1 /* 2 * Copyright (c) 2010-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <asm/unaligned.h> 18 #include "hw.h" 19 #include "ar9003_phy.h" 20 #include "ar9003_eeprom.h" 21 #include "ar9003_mci.h" 22 23 #define COMP_HDR_LEN 4 24 #define COMP_CKSUM_LEN 2 25 26 #define LE16(x) __constant_cpu_to_le16(x) 27 #define LE32(x) __constant_cpu_to_le32(x) 28 29 /* Local defines to distinguish between extension and control CTL's */ 30 #define EXT_ADDITIVE (0x8000) 31 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE) 32 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE) 33 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE) 34 35 #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */ 36 #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */ 37 38 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6)) 39 40 #define EEPROM_DATA_LEN_9485 1088 41 42 static int ar9003_hw_power_interpolate(int32_t x, 43 int32_t *px, int32_t *py, u_int16_t np); 44 45 static const struct ar9300_eeprom ar9300_default = { 46 .eepromVersion = 2, 47 .templateVersion = 2, 48 .macAddr = {0, 2, 3, 4, 5, 6}, 49 .custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 51 .baseEepHeader = { 52 .regDmn = { LE16(0), LE16(0x1f) }, 53 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */ 54 .opCapFlags = { 55 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A, 56 .eepMisc = 0, 57 }, 58 .rfSilent = 0, 59 .blueToothOptions = 0, 60 .deviceCap = 0, 61 .deviceType = 5, /* takes lower byte in eeprom location */ 62 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET, 63 .params_for_tuning_caps = {0, 0}, 64 .featureEnable = 0x0c, 65 /* 66 * bit0 - enable tx temp comp - disabled 67 * bit1 - enable tx volt comp - disabled 68 * bit2 - enable fastClock - enabled 69 * bit3 - enable doubling - enabled 70 * bit4 - enable internal regulator - disabled 71 * bit5 - enable pa predistortion - disabled 72 */ 73 .miscConfiguration = 0, /* bit0 - turn down drivestrength */ 74 .eepromWriteEnableGpio = 3, 75 .wlanDisableGpio = 0, 76 .wlanLedGpio = 8, 77 .rxBandSelectGpio = 0xff, 78 .txrxgain = 0, 79 .swreg = 0, 80 }, 81 .modalHeader2G = { 82 /* ar9300_modal_eep_header 2g */ 83 /* 4 idle,t1,t2,b(4 bits per setting) */ 84 .antCtrlCommon = LE32(0x110), 85 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */ 86 .antCtrlCommon2 = LE32(0x22222), 87 88 /* 89 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r, 90 * rx1, rx12, b (2 bits each) 91 */ 92 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) }, 93 94 /* 95 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db 96 * for ar9280 (0xa20c/b20c 5:0) 97 */ 98 .xatten1DB = {0, 0, 0}, 99 100 /* 101 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin 102 * for ar9280 (0xa20c/b20c 16:12 103 */ 104 .xatten1Margin = {0, 0, 0}, 105 .tempSlope = 36, 106 .voltSlope = 0, 107 108 /* 109 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur 110 * channels in usual fbin coding format 111 */ 112 .spurChans = {0, 0, 0, 0, 0}, 113 114 /* 115 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check 116 * if the register is per chain 117 */ 118 .noiseFloorThreshCh = {-1, 0, 0}, 119 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 120 .quick_drop = 0, 121 .xpaBiasLvl = 0, 122 .txFrameToDataStart = 0x0e, 123 .txFrameToPaOn = 0x0e, 124 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ 125 .antennaGain = 0, 126 .switchSettling = 0x2c, 127 .adcDesiredSize = -30, 128 .txEndToXpaOff = 0, 129 .txEndToRxOn = 0x2, 130 .txFrameToXpaOn = 0xe, 131 .thresh62 = 28, 132 .papdRateMaskHt20 = LE32(0x0cf0e0e0), 133 .papdRateMaskHt40 = LE32(0x6cf0e0e0), 134 .switchcomspdt = 0, 135 .xlna_bias_strength = 0, 136 .futureModal = { 137 0, 0, 0, 0, 0, 0, 0, 138 }, 139 }, 140 .base_ext1 = { 141 .ant_div_control = 0, 142 .future = {0, 0}, 143 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0} 144 }, 145 .calFreqPier2G = { 146 FREQ2FBIN(2412, 1), 147 FREQ2FBIN(2437, 1), 148 FREQ2FBIN(2472, 1), 149 }, 150 /* ar9300_cal_data_per_freq_op_loop 2g */ 151 .calPierData2G = { 152 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, 153 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, 154 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, 155 }, 156 .calTarget_freqbin_Cck = { 157 FREQ2FBIN(2412, 1), 158 FREQ2FBIN(2484, 1), 159 }, 160 .calTarget_freqbin_2G = { 161 FREQ2FBIN(2412, 1), 162 FREQ2FBIN(2437, 1), 163 FREQ2FBIN(2472, 1) 164 }, 165 .calTarget_freqbin_2GHT20 = { 166 FREQ2FBIN(2412, 1), 167 FREQ2FBIN(2437, 1), 168 FREQ2FBIN(2472, 1) 169 }, 170 .calTarget_freqbin_2GHT40 = { 171 FREQ2FBIN(2412, 1), 172 FREQ2FBIN(2437, 1), 173 FREQ2FBIN(2472, 1) 174 }, 175 .calTargetPowerCck = { 176 /* 1L-5L,5S,11L,11S */ 177 { {36, 36, 36, 36} }, 178 { {36, 36, 36, 36} }, 179 }, 180 .calTargetPower2G = { 181 /* 6-24,36,48,54 */ 182 { {32, 32, 28, 24} }, 183 { {32, 32, 28, 24} }, 184 { {32, 32, 28, 24} }, 185 }, 186 .calTargetPower2GHT20 = { 187 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} }, 188 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} }, 189 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} }, 190 }, 191 .calTargetPower2GHT40 = { 192 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} }, 193 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} }, 194 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} }, 195 }, 196 .ctlIndex_2G = { 197 0x11, 0x12, 0x15, 0x17, 0x41, 0x42, 198 0x45, 0x47, 0x31, 0x32, 0x35, 0x37, 199 }, 200 .ctl_freqbin_2G = { 201 { 202 FREQ2FBIN(2412, 1), 203 FREQ2FBIN(2417, 1), 204 FREQ2FBIN(2457, 1), 205 FREQ2FBIN(2462, 1) 206 }, 207 { 208 FREQ2FBIN(2412, 1), 209 FREQ2FBIN(2417, 1), 210 FREQ2FBIN(2462, 1), 211 0xFF, 212 }, 213 214 { 215 FREQ2FBIN(2412, 1), 216 FREQ2FBIN(2417, 1), 217 FREQ2FBIN(2462, 1), 218 0xFF, 219 }, 220 { 221 FREQ2FBIN(2422, 1), 222 FREQ2FBIN(2427, 1), 223 FREQ2FBIN(2447, 1), 224 FREQ2FBIN(2452, 1) 225 }, 226 227 { 228 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 229 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 230 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 231 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1), 232 }, 233 234 { 235 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 236 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 237 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 238 0, 239 }, 240 241 { 242 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 243 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 244 FREQ2FBIN(2472, 1), 245 0, 246 }, 247 248 { 249 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1), 250 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1), 251 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1), 252 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1), 253 }, 254 255 { 256 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 257 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 258 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 259 }, 260 261 { 262 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 263 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 264 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 265 0 266 }, 267 268 { 269 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 270 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 271 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 272 0 273 }, 274 275 { 276 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1), 277 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1), 278 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1), 279 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1), 280 } 281 }, 282 .ctlPowerData_2G = { 283 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 284 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 285 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } }, 286 287 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } }, 288 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 289 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 290 291 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } }, 292 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 293 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 294 295 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 296 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, 297 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, 298 }, 299 .modalHeader5G = { 300 /* 4 idle,t1,t2,b (4 bits per setting) */ 301 .antCtrlCommon = LE32(0x110), 302 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */ 303 .antCtrlCommon2 = LE32(0x22222), 304 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */ 305 .antCtrlChain = { 306 LE16(0x000), LE16(0x000), LE16(0x000), 307 }, 308 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */ 309 .xatten1DB = {0, 0, 0}, 310 311 /* 312 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin 313 * for merlin (0xa20c/b20c 16:12 314 */ 315 .xatten1Margin = {0, 0, 0}, 316 .tempSlope = 68, 317 .voltSlope = 0, 318 /* spurChans spur channels in usual fbin coding format */ 319 .spurChans = {0, 0, 0, 0, 0}, 320 /* noiseFloorThreshCh Check if the register is per chain */ 321 .noiseFloorThreshCh = {-1, 0, 0}, 322 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 323 .quick_drop = 0, 324 .xpaBiasLvl = 0, 325 .txFrameToDataStart = 0x0e, 326 .txFrameToPaOn = 0x0e, 327 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ 328 .antennaGain = 0, 329 .switchSettling = 0x2d, 330 .adcDesiredSize = -30, 331 .txEndToXpaOff = 0, 332 .txEndToRxOn = 0x2, 333 .txFrameToXpaOn = 0xe, 334 .thresh62 = 28, 335 .papdRateMaskHt20 = LE32(0x0c80c080), 336 .papdRateMaskHt40 = LE32(0x0080c080), 337 .switchcomspdt = 0, 338 .xlna_bias_strength = 0, 339 .futureModal = { 340 0, 0, 0, 0, 0, 0, 0, 341 }, 342 }, 343 .base_ext2 = { 344 .tempSlopeLow = 0, 345 .tempSlopeHigh = 0, 346 .xatten1DBLow = {0, 0, 0}, 347 .xatten1MarginLow = {0, 0, 0}, 348 .xatten1DBHigh = {0, 0, 0}, 349 .xatten1MarginHigh = {0, 0, 0} 350 }, 351 .calFreqPier5G = { 352 FREQ2FBIN(5180, 0), 353 FREQ2FBIN(5220, 0), 354 FREQ2FBIN(5320, 0), 355 FREQ2FBIN(5400, 0), 356 FREQ2FBIN(5500, 0), 357 FREQ2FBIN(5600, 0), 358 FREQ2FBIN(5725, 0), 359 FREQ2FBIN(5825, 0) 360 }, 361 .calPierData5G = { 362 { 363 {0, 0, 0, 0, 0}, 364 {0, 0, 0, 0, 0}, 365 {0, 0, 0, 0, 0}, 366 {0, 0, 0, 0, 0}, 367 {0, 0, 0, 0, 0}, 368 {0, 0, 0, 0, 0}, 369 {0, 0, 0, 0, 0}, 370 {0, 0, 0, 0, 0}, 371 }, 372 { 373 {0, 0, 0, 0, 0}, 374 {0, 0, 0, 0, 0}, 375 {0, 0, 0, 0, 0}, 376 {0, 0, 0, 0, 0}, 377 {0, 0, 0, 0, 0}, 378 {0, 0, 0, 0, 0}, 379 {0, 0, 0, 0, 0}, 380 {0, 0, 0, 0, 0}, 381 }, 382 { 383 {0, 0, 0, 0, 0}, 384 {0, 0, 0, 0, 0}, 385 {0, 0, 0, 0, 0}, 386 {0, 0, 0, 0, 0}, 387 {0, 0, 0, 0, 0}, 388 {0, 0, 0, 0, 0}, 389 {0, 0, 0, 0, 0}, 390 {0, 0, 0, 0, 0}, 391 }, 392 393 }, 394 .calTarget_freqbin_5G = { 395 FREQ2FBIN(5180, 0), 396 FREQ2FBIN(5220, 0), 397 FREQ2FBIN(5320, 0), 398 FREQ2FBIN(5400, 0), 399 FREQ2FBIN(5500, 0), 400 FREQ2FBIN(5600, 0), 401 FREQ2FBIN(5725, 0), 402 FREQ2FBIN(5825, 0) 403 }, 404 .calTarget_freqbin_5GHT20 = { 405 FREQ2FBIN(5180, 0), 406 FREQ2FBIN(5240, 0), 407 FREQ2FBIN(5320, 0), 408 FREQ2FBIN(5500, 0), 409 FREQ2FBIN(5700, 0), 410 FREQ2FBIN(5745, 0), 411 FREQ2FBIN(5725, 0), 412 FREQ2FBIN(5825, 0) 413 }, 414 .calTarget_freqbin_5GHT40 = { 415 FREQ2FBIN(5180, 0), 416 FREQ2FBIN(5240, 0), 417 FREQ2FBIN(5320, 0), 418 FREQ2FBIN(5500, 0), 419 FREQ2FBIN(5700, 0), 420 FREQ2FBIN(5745, 0), 421 FREQ2FBIN(5725, 0), 422 FREQ2FBIN(5825, 0) 423 }, 424 .calTargetPower5G = { 425 /* 6-24,36,48,54 */ 426 { {20, 20, 20, 10} }, 427 { {20, 20, 20, 10} }, 428 { {20, 20, 20, 10} }, 429 { {20, 20, 20, 10} }, 430 { {20, 20, 20, 10} }, 431 { {20, 20, 20, 10} }, 432 { {20, 20, 20, 10} }, 433 { {20, 20, 20, 10} }, 434 }, 435 .calTargetPower5GHT20 = { 436 /* 437 * 0_8_16,1-3_9-11_17-19, 438 * 4,5,6,7,12,13,14,15,20,21,22,23 439 */ 440 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, 441 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, 442 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, 443 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, 444 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, 445 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, 446 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, 447 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, 448 }, 449 .calTargetPower5GHT40 = { 450 /* 451 * 0_8_16,1-3_9-11_17-19, 452 * 4,5,6,7,12,13,14,15,20,21,22,23 453 */ 454 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, 455 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, 456 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, 457 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, 458 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, 459 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, 460 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, 461 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, 462 }, 463 .ctlIndex_5G = { 464 0x10, 0x16, 0x18, 0x40, 0x46, 465 0x48, 0x30, 0x36, 0x38 466 }, 467 .ctl_freqbin_5G = { 468 { 469 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 470 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), 471 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0), 472 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), 473 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0), 474 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), 475 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), 476 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) 477 }, 478 { 479 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 480 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), 481 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0), 482 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), 483 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0), 484 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), 485 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), 486 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) 487 }, 488 489 { 490 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), 491 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0), 492 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0), 493 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0), 494 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0), 495 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0), 496 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0), 497 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0) 498 }, 499 500 { 501 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 502 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0), 503 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0), 504 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0), 505 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0), 506 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), 507 /* Data[3].ctlEdges[6].bChannel */ 0xFF, 508 /* Data[3].ctlEdges[7].bChannel */ 0xFF, 509 }, 510 511 { 512 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 513 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), 514 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0), 515 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0), 516 /* Data[4].ctlEdges[4].bChannel */ 0xFF, 517 /* Data[4].ctlEdges[5].bChannel */ 0xFF, 518 /* Data[4].ctlEdges[6].bChannel */ 0xFF, 519 /* Data[4].ctlEdges[7].bChannel */ 0xFF, 520 }, 521 522 { 523 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), 524 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0), 525 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0), 526 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0), 527 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0), 528 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0), 529 /* Data[5].ctlEdges[6].bChannel */ 0xFF, 530 /* Data[5].ctlEdges[7].bChannel */ 0xFF 531 }, 532 533 { 534 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 535 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0), 536 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0), 537 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0), 538 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0), 539 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0), 540 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0), 541 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0) 542 }, 543 544 { 545 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 546 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), 547 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0), 548 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), 549 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0), 550 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), 551 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), 552 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) 553 }, 554 555 { 556 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), 557 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0), 558 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0), 559 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0), 560 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0), 561 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0), 562 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0), 563 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0) 564 } 565 }, 566 .ctlPowerData_5G = { 567 { 568 { 569 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 570 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 571 } 572 }, 573 { 574 { 575 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 576 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 577 } 578 }, 579 { 580 { 581 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1), 582 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 583 } 584 }, 585 { 586 { 587 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0), 588 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), 589 } 590 }, 591 { 592 { 593 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 594 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0), 595 } 596 }, 597 { 598 { 599 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 600 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), 601 } 602 }, 603 { 604 { 605 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 606 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 607 } 608 }, 609 { 610 { 611 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), 612 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 613 } 614 }, 615 { 616 { 617 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), 618 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), 619 } 620 }, 621 } 622 }; 623 624 static const struct ar9300_eeprom ar9300_x113 = { 625 .eepromVersion = 2, 626 .templateVersion = 6, 627 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0}, 628 .custData = {"x113-023-f0000"}, 629 .baseEepHeader = { 630 .regDmn = { LE16(0), LE16(0x1f) }, 631 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */ 632 .opCapFlags = { 633 .opFlags = AR5416_OPFLAGS_11A, 634 .eepMisc = 0, 635 }, 636 .rfSilent = 0, 637 .blueToothOptions = 0, 638 .deviceCap = 0, 639 .deviceType = 5, /* takes lower byte in eeprom location */ 640 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET, 641 .params_for_tuning_caps = {0, 0}, 642 .featureEnable = 0x0d, 643 /* 644 * bit0 - enable tx temp comp - disabled 645 * bit1 - enable tx volt comp - disabled 646 * bit2 - enable fastClock - enabled 647 * bit3 - enable doubling - enabled 648 * bit4 - enable internal regulator - disabled 649 * bit5 - enable pa predistortion - disabled 650 */ 651 .miscConfiguration = 0, /* bit0 - turn down drivestrength */ 652 .eepromWriteEnableGpio = 6, 653 .wlanDisableGpio = 0, 654 .wlanLedGpio = 8, 655 .rxBandSelectGpio = 0xff, 656 .txrxgain = 0x21, 657 .swreg = 0, 658 }, 659 .modalHeader2G = { 660 /* ar9300_modal_eep_header 2g */ 661 /* 4 idle,t1,t2,b(4 bits per setting) */ 662 .antCtrlCommon = LE32(0x110), 663 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */ 664 .antCtrlCommon2 = LE32(0x44444), 665 666 /* 667 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r, 668 * rx1, rx12, b (2 bits each) 669 */ 670 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) }, 671 672 /* 673 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db 674 * for ar9280 (0xa20c/b20c 5:0) 675 */ 676 .xatten1DB = {0, 0, 0}, 677 678 /* 679 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin 680 * for ar9280 (0xa20c/b20c 16:12 681 */ 682 .xatten1Margin = {0, 0, 0}, 683 .tempSlope = 25, 684 .voltSlope = 0, 685 686 /* 687 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur 688 * channels in usual fbin coding format 689 */ 690 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0}, 691 692 /* 693 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check 694 * if the register is per chain 695 */ 696 .noiseFloorThreshCh = {-1, 0, 0}, 697 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 698 .quick_drop = 0, 699 .xpaBiasLvl = 0, 700 .txFrameToDataStart = 0x0e, 701 .txFrameToPaOn = 0x0e, 702 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ 703 .antennaGain = 0, 704 .switchSettling = 0x2c, 705 .adcDesiredSize = -30, 706 .txEndToXpaOff = 0, 707 .txEndToRxOn = 0x2, 708 .txFrameToXpaOn = 0xe, 709 .thresh62 = 28, 710 .papdRateMaskHt20 = LE32(0x0c80c080), 711 .papdRateMaskHt40 = LE32(0x0080c080), 712 .switchcomspdt = 0, 713 .xlna_bias_strength = 0, 714 .futureModal = { 715 0, 0, 0, 0, 0, 0, 0, 716 }, 717 }, 718 .base_ext1 = { 719 .ant_div_control = 0, 720 .future = {0, 0}, 721 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0} 722 }, 723 .calFreqPier2G = { 724 