1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include <linux/kernel.h>
19 #include "hw.h"
20 #include "ar9003_phy.h"
21 #include "ar9003_eeprom.h"
22 #include "ar9003_mci.h"
23 
24 #define COMP_HDR_LEN 4
25 #define COMP_CKSUM_LEN 2
26 
27 #define LE16(x) cpu_to_le16(x)
28 #define LE32(x) cpu_to_le32(x)
29 
30 /* Local defines to distinguish between extension and control CTL's */
31 #define EXT_ADDITIVE (0x8000)
32 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
33 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
34 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
35 
36 #define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
37 #define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
38 
39 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
40 
41 #define EEPROM_DATA_LEN_9485	1088
42 
43 static int ar9003_hw_power_interpolate(int32_t x,
44 				       int32_t *px, int32_t *py, u_int16_t np);
45 
46 static const struct ar9300_eeprom ar9300_default = {
47 	.eepromVersion = 2,
48 	.templateVersion = 2,
49 	.macAddr = {0, 2, 3, 4, 5, 6},
50 	.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
51 		     0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
52 	.baseEepHeader = {
53 		.regDmn = { LE16(0), LE16(0x1f) },
54 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
55 		.opCapFlags = {
56 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
57 			.eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
58 		},
59 		.rfSilent = 0,
60 		.blueToothOptions = 0,
61 		.deviceCap = 0,
62 		.deviceType = 5, /* takes lower byte in eeprom location */
63 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
64 		.params_for_tuning_caps = {0, 0},
65 		.featureEnable = 0x0c,
66 		 /*
67 		  * bit0 - enable tx temp comp - disabled
68 		  * bit1 - enable tx volt comp - disabled
69 		  * bit2 - enable fastClock - enabled
70 		  * bit3 - enable doubling - enabled
71 		  * bit4 - enable internal regulator - disabled
72 		  * bit5 - enable pa predistortion - disabled
73 		  */
74 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
75 		.eepromWriteEnableGpio = 3,
76 		.wlanDisableGpio = 0,
77 		.wlanLedGpio = 8,
78 		.rxBandSelectGpio = 0xff,
79 		.txrxgain = 0,
80 		.swreg = 0,
81 	 },
82 	.modalHeader2G = {
83 	/* ar9300_modal_eep_header  2g */
84 		/* 4 idle,t1,t2,b(4 bits per setting) */
85 		.antCtrlCommon = LE32(0x110),
86 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
87 		.antCtrlCommon2 = LE32(0x22222),
88 
89 		/*
90 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
91 		 * rx1, rx12, b (2 bits each)
92 		 */
93 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
94 
95 		/*
96 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
97 		 * for ar9280 (0xa20c/b20c 5:0)
98 		 */
99 		.xatten1DB = {0, 0, 0},
100 
101 		/*
102 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
103 		 * for ar9280 (0xa20c/b20c 16:12
104 		 */
105 		.xatten1Margin = {0, 0, 0},
106 		.tempSlope = 36,
107 		.voltSlope = 0,
108 
109 		/*
110 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
111 		 * channels in usual fbin coding format
112 		 */
113 		.spurChans = {0, 0, 0, 0, 0},
114 
115 		/*
116 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
117 		 * if the register is per chain
118 		 */
119 		.noiseFloorThreshCh = {-1, 0, 0},
120 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
121 		.quick_drop = 0,
122 		.xpaBiasLvl = 0,
123 		.txFrameToDataStart = 0x0e,
124 		.txFrameToPaOn = 0x0e,
125 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
126 		.antennaGain = 0,
127 		.switchSettling = 0x2c,
128 		.adcDesiredSize = -30,
129 		.txEndToXpaOff = 0,
130 		.txEndToRxOn = 0x2,
131 		.txFrameToXpaOn = 0xe,
132 		.thresh62 = 28,
133 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
134 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
135 		.switchcomspdt = 0,
136 		.xlna_bias_strength = 0,
137 		.futureModal = {
138 			0, 0, 0, 0, 0, 0, 0,
139 		},
140 	 },
141 	.base_ext1 = {
142 		.ant_div_control = 0,
143 		.future = {0, 0},
144 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
145 	},
146 	.calFreqPier2G = {
147 		FREQ2FBIN(2412, 1),
148 		FREQ2FBIN(2437, 1),
149 		FREQ2FBIN(2472, 1),
150 	 },
151 	/* ar9300_cal_data_per_freq_op_loop 2g */
152 	.calPierData2G = {
153 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
