319 			le32_to_cpu(modal_hdr->papdRateMaskHt40) &
5320 			AR9300_PAPRD_RATE_MASK;
5321 
5322 		paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
5323 		min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
5324 						  ALL_TARGET_HT20_0_8_16;
5325 
5326 		if (!ah->paprd_table_write_done) {
5327 			memcpy(target_power_val_t2_eep, targetPowerValT2,
5328 			       sizeof(targetPowerValT2));
5329 			for (i = 0; i < 24; i++) {
5330 				pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
5331 				if (ah->paprd_ratemask & (1 << i)) {
5332 					if (targetPowerValT2[pwr_idx] &&
5333 					    targetPowerValT2[pwr_idx] ==
5334 					    target_power_val_t2_eep[pwr_idx])
5335 						targetPowerValT2[pwr_idx] -=
5336 							paprd_scale_factor;
5337 				}
5338 			}
5339 		}
5340 		memcpy(target_power_val_t2_eep, targetPowerValT2,
5341 		       sizeof(targetPowerValT2));
5342 	}
5343 
5344 	ar9003_hw_set_power_per_rate_table(ah, chan,
5345 					   targetPowerValT2, cfgCtl,
5346 					   twiceAntennaReduction,
5347 					   powerLimit);
5348 
5349 	if (ar9003_is_paprd_enabled(ah)) {
5350 		for (i = 0; i < ar9300RateSize; i++) {
5351 			if ((ah->paprd_ratemask & (1 << i)) &&
5352 			    (abs(targetPowerValT2[i] -
5353 				target_power_val_t2_eep[i]) >
5354 			    paprd_scale_factor)) {
5355 				ah->paprd_ratemask &= ~(1 << i);
5356 				ath_dbg(common, EEPROM,
5357 					"paprd disabled for mcs %d\n", i);
5358 			}
5359 		}
5360 	}
5361 
5362 	regulatory->max_power_level = 0;
5363 	for (i = 0; i < ar9300RateSize; i++) {
5364 		if (targetPowerValT2[i] > regulatory->max_power_level)
5365 			regulatory->max_power_level = targetPowerValT2[i];
5366 	}
5367 
5368 	ath9k_hw_update_regulatory_maxpower(ah);
5369 
5370 	if (test)
5371 		return;
5372 
5373 	for (i = 0; i < ar9300RateSize; i++) {
5374 		ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
5375 			i, targetPowerValT2[i]);
5376 	}
5377 
5378 	/* Write target power array to registers */
5379 	ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5380 	ar9003_hw_calibration_apply(ah, chan->channel);
5381 	ar9003_paprd_set_txpower(ah, chan, targetPowerValT2);
5382 }
5383 
5384 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
5385 					    u16 i, bool is2GHz)
5386 {
5387 	return AR_NO_SPUR;
5388 }
5389 
5390 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
5391 {
5392 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5393 
5394 	return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
5395 }
5396 
5397 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
5398 {
5399 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5400 
5401 	return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
5402 }
5403 
5404 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is2ghz)
5405 {
5406 	return ar9003_modal_header(ah, is2ghz)->spurChans;
5407 }
5408 
5409 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
5410 					   struct ath9k_channel *chan)
5411 {
5412 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5413 
5414 	if (IS_CHAN_2GHZ(chan))
5415 		return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5416 			  AR9300_PAPRD_SCALE_1);
5417 	else {
5418 		if (chan->channel >= 5700)
5419 		return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5420 			  AR9300_PAPRD_SCALE_1);
5421 		else if (chan->channel >= 5400)
5422 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5423 				   AR9300_PAPRD_SCALE_2);
5424 		else
5425 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5426 				  AR9300_PAPRD_SCALE_1);
5427 	}
5428 }
5429 
5430 const struct eeprom_ops eep_ar9300_ops = {
5431 	.check_eeprom = ath9k_hw_ar9300_check_eeprom,
5432 	.get_eeprom = ath9k_hw_ar9300_get_eeprom,
5433 	.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5434 	.dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5435 	.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5436 	.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5437 	.set_board_values = ath9k_hw_ar9300_set_board_values,
5438 	.set_addac = ath9k_hw_ar9300_set_addac,
5439 	.set_txpower = ath9k_hw_ar9300_set_txpower,
5440 	.get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5441 };
5442