FREQ2FBIN(2412, 1), 725 FREQ2FBIN(2437, 1), 726 FREQ2FBIN(2472, 1), 727 }, 728 /* ar9300_cal_data_per_freq_op_loop 2g */ 729 .calPierData2G = { 730 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, 731 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, 732 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, 733 }, 734 .calTarget_freqbin_Cck = { 735 FREQ2FBIN(2412, 1), 736 FREQ2FBIN(2472, 1), 737 }, 738 .calTarget_freqbin_2G = { 739 FREQ2FBIN(2412, 1), 740 FREQ2FBIN(2437, 1), 741 FREQ2FBIN(2472, 1) 742 }, 743 .calTarget_freqbin_2GHT20 = { 744 FREQ2FBIN(2412, 1), 745 FREQ2FBIN(2437, 1), 746 FREQ2FBIN(2472, 1) 747 }, 748 .calTarget_freqbin_2GHT40 = { 749 FREQ2FBIN(2412, 1), 750 FREQ2FBIN(2437, 1), 751 FREQ2FBIN(2472, 1) 752 }, 753 .calTargetPowerCck = { 754 /* 1L-5L,5S,11L,11S */ 755 { {34, 34, 34, 34} }, 756 { {34, 34, 34, 34} }, 757 }, 758 .calTargetPower2G = { 759 /* 6-24,36,48,54 */ 760 { {34, 34, 32, 32} }, 761 { {34, 34, 32, 32} }, 762 { {34, 34, 32, 32} }, 763 }, 764 .calTargetPower2GHT20 = { 765 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} }, 766 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} }, 767 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} }, 768 }, 769 .calTargetPower2GHT40 = { 770 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} }, 771 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} }, 772 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} }, 773 }, 774 .ctlIndex_2G = { 775 0x11, 0x12, 0x15, 0x17, 0x41, 0x42, 776 0x45, 0x47, 0x31, 0x32, 0x35, 0x37, 777 }, 778 .ctl_freqbin_2G = { 779 { 780 FREQ2FBIN(2412, 1), 781 FREQ2FBIN(2417, 1), 782 FREQ2FBIN(2457, 1), 783 FREQ2FBIN(2462, 1) 784 }, 785 { 786 FREQ2FBIN(2412, 1), 787 FREQ2FBIN(2417, 1), 788 FREQ2FBIN(2462, 1), 789 0xFF, 790 }, 791 792 { 793 FREQ2FBIN(2412, 1), 794 FREQ2FBIN(2417, 1), 795 FREQ2FBIN(2462, 1), 796 0xFF, 797 }, 798 { 799 FREQ2FBIN(2422, 1), 800 FREQ2FBIN(2427, 1), 801 FREQ2FBIN(2447, 1), 802 FREQ2FBIN(2452, 1) 803 }, 804 805 { 806 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 807 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 808 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 809 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1), 810 }, 811 812 { 813 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 814 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 815 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 816 0, 817 }, 818 819 { 820 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 821 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 822 FREQ2FBIN(2472, 1), 823 0, 824 }, 825 826 { 827 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1), 828 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1), 829 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1), 830 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1), 831 }, 832 833 { 834 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 835 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 836 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 837 }, 838 839 { 840 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 841 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 842 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 843 0 844 }, 845 846 { 847 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 848 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 849 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 850 0 851 }, 852 853 { 854 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1), 855 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1), 856 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1), 857 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1), 858 } 859 }, 860 .ctlPowerData_2G = { 861 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 862 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 863 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } }, 864 865 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } }, 866 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 867 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 868 869 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } }, 870 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 871 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 872 873 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 874 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, 875 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, 876 }, 877 .modalHeader5G = { 878 /* 4 idle,t1,t2,b (4 bits per setting) */ 879 .antCtrlCommon = LE32(0x220), 880 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */ 881 .antCtrlCommon2 = LE32(0x11111), 882 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */ 883 .antCtrlChain = { 884 LE16(0x150), LE16(0x150), LE16(0x150), 885 }, 886 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */ 887 .xatten1DB = {0, 0, 0}, 888 889 /* 890 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin 891 * for merlin (0xa20c/b20c 16:12 892 */ 893 .xatten1Margin = {0, 0, 0}, 894 .tempSlope = 68, 895 .voltSlope = 0, 896 /* spurChans spur channels in usual fbin coding format */ 897 .spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0}, 898 /* noiseFloorThreshCh Check if the register is per chain */ 899 .noiseFloorThreshCh = {-1, 0, 0}, 900 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 901 .quick_drop = 0, 902 .xpaBiasLvl = 0xf, 903 .txFrameToDataStart = 0x0e, 904 .txFrameToPaOn = 0x0e, 905 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ 906 .antennaGain = 0, 907 .switchSettling = 0x2d, 908 .adcDesiredSize = -30, 909 .txEndToXpaOff = 0, 910 .txEndToRxOn = 0x2, 911 .txFrameToXpaOn = 0xe, 912 .thresh62 = 28, 913 .papdRateMaskHt20 = LE32(0x0cf0e0e0), 914 .papdRateMaskHt40 = LE32(0x6cf0e0e0), 915 .switchcomspdt = 0, 916 .xlna_bias_strength = 0, 917 .futureModal = { 918 0, 0, 0, 0, 0, 0, 0, 919 }, 920 }, 921 .base_ext2 = { 922 .tempSlopeLow = 72, 923 .tempSlopeHigh = 105, 924 .xatten1DBLow = {0, 0, 0}, 925 .xatten1MarginLow = {0, 0, 0}, 926 .xatten1DBHigh = {0, 0, 0}, 927 .xatten1MarginHigh = {0, 0, 0} 928 }, 929 .calFreqPier5G = { 930 FREQ2FBIN(5180, 0), 931 FREQ2FBIN(5240, 0), 932 FREQ2FBIN(5320, 0), 933 FREQ2FBIN(5400, 0), 934 FREQ2FBIN(5500, 0), 935 FREQ2FBIN(5600, 0), 936 FREQ2FBIN(5745, 0), 937 FREQ2FBIN(5785, 0) 938 }, 939 .calPierData5G = { 940 { 941 {0, 0, 0, 0, 0}, 942 {0, 0, 0, 0, 0}, 943 {0, 0, 0, 0, 0}, 944 {0, 0, 0, 0, 0}, 945 {0, 0, 0, 0, 0}, 946 {0, 0, 0, 0, 0}, 947 {0, 0, 0, 0, 0}, 948 {0, 0, 0, 0, 0}, 949 }, 950 { 951 {0, 0, 0, 0, 0}, 952 {0, 0, 0, 0, 0}, 953 {0, 0, 0, 0, 0}, 954 {0, 0, 0, 0, 0}, 955 {0, 0, 0, 0, 0}, 956 {0, 0, 0, 0, 0}, 957 {0, 0, 0, 0, 0}, 958 {0, 0, 0, 0, 0}, 959 }, 960 { 961 {0, 0, 0, 0, 0}, 962 {0, 0, 0, 0, 0}, 963 {0, 0, 0, 0, 0}, 964 {0, 0, 0, 0, 0}, 965 {0, 0, 0, 0, 0}, 966 {0, 0, 0, 0, 0}, 967 {0, 0, 0, 0, 0}, 968 {0, 0, 0, 0, 0}, 969 }, 970 971 }, 972 .calTarget_freqbin_5G = { 973 FREQ2FBIN(5180, 0), 974 FREQ2FBIN(5220, 0), 975 FREQ2FBIN(5320, 0), 976 FREQ2FBIN(5400, 0), 977 FREQ2FBIN(5500, 0), 978 FREQ2FBIN(5600, 0), 979 FREQ2FBIN(5745, 0), 980 FREQ2FBIN(5785, 0) 981 }, 982 .calTarget_freqbin_5GHT20 = { 983 FREQ2FBIN(5180, 0), 984 FREQ2FBIN(5240, 0), 985 FREQ2FBIN(5320, 0), 986 FREQ2FBIN(5400, 0), 987 FREQ2FBIN(5500, 0), 988 FREQ2FBIN(5700, 0), 989 FREQ2FBIN(5745, 0), 990 FREQ2FBIN(5825, 0) 991 }, 992 .calTarget_freqbin_5GHT40 = { 993 FREQ2FBIN(5190, 0), 994 FREQ2FBIN(5230, 0), 995 FREQ2FBIN(5320, 0), 996 FREQ2FBIN(5410, 0), 997 FREQ2FBIN(5510, 0), 998 FREQ2FBIN(5670, 0), 999 FREQ2FBIN(5755, 0), 1000 FREQ2FBIN(5825, 0) 1001 }, 1002 .calTargetPower5G = { 1003 /* 6-24,36,48,54 */ 1004 { {42, 40, 40, 34} }, 1005 { {42, 40, 40, 34} }, 1006 { {42, 40, 40, 34} }, 1007 { {42, 40, 40, 34} }, 1008 { {42, 40, 40, 34} }, 1009 { {42, 40, 40, 34} }, 1010 { {42, 40, 40, 34} }, 1011 { {42, 40, 40, 34} }, 1012 }, 1013 .calTargetPower5GHT20 = { 1014 /* 1015 * 0_8_16,1-3_9-11_17-19, 1016 * 4,5,6,7,12,13,14,15,20,21,22,23 1017 */ 1018 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} }, 1019 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} }, 1020 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} }, 1021 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} }, 1022 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} }, 1023 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} }, 1024 { {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} }, 1025 { {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} }, 1026 }, 1027 .calTargetPower5GHT40 = { 1028 /* 1029 * 0_8_16,1-3_9-11_17-19, 1030 * 4,5,6,7,12,13,14,15,20,21,22,23 1031 */ 1032 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} }, 1033 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} }, 1034 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} }, 1035 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} }, 1036 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} }, 1037 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} }, 1038 { {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} }, 1039 { {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} }, 1040 }, 1041 .ctlIndex_5G = { 1042 0x10, 0x16, 0x18, 0x40, 0x46, 1043 0x48, 0x30, 0x36, 0x38 1044 }, 1045 .ctl_freqbin_5G = { 1046 { 1047 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 1048 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), 1049 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0), 1050 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), 1051 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0), 1052 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), 1053 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), 1054 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) 1055 }, 1056 { 1057 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 1058 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), 1059 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0), 1060 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), 1061 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0), 1062 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), 1063 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), 1064 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) 1065 }, 1066 1067 { 1068 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), 1069 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0), 1070 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0), 1071 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0), 1072 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0), 1073 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0), 1074 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0), 1075 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0) 1076 }, 1077 1078 { 1079 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 1080 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0), 1081 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0), 1082 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0), 1083 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0), 1084 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), 1085 /* Data[3].ctlEdges[6].bChannel */ 0xFF, 1086 /* Data[3].ctlEdges[7].bChannel */ 0xFF, 1087 }, 1088 1089 { 1090 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 1091 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), 1092 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0), 1093 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0), 1094 /* Data[4].ctlEdges[4].bChannel */ 0xFF, 1095 /* Data[4].ctlEdges[5].bChannel */ 0xFF, 1096 /* Data[4].ctlEdges[6].bChannel */ 0xFF, 1097 /* Data[4].ctlEdges[7].bChannel */ 0xFF, 1098 }, 1099 1100 { 1101 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), 1102 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0), 1103 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0), 1104 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0), 1105 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0), 1106 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0), 1107 /* Data[5].ctlEdges[6].bChannel */ 0xFF, 1108 /* Data[5].ctlEdges[7].bChannel */ 0xFF 1109 }, 1110 1111 { 1112 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 1113 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0), 1114 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0), 1115 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0), 1116 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0), 1117 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0), 1118 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0), 1119 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0) 1120 }, 1121 1122 { 1123 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 1124 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), 1125 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0), 1126 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), 1127 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0), 1128 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), 1129 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), 1130 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) 1131 }, 1132 1133 { 1134 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), 1135 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0), 1136 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0), 1137 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0), 1138 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0), 1139 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0), 1140 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0), 1141 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0) 1142 } 1143 }, 1144 .ctlPowerData_5G = { 1145 { 1146 { 1147 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 1148 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 1149 } 1150 }, 1151 { 1152 { 1153 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 1154 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 1155 } 1156 }, 1157 { 1158 { 1159 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1), 1160 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 1161 } 1162 }, 1163 { 1164 { 1165 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0), 1166 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), 1167 } 1168 }, 1169 { 1170 { 1171 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 1172 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0), 1173 } 1174 }, 1175 { 1176 { 1177 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 1178 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), 1179 } 1180 }, 1181 { 1182 { 1183 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 1184 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 1185 } 1186 }, 1187 { 1188 { 1189 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), 1190 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 1191 } 1192 }, 1193 { 1194 { 1195 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), 1196 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), 1197 } 1198 }, 1199 } 1200 }; 1201 1202 1203 static const struct ar9300_eeprom ar9300_h112 = { 1204 .eepromVersion = 2, 1205 .templateVersion = 3, 1206 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0}, 1207 .custData = {"h112-241-f0000"}, 1208 .baseEepHeader = { 1209 .regDmn = { LE16(0), LE16(0x1f) }, 1210 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */ 1211 .opCapFlags = { 1212 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A, 1213 .eepMisc = 0, 1214 }, 1215 .rfSilent = 0, 1216 .blueToothOptions = 0, 1217 .deviceCap = 0, 1218 .deviceType = 5, /* takes lower byte in eeprom location */ 1219 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET, 1220 .params_for_tuning_caps = {0, 0}, 1221 .featureEnable = 0x0d, 1222 /* 1223 * bit0 - enable tx temp comp - disabled 1224 * bit1 - enable tx volt comp - disabled 1225 * bit2 - enable fastClock - enabled 1226 * bit3 - enable doubling - enabled 1227 * bit4 - enable internal regulator - disabled 1228 * bit5 - enable pa predistortion - disabled 1229 */ 1230 .miscConfiguration = 0, /* bit0 - turn down drivestrength */ 1231 .eepromWriteEnableGpio = 6, 1232 .wlanDisableGpio = 0, 1233 .wlanLedGpio = 8, 1234 .rxBandSelectGpio = 0xff, 1235 .txrxgain = 0x10, 1236 .swreg = 0, 1237 }, 1238 .modalHeader2G = { 1239 /* ar9300_modal_eep_header 2g */ 1240 /* 4 idle,t1,t2,b(4 bits per setting) */ 1241 .antCtrlCommon = LE32(0x110), 1242 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */ 1243 .antCtrlCommon2 = LE32(0x44444), 1244 1245 /* 1246 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r, 1247 * rx1, rx12, b (2 bits each) 1248 */ 1249 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) }, 1250 1251 /* 1252 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db 1253 * for ar9280 (0xa20c/b20c 5:0) 1254 */ 1255 .xatten1DB = {0, 0, 0}, 1256 1257 /* 1258 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin 1259 * for ar9280 (0xa20c/b20c 16:12 1260 */ 1261 .xatten1Margin = {0, 0, 0}, 1262 .tempSlope = 25, 1263 .voltSlope = 0, 1264 1265 /* 1266 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur 1267 * channels in usual fbin coding format 1268 */ 1269 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0}, 1270 1271 /* 1272 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check 1273 * if the register is per chain 1274 */ 1275 .noiseFloorThreshCh = {-1, 0, 0}, 1276 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 1277 .quick_drop = 0, 1278 .xpaBiasLvl = 0, 1279 .txFrameToDataStart = 0x0e, 1280 .txFrameToPaOn = 0x0e, 1281 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ 1282 .antennaGain = 0, 1283 .switchSettling = 0x2c, 1284 .adcDesiredSize = -30, 1285 .txEndToXpaOff = 0, 1286 .txEndToRxOn = 0x2, 1287 .txFrameToXpaOn = 0xe, 1288 .thresh62 = 28, 1289 .papdRateMaskHt20 = LE32(0x0c80c080), 1290 .papdRateMaskHt40 = LE32(0x0080c080), 1291 .switchcomspdt = 0, 1292 .xlna_bias_strength = 0, 1293 .futureModal = { 1294 0, 0, 0, 0, 0, 0, 0, 1295 }, 1296 }, 1297 .base_ext1 = { 1298 .ant_div_control = 0, 1299 .future = {0, 0}, 1300 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0} 1301 }, 1302 .calFreqPier2G = { 1303 FREQ2FBIN(2412, 1), 1304 FREQ2FBIN(2437, 1), 1305 FREQ2FBIN(2462, 1), 1306 }, 1307 /* ar9300_cal_data_per_freq_op_loop 2g */ 1308 .calPierData2G = { 1309 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, 1310 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, 1311 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, 1312 }, 1313 .calTarget_freqbin_Cck = { 1314 FREQ2FBIN(2412, 1), 1315 FREQ2FBIN(2472, 1), 1316 }, 1317 .calTarget_freqbin_2G = { 1318 FREQ2FBIN(2412, 1), 1319 FREQ2FBIN(2437, 1), 1320 FREQ2FBIN(2472, 1) 1321 }, 1322 .calTarget_freqbin_2GHT20 = { 1323 FREQ2FBIN(2412, 1), 1324 FREQ2FBIN(2437, 1), 1325 FREQ2FBIN(2472, 1) 1326 }, 1327 .calTarget_freqbin_2GHT40 = { 1328 FREQ2FBIN(2412, 1), 1329 FREQ2FBIN(2437, 1), 1330 FREQ2FBIN(2472, 1) 1331 }, 1332 .calTargetPowerCck = { 1333 /* 1L-5L,5S,11L,11S */ 1334 { {34, 34, 34, 34} }, 1335 { {34, 34, 34, 34} }, 1336 }, 1337 .calTargetPower2G = { 1338 /* 6-24,36,48,54 */ 1339 { {34, 34, 32, 32} }, 1340 { {34, 34, 32, 32} }, 1341 { {34, 34, 32, 32} }, 1342 }, 1343 .calTargetPower2GHT20 = { 1344 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} }, 1345 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} }, 1346 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} }, 1347 }, 1348 .calTargetPower2GHT40 = { 1349 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} }, 1350 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} }, 1351 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} }, 1352 }, 1353 .ctlIndex_2G = { 1354 0x11, 0x12, 0x15, 0x17, 0x41, 0x42, 1355 0x45, 0x47, 0x31, 0x32, 0x35, 0x37, 1356 }, 1357 .ctl_freqbin_2G = { 1358 { 1359 FREQ2FBIN(2412, 1), 1360 FREQ2FBIN(2417, 1), 1361 FREQ2FBIN(2457, 1), 1362 FREQ2FBIN(2462, 1) 1363 }, 1364 { 1365 FREQ2FBIN(2412, 1), 1366 FREQ2FBIN(2417, 1), 1367 FREQ2FBIN(2462, 1), 1368 0xFF, 1369 }, 1370 1371 { 1372 FREQ2FBIN(2412, 1), 1373 FREQ2FBIN(2417, 1), 1374 FREQ2FBIN(2462, 1), 1375 0xFF, 1376 }, 1377 { 1378 FREQ2FBIN(2422, 1), 1379 FREQ2FBIN(2427, 1), 1380 FREQ2FBIN(2447, 1), 1381 FREQ2FBIN(2452, 1) 1382 }, 1383 1384 { 1385 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 1386 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 1387 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 1388 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1), 1389 }, 1390 1391 { 1392 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 1393 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 1394 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 1395 0, 1396 }, 1397 1398 { 1399 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 1400 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 1401 FREQ2FBIN(2472, 1), 1402 0, 1403 }, 1404 1405 { 1406 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1), 1407 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1), 1408 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1), 1409 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1), 1410 }, 1411 1412 { 1413 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 1414 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 1415 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 1416 }, 1417 1418 { 1419 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 1420 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 1421 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 1422 0 1423 }, 1424 1425 { 1426 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 1427 