154 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
155 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
156 	 },
157 	.calTarget_freqbin_Cck = {
158 		FREQ2FBIN(2412, 1),
159 		FREQ2FBIN(2484, 1),
160 	 },
161 	.calTarget_freqbin_2G = {
162 		FREQ2FBIN(2412, 1),
163 		FREQ2FBIN(2437, 1),
164 		FREQ2FBIN(2472, 1)
165 	 },
166 	.calTarget_freqbin_2GHT20 = {
167 		FREQ2FBIN(2412, 1),
168 		FREQ2FBIN(2437, 1),
169 		FREQ2FBIN(2472, 1)
170 	 },
171 	.calTarget_freqbin_2GHT40 = {
172 		FREQ2FBIN(2412, 1),
173 		FREQ2FBIN(2437, 1),
174 		FREQ2FBIN(2472, 1)
175 	 },
176 	.calTargetPowerCck = {
177 		 /* 1L-5L,5S,11L,11S */
178 		 { {36, 36, 36, 36} },
179 		 { {36, 36, 36, 36} },
180 	},
181 	.calTargetPower2G = {
182 		 /* 6-24,36,48,54 */
183 		 { {32, 32, 28, 24} },
184 		 { {32, 32, 28, 24} },
185 		 { {32, 32, 28, 24} },
186 	},
187 	.calTargetPower2GHT20 = {
188 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
189 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
190 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
191 	},
192 	.calTargetPower2GHT40 = {
193 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
194 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
195 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
196 	},
197 	.ctlIndex_2G =  {
198 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
199 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
200 	},
201 	.ctl_freqbin_2G = {
202 		{
203 			FREQ2FBIN(2412, 1),
204 			FREQ2FBIN(2417, 1),
205 			FREQ2FBIN(2457, 1),
206 			FREQ2FBIN(2462, 1)
207 		},
208 		{
209 			FREQ2FBIN(2412, 1),
210 			FREQ2FBIN(2417, 1),
211 			FREQ2FBIN(2462, 1),
212 			0xFF,
213 		},
214 
215 		{
216 			FREQ2FBIN(2412, 1),
217 			FREQ2FBIN(2417, 1),
218 			FREQ2FBIN(2462, 1),
219 			0xFF,
220 		},
221 		{
222 			FREQ2FBIN(2422, 1),
223 			FREQ2FBIN(2427, 1),
224 			FREQ2FBIN(2447, 1),
225 			FREQ2FBIN(2452, 1)
226 		},
227 
228 		{
229 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
230 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
231 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
232 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
233 		},
234 
235 		{
236 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
237 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
238 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
239 			0,
240 		},
241 
242 		{
243 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
244 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
245 			FREQ2FBIN(2472, 1),
246 			0,
247 		},
248 
249 		{
250 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
251 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
252 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
253 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
254 		},
255 
256 		{
257 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
258 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
259 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
260 		},
261 
262 		{
263 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
264 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
265 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
266 			0
267 		},
268 
269 		{
270 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
271 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
272 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
273 			0
274 		},
275 
276 		{
277 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
278 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
279 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
280 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
281 		}
282 	 },
283 	.ctlPowerData_2G = {
284 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
285 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
286 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
287 
288 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
289 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
290 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
291 
292 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
293 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
294 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
295 
296 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
297 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