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 1428 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 1429 0 1430 }, 1431 1432 { 1433 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1), 1434 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1), 1435 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1), 1436 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1), 1437 } 1438 }, 1439 .ctlPowerData_2G = { 1440 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 1441 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 1442 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } }, 1443 1444 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } }, 1445 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 1446 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 1447 1448 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } }, 1449 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 1450 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 1451 1452 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 1453 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, 1454 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, 1455 }, 1456 .modalHeader5G = { 1457 /* 4 idle,t1,t2,b (4 bits per setting) */ 1458 .antCtrlCommon = LE32(0x220), 1459 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */ 1460 .antCtrlCommon2 = LE32(0x44444), 1461 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */ 1462 .antCtrlChain = { 1463 LE16(0x150), LE16(0x150), LE16(0x150), 1464 }, 1465 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */ 1466 .xatten1DB = {0, 0, 0}, 1467 1468 /* 1469 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin 1470 * for merlin (0xa20c/b20c 16:12 1471 */ 1472 .xatten1Margin = {0, 0, 0}, 1473 .tempSlope = 45, 1474 .voltSlope = 0, 1475 /* spurChans spur channels in usual fbin coding format */ 1476 .spurChans = {0, 0, 0, 0, 0}, 1477 /* noiseFloorThreshCh Check if the register is per chain */ 1478 .noiseFloorThreshCh = {-1, 0, 0}, 1479 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 1480 .quick_drop = 0, 1481 .xpaBiasLvl = 0, 1482 .txFrameToDataStart = 0x0e, 1483 .txFrameToPaOn = 0x0e, 1484 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ 1485 .antennaGain = 0, 1486 .switchSettling = 0x2d, 1487 .adcDesiredSize = -30, 1488 .txEndToXpaOff = 0, 1489 .txEndToRxOn = 0x2, 1490 .txFrameToXpaOn = 0xe, 1491 .thresh62 = 28, 1492 .papdRateMaskHt20 = LE32(0x0cf0e0e0), 1493 .papdRateMaskHt40 = LE32(0x6cf0e0e0), 1494 .switchcomspdt = 0, 1495 .xlna_bias_strength = 0, 1496 .futureModal = { 1497 0, 0, 0, 0, 0, 0, 0, 1498 }, 1499 }, 1500 .base_ext2 = { 1501 .tempSlopeLow = 40, 1502 .tempSlopeHigh = 50, 1503 .xatten1DBLow = {0, 0, 0}, 1504 .xatten1MarginLow = {0, 0, 0}, 1505 .xatten1DBHigh = {0, 0, 0}, 1506 .xatten1MarginHigh = {0, 0, 0} 1507 }, 1508 .calFreqPier5G = { 1509 FREQ2FBIN(5180, 0), 1510 FREQ2FBIN(5220, 0), 1511 FREQ2FBIN(5320, 0), 1512 FREQ2FBIN(5400, 0), 1513 FREQ2FBIN(5500, 0), 1514 FREQ2FBIN(5600, 0), 1515 FREQ2FBIN(5700, 0), 1516 FREQ2FBIN(5785, 0) 1517 }, 1518 .calPierData5G = { 1519 { 1520 {0, 0, 0, 0, 0}, 1521 {0, 0, 0, 0, 0}, 1522 {0, 0, 0, 0, 0}, 1523 {0, 0, 0, 0, 0}, 1524 {0, 0, 0, 0, 0}, 1525 {0, 0, 0, 0, 0}, 1526 {0, 0, 0, 0, 0}, 1527 {0, 0, 0, 0, 0}, 1528 }, 1529 { 1530 {0, 0, 0, 0, 0}, 1531 {0, 0, 0, 0, 0}, 1532 {0, 0, 0, 0, 0}, 1533 {0, 0, 0, 0, 0}, 1534 {0, 0, 0, 0, 0}, 1535 {0, 0, 0, 0, 0}, 1536 {0, 0, 0, 0, 0}, 1537 {0, 0, 0, 0, 0}, 1538 }, 1539 { 1540 {0, 0, 0, 0, 0}, 1541 {0, 0, 0, 0, 0}, 1542 {0, 0, 0, 0, 0}, 1543 {0, 0, 0, 0, 0}, 1544 {0, 0, 0, 0, 0}, 1545 {0, 0, 0, 0, 0}, 1546 {0, 0, 0, 0, 0}, 1547 {0, 0, 0, 0, 0}, 1548 }, 1549 1550 }, 1551 .calTarget_freqbin_5G = { 1552 FREQ2FBIN(5180, 0), 1553 FREQ2FBIN(5240, 0), 1554 FREQ2FBIN(5320, 0), 1555 FREQ2FBIN(5400, 0), 1556 FREQ2FBIN(5500, 0), 1557 FREQ2FBIN(5600, 0), 1558 FREQ2FBIN(5700, 0), 1559 FREQ2FBIN(5825, 0) 1560 }, 1561 .calTarget_freqbin_5GHT20 = { 1562 FREQ2FBIN(5180, 0), 1563 FREQ2FBIN(5240, 0), 1564 FREQ2FBIN(5320, 0), 1565 FREQ2FBIN(5400, 0), 1566 FREQ2FBIN(5500, 0), 1567 FREQ2FBIN(5700, 0), 1568 FREQ2FBIN(5745, 0), 1569 FREQ2FBIN(5825, 0) 1570 }, 1571 .calTarget_freqbin_5GHT40 = { 1572 FREQ2FBIN(5180, 0), 1573 FREQ2FBIN(5240, 0), 1574 FREQ2FBIN(5320, 0), 1575 FREQ2FBIN(5400, 0), 1576 FREQ2FBIN(5500, 0), 1577 FREQ2FBIN(5700, 0), 1578 FREQ2FBIN(5745, 0), 1579 FREQ2FBIN(5825, 0) 1580 }, 1581 .calTargetPower5G = { 1582 /* 6-24,36,48,54 */ 1583 { {30, 30, 28, 24} }, 1584 { {30, 30, 28, 24} }, 1585 { {30, 30, 28, 24} }, 1586 { {30, 30, 28, 24} }, 1587 { {30, 30, 28, 24} }, 1588 { {30, 30, 28, 24} }, 1589 { {30, 30, 28, 24} }, 1590 { {30, 30, 28, 24} }, 1591 }, 1592 .calTargetPower5GHT20 = { 1593 /* 1594 * 0_8_16,1-3_9-11_17-19, 1595 * 4,5,6,7,12,13,14,15,20,21,22,23 1596 */ 1597 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} }, 1598 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} }, 1599 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} }, 1600 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} }, 1601 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} }, 1602 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} }, 1603 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} }, 1604 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} }, 1605 }, 1606 .calTargetPower5GHT40 = { 1607 /* 1608 * 0_8_16,1-3_9-11_17-19, 1609 * 4,5,6,7,12,13,14,15,20,21,22,23 1610 */ 1611 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} }, 1612 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} }, 1613 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} }, 1614 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} }, 1615 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} }, 1616 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} }, 1617 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} }, 1618 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} }, 1619 }, 1620 .ctlIndex_5G = { 1621 0x10, 0x16, 0x18, 0x40, 0x46, 1622 0x48, 0x30, 0x36, 0x38 1623 }, 1624 .ctl_freqbin_5G = { 1625 { 1626 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 1627 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), 1628 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0), 1629 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), 1630 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0), 1631 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), 1632 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), 1633 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) 1634 }, 1635 { 1636 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 1637 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), 1638 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0), 1639 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), 1640 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0), 1641 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), 1642 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), 1643 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) 1644 }, 1645 1646 { 1647 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), 1648 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0), 1649 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0), 1650 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0), 1651 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0), 1652 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0), 1653 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0), 1654 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0) 1655 }, 1656 1657 { 1658 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 1659 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0), 1660 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0), 1661 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0), 1662 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0), 1663 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), 1664 /* Data[3].ctlEdges[6].bChannel */ 0xFF, 1665 /* Data[3].ctlEdges[7].bChannel */ 0xFF, 1666 }, 1667 1668 { 1669 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 1670 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), 1671 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0), 1672 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0), 1673 /* Data[4].ctlEdges[4].bChannel */ 0xFF, 1674 /* Data[4].ctlEdges[5].bChannel */ 0xFF, 1675 /* Data[4].ctlEdges[6].bChannel */ 0xFF, 1676 /* Data[4].ctlEdges[7].bChannel */ 0xFF, 1677 }, 1678 1679 { 1680 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), 1681 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0), 1682 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0), 1683 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0), 1684 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0), 1685 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0), 1686 /* Data[5].ctlEdges[6].bChannel */ 0xFF, 1687 /* Data[5].ctlEdges[7].bChannel */ 0xFF 1688 }, 1689 1690 { 1691 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 1692 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0), 1693 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0), 1694 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0), 1695 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0), 1696 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0), 1697 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0), 1698 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0) 1699 }, 1700 1701 { 1702 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 1703 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), 1704 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0), 1705 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), 1706 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0), 1707 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), 1708 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), 1709 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) 1710 }, 1711 1712 { 1713 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), 1714 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0), 1715 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0), 1716 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0), 1717 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0), 1718 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0), 1719 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0), 1720 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0) 1721 } 1722 }, 1723 .ctlPowerData_5G = { 1724 { 1725 { 1726 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 1727 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 1728 } 1729 }, 1730 { 1731 { 1732 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 1733 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 1734 } 1735 }, 1736 { 1737 { 1738 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1), 1739 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 1740 } 1741 }, 1742 { 1743 { 1744 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0), 1745 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), 1746 } 1747 }, 1748 { 1749 { 1750 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 1751 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0), 1752 } 1753 }, 1754 { 1755 { 1756 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 1757 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), 1758 } 1759 }, 1760 { 1761 { 1762 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 1763 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 1764 } 1765 }, 1766 { 1767 { 1768 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), 1769 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 1770 } 1771 }, 1772 { 1773 { 1774 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), 1775 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), 1776 } 1777 }, 1778 } 1779 }; 1780 1781 1782 static const struct ar9300_eeprom ar9300_x112 = { 1783 .eepromVersion = 2, 1784 .templateVersion = 5, 1785 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0}, 1786 .custData = {"x112-041-f0000"}, 1787 .baseEepHeader = { 1788 .regDmn = { LE16(0), LE16(0x1f) }, 1789 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */ 1790 .opCapFlags = { 1791 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A, 1792 .eepMisc = 0, 1793 }, 1794 .rfSilent = 0, 1795 .blueToothOptions = 0, 1796 .deviceCap = 0, 1797 .deviceType = 5, /* takes lower byte in eeprom location */ 1798 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET, 1799 .params_for_tuning_caps = {0, 0}, 1800 .featureEnable = 0x0d, 1801 /* 1802 * bit0 - enable tx temp comp - disabled 1803 * bit1 - enable tx volt comp - disabled 1804 * bit2 - enable fastclock - enabled 1805 * bit3 - enable doubling - enabled 1806 * bit4 - enable internal regulator - disabled 1807 * bit5 - enable pa predistortion - disabled 1808 */ 1809 .miscConfiguration = 0, /* bit0 - turn down drivestrength */ 1810 .eepromWriteEnableGpio = 6, 1811 .wlanDisableGpio = 0, 1812 .wlanLedGpio = 8, 1813 .rxBandSelectGpio = 0xff, 1814 .txrxgain = 0x0, 1815 .swreg = 0, 1816 }, 1817 .modalHeader2G = { 1818 /* ar9300_modal_eep_header 2g */ 1819 /* 4 idle,t1,t2,b(4 bits per setting) */ 1820 .antCtrlCommon = LE32(0x110), 1821 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */ 1822 .antCtrlCommon2 = LE32(0x22222), 1823 1824 /* 1825 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r, 1826 * rx1, rx12, b (2 bits each) 1827 */ 1828 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) }, 1829 1830 /* 1831 * xatten1DB[AR9300_max_chains]; 3 xatten1_db 1832 * for ar9280 (0xa20c/b20c 5:0) 1833 */ 1834 .xatten1DB = {0x1b, 0x1b, 0x1b}, 1835 1836 /* 1837 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin 1838 * for ar9280 (0xa20c/b20c 16:12 1839 */ 1840 .xatten1Margin = {0x15, 0x15, 0x15}, 1841 .tempSlope = 50, 1842 .voltSlope = 0, 1843 1844 /* 1845 * spurChans[OSPrey_eeprom_modal_sPURS]; spur 1846 * channels in usual fbin coding format 1847 */ 1848 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0}, 1849 1850 /* 1851 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check 1852 * if the register is per chain 1853 */ 1854 .noiseFloorThreshCh = {-1, 0, 0}, 1855 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 1856 .quick_drop = 0, 1857 .xpaBiasLvl = 0, 1858 .txFrameToDataStart = 0x0e, 1859 .txFrameToPaOn = 0x0e, 1860 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ 1861 .antennaGain = 0, 1862 .switchSettling = 0x2c, 1863 .adcDesiredSize = -30, 1864 .txEndToXpaOff = 0, 1865 .txEndToRxOn = 0x2, 1866 .txFrameToXpaOn = 0xe, 1867 .thresh62 = 28, 1868 .papdRateMaskHt20 = LE32(0x0c80c080), 1869 .papdRateMaskHt40 = LE32(0x0080c080), 1870 .switchcomspdt = 0, 1871 .xlna_bias_strength = 0, 1872 .futureModal = { 1873 0, 0, 0, 0, 0, 0, 0, 1874 }, 1875 }, 1876 .base_ext1 = { 1877 .ant_div_control = 0, 1878 .future = {0, 0}, 1879 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0} 1880 }, 1881 .calFreqPier2G = { 1882 FREQ2FBIN(2412, 1), 1883 FREQ2FBIN(2437, 1), 1884 FREQ2FBIN(2472, 1), 1885 }, 1886 /* ar9300_cal_data_per_freq_op_loop 2g */ 1887 .calPierData2G = { 1888 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, 1889 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, 1890 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, 1891 }, 1892 .calTarget_freqbin_Cck = { 1893 FREQ2FBIN(2412, 1), 1894 FREQ2FBIN(2472, 1), 1895 }, 1896 .calTarget_freqbin_2G = { 1897 FREQ2FBIN(2412, 1), 1898 FREQ2FBIN(2437, 1), 1899 FREQ2FBIN(2472, 1) 1900 }, 1901 .calTarget_freqbin_2GHT20 = { 1902 FREQ2FBIN(2412, 1), 1903 FREQ2FBIN(2437, 1), 1904 FREQ2FBIN(2472, 1) 1905 }, 1906 .calTarget_freqbin_2GHT40 = { 1907 FREQ2FBIN(2412, 1), 1908 FREQ2FBIN(2437, 1), 1909 FREQ2FBIN(2472, 1) 1910 }, 1911 .calTargetPowerCck = { 1912 /* 1L-5L,5S,11L,11s */ 1913 { {38, 38, 38, 38} }, 1914 { {38, 38, 38, 38} }, 1915 }, 1916 .calTargetPower2G = { 1917 /* 6-24,36,48,54 */ 1918 { {38, 38, 36, 34} }, 1919 { {38, 38, 36, 34} }, 1920 { {38, 38, 34, 32} }, 1921 }, 1922 .calTargetPower2GHT20 = { 1923 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} }, 1924 { {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} }, 1925 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} }, 1926 }, 1927 .calTargetPower2GHT40 = { 1928 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} }, 1929 { {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} }, 1930 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} }, 1931 }, 1932 .ctlIndex_2G = { 1933 0x11, 0x12, 0x15, 0x17, 0x41, 0x42, 1934 0x45, 0x47, 0x31, 0x32, 0x35, 0x37, 1935 }, 1936 .ctl_freqbin_2G = { 1937 { 1938 FREQ2FBIN(2412, 1), 1939 FREQ2FBIN(2417, 1), 1940 FREQ2FBIN(2457, 1), 1941 FREQ2FBIN(2462, 1) 1942 }, 1943 { 1944 FREQ2FBIN(2412, 1), 1945 FREQ2FBIN(2417, 1), 1946 FREQ2FBIN(2462, 1), 1947 0xFF, 1948 }, 1949 1950 { 1951 FREQ2FBIN(2412, 1), 1952 FREQ2FBIN(2417, 1), 1953 FREQ2FBIN(2462, 1), 1954 0xFF, 1955 }, 1956 { 1957 FREQ2FBIN(2422, 1), 1958 FREQ2FBIN(2427, 1), 1959 FREQ2FBIN(2447, 1), 1960 FREQ2FBIN(2452, 1) 1961 }, 1962 1963 { 1964 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1), 1965 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1), 1966 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1), 1967 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1), 1968 }, 1969 1970 { 1971 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1), 1972 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1), 1973 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1), 1974 0, 1975 }, 1976 1977 { 1978 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1), 1979 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1), 1980 FREQ2FBIN(2472, 1), 1981 0, 1982 }, 1983 1984 { 1985 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1), 1986 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1), 1987 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1), 1988 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1), 1989 }, 1990 1991 { 1992 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1), 1993 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1), 1994 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1), 1995 }, 1996 1997 { 1998 /* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1), 1999 /* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1), 2000 /* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1), 2001 0 2002 }, 2003 2004 { 2005 /* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1), 2006 /* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1), 2007 /* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1), 2008 0 2009 }, 2010 2011 { 2012 /* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1), 2013 /* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1), 2014 /* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1), 2015 /* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1), 2016 } 2017 }, 2018 .ctlPowerData_2G = { 2019 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 2020 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 2021 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } }, 2022 2023 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } }, 2024 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 2025 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 2026 2027 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } }, 2028 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 2029 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 2030 2031 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 2032 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, 2033 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, 2034 }, 2035 .modalHeader5G = { 2036 /* 4 idle,t1,t2,b (4 bits per setting) */ 2037 .antCtrlCommon = LE32(0x110), 2038 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */ 2039 .antCtrlCommon2 = LE32(0x22222), 2040 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */ 2041 .antCtrlChain = { 2042 LE16(0x0), LE16(0x0), LE16(0x0), 2043 }, 2044 /* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */ 2045 .xatten1DB = {0x13, 0x19, 0x17}, 2046 2047 /* 2048 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin 2049 * for merlin (0xa20c/b20c 16:12 2050 */ 2051 .xatten1Margin = {0x19, 0x19, 0x19}, 2052 .tempSlope = 70, 2053 .voltSlope = 15, 2054 /* spurChans spur channels in usual fbin coding format */ 2055 .spurChans = {0, 0, 0, 0, 0}, 2056 /* noiseFloorThreshch check if the register is per chain */ 2057 .noiseFloorThreshCh = {-1, 0, 0}, 2058 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 2059 .quick_drop = 0, 2060 .xpaBiasLvl = 0, 2061 .txFrameToDataStart = 0x0e, 2062 .txFrameToPaOn = 0x0e, 2063 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ 2064 .antennaGain = 0, 2065 .switchSettling = 0x2d, 2066 .adcDesiredSize = -30, 2067 .txEndToXpaOff = 0, 2068 .txEndToRxOn = 0x2, 2069 .txFrameToXpaOn = 0xe, 2070 .thresh62 = 28, 2071 .papdRateMaskHt20 = LE32(0x0cf0e0e0), 2072 .papdRateMaskHt40 = LE32(0x6cf0e0e0), 2073 .switchcomspdt = 0, 2074 .xlna_bias_strength = 0, 2075 .futureModal = { 2076 0, 0, 0, 0, 0, 0, 0, 2077 }, 2078 }, 2079 .base_ext2 = { 2080 .tempSlopeLow = 72, 2081 .tempSlopeHigh = 105, 2082 .xatten1DBLow = {0x10, 0x14, 0x10}, 2083 .xatten1MarginLow = {0x19, 0x19 , 0x19}, 2084 .xatten1DBHigh = {0x1d, 0x20, 0x24}, 2085 .xatten1MarginHigh = {0x10, 0x10, 0x10} 2086 }, 2087 .calFreqPier5G = { 2088 FREQ2FBIN(5180, 0), 2089 FREQ2FBIN(5220, 0), 2090 FREQ2FBIN(5320, 0), 2091 FREQ2FBIN(5400, 0), 2092 FREQ2FBIN(5500, 0), 2093 FREQ2FBIN(5600, 0), 2094 FREQ2FBIN(5700, 0), 2095 FREQ2FBIN(5785, 0) 2096 }, 2097 .calPierData5G = { 2098 { 2099 {0, 0, 0, 0, 0}, 2100 {0, 0, 0, 0, 0}, 2101 {0, 0, 0, 0, 0}, 2102 {0, 0, 0, 0, 0}, 2103 {0, 0, 0, 0, 0}, 2104 {0, 0, 0, 0, 0}, 2105 {0, 0, 0, 0, 0}, 2106 {0, 0, 0, 0, 0}, 2107 }, 2108 { 2109 {0, 0, 0, 0, 0}, 2110 {0, 0, 0, 0, 0}, 2111 {0, 0, 0, 0, 0}, 2112 {0, 0, 0, 0, 0}, 2113 {0, 0, 0, 0, 0}, 2114 {0, 0, 0, 0, 0}, 2115 {0, 0, 0, 0, 0}, 2116 {0, 0, 0, 0, 0}, 2117 }, 2118 { 2119 {0, 0, 0, 0, 0}, 2120 {0, 0, 0, 0, 0}, 2121 {0, 0, 0, 0, 0}, 2122 {0, 0, 0, 0, 0}, 2123 {0, 0, 0, 0, 0}, 2124 {0, 0, 0, 0, 0}, 2125 {0, 0, 0, 0, 0}, 2126 {0, 0, 0, 0, 0}, 2127 }, 2128 2129 }, 2130 .calTarget_freqbin_5G = { 2131 FREQ2FBIN(5180, 0), 2132 FREQ2FBIN(5220, 0), 2133 FREQ2FBIN(5320, 0), 2134 FREQ2FBIN(5400, 0), 2135 FREQ2FBIN(5500, 0), 2136 FREQ2FBIN(5600, 0), 2137 FREQ2FBIN(5725, 0), 2138 FREQ2FBIN(5825, 0) 2139 }, 2140 .calTarget_freqbin_5GHT20 = { 2141 FREQ2FBIN(5180, 0), 2142 FREQ2FBIN(5220, 0), 2143 FREQ2FBIN(5320, 0), 2144 FREQ2FBIN(5400, 0), 2145 FREQ2FBIN(5500, 0), 2146 FREQ2FBIN(5600, 0), 2147 FREQ2FBIN(5725, 0), 2148 FREQ2FBIN(5825, 0) 2149 }, 2150 .calTarget_freqbin_5GHT40 = { 2151 FREQ2FBIN(5180, 0), 2152 FREQ2FBIN(5220, 0), 2153 FREQ2FBIN(5320, 0), 2154 FREQ2FBIN(5400, 0), 2155 FREQ2FBIN(5500, 0), 2156 FREQ2FBIN(5600, 0), 2157 FREQ2FBIN(5725, 0), 2158 FREQ2FBIN(5825, 0) 2159 }, 2160 .calTargetPower5G = { 2161 /* 6-24,36,48,54 */ 2162 { {32, 32, 28, 26} }, 2163 { {32, 32, 28, 26} }, 2164 { {32, 32, 28, 26} }, 2165 { {32, 32, 26, 24} }, 2166 { {32, 32, 26, 24} }, 2167 { {32, 32, 24, 22} }, 2168 { {30, 30, 24, 22} }, 2169 { {30, 30, 24, 22} }, 2170 }, 2171 .calTargetPower5GHT20 = { 2172 /* 2173 * 0_8_16,1-3_9-11_17-19, 2174 * 4,5,6,7,12,13,14,15,20,21,22,23 2175 */ 2176 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} }, 2177 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} }, 2178 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} }, 2179 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} }, 2180 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} }, 2181 { {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} }, 2182 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} }, 2183 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} }, 2184 }, 2185 .calTargetPower5GHT40 = { 2186 /* 2187 * 0_8_16,1-3_9-11_17-19, 2188 * 4,5,6,7,12,13,14,15,20,21,22,23 2189 */ 2190 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} }, 2191 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} }, 2192 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} }, 2193 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} }, 2194 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} }, 2195 { {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} }, 2196 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} }, 2197 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} }, 2198 }, 2199 .ctlIndex_5G = { 2200 0x10, 0x16, 0x18, 0x40, 0x46, 2201 0x48, 0x30, 0x36, 0x38 2202 }, 2203 .ctl_freqbin_5G = { 2204 { 2205 /* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0), 2206 /* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0), 2207 /* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0), 2208 /* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0), 2209 /* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0), 2210 /* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0), 2211 /* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0), 2212 /* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0) 2213 }, 2214 { 2215 /* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0), 2216 /* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0), 2217 /* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0), 2218 /* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0), 2219 /* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0), 2220 /* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0), 2221 /* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0), 2222 /* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0) 2223 }, 2224 2225 { 2226 /* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0), 2227 /* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0), 2228 /* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0), 2229 /* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0), 2230 /* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0), 2231 /* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0), 2232 /* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0), 2233 /* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0) 2234 }, 2235 2236 { 2237 /* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0), 2238 /* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0), 2239 /* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0), 2240 /* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0), 2241 /* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0), 2242 /* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0), 2243 /* Data[3].ctledges[6].bchannel */ 0xFF, 2244 /* Data[3].ctledges[7].bchannel */ 0xFF, 2245 }, 2246 2247 { 2248 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0), 2249 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0), 2250 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0), 2251 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0), 2252 /* Data[4].ctledges[4].bchannel */ 0xFF, 2253 /* Data[4].ctledges[5].bchannel */ 0xFF, 2254 /* Data[4].ctledges[6].bchannel */ 0xFF, 2255 /* Data[4].ctledges[7].bchannel */ 0xFF, 2256 }, 2257 2258 { 2259 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0), 2260 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0), 2261 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0), 2262 /* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0), 2263 /* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0), 2264 /* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0), 2265 /* Data[5].ctledges[6].bchannel */ 0xFF, 2266 /* Data[5].ctledges[7].bchannel */ 0xFF 2267 }, 2268 2269 { 2270 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0), 2271 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0), 2272 /* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0), 2273 /* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0), 2274 /* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0), 2275 /* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0), 2276 /* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0), 2277 /* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0) 2278 }, 2279 2280 { 2281 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0), 2282 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0), 2283 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0), 2284 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0), 2285 /* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0), 2286 /* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0), 2287 /* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0), 2288 /* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0) 2289 }, 2290 2291 { 2292 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0), 2293 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0), 2294 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0), 2295 /* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0), 2296 /* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0), 2297 /* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0), 2298 /* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0), 2299 /* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0) 2300 } 2301 }, 2302 .ctlPowerData_5G = { 2303 { 2304 { 2305 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 2306 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 2307 } 2308 }, 2309 { 2310 { 2311 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 2312 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 2313 } 2314 }, 2315 { 2316 { 2317 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1), 2318 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 2319 } 2320 }, 2321 { 2322 { 2323 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0), 2324 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), 2325 } 2326 }, 2327 { 2328 { 2329 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 2330 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0), 2331 } 2332 }, 2333 { 2334 { 2335 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 2336 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), 2337 } 2338 }, 2339 { 2340 { 2341 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 2342 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 2343 } 2344 }, 2345 { 2346 { 2347 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), 2348 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 2349 } 2350 }, 2351 { 2352 { 2353 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), 2354 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), 2355 } 2356 }, 2357 } 2358 }; 2359 2360 static const struct ar9300_eeprom ar9300_h116 = { 2361 .eepromVersion = 2, 2362 .templateVersion = 4, 2363 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0}, 2364 .custData = {"h116-041-f0000"}, 2365 .baseEepHeader = { 2366 .regDmn = { LE16(0), LE16(0x1f) }, 2367 .txrxMask = 0x33, /* 4 bits tx and 4 bits rx */ 2368 .opCapFlags = { 2369 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A, 2370 .eepMisc = 0, 2371 }, 2372 .rfSilent = 0, 2373 .blueToothOptions = 0, 2374 .deviceCap = 0, 2375 .deviceType = 5, /* takes lower byte in eeprom location */ 2376 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET, 2377 .params_for_tuning_caps = {0, 0}, 2378 .featureEnable = 0x0d, 2379 /* 2380 * bit0 - enable tx temp comp - disabled 2381 * bit1 - enable tx volt comp - disabled 2382 * bit2 - enable fastClock - enabled 2383 * bit3 - enable doubling - enabled 2384 * bit4 - enable internal regulator - disabled 2385 * bit5 - enable pa predistortion - disabled 2386 */ 2387 .miscConfiguration = 0, /* bit0 - turn down drivestrength */ 2388 .eepromWriteEnableGpio = 6, 2389 .wlanDisableGpio = 0, 2390 .wlanLedGpio = 8, 2391 .rxBandSelectGpio = 0xff, 2392 .txrxgain = 0x10, 2393 .swreg = 0, 2394 }, 2395 .modalHeader2G = { 2396 /* ar9300_modal_eep_header 2g */ 2397 /* 4 idle,t1,t2,b(4 bits per setting) */ 2398 .antCtrlCommon = LE32(0x110), 2399 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */ 2400 .antCtrlCommon2 = LE32(0x44444), 2401 2402 /* 2403 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r, 2404 * rx1, rx12, b (2 bits each) 2405 */ 2406 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) }, 2407 2408 /* 2409 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db 2410 * for ar9280 (0xa20c/b20c 5:0) 2411 */ 2412 .xatten1DB = {0x1f, 0x1f, 0x1f}, 2413 2414 /* 2415 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin 2416 * for ar9280 (0xa20c/b20c 16:12 2417 */ 2418 .xatten1Margin = {0x12, 0x12, 0x12}, 2419 .tempSlope = 25, 2420 .voltSlope = 0, 2421 2422 /* 2423 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur 2424 * channels in usual fbin coding format 2425 */ 2426 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0}, 2427 2428 /* 2429 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check 2430 * if the register is per chain 2431 */ 2432 .noiseFloorThreshCh = {-1, 0, 0}, 2433 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 2434 .quick_drop = 0, 2435 .xpaBiasLvl = 0, 2436 .txFrameToDataStart = 0x0e, 2437 .txFrameToPaOn = 0x0e, 2438 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ 2439 .antennaGain = 0, 2440 .switchSettling = 0x2c, 2441 .adcDesiredSize = -30, 2442 .txEndToXpaOff = 0, 2443 .txEndToRxOn = 0x2, 2444 .txFrameToXpaOn = 0xe, 2445 .thresh62 = 28, 2446 .papdRateMaskHt20 = LE32(0x0c80C080), 2447 .papdRateMaskHt40 = LE32(0x0080C080), 2448 .switchcomspdt = 0, 2449 .xlna_bias_strength = 0, 2450 .futureModal = { 2451 0, 0, 0, 0, 0, 0, 0, 2452 }, 2453 }, 2454 .base_ext1 = { 2455 .ant_div_control = 0, 2456 .future = {0, 0}, 2457 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0} 2458 }, 2459 .calFreqPier2G = { 2460 FREQ2FBIN(2412, 1), 2461 FREQ2FBIN(2437, 1), 2462 FREQ2FBIN(2462, 1), 2463 }, 2464 /* ar9300_cal_data_per_freq_op_loop 2g */ 2465 .calPierData2G = { 2466 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, 2467 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, 2468 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, 2469 }, 2470 .calTarget_freqbin_Cck = { 2471 FREQ2FBIN(2412, 1), 2472 FREQ2FBIN(2472, 1), 2473 }, 2474 .calTarget_freqbin_2G = { 2475 FREQ2FBIN(2412, 1), 2476 FREQ2FBIN(2437, 1), 2477 FREQ2FBIN(2472, 1) 2478 }, 2479 .calTarget_freqbin_2GHT20 = { 2480 FREQ2FBIN(2412, 1), 2481 FREQ2FBIN(2437, 1), 2482 FREQ2FBIN(2472, 1) 2483 }, 2484 .calTarget_freqbin_2GHT40 = { 2485 FREQ2FBIN(2412, 1), 2486 FREQ2FBIN(2437, 1), 2487 FREQ2FBIN(2472, 1) 2488 }, 2489 .calTargetPowerCck = { 2490 /* 1L-5L,5S,11L,11S */ 2491 { {34, 34, 34, 34} }, 2492 { {34, 34, 34, 34} }, 2493 }, 2494 .calTargetPower2G = { 2495 /* 6-24,36,48,54 */ 2496 { {34, 34, 32, 32} }, 2497 { {34, 34, 32, 32} }, 2498 { {34, 34, 32, 32} }, 2499 }, 2500 .calTargetPower2GHT20 = { 2501 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} }, 2502 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} }, 2503 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} }, 2504 }, 2505 .calTargetPower2GHT40 = { 2506 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} }, 2507 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} }, 2508 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} }, 2509 }, 2510 .ctlIndex_2G = { 2511 0x11, 0x12, 0x15, 0x17, 0x41, 0x42, 2512 0x45, 0x47, 0x31, 0x32, 0x35, 0x37, 2513 }, 2514 .ctl_freqbin_2G = { 2515 { 2516 FREQ2FBIN(2412, 1), 2517 FREQ2FBIN(2417, 1), 2518 FREQ2FBIN(2457, 1), 2519 FREQ2FBIN(2462, 1) 2520 }, 2521 { 2522 FREQ2FBIN(2412, 1), 2523 FREQ2FBIN(2417, 1), 2524 FREQ2FBIN(2462, 1), 2525 0xFF, 2526 }, 2527 2528 { 2529 FREQ2FBIN(2412, 1), 2530 FREQ2FBIN(2417, 1), 2531 FREQ2FBIN(2462, 1), 2532 0xFF, 2533 }, 2534 { 2535 FREQ2FBIN(2422, 1), 2536 FREQ2FBIN(2427, 1), 2537 FREQ2FBIN(2447, 1), 2538 FREQ2FBIN(2452, 1) 2539 }, 2540 2541 { 2542 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 2543 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 2544 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 2545 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1), 2546 }, 2547 2548 { 2549 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 2550 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 2551 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 2552 0, 2553 }, 2554 2555 { 2556 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 2557 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 2558 FREQ2FBIN(2472, 1), 2559 0, 2560 }, 2561 2562 { 2563 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1), 2564 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1), 2565 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1), 2566 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1), 2567 }, 2568 2569 { 2570 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 2571 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 2572 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 2573 }, 2574 2575 { 2576 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 2577 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 2578 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 2579 0 2580 }, 2581 2582 { 2583 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), 2584 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), 2585 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 2586 0 2587 }, 2588 2589 { 2590 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1), 2591 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1), 2592 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1), 2593 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1), 2594 } 2595 }, 2596 .ctlPowerData_2G = { 2597 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 2598 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 2599 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } }, 2600 2601 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } }, 2602 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 2603 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 2604 2605 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } }, 2606 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 2607 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 2608 2609 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, 2610 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, 2611 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, 2612 }, 2613 .modalHeader5G = { 2614 /* 4 idle,t1,t2,b (4 bits per setting) */ 2615 .antCtrlCommon = LE32(0x220), 2616 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */ 2617 .antCtrlCommon2 = LE32(0x44444), 2618 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */ 2619 .antCtrlChain = { 2620 LE16(0x150), LE16(0x150), LE16(0x150), 2621 }, 2622 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */ 2623 .xatten1DB = {0x19, 0x19, 0x19}, 2624 2625 /* 2626 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin 2627 * for merlin (0xa20c/b20c 16:12 2628 */ 2629 .xatten1Margin = {0x14, 0x14, 0x14}, 2630 .tempSlope = 70, 2631 .voltSlope = 0, 2632 /* spurChans spur channels in usual fbin coding format */ 2633 .spurChans = {0, 0, 0, 0, 0}, 2634 /* noiseFloorThreshCh Check if the register is per chain */ 2635 .noiseFloorThreshCh = {-1, 0, 0}, 2636 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 2637 .quick_drop = 0, 2638 .xpaBiasLvl = 0, 2639 .txFrameToDataStart = 0x0e, 2640 .txFrameToPaOn = 0x0e, 2641 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ 2642 .antennaGain = 0, 2643 .switchSettling = 0x2d, 2644 .adcDesiredSize = -30, 2645 .txEndToXpaOff = 0, 2646 .txEndToRxOn = 0x2, 2647 .txFrameToXpaOn = 0xe, 2648 .thresh62 = 28, 2649 .papdRateMaskHt20 = LE32(0x0cf0e0e0), 2650 .papdRateMaskHt40 = LE32(0x6cf0e0e0), 2651 .switchcomspdt = 0, 2652 .xlna_bias_strength = 0, 2653 .futureModal = { 2654 0, 0, 0, 0, 0, 0, 0, 2655 }, 2656 }, 2657 .base_ext2 = { 2658 .tempSlopeLow = 35, 2659 .tempSlopeHigh = 50, 2660 .xatten1DBLow = {0, 0, 0}, 2661 .xatten1MarginLow = {0, 0, 0}, 2662 .xatten1DBHigh = {0, 0, 0}, 2663 .xatten1MarginHigh = {0, 0, 0} 2664 }, 2665 .calFreqPier5G = { 2666 FREQ2FBIN(5160, 0), 2667 FREQ2FBIN(5220, 0), 2668 FREQ2FBIN(5320, 0), 2669 FREQ2FBIN(5400, 0), 2670 FREQ2FBIN(5500, 0), 2671 FREQ2FBIN(5600, 0), 2672 FREQ2FBIN(5700, 0), 2673 FREQ2FBIN(5785, 0) 2674 }, 2675 .calPierData5G = { 2676 { 2677 {0, 0, 0, 0, 0}, 2678 {0, 0, 0, 0, 0}, 2679 {0, 0, 0, 0, 0}, 2680 {0, 0, 0, 0, 0}, 2681 {0, 0, 0, 0, 0}, 2682 {0, 0, 0, 0, 0}, 2683 {0, 0, 0, 0, 0}, 2684 {0, 0, 0, 0, 0}, 2685 }, 2686 { 2687 {0, 0, 0, 0, 0}, 2688 {0, 0, 0, 0, 0}, 2689 {0, 0, 0, 0, 0}, 2690 {0, 0, 0, 0, 0}, 2691 {0, 0, 0, 0, 0}, 2692 {0, 0, 0, 0, 0}, 2693 {0, 0, 0, 0, 0}, 2694 {0, 0, 0, 0, 0}, 2695 }, 2696 { 2697 {0, 0, 0, 0, 0}, 2698 {0, 0, 0, 0, 0}, 2699 {0, 0, 0, 0, 0}, 2700 {0, 0, 0, 0, 0}, 2701 {0, 0, 0, 0, 0}, 2702 {0, 0, 0, 0, 0}, 2703 {0, 0, 0, 0, 0}, 2704 {0, 0, 0, 0, 0}, 2705 }, 2706 2707 }, 2708 .calTarget_freqbin_5G = { 2709 FREQ2FBIN(5180, 0), 2710 FREQ2FBIN(5240, 0), 2711 FREQ2FBIN(5320, 0), 2712 FREQ2FBIN(5400, 0), 2713 FREQ2FBIN(5500, 0), 2714 FREQ2FBIN(5600, 0), 2715 FREQ2FBIN(5700, 0), 2716 FREQ2FBIN(5825, 0) 2717 }, 2718 .calTarget_freqbin_5GHT20 = { 2719 FREQ2FBIN(5180, 0), 2720 FREQ2FBIN(5240, 0), 2721 FREQ2FBIN(5320, 0), 2722 FREQ2FBIN(5400, 0), 2723 FREQ2FBIN(5500, 0), 2724 FREQ2FBIN(5700, 0), 2725 FREQ2FBIN(5745, 0), 2726 FREQ2FBIN(5825, 0) 2727 }, 2728 .calTarget_freqbin_5GHT40 = { 2729 FREQ2FBIN(5180, 0), 2730 FREQ2FBIN(5240, 0), 2731 FREQ2FBIN(5320, 0), 2732 FREQ2FBIN(5400, 0), 2733 FREQ2FBIN(5500, 0), 2734 FREQ2FBIN(5700, 0), 2735 FREQ2FBIN(5745, 0), 2736 FREQ2FBIN(5825, 0) 2737 }, 2738 .calTargetPower5G = { 2739 /* 6-24,36,48,54 */ 2740 { {30, 30, 28, 24} }, 2741 { {30, 30, 28, 24} }, 2742 { {30, 30, 28, 24} }, 2743 { {30, 30, 28, 24} }, 2744 { {30, 30, 28, 24} }, 2745 { {30, 30, 28, 24} }, 2746 { {30, 30, 28, 24} }, 2747 { {30, 30, 28, 24} }, 2748 }, 2749 .calTargetPower5GHT20 = { 2750 /* 2751 * 0_8_16,1-3_9-11_17-19, 2752 * 4,5,6,7,12,13,14,15,20,21,22,23 2753 */ 2754 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} }, 2755 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} }, 2756 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} }, 2757 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} }, 2758 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} }, 2759 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} }, 2760 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} }, 2761 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} }, 2762 }, 2763 .calTargetPower5GHT40 = { 2764 /* 2765 * 0_8_16,1-3_9-11_17-19, 2766 * 4,5,6,7,12,13,14,15,20,21,22,23 2767 */ 2768 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} }, 2769 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} }, 2770 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} }, 2771 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} }, 2772 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} }, 2773 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} }, 2774 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} }, 2775 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} }, 2776 }, 2777 .ctlIndex_5G = { 2778 0x10, 0x16, 0x18, 0x40, 0x46, 2779 0x48, 0x30, 0x36, 0x38 2780 }, 2781 .ctl_freqbin_5G = { 2782 { 2783 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 2784 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), 2785 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0), 