298 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
299 	 },
300 	.modalHeader5G = {
301 		/* 4 idle,t1,t2,b (4 bits per setting) */
302 		.antCtrlCommon = LE32(0x110),
303 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
304 		.antCtrlCommon2 = LE32(0x22222),
305 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
306 		.antCtrlChain = {
307 			LE16(0x000), LE16(0x000), LE16(0x000),
308 		},
309 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
310 		.xatten1DB = {0, 0, 0},
311 
312 		/*
313 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
314 		 * for merlin (0xa20c/b20c 16:12
315 		 */
316 		.xatten1Margin = {0, 0, 0},
317 		.tempSlope = 68,
318 		.voltSlope = 0,
319 		/* spurChans spur channels in usual fbin coding format */
320 		.spurChans = {0, 0, 0, 0, 0},
321 		/* noiseFloorThreshCh Check if the register is per chain */
322 		.noiseFloorThreshCh = {-1, 0, 0},
323 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
324 		.quick_drop = 0,
325 		.xpaBiasLvl = 0,
326 		.txFrameToDataStart = 0x0e,
327 		.txFrameToPaOn = 0x0e,
328 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
329 		.antennaGain = 0,
330 		.switchSettling = 0x2d,
331 		.adcDesiredSize = -30,
332 		.txEndToXpaOff = 0,
333 		.txEndToRxOn = 0x2,
334 		.txFrameToXpaOn = 0xe,
335 		.thresh62 = 28,
336 		.papdRateMaskHt20 = LE32(0x0c80c080),
337 		.papdRateMaskHt40 = LE32(0x0080c080),
338 		.switchcomspdt = 0,
339 		.xlna_bias_strength = 0,
340 		.futureModal = {
341 			0, 0, 0, 0, 0, 0, 0,
342 		},
343 	 },
344 	.base_ext2 = {
345 		.tempSlopeLow = 0,
346 		.tempSlopeHigh = 0,
347 		.xatten1DBLow = {0, 0, 0},
348 		.xatten1MarginLow = {0, 0, 0},
349 		.xatten1DBHigh = {0, 0, 0},
350 		.xatten1MarginHigh = {0, 0, 0}
351 	},
352 	.calFreqPier5G = {
353 		FREQ2FBIN(5180, 0),
354 		FREQ2FBIN(5220, 0),
355 		FREQ2FBIN(5320, 0),
356 		FREQ2FBIN(5400, 0),
357 		FREQ2FBIN(5500, 0),
358 		FREQ2FBIN(5600, 0),
359 		FREQ2FBIN(5725, 0),
360 		FREQ2FBIN(5825, 0)
361 	},
362 	.calPierData5G = {
363 			{
364 				{0, 0, 0, 0, 0},
365 				{0, 0, 0, 0, 0},
366 				{0, 0, 0, 0, 0},
367 				{0, 0, 0, 0, 0},
368 				{0, 0, 0, 0, 0},
369 				{0, 0, 0, 0, 0},
370 				{0, 0, 0, 0, 0},
371 				{0, 0, 0, 0, 0},
372 			},
373 			{
374 				{0, 0, 0, 0, 0},
375 				{0, 0, 0, 0, 0},
376 				{0, 0, 0, 0, 0},
377 				{0, 0, 0, 0, 0},
378 				{0, 0, 0, 0, 0},
379 				{0, 0, 0, 0, 0},
380 				{0, 0, 0, 0, 0},
381 				{0, 0, 0, 0, 0},
382 			},
383 			{
384 				{0, 0, 0, 0, 0},
385 				{0, 0, 0, 0, 0},
386 				{0, 0, 0, 0, 0},
387 				{0, 0, 0, 0, 0},
388 				{0, 0, 0, 0, 0},
389 				{0, 0, 0, 0, 0},
390 				{0, 0, 0, 0, 0},
391 				{0, 0, 0, 0, 0},
392 			},
393 
394 	},
395 	.calTarget_freqbin_5G = {
396 		FREQ2FBIN(5180, 0),
397 		FREQ2FBIN(5220, 0),
398 		FREQ2FBIN(5320, 0),
399 		FREQ2FBIN(5400, 0),
400 		FREQ2FBIN(5500, 0),
401 		FREQ2FBIN(5600, 0),
402 		FREQ2FBIN(5725, 0),
403 		FREQ2FBIN(5825, 0)
404 	},
405 	.calTarget_freqbin_5GHT20 = {
406 		FREQ2FBIN(5180, 0),
407 		FREQ2FBIN(5240, 0),
408 		FREQ2FBIN(5320, 0),
409 		FREQ2FBIN(5500, 0),
410 		FREQ2FBIN(5700, 0),
411 		FREQ2FBIN(5745, 0),
412 		FREQ2FBIN(5725, 0),
413 		FREQ2FBIN(5825, 0)
414 	},
415 	.calTarget_freqbin_5GHT40 = {
416 		FREQ2FBIN(5180, 0),
417 		FREQ2FBIN(5240, 0),
418 		FREQ2FBIN(5320, 0),
419 		FREQ2FBIN(5500, 0),
420 		FREQ2FBIN(5700, 0),
421 		FREQ2FBIN(5745, 0),
422 		FREQ2FBIN(5725, 0),
423 		FREQ2FBIN(5825, 0)
424 	 },
425 	.calTargetPower5G = {
426 		/* 6-24,36,48,54 */
427 		{ {20, 20, 20, 10} },
428 		{ {20, 20, 20, 10} },
429 		{ {20, 20, 20, 10} },
430 		{ {20, 20, 20, 10} },
431 		{ {20, 20, 20, 10} },
432 		{ {20, 20, 20, 10} },
433 		{ {20, 20, 20, 10} },
434 		{ {20, 20, 20, 10} },
435 	 },
436 	.calTargetPower5GHT20 = {
437 		/*
438 		 * 0_8_16,1-3_9-11_17-19,
439 		 * 4,5,6,7,12,13,14,15,20,21,22,23
440 		 */
441 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
442 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
444 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
446 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
447 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
448 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
449 	 },
450 	.calTargetPower5GHT40 =  {
451 		/*
452 		 * 0_8_16,1-3_9-11_17-19,
453 		 * 4,5,6,7,12,13,14,15,20,21,22,23
454 		 */
455 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