2786 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), 2787 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0), 2788 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), 2789 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), 2790 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) 2791 }, 2792 { 2793 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 2794 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), 2795 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0), 2796 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), 2797 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0), 2798 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), 2799 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), 2800 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) 2801 }, 2802 2803 { 2804 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), 2805 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0), 2806 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0), 2807 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0), 2808 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0), 2809 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0), 2810 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0), 2811 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0) 2812 }, 2813 2814 { 2815 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 2816 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0), 2817 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0), 2818 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0), 2819 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0), 2820 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), 2821 /* Data[3].ctlEdges[6].bChannel */ 0xFF, 2822 /* Data[3].ctlEdges[7].bChannel */ 0xFF, 2823 }, 2824 2825 { 2826 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 2827 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), 2828 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0), 2829 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0), 2830 /* Data[4].ctlEdges[4].bChannel */ 0xFF, 2831 /* Data[4].ctlEdges[5].bChannel */ 0xFF, 2832 /* Data[4].ctlEdges[6].bChannel */ 0xFF, 2833 /* Data[4].ctlEdges[7].bChannel */ 0xFF, 2834 }, 2835 2836 { 2837 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), 2838 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0), 2839 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0), 2840 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0), 2841 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0), 2842 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0), 2843 /* Data[5].ctlEdges[6].bChannel */ 0xFF, 2844 /* Data[5].ctlEdges[7].bChannel */ 0xFF 2845 }, 2846 2847 { 2848 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 2849 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0), 2850 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0), 2851 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0), 2852 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0), 2853 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0), 2854 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0), 2855 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0) 2856 }, 2857 2858 { 2859 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), 2860 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), 2861 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0), 2862 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), 2863 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0), 2864 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), 2865 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), 2866 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) 2867 }, 2868 2869 { 2870 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), 2871 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0), 2872 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0), 2873 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0), 2874 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0), 2875 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0), 2876 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0), 2877 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0) 2878 } 2879 }, 2880 .ctlPowerData_5G = { 2881 { 2882 { 2883 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 2884 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 2885 } 2886 }, 2887 { 2888 { 2889 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 2890 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 2891 } 2892 }, 2893 { 2894 { 2895 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1), 2896 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 2897 } 2898 }, 2899 { 2900 { 2901 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0), 2902 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), 2903 } 2904 }, 2905 { 2906 { 2907 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 2908 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0), 2909 } 2910 }, 2911 { 2912 { 2913 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 2914 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), 2915 } 2916 }, 2917 { 2918 { 2919 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 2920 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), 2921 } 2922 }, 2923 { 2924 { 2925 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), 2926 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), 2927 } 2928 }, 2929 { 2930 { 2931 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), 2932 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), 2933 } 2934 }, 2935 } 2936 }; 2937 2938 2939 static const struct ar9300_eeprom *ar9300_eep_templates[] = { 2940 &ar9300_default, 2941 &ar9300_x112, 2942 &ar9300_h116, 2943 &ar9300_h112, 2944 &ar9300_x113, 2945 }; 2946 2947 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id) 2948 { 2949 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0])) 2950 int it; 2951 2952 for (it = 0; it < N_LOOP; it++) 2953 if (ar9300_eep_templates[it]->templateVersion == id) 2954 return ar9300_eep_templates[it]; 2955 return NULL; 2956 #undef N_LOOP 2957 } 2958 2959 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah) 2960 { 2961 return 0; 2962 } 2963 2964 static int interpolate(int x, int xa, int xb, int ya, int yb) 2965 { 2966 int bf, factor, plus; 2967 2968 bf = 2 * (yb - ya) * (x - xa) / (xb - xa); 2969 factor = bf / 2; 2970 plus = bf % 2; 2971 return ya + factor + plus; 2972 } 2973 2974 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah, 2975 enum eeprom_param param) 2976 { 2977 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 2978 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader; 2979 2980 switch (param) { 2981 case EEP_MAC_LSW: 2982 return get_unaligned_be16(eep->macAddr); 2983 case EEP_MAC_MID: 2984 return get_unaligned_be16(eep->macAddr + 2); 2985 case EEP_MAC_MSW: 2986 return get_unaligned_be16(eep->macAddr + 4); 2987 case EEP_REG_0: 2988 return le16_to_cpu(pBase->regDmn[0]); 2989 case EEP_OP_CAP: 2990 return pBase->deviceCap; 2991 case EEP_OP_MODE: 2992 return pBase->opCapFlags.opFlags; 2993 case EEP_RF_SILENT: 2994 return pBase->rfSilent; 2995 case EEP_TX_MASK: 2996 return (pBase->txrxMask >> 4) & 0xf; 2997 case EEP_RX_MASK: 2998 return pBase->txrxMask & 0xf; 2999 case EEP_PAPRD: 3000 return !!(pBase->featureEnable & BIT(5)); 3001 case EEP_CHAIN_MASK_REDUCE: 3002 return (pBase->miscConfiguration >> 0x3) & 0x1; 3003 case EEP_ANT_DIV_CTL1: 3004 if (AR_SREV_9565(ah)) 3005 return AR9300_EEP_ANTDIV_CONTROL_DEFAULT_VALUE; 3006 else 3007 return eep->base_ext1.ant_div_control; 3008 case EEP_ANTENNA_GAIN_5G: 3009 return eep->modalHeader5G.antennaGain; 3010 case EEP_ANTENNA_GAIN_2G: 3011 return eep->modalHeader2G.antennaGain; 3012 default: 3013 return 0; 3014 } 3015 } 3016 3017 static bool ar9300_eeprom_read_byte(struct ath_hw *ah, int address, 3018 u8 *buffer) 3019 { 3020 u16 val; 3021 3022 if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val))) 3023 return false; 3024 3025 *buffer = (val >> (8 * (address % 2))) & 0xff; 3026 return true; 3027 } 3028 3029 static bool ar9300_eeprom_read_word(struct ath_hw *ah, int address, 3030 u8 *buffer) 3031 { 3032 u16 val; 3033 3034 if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val))) 3035 return false; 3036 3037 buffer[0] = val >> 8; 3038 buffer[1] = val & 0xff; 3039 3040 return true; 3041 } 3042 3043 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer, 3044 int count) 3045 { 3046 struct ath_common *common = ath9k_hw_common(ah); 3047 int i; 3048 3049 if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) { 3050 ath_dbg(common, EEPROM, "eeprom address not in range\n"); 3051 return false; 3052 } 3053 3054 /* 3055 * Since we're reading the bytes in reverse order from a little-endian 3056 * word stream, an even address means we only use the lower half of 3057 * the 16-bit word at that address 3058 */ 3059 if (address % 2 == 0) { 3060 if (!ar9300_eeprom_read_byte(ah, address--, buffer++)) 3061 goto error; 3062 3063 count--; 3064 } 3065 3066 for (i = 0; i < count / 2; i++) { 3067 if (!ar9300_eeprom_read_word(ah, address, buffer)) 3068 goto error; 3069 3070 address -= 2; 3071 buffer += 2; 3072 } 3073 3074 if (count % 2) 3075 if (!ar9300_eeprom_read_byte(ah, address, buffer)) 3076 goto error; 3077 3078 return true; 3079 3080 error: 3081 ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n", 3082 address); 3083 return false; 3084 } 3085 3086 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data) 3087 { 3088 REG_READ(ah, AR9300_OTP_BASE + (4 * addr)); 3089 3090 if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE, 3091 AR9300_OTP_STATUS_VALID, 1000)) 3092 return false; 3093 3094 *data = REG_READ(ah, AR9300_OTP_READ_DATA); 3095 return true; 3096 } 3097 3098 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer, 3099 int count) 3100 { 3101 u32 data; 3102 int i; 3103 3104 for (i = 0; i < count; i++) { 3105 int offset = 8 * ((address - i) % 4); 3106 if (!ar9300_otp_read_word(ah, (address - i) / 4, &data)) 3107 return false; 3108 3109 buffer[i] = (data >> offset) & 0xff; 3110 } 3111 3112 return true; 3113 } 3114 3115 3116 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference, 3117 int *length, int *major, int *minor) 3118 { 3119 unsigned long value[4]; 3120 3121 value[0] = best[0]; 3122 value[1] = best[1]; 3123 value[2] = best[2]; 3124 value[3] = best[3]; 3125 *code = ((value[0] >> 5) & 0x0007); 3126 *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020); 3127 *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f); 3128 *major = (value[2] & 0x000f); 3129 *minor = (value[3] & 0x00ff); 3130 } 3131 3132 static u16 ar9300_comp_cksum(u8 *data, int dsize) 3133 { 3134 int it, checksum = 0; 3135 3136 for (it = 0; it < dsize; it++) { 3137 checksum += data[it]; 3138 checksum &= 0xffff; 3139 } 3140 3141 return checksum; 3142 } 3143 3144 static bool ar9300_uncompress_block(struct ath_hw *ah, 3145 u8 *mptr, 3146 int mdataSize, 3147 u8 *block, 3148 int size) 3149 { 3150 int it; 3151 int spot; 3152 int offset; 3153 int length; 3154 struct ath_common *common = ath9k_hw_common(ah); 3155 3156 spot = 0; 3157 3158 for (it = 0; it < size; it += (length+2)) { 3159 offset = block[it]; 3160 offset &= 0xff; 3161 spot += offset; 3162 length = block[it+1]; 3163 length &= 0xff; 3164 3165 if (length > 0 && spot >= 0 && spot+length <= mdataSize) { 3166 ath_dbg(common, EEPROM, 3167 "Restore at %d: spot=%d offset=%d length=%d\n", 3168 it, spot, offset, length); 3169 memcpy(&mptr[spot], &block[it+2], length); 3170 spot += length; 3171 } else if (length > 0) { 3172 ath_dbg(common, EEPROM, 3173 "Bad restore at %d: spot=%d offset=%d length=%d\n", 3174 it, spot, offset, length); 3175 return false; 3176 } 3177 } 3178 return true; 3179 } 3180 3181 static int ar9300_compress_decision(struct ath_hw *ah, 3182 int it, 3183 int code, 3184 int reference, 3185 u8 *mptr, 3186 u8 *word, int length, int mdata_size) 3187 { 3188 struct ath_common *common = ath9k_hw_common(ah); 3189 const struct ar9300_eeprom *eep = NULL; 3190 3191 switch (code) { 3192 case _CompressNone: 3193 if (length != mdata_size) { 3194 ath_dbg(common, EEPROM, 3195 "EEPROM structure size mismatch memory=%d eeprom=%d\n", 3196 mdata_size, length); 3197 return -1; 3198 } 3199 memcpy(mptr, word + COMP_HDR_LEN, length); 3200 ath_dbg(common, EEPROM, 3201 "restored eeprom %d: uncompressed, length %d\n", 3202 it, length); 3203 break; 3204 case _CompressBlock: 3205 if (reference == 0) { 3206 } else { 3207 eep = ar9003_eeprom_struct_find_by_id(reference); 3208 if (eep == NULL) { 3209 ath_dbg(common, EEPROM, 3210 "can't find reference eeprom struct %d\n", 3211 reference); 3212 return -1; 3213 } 3214 memcpy(mptr, eep, mdata_size); 3215 } 3216 ath_dbg(common, EEPROM, 3217 "restore eeprom %d: block, reference %d, length %d\n", 3218 it, reference, length); 3219 ar9300_uncompress_block(ah, mptr, mdata_size, 3220 (word + COMP_HDR_LEN), length); 3221 break; 3222 default: 3223 ath_dbg(common, EEPROM, "unknown compression code %d\n", code); 3224 return -1; 3225 } 3226 return 0; 3227 } 3228 3229 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer, 3230 int count); 3231 3232 static bool ar9300_check_header(void *data) 3233 { 3234 u32 *word = data; 3235 return !(*word == 0 || *word == ~0); 3236 } 3237 3238 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read, 3239 int base_addr) 3240 { 3241 u8 header[4]; 3242 3243 if (!read(ah, base_addr, header, 4)) 3244 return false; 3245 3246 return ar9300_check_header(header); 3247 } 3248 3249 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr, 3250 int mdata_size) 3251 { 3252 u16 *data = (u16 *) mptr; 3253 int i; 3254 3255 for (i = 0; i < mdata_size / 2; i++, data++) 3256 ath9k_hw_nvram_read(ah, i, data); 3257 3258 return 0; 3259 } 3260 /* 3261 * Read the configuration data from the eeprom. 3262 * The data can be put in any specified memory buffer. 3263 * 3264 * Returns -1 on error. 3265 * Returns address of next memory location on success. 3266 */ 3267 static int ar9300_eeprom_restore_internal(struct ath_hw *ah, 3268 u8 *mptr, int mdata_size) 3269 { 3270 #define MDEFAULT 15 3271 #define MSTATE 100 3272 int cptr; 3273 u8 *word; 3274 int code; 3275 int reference, length, major, minor; 3276 int osize; 3277 int it; 3278 u16 checksum, mchecksum; 3279 struct ath_common *common = ath9k_hw_common(ah); 3280 struct ar9300_eeprom *eep; 3281 eeprom_read_op read; 3282 3283 if (ath9k_hw_use_flash(ah)) { 3284 u8 txrx; 3285 3286 ar9300_eeprom_restore_flash(ah, mptr, mdata_size); 3287 3288 /* check if eeprom contains valid data */ 3289 eep = (struct ar9300_eeprom *) mptr; 3290 txrx = eep->baseEepHeader.txrxMask; 3291 if (txrx != 0 && txrx != 0xff) 3292 return 0; 3293 } 3294 3295 word = kzalloc(2048, GFP_KERNEL); 3296 if (!word) 3297 return -ENOMEM; 3298 3299 memcpy(mptr, &ar9300_default, mdata_size); 3300 3301 read = ar9300_read_eeprom; 3302 if (AR_SREV_9485(ah)) 3303 cptr = AR9300_BASE_ADDR_4K; 3304 else if (AR_SREV_9330(ah)) 3305 cptr = AR9300_BASE_ADDR_512; 3306 else 3307 cptr = AR9300_BASE_ADDR; 3308 ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n", 3309 cptr); 3310 if (ar9300_check_eeprom_header(ah, read, cptr)) 3311 goto found; 3312 3313 cptr = AR9300_BASE_ADDR_512; 3314 ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n", 3315 cptr); 3316 if (ar9300_check_eeprom_header(ah, read, cptr)) 3317 goto found; 3318 3319 read = ar9300_read_otp; 3320 cptr = AR9300_BASE_ADDR; 3321 ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr); 3322 if (ar9300_check_eeprom_header(ah, read, cptr)) 3323 goto found; 3324 3325 cptr = AR9300_BASE_ADDR_512; 3326 ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr); 3327 if (ar9300_check_eeprom_header(ah, read, cptr)) 3328 goto found; 3329 3330 goto fail; 3331 3332 found: 3333 ath_dbg(common, EEPROM, "Found valid EEPROM data\n"); 3334 3335 for (it = 0; it < MSTATE; it++) { 3336 if (!read(ah, cptr, word, COMP_HDR_LEN)) 3337 goto fail; 3338 3339 if (!ar9300_check_header(word)) 3340 break; 3341 3342 ar9300_comp_hdr_unpack(word, &code, &reference, 3343 &length, &major, &minor); 3344 ath_dbg(common, EEPROM, 3345 "Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n", 3346 cptr, code, reference, length, major, minor); 3347 if ((!AR_SREV_9485(ah) && length >= 1024) || 3348 (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) { 3349 ath_dbg(common, EEPROM, "Skipping bad header\n"); 3350 cptr -= COMP_HDR_LEN; 3351 continue; 3352 } 3353 3354 osize = length; 3355 read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN); 3356 checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length); 3357 mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]); 3358 ath_dbg(common, EEPROM, "checksum %x %x\n", 3359 checksum, mchecksum); 3360 if (checksum == mchecksum) { 3361 ar9300_compress_decision(ah, it, code, reference, mptr, 3362 word, length, mdata_size); 3363 } else { 3364 ath_dbg(common, EEPROM, 3365 "skipping block with bad checksum\n"); 3366 } 3367 cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN); 3368 } 3369 3370 kfree(word); 3371 return cptr; 3372 3373 fail: 3374 kfree(word); 3375 return -1; 3376 } 3377 3378 /* 3379 * Restore the configuration structure by reading the eeprom. 3380 * This function destroys any existing in-memory structure 3381 * content. 3382 */ 3383 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah) 3384 { 3385 u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep; 3386 3387 if (ar9300_eeprom_restore_internal(ah, mptr, 3388 sizeof(struct ar9300_eeprom)) < 0) 3389 return false; 3390 3391 return true; 3392 } 3393 3394 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS) 3395 static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size, 3396 struct ar9300_modal_eep_header *modal_hdr) 3397 { 3398 PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0])); 3399 PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1])); 3400 PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2])); 3401 PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon)); 3402 PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2)); 3403 PR_EEP("Ant. Gain", modal_hdr->antennaGain); 3404 PR_EEP("Switch Settle", modal_hdr->switchSettling); 3405 PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]); 3406 PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]); 3407 PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]); 3408 PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]); 3409 PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]); 3410 PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]); 3411 PR_EEP("Temp Slope", modal_hdr->tempSlope); 3412 PR_EEP("Volt Slope", modal_hdr->voltSlope); 3413 PR_EEP("spur Channels0", modal_hdr->spurChans[0]); 3414 PR_EEP("spur Channels1", modal_hdr->spurChans[1]); 3415 PR_EEP("spur Channels2", modal_hdr->spurChans[2]); 3416 PR_EEP("spur Channels3", modal_hdr->spurChans[3]); 3417 PR_EEP("spur Channels4", modal_hdr->spurChans[4]); 3418 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]); 3419 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]); 3420 PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]); 3421 PR_EEP("Quick Drop", modal_hdr->quick_drop); 3422 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff); 3423 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl); 3424 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart); 3425 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn); 3426 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn); 3427 PR_EEP("txClip", modal_hdr->txClip); 3428 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize); 3429 3430 return len; 3431 } 3432 3433 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr, 3434 u8 *buf, u32 len, u32 size) 3435 { 3436 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 3437 struct ar9300_base_eep_hdr *pBase; 3438 3439 if (!dump_base_hdr) { 3440 len += scnprintf(buf + len, size - len, 3441 "%20s :\n", "2GHz modal Header"); 3442 len = ar9003_dump_modal_eeprom(buf, len, size, 3443 &eep->modalHeader2G); 3444 len += scnprintf(buf + len, size - len, 3445 "%20s :\n", "5GHz modal Header"); 3446 len = ar9003_dump_modal_eeprom(buf, len, size, 3447 &eep->modalHeader5G); 3448 goto out; 3449 } 3450 3451 pBase = &eep->baseEepHeader; 3452 3453 PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion); 3454 PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0])); 3455 PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1])); 3456 PR_EEP("TX Mask", (pBase->txrxMask >> 4)); 3457 PR_EEP("RX Mask", (pBase->txrxMask & 0x0f)); 3458 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags & 3459 AR5416_OPFLAGS_11A)); 3460 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags & 3461 AR5416_OPFLAGS_11G)); 3462 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags & 3463 AR5416_OPFLAGS_N_2G_HT20)); 3464 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags & 3465 AR5416_OPFLAGS_N_2G_HT40)); 3466 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags & 3467 AR5416_OPFLAGS_N_5G_HT20)); 3468 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags & 3469 AR5416_OPFLAGS_N_5G_HT40)); 3470 PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc & 0x01)); 3471 PR_EEP("RF Silent", pBase->rfSilent); 3472 PR_EEP("BT option", pBase->blueToothOptions); 3473 PR_EEP("Device Cap", pBase->deviceCap); 3474 PR_EEP("Device Type", pBase->deviceType); 3475 PR_EEP("Power Table Offset", pBase->pwrTableOffset); 3476 PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]); 3477 PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]); 3478 PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0))); 3479 PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1))); 3480 PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2))); 3481 PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3))); 3482 PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4))); 3483 PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5))); 3484 PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0))); 3485 PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1))); 3486 PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1); 3487 PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio); 3488 PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio); 3489 PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio); 3490 PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio); 3491 PR_EEP("Tx Gain", pBase->txrxgain >> 4); 3492 PR_EEP("Rx Gain", pBase->txrxgain & 0xf); 3493 PR_EEP("SW Reg", le32_to_cpu(pBase->swreg)); 3494 3495 len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress", 3496 ah->eeprom.ar9300_eep.macAddr); 3497 out: 3498 if (len > size) 3499 len = size; 3500 3501 return len; 3502 } 3503 #else 3504 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr, 3505 u8 *buf, u32 len, u32 size) 3506 { 3507 return 0; 3508 } 3509 #endif 3510 3511 /* XXX: review hardware docs */ 3512 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah) 3513 { 3514 return ah->eeprom.ar9300_eep.eepromVersion; 3515 } 3516 3517 /* XXX: could be read from the eepromVersion, not sure yet */ 3518 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah) 3519 { 3520 return 0; 3521 } 3522 3523 static struct ar9300_modal_eep_header *ar9003_modal_header(struct ath_hw *ah, 3524 bool is2ghz) 3525 { 3526 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 3527 3528 if (is2ghz) 3529 return &eep->modalHeader2G; 3530 else 3531 return &eep->modalHeader5G; 3532 } 3533 3534 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz) 3535 { 3536 int bias = ar9003_modal_header(ah, is2ghz)->xpaBiasLvl; 3537 3538 if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah)) 3539 REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias); 3540 else if (AR_SREV_9462(ah) || AR_SREV_9550(ah) || AR_SREV_9565(ah)) 3541 REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias); 3542 else { 3543 REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias); 3544 REG_RMW_FIELD(ah, AR_CH0_THERM, 3545 AR_CH0_THERM_XPABIASLVL_MSB, 3546 bias >> 2); 3547 REG_RMW_FIELD(ah, AR_CH0_THERM, 3548 AR_CH0_THERM_XPASHORT2GND, 1); 3549 } 3550 } 3551 3552 static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is2ghz) 3553 { 3554 return le16_to_cpu(ar9003_modal_header(ah, is2ghz)->switchcomspdt); 3555 } 3556 3557 u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz) 3558 { 3559 return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon); 3560 } 3561 3562 u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz) 3563 { 3564 return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon2); 3565 } 3566 3567 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah, int chain, 3568 bool is2ghz) 3569 { 3570 __le16 val = ar9003_modal_header(ah, is2ghz)->antCtrlChain[chain]; 3571 return le16_to_cpu(val); 3572 } 3573 3574 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz) 3575 { 3576 struct ath_common *common = ath9k_hw_common(ah); 3577 struct ath9k_hw_capabilities *pCap = &ah->caps; 3578 int chain; 3579 u32 regval, value, gpio; 3580 static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = { 3581 AR_PHY_SWITCH_CHAIN_0, 3582 AR_PHY_SWITCH_CHAIN_1, 3583 AR_PHY_SWITCH_CHAIN_2, 3584 }; 3585 3586 if (AR_SREV_9485(ah) && (ar9003_hw_get_rx_gain_idx(ah) == 0)) { 3587 if (ah->config.xlna_gpio) 3588 gpio = ah->config.xlna_gpio; 3589 else 3590 gpio = AR9300_EXT_LNA_CTL_GPIO_AR9485; 3591 3592 ath9k_hw_cfg_output(ah, gpio, 3593 AR_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED); 3594 } 3595 3596 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz); 3597 3598 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 3599 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, 3600 AR_SWITCH_TABLE_COM_AR9462_ALL, value); 3601 } else if (AR_SREV_9550(ah) || AR_SREV_9531(ah)) { 3602 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, 3603 AR_SWITCH_TABLE_COM_AR9550_ALL, value); 3604 } else 3605 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, 3606 AR_SWITCH_TABLE_COM_ALL, value); 3607 3608 3609 /* 3610 * AR9462 defines new switch table for BT/WLAN, 3611 * here's new field name in XXX.ref for both 2G and 5G. 3612 * Register: [GLB_CONTROL] GLB_CONTROL (@0x20044) 3613 * 15:12 R/W SWITCH_TABLE_COM_SPDT_WLAN_RX 3614 * SWITCH_TABLE_COM_SPDT_WLAN_RX 3615 * 3616 * 11:8 R/W SWITCH_TABLE_COM_SPDT_WLAN_TX 3617 * SWITCH_TABLE_COM_SPDT_WLAN_TX 3618 * 3619 * 7:4 R/W SWITCH_TABLE_COM_SPDT_WLAN_IDLE 3620 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE 3621 */ 3622 if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565(ah)) { 3623 value = ar9003_switch_com_spdt_get(ah, is2ghz); 3624 REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL, 3625 AR_SWITCH_TABLE_COM_SPDT_ALL, value); 3626 REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE); 3627 } 3628 3629 value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz); 3630 if (AR_SREV_9485(ah) && common->bt_ant_diversity) { 3631 value &= ~AR_SWITCH_TABLE_COM2_ALL; 3632 value |= ah->config.ant_ctrl_comm2g_switch_enable; 3633 3634 } 3635 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value); 3636 3637 if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) { 3638 value = ar9003_hw_ant_ctrl_chain_get(ah, 1, is2ghz); 3639 REG_RMW_FIELD(ah, switch_chain_reg[0], 3640 AR_SWITCH_TABLE_ALL, value); 3641 } 3642 3643 for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) { 3644 if ((ah->rxchainmask & BIT(chain)) || 3645 (ah->txchainmask & BIT(chain))) { 3646 value = ar9003_hw_ant_ctrl_chain_get(ah, chain, 3647 is2ghz); 3648 REG_RMW_FIELD(ah, switch_chain_reg[chain], 3649 AR_SWITCH_TABLE_ALL, value); 3650 } 3651 } 3652 3653 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) { 3654 value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1); 3655 /* 3656 * main_lnaconf, alt_lnaconf, main_tb, alt_tb 3657 * are the fields present 3658 */ 3659 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); 3660 regval &= (~AR_ANT_DIV_CTRL_ALL); 3661 regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S; 3662 /* enable_lnadiv */ 3663 regval &= (~AR_PHY_ANT_DIV_LNADIV); 3664 regval |= ((value >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S; 3665 3666 if (AR_SREV_9485(ah) && common->bt_ant_diversity) 3667 regval |= AR_ANT_DIV_ENABLE; 3668 3669 if (AR_SREV_9565(ah)) { 3670 if (common->bt_ant_diversity) { 3671 regval |= (1 << AR_PHY_ANT_SW_RX_PROT_S); 3672 3673 REG_SET_BIT(ah, AR_PHY_RESTART, 3674 AR_PHY_RESTART_ENABLE_DIV_M2FLAG); 3675 3676 /* Force WLAN LNA diversity ON */ 3677 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, 3678 AR_BTCOEX_WL_LNADIV_FORCE_ON); 3679 } else { 3680 regval &= ~(1 << AR_PHY_ANT_DIV_LNADIV_S); 3681 regval &= ~(1 << AR_PHY_ANT_SW_RX_PROT_S); 3682 3683 REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL, 3684 (1 << AR_PHY_ANT_SW_RX_PROT_S)); 3685 3686 /* Force WLAN LNA diversity OFF */ 3687 REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV, 3688 AR_BTCOEX_WL_LNADIV_FORCE_ON); 3689 } 3690 } 3691 3692 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); 3693 3694 /* enable fast_div */ 3695 regval = REG_READ(ah, AR_PHY_CCK_DETECT); 3696 regval &= (~AR_FAST_DIV_ENABLE); 3697 regval |= ((value >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S; 3698 3699 if ((AR_SREV_9485(ah) || AR_SREV_9565(ah)) 3700 && common->bt_ant_diversity) 3701 regval |= AR_FAST_DIV_ENABLE; 3702 3703 REG_WRITE(ah, AR_PHY_CCK_DETECT, regval); 3704 3705 if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) { 3706 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); 3707 /* 3708 * clear bits 25-30 main_lnaconf, alt_lnaconf, 3709 * main_tb, alt_tb 3710 */ 3711 regval &= (~(AR_PHY_ANT_DIV_MAIN_LNACONF | 3712 AR_PHY_ANT_DIV_ALT_LNACONF | 3713 AR_PHY_ANT_DIV_ALT_GAINTB | 3714 AR_PHY_ANT_DIV_MAIN_GAINTB)); 3715 /* by default use LNA1 for the main antenna */ 3716 regval |= (ATH_ANT_DIV_COMB_LNA1 << 3717 AR_PHY_ANT_DIV_MAIN_LNACONF_S); 3718 regval |= (ATH_ANT_DIV_COMB_LNA2 << 3719 AR_PHY_ANT_DIV_ALT_LNACONF_S); 3720 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); 3721 } 3722 } 3723 } 3724 3725 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah) 3726 { 3727 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 3728 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader; 3729 int drive_strength; 3730 unsigned long reg; 3731 3732 drive_strength = pBase->miscConfiguration & BIT(0); 3733 if (!drive_strength) 3734 return; 3735 3736 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1); 3737 reg &= ~0x00ffffc0; 3738 reg |= 0x5 << 21; 3739 reg |= 0x5 << 18; 3740 reg |= 0x5 << 15; 3741 reg |= 0x5 << 12; 3742 reg |= 0x5 << 9; 3743 reg |= 0x5 << 6; 3744 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg); 3745 3746 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2); 3747 reg &= ~0xffffffe0; 3748 reg |= 0x5 << 29; 3749 reg |= 0x5 << 26; 3750 reg |= 0x5 << 23; 3751 reg |= 0x5 << 20; 3752 reg |= 0x5 << 17; 3753 reg |= 0x5 << 14; 3754 reg |= 0x5 << 11; 3755 reg |= 0x5 << 8; 3756 reg |= 0x5 << 5; 3757 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg); 3758 3759 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4); 3760 reg &= ~0xff800000; 3761 reg |= 0x5 << 29; 3762 reg |= 0x5 << 26; 3763 reg |= 0x5 << 23; 3764 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg); 3765 } 3766 3767 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain, 3768 struct ath9k_channel *chan) 3769 { 3770 int f[3], t[3]; 3771 u16 value; 3772 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 3773 3774 if (chain >= 0 && chain < 3) { 3775 if (IS_CHAN_2GHZ(chan)) 3776 return eep->modalHeader2G.xatten1DB[chain]; 3777 else if (eep->base_ext2.xatten1DBLow[chain] != 0) { 3778 t[0] = eep->base_ext2.xatten1DBLow[chain]; 3779 f[0] = 5180; 3780 t[1] = eep->modalHeader5G.xatten1DB[chain]; 3781 f[1] = 5500; 3782 t[2] = eep->base_ext2.xatten1DBHigh[chain]; 3783 f[2] = 5785; 3784 value = ar9003_hw_power_interpolate((s32) chan->channel, 3785 f, t, 3); 3786 return value; 3787 } else 3788 return eep->modalHeader5G.xatten1DB[chain]; 3789 } 3790 3791 return 0; 3792 } 3793 3794 3795 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain, 3796 struct ath9k_channel *chan) 3797 { 3798 int f[3], t[3]; 3799 u16 value; 3800 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 3801 3802 if (chain >= 0 && chain < 3) { 3803 if (IS_CHAN_2GHZ(chan)) 3804 return eep->modalHeader2G.xatten1Margin[chain]; 3805 else if (eep->base_ext2.xatten1MarginLow[chain] != 0) { 3806 t[0] = eep->base_ext2.xatten1MarginLow[chain]; 3807 f[0] = 5180; 3808 t[1] = eep->modalHeader5G.xatten1Margin[chain]; 3809 f[1] = 5500; 3810 t[2] = eep->base_ext2.xatten1MarginHigh[chain]; 3811 f[2] = 5785; 3812 value = ar9003_hw_power_interpolate((s32) chan->channel, 3813 f, t, 3); 3814 return value; 3815 } else 3816 return eep->modalHeader5G.xatten1Margin[chain]; 3817 } 3818 3819 return 0; 3820 } 3821 3822 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan) 3823 { 3824 int i; 3825 u16 value; 3826 unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0, 3827 AR_PHY_EXT_ATTEN_CTL_1, 3828 AR_PHY_EXT_ATTEN_CTL_2, 3829 }; 3830 3831 if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) { 3832 value = ar9003_hw_atten_chain_get(ah, 1, chan); 3833 REG_RMW_FIELD(ah, ext_atten_reg[0], 3834 AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value); 3835 3836 value = ar9003_hw_atten_chain_get_margin(ah, 1, chan); 3837 REG_RMW_FIELD(ah, ext_atten_reg[0], 3838 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, 3839 value); 3840 } 3841 3842 /* Test value. if 0 then attenuation is unused. Don't load anything. */ 3843 for (i = 0; i < 3; i++) { 3844 if (ah->txchainmask & BIT(i)) { 3845 value = ar9003_hw_atten_chain_get(ah, i, chan); 3846 REG_RMW_FIELD(ah, ext_atten_reg[i], 3847 AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value); 3848 3849 if (AR_SREV_9485(ah) && 3850 (ar9003_hw_get_rx_gain_idx(ah) == 0) && 3851 ah->config.xatten_margin_cfg) 3852 value = 5; 3853 else 3854 value = ar9003_hw_atten_chain_get_margin(ah, i, chan); 3855 3856 if (ah->config.alt_mingainidx) 3857 REG_RMW_FIELD(ah, AR_PHY_EXT_ATTEN_CTL_0, 3858 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, 3859 value); 3860 3861 REG_RMW_FIELD(ah, ext_atten_reg[i], 3862 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, 3863 value); 3864 } 3865 } 3866 } 3867 3868 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set) 3869 { 3870 int timeout = 100; 3871 3872 while (pmu_set != REG_READ(ah, pmu_reg)) { 3873 if (timeout-- == 0) 3874 return false; 3875 REG_WRITE(ah, pmu_reg, pmu_set); 3876 udelay(10); 3877 } 3878 3879 return true; 3880 } 3881 3882 void ar9003_hw_internal_regulator_apply(struct ath_hw *ah) 3883 { 3884 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 3885 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader; 3886 u32 reg_val; 3887 3888 if (pBase->featureEnable & BIT(4)) { 3889 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) { 3890 int reg_pmu_set; 3891 3892 reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM; 3893 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set); 3894 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set)) 3895 return; 3896 3897 if (AR_SREV_9330(ah)) { 3898 if (ah->is_clk_25mhz) { 3899 reg_pmu_set = (3 << 1) | (8 << 4) | 3900 (3 << 8) | (1 << 14) | 3901 (6 << 17) | (1 << 20) | 3902 (3 << 24); 3903 } else { 3904 reg_pmu_set = (4 << 1) | (7 << 4) | 3905 (3 << 8) | (1 << 14) | 3906 (6 << 17) | (1 << 20) | 3907 (3 << 24); 3908 } 3909 } else { 3910 reg_pmu_set = (5 << 1) | (7 << 4) | 3911 (2 << 8) | (2 << 14) | 3912 (6 << 17) | (1 << 20) | 3913 (3 << 24) | (1 << 28); 3914 } 3915 3916 REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set); 3917 if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set)) 3918 return; 3919 3920 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000) 3921 | (4 << 26); 3922 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set); 3923 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set)) 3924 return; 3925 3926 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000) 3927 | (1 << 21); 3928 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set); 3929 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set)) 3930 return; 3931 } else if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 3932 reg_val = le32_to_cpu(pBase->swreg); 3933 REG_WRITE(ah, AR_PHY_PMU1, reg_val); 3934 } else { 3935 /* Internal regulator is ON. Write swreg register. */ 3936 reg_val = le32_to_cpu(pBase->swreg); 3937 REG_WRITE(ah, AR_RTC_REG_CONTROL1, 3938 REG_READ(ah, AR_RTC_REG_CONTROL1) & 3939 (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM)); 3940 REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val); 3941 /* Set REG_CONTROL1.SWREG_PROGRAM */ 3942 REG_WRITE(ah, AR_RTC_REG_CONTROL1, 3943 REG_READ(ah, 3944 AR_RTC_REG_CONTROL1) | 3945 AR_RTC_REG_CONTROL1_SWREG_PROGRAM); 3946 } 3947 } else { 3948 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) { 3949 REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0); 3950 while (REG_READ_FIELD(ah, AR_PHY_PMU2, 3951 AR_PHY_PMU2_PGM)) 3952 udelay(10); 3953 3954 REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1); 3955 while (!REG_READ_FIELD(ah, AR_PHY_PMU1, 3956 AR_PHY_PMU1_PWD)) 3957 udelay(10); 3958 REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1); 3959 while (!REG_READ_FIELD(ah, AR_PHY_PMU2, 3960 AR_PHY_PMU2_PGM)) 3961 udelay(10); 3962 } else if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 3963 REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1); 3964 else { 3965 reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) | 3966 AR_RTC_FORCE_SWREG_PRD; 3967 REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val); 3968 } 3969 } 3970 3971 } 3972 3973 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah) 3974 { 3975 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 3976 u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0]; 3977 3978 if (AR_SREV_9340(ah) || AR_SREV_9531(ah)) 3979 return; 3980 3981 if (eep->baseEepHeader.featureEnable & 0x40) { 3982 tuning_caps_param &= 0x7f; 3983 REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC, 3984 tuning_caps_param); 3985 REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC, 3986 tuning_caps_param); 3987 } 3988 } 3989 3990 static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq) 3991 { 3992 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 3993 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader; 3994 int quick_drop; 3995 s32 t[3], f[3] = {5180, 5500, 5785}; 3996 3997 if (!(pBase->miscConfiguration & BIT(4))) 3998 return; 3999 4000 if (AR_SREV_9300(ah) || AR_SREV_9580(ah) || AR_SREV_9340(ah)) { 4001 if (freq < 4000) { 4002 quick_drop = eep->modalHeader2G.quick_drop; 4003 } else { 4004 t[0] = eep->base_ext1.quick_drop_low; 4005 t[1] = eep->modalHeader5G.quick_drop; 4006 t[2] = eep->base_ext1.quick_drop_high; 4007 quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3); 4008 } 4009 REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop); 4010 } 4011 } 4012 4013 static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, bool is2ghz) 4014 { 4015 u32 value; 4016 4017 value = ar9003_modal_header(ah, is2ghz)->txEndToXpaOff; 4018 4019 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL, 4020 AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value); 4021 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL, 4022 AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value); 4023 } 4024 4025 static void ar9003_hw_xpa_timing_control_apply(struct ath_hw *ah, bool is2ghz) 4026 { 4027 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 4028 u8 xpa_ctl; 4029 4030 if (!(eep->baseEepHeader.featureEnable & 0x80)) 4031 return; 4032 4033 if (!AR_SREV_9300(ah) && 4034 !AR_SREV_9340(ah) && 4035 !AR_SREV_9580(ah) && 4036 !AR_SREV_9531(ah)) 4037 return; 4038 4039 xpa_ctl = ar9003_modal_header(ah, is2ghz)->txFrameToXpaOn; 4040 if (is2ghz) 4041 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL, 4042 AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON, xpa_ctl); 4043 else 4044 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL, 4045 AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON, xpa_ctl); 4046 } 4047 4048 static void ar9003_hw_xlna_bias_strength_apply(struct ath_hw *ah, bool is2ghz) 4049 { 4050 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 4051 u8 bias; 4052 4053 if (!(eep->baseEepHeader.miscConfiguration & 0x40)) 4054 return; 4055 4056 if (!AR_SREV_9300(ah)) 4057 return; 4058 4059 bias = ar9003_modal_header(ah, is2ghz)->xlna_bias_strength; 4060 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, 4061 bias & 0x3); 4062 bias >>= 2; 4063 REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, 4064 bias & 0x3); 4065 bias >>= 2; 4066 REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, 4067 bias & 0x3); 4068 } 4069 4070 static int ar9003_hw_get_thermometer(struct ath_hw *ah) 4071 { 4072 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 4073 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader; 4074 int thermometer = (pBase->miscConfiguration >> 1) & 0x3; 4075 4076 return --thermometer; 4077 } 4078 4079 static void ar9003_hw_thermometer_apply(struct ath_hw *ah) 4080 { 4081 int thermometer = ar9003_hw_get_thermometer(ah); 4082 u8 therm_on = (thermometer < 0) ? 0 : 1; 4083 4084 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, 4085 AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on); 4086 if (ah->caps.tx_chainmask & BIT(1)) 4087 REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, 4088 AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on); 4089 if (ah->caps.tx_chainmask & BIT(2)) 4090 REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, 4091 AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on); 4092 4093 therm_on = (thermometer < 0) ? 0 : (thermometer == 0); 4094 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, 4095 AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on); 4096 if (ah->caps.tx_chainmask & BIT(1)) { 4097 therm_on = (thermometer < 0) ? 0 : (thermometer == 1); 4098 REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, 4099 AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on); 4100 } 4101 if (ah->caps.tx_chainmask & BIT(2)) { 4102 therm_on = (thermometer < 0) ? 0 : (thermometer == 2); 4103 REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, 4104 AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on); 4105 } 4106 } 4107 4108 static void ar9003_hw_thermo_cal_apply(struct ath_hw *ah) 4109 { 4110 u32 data, ko, kg; 4111 4112 if (!AR_SREV_9462_20_OR_LATER(ah)) 4113 return; 4114 4115 ar9300_otp_read_word(ah, 1, &data); 4116 ko = data & 0xff; 4117 kg = (data >> 8) & 0xff; 4118 if (ko || kg) { 4119 REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3, 4120 AR_PHY_BB_THERM_ADC_3_THERM_ADC_OFFSET, ko); 4121 REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3, 4122 AR_PHY_BB_THERM_ADC_3_THERM_ADC_SCALE_GAIN, 4123 kg + 256); 4124 } 4125 } 4126 4127 static void ar9003_hw_apply_minccapwr_thresh(struct ath_hw *ah, 4128 bool is2ghz) 4129 { 4130 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 4131 const u_int32_t cca_ctrl[AR9300_MAX_CHAINS] = { 4132 AR_PHY_CCA_CTRL_0, 4133 AR_PHY_CCA_CTRL_1, 4134 AR_PHY_CCA_CTRL_2, 4135 }; 4136 int chain; 4137 u32 val; 4138 4139 if (is2ghz) { 4140 if (!