456 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
458 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
460 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
461 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
462 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
463 	 },
464 	.ctlIndex_5G =  {
465 		0x10, 0x16, 0x18, 0x40, 0x46,
466 		0x48, 0x30, 0x36, 0x38
467 	},
468 	.ctl_freqbin_5G =  {
469 		{
470 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
471 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
472 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
473 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
474 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
475 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
476 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
477 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
478 		},
479 		{
480 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
481 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
482 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
483 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
484 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
485 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
486 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
487 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
488 		},
489 
490 		{
491 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
492 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
493 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
494 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
495 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
496 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
497 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
498 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
499 		},
500 
501 		{
502 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
503 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
504 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
505 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
506 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
507 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
508 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
509 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
510 		},
511 
512 		{
513 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
514 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
515 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
516 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
517 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
518 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
519 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
520 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
521 		},
522 
523 		{
524 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
525 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
526 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
527 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
528 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
529 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
530 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
531 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
532 		},
533 
534 		{
535 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
536 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
537 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
538 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
539 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
540 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
541 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
542 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
543 		},
544 
545 		{
546 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
547 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
548 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
549 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
550 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
551 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
552 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
553 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
554 		},
555 
556 		{
557 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
558 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
559 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
560 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
561 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
562 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
563 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
564 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
565 		}
566 	 },
567 	.ctlPowerData_5G = {
568 		{
569 			{
570 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
571 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
572 			}
573 		},
574 		{
575 			{
576 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
577 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
578 			}
579 		},
580 		{
581 			{
582 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
583 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
584 			}
585 		},
586 		{
587 			{
588 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
589 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
590 			}
591 		},
592 		{
593 			{
594 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
595 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
596 			}
597 		},
598 		{
599 			{
600 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
601 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
602 			}
603 		},
604 		{
605 			{
606 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
607 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
608 			}
609 		},
610 		{
611 			{
612 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
613 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
614 			}
615 		},
616 		{
617 			{
618 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
619 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
620 			}
621 		},
622 	 }
623 };
624 
625 static const struct ar9300_eeprom ar9300_x113 = {
626 	.eepromVersion = 2,
627 	.templateVersion = 6,
628 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
629 	.custData = {"x113-023-f0000"},
630 	.baseEepHeader = {
631 		.regDmn = { LE16(0), LE16(0x1f) },
632 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
633 		.opCapFlags = {
634 			.opFlags = AR5416_OPFLAGS_11A,
635 			.eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
636 		},
637 		.rfSilent = 0,
638 		.blueToothOptions = 0,
639 		.deviceCap = 0,
640 		.deviceType = 5, /* takes lower byte in eeprom location */
641 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
642 		.params_for_tuning_caps = {0, 0},
643 		.featureEnable = 0x0d,
644 		 /*
645 		  * bit0 - enable tx temp comp - disabled
646 		  * bit1 - enable tx volt comp - disabled
647 		  * bit2 - enable fastClock - enabled
648 		  * bit3 - enable doubling - enabled
649 		  * bit4 - enable internal regulator - disabled
650 		  * bit5 - enable pa predistortion - disabled
651 		  */
652 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
653 		.eepromWriteEnableGpio = 6,
654 		.wlanDisableGpio = 0,
655 		.wlanLedGpio = 8,
656 		.rxBandSelectGpio = 0xff,
657 		.txrxgain = 0x21,
658 		.swreg = 0,
659 	 },
660 	.modalHeader2G = {
661 	/* ar9300_modal_eep_header  2g */
662 		/* 4 idle,t1,t2,b(4 bits per setting) */
663 		.antCtrlCommon = LE32(0x110),
664 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
665 		.antCtrlCommon2 = LE32(0x44444),
666 
667 		/*
668 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
669 		 * rx1, rx12, b (2 bits each)
670 		 */
671 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
672 
673 		/*
674 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
675 		 * for ar9280 (0xa20c/b20c 5:0)
676 		 */
677 		.xatten1DB = {0, 0, 0},
678 
679 		/*
680 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
681 		 * for ar9280 (0xa20c/b20c 16:12
682 		 */
683 		.xatten1Margin = {0, 0, 0},
684 		.tempSlope = 25,
685 		.voltSlope = 0,
686 
687 		/*
688 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
689 		 * channels in usual fbin coding format
690 		 */
691 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
692 
693 		/*
694 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
695 		 * if the register is per chain
696 		 */
697 		.noiseFloorThreshCh = {-1, 0, 0},
698 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
699 		.quick_drop = 0,
700 		.xpaBiasLvl = 0,
701 		.txFrameToDataStart = 0x0e,
702 		.txFrameToPaOn = 0x0e,