(eep->base_ext1.misc_enable & BIT(2))) 4141 return; 4142 } else { 4143 if (!(eep->base_ext1.misc_enable & BIT(3))) 4144 return; 4145 } 4146 4147 for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) { 4148 if (!(ah->caps.tx_chainmask & BIT(chain))) 4149 continue; 4150 4151 val = ar9003_modal_header(ah, is2ghz)->noiseFloorThreshCh[chain]; 4152 REG_RMW_FIELD(ah, cca_ctrl[chain], 4153 AR_PHY_EXT_CCA0_THRESH62_1, val); 4154 } 4155 4156 } 4157 4158 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah, 4159 struct ath9k_channel *chan) 4160 { 4161 bool is2ghz = IS_CHAN_2GHZ(chan); 4162 ar9003_hw_xpa_timing_control_apply(ah, is2ghz); 4163 ar9003_hw_xpa_bias_level_apply(ah, is2ghz); 4164 ar9003_hw_ant_ctrl_apply(ah, is2ghz); 4165 ar9003_hw_drive_strength_apply(ah); 4166 ar9003_hw_xlna_bias_strength_apply(ah, is2ghz); 4167 ar9003_hw_atten_apply(ah, chan); 4168 ar9003_hw_quick_drop_apply(ah, chan->channel); 4169 if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) && !AR_SREV_9531(ah)) 4170 ar9003_hw_internal_regulator_apply(ah); 4171 ar9003_hw_apply_tuning_caps(ah); 4172 ar9003_hw_apply_minccapwr_thresh(ah, chan); 4173 ar9003_hw_txend_to_xpa_off_apply(ah, is2ghz); 4174 ar9003_hw_thermometer_apply(ah); 4175 ar9003_hw_thermo_cal_apply(ah); 4176 } 4177 4178 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah, 4179 struct ath9k_channel *chan) 4180 { 4181 } 4182 4183 /* 4184 * Returns the interpolated y value corresponding to the specified x value 4185 * from the np ordered pairs of data (px,py). 4186 * The pairs do not have to be in any order. 4187 * If the specified x value is less than any of the px, 4188 * the returned y value is equal to the py for the lowest px. 4189 * If the specified x value is greater than any of the px, 4190 * the returned y value is equal to the py for the highest px. 4191 */ 4192 static int ar9003_hw_power_interpolate(int32_t x, 4193 int32_t *px, int32_t *py, u_int16_t np) 4194 { 4195 int ip = 0; 4196 int lx = 0, ly = 0, lhave = 0; 4197 int hx = 0, hy = 0, hhave = 0; 4198 int dx = 0; 4199 int y = 0; 4200 4201 lhave = 0; 4202 hhave = 0; 4203 4204 /* identify best lower and higher x calibration measurement */ 4205 for (ip = 0; ip < np; ip++) { 4206 dx = x - px[ip]; 4207 4208 /* this measurement is higher than our desired x */ 4209 if (dx <= 0) { 4210 if (!hhave || dx > (x - hx)) { 4211 /* new best higher x measurement */ 4212 hx = px[ip]; 4213 hy = py[ip]; 4214 hhave = 1; 4215 } 4216 } 4217 /* this measurement is lower than our desired x */ 4218 if (dx >= 0) { 4219 if (!lhave || dx < (x - lx)) { 4220 /* new best lower x measurement */ 4221 lx = px[ip]; 4222 ly = py[ip]; 4223 lhave = 1; 4224 } 4225 } 4226 } 4227 4228 /* the low x is good */ 4229 if (lhave) { 4230 /* so is the high x */ 4231 if (hhave) { 4232 /* they're the same, so just pick one */ 4233 if (hx == lx) 4234 y = ly; 4235 else /* interpolate */ 4236 y = interpolate(x, lx, hx, ly, hy); 4237 } else /* only low is good, use it */ 4238 y = ly; 4239 } else if (hhave) /* only high is good, use it */ 4240 y = hy; 4241 else /* nothing is good,this should never happen unless np=0, ???? */ 4242 y = -(1 << 30); 4243 return y; 4244 } 4245 4246 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah, 4247 u16 rateIndex, u16 freq, bool is2GHz) 4248 { 4249 u16 numPiers, i; 4250 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS]; 4251 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS]; 4252 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 4253 struct cal_tgt_pow_legacy *pEepromTargetPwr; 4254 u8 *pFreqBin; 4255 4256 if (is2GHz) { 4257 numPiers = AR9300_NUM_2G_20_TARGET_POWERS; 4258 pEepromTargetPwr = eep->calTargetPower2G; 4259 pFreqBin = eep->calTarget_freqbin_2G; 4260 } else { 4261 numPiers = AR9300_NUM_5G_20_TARGET_POWERS; 4262 pEepromTargetPwr = eep->calTargetPower5G; 4263 pFreqBin = eep->calTarget_freqbin_5G; 4264 } 4265 4266 /* 4267 * create array of channels and targetpower from 4268 * targetpower piers stored on eeprom 4269 */ 4270 for (i = 0; i < numPiers; i++) { 4271 freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz); 4272 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex]; 4273 } 4274 4275 /* interpolate to get target power for given frequency */ 4276 return (u8) ar9003_hw_power_interpolate((s32) freq, 4277 freqArray, 4278 targetPowerArray, numPiers); 4279 } 4280 4281 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah, 4282 u16 rateIndex, 4283 u16 freq, bool is2GHz) 4284 { 4285 u16 numPiers, i; 4286 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS]; 4287 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS]; 4288 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 4289 struct cal_tgt_pow_ht *pEepromTargetPwr; 4290 u8 *pFreqBin; 4291 4292 if (is2GHz) { 4293 numPiers = AR9300_NUM_2G_20_TARGET_POWERS; 4294 pEepromTargetPwr = eep->calTargetPower2GHT20; 4295 pFreqBin = eep->calTarget_freqbin_2GHT20; 4296 } else { 4297 numPiers = AR9300_NUM_5G_20_TARGET_POWERS; 4298 pEepromTargetPwr = eep->calTargetPower5GHT20; 4299 pFreqBin = eep->calTarget_freqbin_5GHT20; 4300 } 4301 4302 /* 4303 * create array of channels and targetpower 4304 * from targetpower piers stored on eeprom 4305 */ 4306 for (i = 0; i < numPiers; i++) { 4307 freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz); 4308 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex]; 4309 } 4310 4311 /* interpolate to get target power for given frequency */ 4312 return (u8) ar9003_hw_power_interpolate((s32) freq, 4313 freqArray, 4314 targetPowerArray, numPiers); 4315 } 4316 4317 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah, 4318 u16 rateIndex, 4319 u16 freq, bool is2GHz) 4320 { 4321 u16 numPiers, i; 4322 s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS]; 4323 s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS]; 4324 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 4325 struct cal_tgt_pow_ht *pEepromTargetPwr; 4326 u8 *pFreqBin; 4327 4328 if (is2GHz) { 4329 numPiers = AR9300_NUM_2G_40_TARGET_POWERS; 4330 pEepromTargetPwr = eep->calTargetPower2GHT40; 4331 pFreqBin = eep->calTarget_freqbin_2GHT40; 4332 } else { 4333 numPiers = AR9300_NUM_5G_40_TARGET_POWERS; 4334 pEepromTargetPwr = eep->calTargetPower5GHT40; 4335 pFreqBin = eep->calTarget_freqbin_5GHT40; 4336 } 4337 4338 /* 4339 * create array of channels and targetpower from 4340 * targetpower piers stored on eeprom 4341 */ 4342 for (i = 0; i < numPiers; i++) { 4343 freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz); 4344 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex]; 4345 } 4346 4347 /* interpolate to get target power for given frequency */ 4348 return (u8) ar9003_hw_power_interpolate((s32) freq, 4349 freqArray, 4350 targetPowerArray, numPiers); 4351 } 4352 4353 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah, 4354 u16 rateIndex, u16 freq) 4355 { 4356 u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i; 4357 s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS]; 4358 s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS]; 4359 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 4360 struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck; 4361 u8 *pFreqBin = eep->calTarget_freqbin_Cck; 4362 4363 /* 4364 * create array of channels and targetpower from 4365 * targetpower piers stored on eeprom 4366 */ 4367 for (i = 0; i < numPiers; i++) { 4368 freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], 1); 4369 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex]; 4370 } 4371 4372 /* interpolate to get target power for given frequency */ 4373 return (u8) ar9003_hw_power_interpolate((s32) freq, 4374 freqArray, 4375 targetPowerArray, numPiers); 4376 } 4377 4378 /* Set tx power registers to array of values passed in */ 4379 static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray) 4380 { 4381 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s)) 4382 /* make sure forced gain is not set */ 4383 REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0); 4384 4385 /* Write the OFDM power per rate set */ 4386 4387 /* 6 (LSB), 9, 12, 18 (MSB) */ 4388 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0), 4389 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) | 4390 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) | 4391 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) | 4392 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0)); 4393 4394 /* 24 (LSB), 36, 48, 54 (MSB) */ 4395 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1), 4396 POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) | 4397 POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) | 4398 POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) | 4399 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0)); 4400 4401 /* Write the CCK power per rate set */ 4402 4403 /* 1L (LSB), reserved, 2L, 2S (MSB) */ 4404 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2), 4405 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) | 4406 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) | 4407 /* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */ 4408 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)); 4409 4410 /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */ 4411 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3), 4412 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) | 4413 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) | 4414 POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) | 4415 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0) 4416 ); 4417 4418 /* Write the power for duplicated frames - HT40 */ 4419 4420 /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */ 4421 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8), 4422 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) | 4423 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) | 4424 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) | 4425 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0) 4426 ); 4427 4428 /* Write the HT20 power per rate set */ 4429 4430 /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */ 4431 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4), 4432 POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) | 4433 POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) | 4434 POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) | 4435 POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0) 4436 ); 4437 4438 /* 6 (LSB), 7, 12, 13 (MSB) */ 4439 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5), 4440 POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) | 4441 POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) | 4442 POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) | 4443 POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0) 4444 ); 4445 4446 /* 14 (LSB), 15, 20, 21 */ 4447 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9), 4448 POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) | 4449 POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) | 4450 POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) | 4451 POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0) 4452 ); 4453 4454 /* Mixed HT20 and HT40 rates */ 4455 4456 /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */ 4457 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10), 4458 POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) | 4459 POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) | 4460 POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) | 4461 POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0) 4462 ); 4463 4464 /* 4465 * Write the HT40 power per rate set 4466 * correct PAR difference between HT40 and HT20/LEGACY 4467 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) 4468 */ 4469 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6), 4470 POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) | 4471 POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) | 4472 POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) | 4473 POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0) 4474 ); 4475 4476 /* 6 (LSB), 7, 12, 13 (MSB) */ 4477 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7), 4478 POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) | 4479 POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) | 4480 POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) | 4481 POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0) 4482 ); 4483 4484 /* 14 (LSB), 15, 20, 21 */ 4485 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11), 4486 POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) | 4487 POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) | 4488 POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) | 4489 POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0) 4490 ); 4491 4492 return 0; 4493 #undef POW_SM 4494 } 4495 4496 static void ar9003_hw_get_legacy_target_powers(struct ath_hw *ah, u16 freq, 4497 u8 *targetPowerValT2, 4498 bool is2GHz) 4499 { 4500 targetPowerValT2[ALL_TARGET_LEGACY_6_24] = 4501 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq, 4502 is2GHz); 4503 targetPowerValT2[ALL_TARGET_LEGACY_36] = 4504 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq, 4505 is2GHz); 4506 targetPowerValT2[ALL_TARGET_LEGACY_48] = 4507 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq, 4508 is2GHz); 4509 targetPowerValT2[ALL_TARGET_LEGACY_54] = 4510 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq, 4511 is2GHz); 4512 } 4513 4514 static void ar9003_hw_get_cck_target_powers(struct ath_hw *ah, u16 freq, 4515 u8 *targetPowerValT2) 4516 { 4517 targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] = 4518 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L, 4519 freq); 4520 targetPowerValT2[ALL_TARGET_LEGACY_5S] = 4521 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq); 4522 targetPowerValT2[ALL_TARGET_LEGACY_11L] = 4523 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq); 4524 targetPowerValT2[ALL_TARGET_LEGACY_11S] = 4525 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq); 4526 } 4527 4528 static void ar9003_hw_get_ht20_target_powers(struct ath_hw *ah, u16 freq, 4529 u8 *targetPowerValT2, bool is2GHz) 4530 { 4531 targetPowerValT2[ALL_TARGET_HT20_0_8_16] = 4532 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq, 4533 is2GHz); 4534 targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] = 4535 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19, 4536 freq, is2GHz); 4537 targetPowerValT2[ALL_TARGET_HT20_4] = 4538 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq, 4539 is2GHz); 4540 targetPowerValT2[ALL_TARGET_HT20_5] = 4541 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq, 4542 is2GHz); 4543 targetPowerValT2[ALL_TARGET_HT20_6] = 4544 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq, 4545 is2GHz); 4546 targetPowerValT2[ALL_TARGET_HT20_7] = 4547 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq, 4548 is2GHz); 4549 targetPowerValT2[ALL_TARGET_HT20_12] = 4550 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq, 4551 is2GHz); 4552 targetPowerValT2[ALL_TARGET_HT20_13] = 4553 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq, 4554 is2GHz); 4555 targetPowerValT2[ALL_TARGET_HT20_14] = 4556 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq, 4557 is2GHz); 4558 targetPowerValT2[ALL_TARGET_HT20_15] = 4559 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq, 4560 is2GHz); 4561 targetPowerValT2[ALL_TARGET_HT20_20] = 4562 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq, 4563 is2GHz); 4564 targetPowerValT2[ALL_TARGET_HT20_21] = 4565 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq, 4566 is2GHz); 4567 targetPowerValT2[ALL_TARGET_HT20_22] = 4568 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq, 4569 is2GHz); 4570 targetPowerValT2[ALL_TARGET_HT20_23] = 4571 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq, 4572 is2GHz); 4573 } 4574 4575 static void ar9003_hw_get_ht40_target_powers(struct ath_hw *ah, 4576 u16 freq, 4577 u8 *targetPowerValT2, 4578 bool is2GHz) 4579 { 4580 /* XXX: hard code for now, need to get from eeprom struct */ 4581 u8 ht40PowerIncForPdadc = 0; 4582 4583 targetPowerValT2[ALL_TARGET_HT40_0_8_16] = 4584 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq, 4585 is2GHz) + ht40PowerIncForPdadc; 4586 targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] = 4587 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19, 4588 freq, 4589 is2GHz) + ht40PowerIncForPdadc; 4590 targetPowerValT2[ALL_TARGET_HT40_4] = 4591 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq, 4592 is2GHz) + ht40PowerIncForPdadc; 4593 targetPowerValT2[ALL_TARGET_HT40_5] = 4594 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq, 4595 is2GHz) + ht40PowerIncForPdadc; 4596 targetPowerValT2[ALL_TARGET_HT40_6] = 4597 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq, 4598 is2GHz) + ht40PowerIncForPdadc; 4599 targetPowerValT2[ALL_TARGET_HT40_7] = 4600 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq, 4601 is2GHz) + ht40PowerIncForPdadc; 4602 targetPowerValT2[ALL_TARGET_HT40_12] = 4603 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq, 4604 is2GHz) + ht40PowerIncForPdadc; 4605 targetPowerValT2[ALL_TARGET_HT40_13] = 4606 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq, 4607 is2GHz) + ht40PowerIncForPdadc; 4608 targetPowerValT2[ALL_TARGET_HT40_14] = 4609 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq, 4610 is2GHz) + ht40PowerIncForPdadc; 4611 targetPowerValT2[ALL_TARGET_HT40_15] = 4612 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq, 4613 is2GHz) + ht40PowerIncForPdadc; 4614 targetPowerValT2[ALL_TARGET_HT40_20] = 4615 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq, 4616 is2GHz) + ht40PowerIncForPdadc; 4617 targetPowerValT2[ALL_TARGET_HT40_21] = 4618 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq, 4619 is2GHz) + ht40PowerIncForPdadc; 4620 targetPowerValT2[ALL_TARGET_HT40_22] = 4621 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq, 4622 is2GHz) + ht40PowerIncForPdadc; 4623 targetPowerValT2[ALL_TARGET_HT40_23] = 4624 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq, 4625 is2GHz) + ht40PowerIncForPdadc; 4626 } 4627 4628 static void ar9003_hw_get_target_power_eeprom(struct ath_hw *ah, 4629 struct ath9k_channel *chan, 4630 u8 *targetPowerValT2) 4631 { 4632 bool is2GHz = IS_CHAN_2GHZ(chan); 4633 unsigned int i = 0; 4634 struct ath_common *common = ath9k_hw_common(ah); 4635 u16 freq = chan->channel; 4636 4637 if (is2GHz) 4638 ar9003_hw_get_cck_target_powers(ah, freq, targetPowerValT2); 4639 4640 ar9003_hw_get_legacy_target_powers(ah, freq, targetPowerValT2, is2GHz); 4641 ar9003_hw_get_ht20_target_powers(ah, freq, targetPowerValT2, is2GHz); 4642 4643 if (IS_CHAN_HT40(chan)) 4644 ar9003_hw_get_ht40_target_powers(ah, freq, targetPowerValT2, 4645 is2GHz); 4646 4647 for (i = 0; i < ar9300RateSize; i++) { 4648 ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n", 4649 i, targetPowerValT2[i]); 4650 } 4651 } 4652 4653 static int ar9003_hw_cal_pier_get(struct ath_hw *ah, 4654 int mode, 4655 int ipier, 4656 int ichain, 4657 int *pfrequency, 4658 int *pcorrection, 4659 int *ptemperature, int *pvoltage) 4660 { 4661 u8 *pCalPier; 4662 struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct; 4663 int is2GHz; 4664 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 4665 struct ath_common *common = ath9k_hw_common(ah); 4666 4667 if (ichain >= AR9300_MAX_CHAINS) { 4668 ath_dbg(common, EEPROM, 4669 "Invalid chain index, must be less than %d\n", 4670 AR9300_MAX_CHAINS); 4671 return -1; 4672 } 4673 4674 if (mode) { /* 5GHz */ 4675 if (ipier >= AR9300_NUM_5G_CAL_PIERS) { 4676 ath_dbg(common, EEPROM, 4677 "Invalid 5GHz cal pier index, must be less than %d\n", 4678 AR9300_NUM_5G_CAL_PIERS); 4679 return -1; 4680 } 4681 pCalPier = &(eep->calFreqPier5G[ipier]); 4682 pCalPierStruct = &(eep->calPierData5G[ichain][ipier]); 4683 is2GHz = 0; 4684 } else { 4685 if (ipier >= AR9300_NUM_2G_CAL_PIERS) { 4686 ath_dbg(common, EEPROM, 4687 "Invalid 2GHz cal pier index, must be less than %d\n", 4688 AR9300_NUM_2G_CAL_PIERS); 4689 return -1; 4690 } 4691 4692 pCalPier = &(eep->calFreqPier2G[ipier]); 4693 pCalPierStruct = &(eep->calPierData2G[ichain][ipier]); 4694 is2GHz = 1; 4695 } 4696 4697 *pfrequency = ath9k_hw_fbin2freq(*pCalPier, is2GHz); 4698 *pcorrection = pCalPierStruct->refPower; 4699 *ptemperature = pCalPierStruct->tempMeas; 4700 *pvoltage = pCalPierStruct->voltMeas; 4701 4702 return 0; 4703 } 4704 4705 static void ar9003_hw_power_control_override(struct ath_hw *ah, 4706 int frequency, 4707 int *correction, 4708 int *voltage, int *temperature) 4709 { 4710 int temp_slope = 0, temp_slope1 = 0, temp_slope2 = 0; 4711 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 4712 int f[8], t[8], t1[3], t2[3], i; 4713 4714 REG_RMW(ah, AR_PHY_TPC_11_B0, 4715 (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S), 4716 AR_PHY_TPC_OLPC_GAIN_DELTA); 4717 if (ah->caps.tx_chainmask & BIT(1)) 4718 REG_RMW(ah, AR_PHY_TPC_11_B1, 4719 (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S), 4720 AR_PHY_TPC_OLPC_GAIN_DELTA); 4721 if (ah->caps.tx_chainmask & BIT(2)) 4722 REG_RMW(ah, AR_PHY_TPC_11_B2, 4723 (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S), 4724 AR_PHY_TPC_OLPC_GAIN_DELTA); 4725 4726 /* enable open loop power control on chip */ 4727 REG_RMW(ah, AR_PHY_TPC_6_B0, 4728 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), 4729 AR_PHY_TPC_6_ERROR_EST_MODE); 4730 if (ah->caps.tx_chainmask & BIT(1)) 4731 REG_RMW(ah, AR_PHY_TPC_6_B1, 4732 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), 4733 AR_PHY_TPC_6_ERROR_EST_MODE); 4734 if (ah->caps.tx_chainmask & BIT(2)) 4735 REG_RMW(ah, AR_PHY_TPC_6_B2, 4736 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), 4737 AR_PHY_TPC_6_ERROR_EST_MODE); 4738 4739 /* 4740 * enable temperature compensation 4741 * Need to use register names 4742 */ 4743 if (frequency < 4000) { 4744 temp_slope = eep->modalHeader2G.tempSlope; 4745 } else { 4746 if (AR_SREV_9550(ah)) { 4747 t[0] = eep->base_ext1.tempslopextension[2]; 4748 t1[0] = eep->base_ext1.tempslopextension[3]; 4749 t2[0] = eep->base_ext1.tempslopextension[4]; 4750 f[0] = 5180; 4751 4752 t[1] = eep->modalHeader5G.tempSlope; 4753 t1[1] = eep->base_ext1.tempslopextension[0]; 4754 t2[1] = eep->base_ext1.tempslopextension[1]; 4755 f[1] = 5500; 4756 4757 t[2] = eep->base_ext1.tempslopextension[5]; 4758 t1[2] = eep->base_ext1.tempslopextension[6]; 4759 t2[2] = eep->base_ext1.tempslopextension[7]; 4760 f[2] = 5785; 4761 4762 temp_slope = ar9003_hw_power_interpolate(frequency, 4763 f, t, 3); 4764 temp_slope1 = ar9003_hw_power_interpolate(frequency, 4765 f, t1, 3); 4766 temp_slope2 = ar9003_hw_power_interpolate(frequency, 4767 f, t2, 3); 4768 4769 goto tempslope; 4770 } 4771 4772 if ((eep->baseEepHeader.miscConfiguration & 0x20) != 0) { 4773 for (i = 0; i < 8; i++) { 4774 t[i] = eep->base_ext1.tempslopextension[i]; 4775 f[i] = FBIN2FREQ(eep->calFreqPier5G[i], 0); 4776 } 4777 temp_slope = ar9003_hw_power_interpolate((s32) frequency, 4778 f, t, 8); 4779 } else if (eep->base_ext2.tempSlopeLow != 0) { 4780 t[0] = eep->base_ext2.tempSlopeLow; 4781 f[0] = 5180; 4782 t[1] = eep->modalHeader5G.tempSlope; 4783 f[1] = 5500; 4784 t[2] = eep->base_ext2.tempSlopeHigh; 4785 f[2] = 5785; 4786 temp_slope = ar9003_hw_power_interpolate((s32) frequency, 4787 f, t, 3); 4788 } else { 4789 temp_slope = eep->modalHeader5G.tempSlope; 4790 } 4791 } 4792 4793 tempslope: 4794 if (AR_SREV_9550(ah) || AR_SREV_9531(ah)) { 4795 /* 4796 * AR955x has tempSlope register for each chain. 4797 * Check whether temp_compensation feature is enabled or not. 4798 */ 4799 if (eep->baseEepHeader.featureEnable & 0x1) { 4800 if (frequency < 4000) { 4801 REG_RMW_FIELD(ah, AR_PHY_TPC_19, 4802 AR_PHY_TPC_19_ALPHA_THERM, 4803 eep->base_ext2.tempSlopeLow); 4804 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1, 4805 AR_PHY_TPC_19_ALPHA_THERM, 4806 temp_slope); 4807 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2, 4808 AR_PHY_TPC_19_ALPHA_THERM, 4809 eep->base_ext2.tempSlopeHigh); 4810 } else { 4811 REG_RMW_FIELD(ah, AR_PHY_TPC_19, 4812 AR_PHY_TPC_19_ALPHA_THERM, 4813 temp_slope); 4814 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1, 4815 AR_PHY_TPC_19_ALPHA_THERM, 4816 temp_slope1); 4817 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2, 4818 AR_PHY_TPC_19_ALPHA_THERM, 4819 temp_slope2); 4820 } 4821 } else { 4822 /* 4823 * If temp compensation is not enabled, 4824 * set all registers to 0. 4825 */ 4826 REG_RMW_FIELD(ah, AR_PHY_TPC_19, 4827 AR_PHY_TPC_19_ALPHA_THERM, 0); 4828 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1, 4829 AR_PHY_TPC_19_ALPHA_THERM, 0); 4830 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2, 4831 AR_PHY_TPC_19_ALPHA_THERM, 0); 4832 } 4833 } else { 4834 REG_RMW_FIELD(ah, AR_PHY_TPC_19, 4835 AR_PHY_TPC_19_ALPHA_THERM, temp_slope); 4836 } 4837 4838 if (AR_SREV_9462_20_OR_LATER(ah)) 4839 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1, 4840 AR_PHY_TPC_19_B1_ALPHA_THERM, temp_slope); 4841 4842 4843 REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE, 4844 temperature[0]); 4845 } 4846 4847 /* Apply the recorded correction values. */ 4848 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency) 4849 { 4850 int ichain, ipier, npier; 4851 int mode; 4852 int lfrequency[AR9300_MAX_CHAINS], 4853 lcorrection[AR9300_MAX_CHAINS], 4854 ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS]; 4855 int hfrequency[AR9300_MAX_CHAINS], 4856 hcorrection[AR9300_MAX_CHAINS], 4857 htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS]; 4858 int fdiff; 4859 int correction[AR9300_MAX_CHAINS], 4860 voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS]; 4861 int pfrequency, pcorrection, ptemperature, pvoltage; 4862 struct ath_common *common = ath9k_hw_common(ah); 4863 4864 mode = (frequency >= 4000); 4865 if (mode) 4866 npier = AR9300_NUM_5G_CAL_PIERS; 4867 else 4868 npier = AR9300_NUM_2G_CAL_PIERS; 4869 4870 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) { 4871 lfrequency[ichain] = 0; 4872 hfrequency[ichain] = 100000; 4873 } 4874 /* identify best lower and higher frequency calibration measurement */ 4875 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) { 4876 for (ipier = 0; ipier < npier; ipier++) { 4877 if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain, 4878 &pfrequency, &pcorrection, 4879 &ptemperature, &pvoltage)) { 4880 fdiff = frequency - pfrequency; 4881 4882 /* 4883 * this measurement is higher than 4884 * our desired frequency 4885 */ 4886 if (fdiff <= 0) { 4887 if (hfrequency[ichain] <= 0 || 4888 hfrequency[ichain] >= 100000 || 4889 fdiff > 4890 (frequency - hfrequency[ichain])) { 4891 /* 4892 * new best higher 4893 * frequency measurement 4894 */ 4895 hfrequency[ichain] = pfrequency; 4896 hcorrection[ichain] = 4897 pcorrection; 4898 htemperature[ichain] = 4899 ptemperature; 4900 hvoltage[ichain] = pvoltage; 4901 } 4902 } 4903 if (fdiff >= 0) { 4904 if (lfrequency[ichain] <= 0 4905 || fdiff < 4906 (frequency - lfrequency[ichain])) { 4907 /* 4908 * new best lower 4909 * frequency measurement 4910 */ 4911 lfrequency[ichain] = pfrequency; 4912 lcorrection[ichain] = 4913 pcorrection; 4914 ltemperature[ichain] = 4915 ptemperature; 4916 lvoltage[ichain] = pvoltage; 4917 } 4918 } 4919 } 4920 } 4921 } 4922 4923 /* interpolate */ 4924 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) { 4925 ath_dbg(common, EEPROM, "ch=%d f=%d low=%d %d h=%d %d\n", 4926 ichain, frequency, lfrequency[ichain], 4927 lcorrection[ichain], hfrequency[ichain], 4928 hcorrection[ichain]); 4929 /* they're the same, so just pick one */ 4930 if (hfrequency[ichain] == lfrequency[ichain]) { 4931 correction[ichain] = lcorrection[ichain]; 4932 voltage[ichain] = lvoltage[ichain]; 4933 temperature[ichain] = ltemperature[ichain]; 4934 } 4935 /* the low frequency is good */ 4936 else if (frequency - lfrequency[ichain] < 1000) { 4937 /* so is the high frequency, interpolate */ 4938 if (hfrequency[ichain] - frequency < 1000) { 4939 4940 correction[ichain] = interpolate(frequency, 4941 lfrequency[ichain], 4942 hfrequency[ichain], 4943 lcorrection[ichain], 4944 hcorrection[ichain]); 4945 4946 temperature[ichain] = interpolate(frequency, 4947 lfrequency[ichain], 4948 hfrequency[ichain], 4949 ltemperature[ichain], 4950 htemperature[ichain]); 4951 4952 voltage[ichain] = interpolate(frequency, 4953 lfrequency[ichain], 4954 hfrequency[ichain], 4955 lvoltage[ichain], 4956 hvoltage[ichain]); 4957 } 4958 /* only low is good, use it */ 4959 else { 4960 correction[ichain] = lcorrection[ichain]; 4961 temperature[ichain] = ltemperature[ichain]; 4962 voltage[ichain] = lvoltage[ichain]; 4963 } 4964 } 4965 /* only high is good, use it */ 4966 else if (hfrequency[ichain] - frequency < 1000) { 4967 correction[ichain] = hcorrection[ichain]; 4968 temperature[ichain] = htemperature[ichain]; 4969 voltage[ichain] = hvoltage[ichain]; 4970 } else { /* nothing is good, presume 0???? */ 4971 correction[ichain] = 0; 4972 temperature[ichain] = 0; 4973 voltage[ichain] = 0; 4974 } 4975 } 4976 4977 ar9003_hw_power_control_override(ah, frequency, correction, voltage, 4978 temperature); 4979 4980 ath_dbg(common, EEPROM, 4981 "for frequency=%d, calibration correction = %d %d %d\n", 4982 frequency, correction[0], correction[1], correction[2]); 4983 4984 return 0; 4985 } 4986 4987 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep, 4988 int idx, 4989 int edge, 4990 bool is2GHz) 4991 { 4992 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G; 4993 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G; 4994 4995 if (is2GHz) 4996 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]); 4997 else 4998 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]); 4999 } 5000 5001 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep, 5002 int idx, 5003 unsigned int edge, 5004 u16 freq, 5005 bool is2GHz) 5006 { 5007 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G; 5008 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G; 5009 5010 u8 *ctl_freqbin = is2GHz ? 5011 &eep->ctl_freqbin_2G[idx][0] : 5012 &eep->ctl_freqbin_5G[idx][0]; 5013 5014 if (is2GHz) { 5015 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq && 5016 CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1])) 5017 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]); 5018 } else { 5019 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq && 5020 CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1])) 5021 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]); 5022 } 5023 5024 return MAX_RATE_POWER; 5025 } 5026 5027 /* 5028 * Find the maximum conformance test limit for the given channel and CTL info 5029 */ 5030 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep, 5031 u16 freq, int idx, bool is2GHz) 5032 { 5033 u16 twiceMaxEdgePower = MAX_RATE_POWER; 5034 u8 *ctl_freqbin = is2GHz ? 5035 &eep->ctl_freqbin_2G[idx][0] : 5036 &eep->ctl_freqbin_5G[idx][0]; 5037 u16 num_edges = is2GHz ? 5038 AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G; 5039 unsigned int edge; 5040 5041 /* Get the edge power */ 5042 for (edge = 0; 5043 (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED); 5044 edge++) { 5045 /* 5046 * If there's an exact channel match or an inband flag set 5047 * on the lower channel use the given rdEdgePower 5048 */ 5049 if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) { 5050 twiceMaxEdgePower = 5051 ar9003_hw_get_direct_edge_power(eep, idx, 5052 edge, is2GHz); 5053 break; 5054 } else if ((edge > 0) && 5055 (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge], 5056 is2GHz))) { 5057 twiceMaxEdgePower = 5058 ar9003_hw_get_indirect_edge_power(eep, idx, 5059 edge, freq, 5060 is2GHz); 5061 /* 5062 * Leave loop - no more affecting edges possible in 5063 * this monotonic increasing list 5064 */ 5065 break; 5066 } 5067 } 5068 return twiceMaxEdgePower; 5069 } 5070 5071 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah, 5072 struct ath9k_channel *chan, 5073 u8 *pPwrArray, u16 cfgCtl, 5074 u8 antenna_reduction, 5075 u16 powerLimit) 5076 { 5077 struct ath_common *common = ath9k_hw_common(ah); 5078 struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep; 5079 u16 twiceMaxEdgePower; 5080 int i; 5081 u16 scaledPower = 0, minCtlPower; 5082 static const u16 ctlModesFor11a[] = { 5083 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 5084 }; 5085 static const u16 ctlModesFor11g[] = { 5086 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, 5087 CTL_11G_EXT, CTL_2GHT40 5088 }; 5089 u16 numCtlModes; 5090 const u16 *pCtlMode; 5091 u16 ctlMode, freq; 5092 struct chan_centers centers; 5093 u8 *ctlIndex; 5094 u8 ctlNum; 5095 u16 twiceMinEdgePower; 5096 bool is2ghz = IS_CHAN_2GHZ(chan); 5097 5098 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 5099 scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit, 5100 antenna_reduction); 5101 5102 if (is2ghz) { 5103 /* Setup for CTL modes */ 5104 /* CTL_11B, CTL_11G, CTL_2GHT20 */ 5105 numCtlModes = 5106 ARRAY_SIZE(ctlModesFor11g) - 5107 SUB_NUM_CTL_MODES_AT_2G_40; 5108 pCtlMode = ctlModesFor11g; 5109 if (IS_CHAN_HT40(chan)) 5110 /* All 2G CTL's */ 5111 numCtlModes = ARRAY_SIZE(ctlModesFor11g); 5112 } else { 5113 /* Setup for CTL modes */ 5114 /* CTL_11A, CTL_5GHT20 */ 5115 numCtlModes = ARRAY_SIZE(ctlModesFor11a) - 5116 SUB_NUM_CTL_MODES_AT_5G_40; 5117 pCtlMode = ctlModesFor11a; 5118 if (IS_CHAN_HT40(chan)) 5119 /* All 5G CTL's */ 5120 numCtlModes = ARRAY_SIZE(ctlModesFor11a); 5121 } 5122 5123 /* 5124 * For MIMO, need to apply regulatory caps individually across 5125 * dynamically running modes: CCK, OFDM, HT20, HT40 5126 * 5127 * The outer loop walks through each possible applicable runtime mode. 5128 * The inner loop walks through each ctlIndex entry in EEPROM. 5129 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode. 5130 */ 5131 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { 5132 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || 5133 (pCtlMode[ctlMode] == CTL_2GHT40); 5134 if (isHt40CtlMode) 5135 freq = centers.synth_center; 5136 else if (pCtlMode[ctlMode] & EXT_ADDITIVE) 5137 freq = centers.ext_center; 5138 else 5139 freq = centers.ctl_center; 5140 5141 ath_dbg(common, REGULATORY, 5142 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n", 5143 ctlMode, numCtlModes, isHt40CtlMode, 5144 (pCtlMode[ctlMode] & EXT_ADDITIVE)); 5145 5146 /* walk through each CTL index stored in EEPROM */ 5147 if (is2ghz) { 5148 ctlIndex = pEepData->ctlIndex_2G; 5149 ctlNum = AR9300_NUM_CTLS_2G; 5150 } else { 5151 ctlIndex = pEepData->ctlIndex_5G; 5152 ctlNum = AR9300_NUM_CTLS_5G; 5153 } 5154 5155 twiceMaxEdgePower = MAX_RATE_POWER; 5156 for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) { 5157 ath_dbg(common, REGULATORY, 5158 "LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n", 5159 i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i], 5160 chan->channel); 5161 5162 /* 5163 * compare test group from regulatory 5164 * channel list with test mode from pCtlMode 5165 * list 5166 */ 5167 if ((((cfgCtl & ~CTL_MODE_M) | 5168 (pCtlMode[ctlMode] & CTL_MODE_M)) == 5169 ctlIndex[i]) || 5170 (((cfgCtl & ~CTL_MODE_M) | 5171 (pCtlMode[ctlMode] & CTL_MODE_M)) == 5172 ((ctlIndex[i] & CTL_MODE_M) | 5173 SD_NO_CTL))) { 5174 twiceMinEdgePower = 5175 ar9003_hw_get_max_edge_power(pEepData, 5176 freq, i, 5177 is2ghz); 5178 5179 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) 5180 /* 5181 * Find the minimum of all CTL 5182 * edge powers that apply to 5183 * this channel 5184 */ 5185 twiceMaxEdgePower = 5186 min(twiceMaxEdgePower, 5187 twiceMinEdgePower); 5188 else { 5189 /* specific */ 5190 twiceMaxEdgePower = twiceMinEdgePower; 5191 break; 5192 } 5193 } 5194 } 5195 5196 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower); 5197 5198 ath_dbg(common, REGULATORY, 5199 "SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n", 5200 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower, 5201 scaledPower, minCtlPower); 5202 5203 /* Apply ctl mode to correct target power set */ 5204 switch (pCtlMode[ctlMode]) { 5205 case CTL_11B: 5206 for (i = ALL_TARGET_LEGACY_1L_5L; 5207 i <= ALL_TARGET_LEGACY_11S; i++) 5208 pPwrArray[i] = (u8)min((u16)pPwrArray[i], 5209 minCtlPower); 5210 break; 5211 case CTL_11A: 5212 case CTL_11G: 5213 for (i = ALL_TARGET_LEGACY_6_24; 5214 i <= ALL_TARGET_LEGACY_54; i++) 5215 pPwrArray[i] = (u8)min((u16)pPwrArray[i], 5216 minCtlPower); 5217 break; 5218 case CTL_5GHT20: 5219 case CTL_2GHT20: 5220 for (i = ALL_TARGET_HT20_0_8_16; 5221 i <= ALL_TARGET_HT20_23; i++) { 5222 pPwrArray[i] = (u8)min((u16)pPwrArray[i], 5223 minCtlPower); 5224 if (ath9k_hw_mci_is_enabled(ah)) 5225 pPwrArray[i] = 5226 (u8)min((u16)pPwrArray[i], 5227 ar9003_mci_get_max_txpower(ah, 5228 pCtlMode[ctlMode])); 5229 } 5230 break; 5231 case CTL_5GHT40: 5232 case CTL_2GHT40: 5233 for (i = ALL_TARGET_HT40_0_8_16; 5234 i <= ALL_TARGET_HT40_23; i++) { 5235 pPwrArray[i] = (u8)min((u16)pPwrArray[i], 5236 minCtlPower); 5237 if (ath9k_hw_mci_is_enabled(ah)) 5238 pPwrArray[i] = 5239 (u8)min((u16)pPwrArray[i], 5240 ar9003_mci_get_max_txpower(ah, 5241 pCtlMode[ctlMode])); 5242 } 5243 break; 5244 default: 5245 break; 5246 } 5247 } /* end ctl mode checking */ 5248 } 5249 5250 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx) 5251 { 5252 u8 mod_idx = mcs_idx % 8; 5253 5254 if (mod_idx <= 3) 5255 return mod_idx ? (base_pwridx + 1) : base_pwridx; 5256 else 5257 return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2; 5258 } 5259 5260 static void ar9003_paprd_set_txpower(struct ath_hw *ah, 5261 struct ath9k_channel *chan, 5262 u8 *targetPowerValT2) 5263 { 5264 int i; 5265 5266 if (!ar9003_is_paprd_enabled(ah)) 5267 return; 5268 5269 if (IS_CHAN_HT40(chan)) 5270 i = ALL_TARGET_HT40_7; 5271 else 5272 i = ALL_TARGET_HT20_7; 5273 5274 if (IS_CHAN_2GHZ(chan)) { 5275 if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) && 5276 !AR_SREV_9462(ah) && !AR_SREV_9565(ah)) { 5277 if (IS_CHAN_HT40(chan)) 5278 i = ALL_TARGET_HT40_0_8_16; 5279 else 5280 i = ALL_TARGET_HT20_0_8_16; 5281 } 5282 } 5283 5284 ah->paprd_target_power = targetPowerValT2[i]; 5285 } 5286 5287 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah, 5288 struct ath9k_channel *chan, u16 cfgCtl, 5289 u8 twiceAntennaReduction, 5290 u8 powerLimit, bool test) 5291 { 5292 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 5293 struct ath_common *common = ath9k_hw_common(ah); 5294 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 5295 struct ar9300_modal_eep_header *modal_hdr; 5296 u8 targetPowerValT2[ar9300RateSize]; 5297 u8 target_power_val_t2_eep[ar9300RateSize]; 5298 unsigned int i = 0, paprd_scale_factor = 0; 5299 u8 pwr_idx, min_pwridx = 0; 5300 5301 memset(targetPowerValT2, 0 , sizeof(targetPowerValT2)); 5302 5303 /* 5304 * Get target powers from EEPROM - our baseline for TX Power 5305 */ 5306 ar9003_hw_get_target_power_eeprom(ah, chan, targetPowerValT2); 5307 5308 if (ar9003_is_paprd_enabled(ah)) { 5309 if (IS_CHAN_2GHZ(chan)) 5310 modal_hdr = &eep->modalHeader2G; 5311 else 5312 modal_hdr = &eep->modalHeader5G; 5313 5314 ah->paprd_ratemask = 5315 le32_to_cpu(modal_hdr->papdRateMaskHt20) & 5316 AR9300_PAPRD_RATE_MASK; 5317 5318 ah->paprd_ratemask_ht40 = 5319 le32_to_cpu(modal_hdr->papdRateMaskHt40) & 5320 AR9300_PAPRD_RATE_MASK; 5321 5322 paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan); 5323 min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 : 5324 ALL_TARGET_HT20_0_8_16; 5325 5326 if (!ah->paprd_table_write_done) { 5327 memcpy(target_power_val_t2_eep, targetPowerValT2, 5328 sizeof(targetPowerValT2)); 5329 for (i = 0; i < 24; i++) { 5330 pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx); 5331 if (ah->paprd_ratemask & (1 << i)) { 5332 if (targetPowerValT2[pwr_idx] && 5333 targetPowerValT2[pwr_idx] == 5334 target_power_val_t2_eep[pwr_idx]) 5335 targetPowerValT2[pwr_idx] -= 5336 paprd_scale_factor; 5337 } 5338 } 5339 } 5340 memcpy(target_power_val_t2_eep, targetPowerValT2, 5341 sizeof(targetPowerValT2)); 5342 } 5343 5344 ar9003_hw_set_power_per_rate_table(ah, chan, 5345 targetPowerValT2, cfgCtl, 5346 twiceAntennaReduction, 5347 powerLimit); 5348 5349 if (ar9003_is_paprd_enabled(ah)) { 5350 for (i = 0; i < ar9300RateSize; i++) { 5351 if ((ah->paprd_ratemask & (1 << i)) && 5352 (abs(targetPowerValT2[i] - 5353 target_power_val_t2_eep[i]) > 5354 paprd_scale_factor)) { 5355 ah->paprd_ratemask &= ~(1 << i); 5356 ath_dbg(common, EEPROM, 5357 "paprd disabled for mcs %d\n", i); 5358 } 5359 } 5360 } 5361 5362 regulatory->max_power_level = 0; 5363 for (i = 0; i < ar9300RateSize; i++) { 5364 if (targetPowerValT2[i] > regulatory->max_power_level) 5365 regulatory->max_power_level = targetPowerValT2[i]; 5366 } 5367 5368 ath9k_hw_update_regulatory_maxpower(ah); 5369 5370 if (test) 5371 return; 5372 5373 for (i = 0; i < ar9300RateSize; i++) { 5374 ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n", 5375 i, targetPowerValT2[i]); 5376 } 5377 5378 /* Write target power array to registers */ 5379 ar9003_hw_tx_power_regwrite(ah, targetPowerValT2); 5380 ar9003_hw_calibration_apply(ah, chan->channel); 5381 ar9003_paprd_set_txpower(ah, chan, targetPowerValT2); 5382 } 5383 5384 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah, 5385 u16 i, bool is2GHz) 5386 { 5387 return AR_NO_SPUR; 5388 } 5389 5390 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah) 5391 { 5392 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 5393 5394 return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */ 5395 } 5396 5397 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah) 5398 { 5399 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 5400 5401 return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */ 5402 } 5403 5404 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is2ghz) 5405 { 5406 return ar9003_modal_header(ah, is2ghz)->spurChans; 5407 } 5408 5409 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah, 5410 struct ath9k_channel *chan) 5411 { 5412 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 5413 5414 if (IS_CHAN_2GHZ(chan)) 5415 return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20), 5416 AR9300_PAPRD_SCALE_1); 5417 else { 5418 if (chan->channel >= 5700) 5419 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20), 5420 AR9300_PAPRD_SCALE_1); 5421 else if (chan->channel >= 5400) 5422 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40), 5423 AR9300_PAPRD_SCALE_2); 5424 else 5425 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40), 5426 AR9300_PAPRD_SCALE_1); 5427 } 5428 } 5429 5430 const struct eeprom_ops eep_ar9300_ops = { 5431 .check_eeprom = ath9k_hw_ar9300_check_eeprom, 5432 .get_eeprom = ath9k_hw_ar9300_get_eeprom, 5433 .fill_eeprom = ath9k_hw_ar9300_fill_eeprom, 5434 .dump_eeprom = ath9k_hw_ar9003_dump_eeprom, 5435 .get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver, 5436 .get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev, 5437 .set_board_values = ath9k_hw_ar9300_set_board_values, 5438 .set_addac = ath9k_hw_ar9300_set_addac, 5439 .set_txpower = ath9k_hw_ar9300_set_txpower, 5440 .get_spur_channel = ath9k_hw_ar9300_get_spur_channel 5441 }; 5442