703 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
704 		.antennaGain = 0,
705 		.switchSettling = 0x2c,
706 		.adcDesiredSize = -30,
707 		.txEndToXpaOff = 0,
708 		.txEndToRxOn = 0x2,
709 		.txFrameToXpaOn = 0xe,
710 		.thresh62 = 28,
711 		.papdRateMaskHt20 = LE32(0x0c80c080),
712 		.papdRateMaskHt40 = LE32(0x0080c080),
713 		.switchcomspdt = 0,
714 		.xlna_bias_strength = 0,
715 		.futureModal = {
716 			0, 0, 0, 0, 0, 0, 0,
717 		},
718 	 },
719 	 .base_ext1 = {
720 		.ant_div_control = 0,
721 		.future = {0, 0},
722 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
723 	 },
724 	.calFreqPier2G = {
725 		FREQ2FBIN(2412, 1),
726 		FREQ2FBIN(2437, 1),
727 		FREQ2FBIN(2472, 1),
728 	 },
729 	/* ar9300_cal_data_per_freq_op_loop 2g */
730 	.calPierData2G = {
731 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
732 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
733 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
734 	 },
735 	.calTarget_freqbin_Cck = {
736 		FREQ2FBIN(2412, 1),
737 		FREQ2FBIN(2472, 1),
738 	 },
739 	.calTarget_freqbin_2G = {
740 		FREQ2FBIN(2412, 1),
741 		FREQ2FBIN(2437, 1),
742 		FREQ2FBIN(2472, 1)
743 	 },
744 	.calTarget_freqbin_2GHT20 = {
745 		FREQ2FBIN(2412, 1),
746 		FREQ2FBIN(2437, 1),
747 		FREQ2FBIN(2472, 1)
748 	 },
749 	.calTarget_freqbin_2GHT40 = {
750 		FREQ2FBIN(2412, 1),
751 		FREQ2FBIN(2437, 1),
752 		FREQ2FBIN(2472, 1)
753 	 },
754 	.calTargetPowerCck = {
755 		 /* 1L-5L,5S,11L,11S */
756 		 { {34, 34, 34, 34} },
757 		 { {34, 34, 34, 34} },
758 	},
759 	.calTargetPower2G = {
760 		 /* 6-24,36,48,54 */
761 		 { {34, 34, 32, 32} },
762 		 { {34, 34, 32, 32} },
763 		 { {34, 34, 32, 32} },
764 	},
765 	.calTargetPower2GHT20 = {
766 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
767 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
768 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
769 	},
770 	.calTargetPower2GHT40 = {
771 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
772 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
773 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
774 	},
775 	.ctlIndex_2G =  {
776 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
777 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
778 	},
779 	.ctl_freqbin_2G = {
780 		{
781 			FREQ2FBIN(2412, 1),
782 			FREQ2FBIN(2417, 1),
783 			FREQ2FBIN(2457, 1),
784 			FREQ2FBIN(2462, 1)
785 		},
786 		{
787 			FREQ2FBIN(2412, 1),
788 			FREQ2FBIN(2417, 1),
789 			FREQ2FBIN(2462, 1),
790 			0xFF,
791 		},
792 
793 		{
794 			FREQ2FBIN(2412, 1),
795 			FREQ2FBIN(2417, 1),
796 			FREQ2FBIN(2462, 1),
797 			0xFF,
798 		},
799 		{
800 			FREQ2FBIN(2422, 1),
801 			FREQ2FBIN(2427, 1),
802 			FREQ2FBIN(2447, 1),
803 			FREQ2FBIN(2452, 1)
804 		},
805 
806 		{
807 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
808 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
809 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
810 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
811 		},
812 
813 		{
814 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
815 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
816 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
817 			0,
818 		},
819 
820 		{
821 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
822 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
823 			FREQ2FBIN(2472, 1),
824 			0,
825 		},
826 
827 		{
828 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
829 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
830 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
831 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
832 		},
833 
834 		{
835 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
836 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
837 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
838 		},
839 
840 		{
841 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
842 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
843 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
844 			0
845 		},
846 
847 		{
848 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
849 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
850 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
851 			0
852 		},
853 
854 		{
855 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
856 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
857 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
858 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
859 		}
860 	 },
861 	.ctlPowerData_2G = {
862 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
863 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
864 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
865 
866 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
867 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
868 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
869 
870 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
871 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
872 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
873 
874 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
875 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
876 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
877 	 },
878 	.modalHeader5G = {
879 		/* 4 idle,t1,t2,b (4 bits per setting) */
880 		.antCtrlCommon = LE32(0x220),
881 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
882 		.antCtrlCommon2 = LE32(0x11111),
883 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
884 		.antCtrlChain = {
885 			LE16(0x150), LE16(0x150), LE16(0x150),
886 		},
887 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
888 		.xatten1DB = {0, 0, 0},
889 
890 		/*
891 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
892 		 * for merlin (0xa20c/b20c 16:12
893 		 */
894 		.xatten1Margin = {0, 0, 0},
895 		.tempSlope = 68,
896 		.voltSlope = 0,
897 		/* spurChans spur channels in usual fbin coding format */
898 		.spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
899 		/* noiseFloorThreshCh Check if the register is per chain */
900 		.noiseFloorThreshCh = {-1, 0, 0},
901 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
902 		.quick_drop = 0,
903 		.xpaBiasLvl = 0xf,
904 		.txFrameToDataStart = 0x0e,
905 		.txFrameToPaOn = 0x0e,
906 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
907 		.antennaGain = 0,
908 		.switchSettling = 0x2d,
909 		.adcDesiredSize = -30,
910 		.txEndToXpaOff = 0,
911 		.txEndToRxOn = 0x2,
912 		.txFrameToXpaOn = 0xe,
913 		.thresh62 = 28,
914 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
915 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
916 		.switchcomspdt = 0,
917 		.xlna_bias_strength = 0,
918 		.futureModal = {
919 			0, 0, 0, 0, 0, 0, 0,
920 		},
921 	 },
922 	.base_ext2 = {
923 		.tempSlopeLow = 72,
924 		.tempSlopeHigh = 105,
925 		.xatten1DBLow = {0, 0, 0},
926 		.xatten1MarginLow = {0, 0, 0},
927 		.xatten1DBHigh = {0, 0, 0},
928 		.xatten1MarginHigh = {0, 0, 0}
929 	 },
930 	.calFreqPier5G = {
931 		FREQ2FBIN(5180, 0),
932 		FREQ2FBIN(5240, 0),
933 		FREQ2FBIN(5320, 0),
934 		FREQ2FBIN(5400, 0),
935 		FREQ2FBIN(5500, 0),
936 		FREQ2FBIN(5600, 0),
937 		FREQ2FBIN(5745, 0),
938 		FREQ2FBIN(5785, 0)
939 	},
940 	.calPierData5G = {
941 			{
942 				{0, 0, 0, 0, 0},
943 				{0, 0, 0, 0, 0},
944 				{0, 0, 0, 0, 0},
945 				{0, 0, 0, 0, 0},
946 				{0, 0, 0, 0, 0},
947 				{0, 0, 0, 0, 0},
948 				{0, 0, 0, 0, 0},
949 				{0, 0, 0, 0, 0},
950 			},
951 			{
952 				{0, 0, 0, 0, 0},
953 				{0, 0, 0, 0, 0},
954 				{0, 0, 0, 0, 0},
955 				{0, 0, 0, 0, 0},
956 				{0, 0, 0, 0, 0},
957 				{0, 0, 0, 0, 0},
958 				{0, 0, 0, 0, 0},
959 				{0, 0, 0, 0, 0},
960 			},
961 			{
962 				{0, 0, 0, 0, 0},
963 				{0, 0, 0, 0, 0},
964 				{0, 0, 0, 0, 0},
965 				{0, 0, 0, 0, 0},
966 				{0, 0, 0, 0, 0},
967 				{0, 0, 0, 0, 0},
968 				{0, 0, 0, 0, 0},
969 				{0, 0, 0, 0, 0},
970 			},
971 
972 	},
973 	.calTarget_freqbin_5G = {
974 		FREQ2FBIN(5180, 0),
975 		FREQ2FBIN(5220, 0),
976 		FREQ2FBIN(5320, 0),
977 		FREQ2FBIN(5400, 0),
978 		FREQ2FBIN(5500, 0),
979 		FREQ2FBIN(5600, 0),
980 		FREQ2FBIN(5745, 0),
981 		FREQ2FBIN(5785, 0)
982 	},
983 	.calTarget_freqbin_5GHT20 = {
984 		FREQ2FBIN(5180, 0),
985 		FREQ2FBIN(5240, 0),
986 		FREQ2FBIN(5320, 0),
987 		FREQ2FBIN(5400, 0),
988 		FREQ2FBIN(5500, 0),
989 		FREQ2FBIN(5700, 0),
990 		FREQ2FBIN(5745, 0),
991 		FREQ2FBIN(5825, 0)
992 	},
993 	.calTarget_freqbin_5GHT40 = {
994 		FREQ2FBIN(5190, 0),
995 		FREQ2FBIN(5230, 0),
996 		FREQ2FBIN(5320, 0),
997 		FREQ2FBIN(5410, 0),
998 		FREQ2FBIN(5510, 0),
999 		FREQ2FBIN(5670, 0),
1000 		FREQ2FBIN(5755, 0),
1001 		FREQ2FBIN(5825, 0)
1002 	 },
1003 	.calTargetPower5G = {
1004 		/* 6-24,36,48,54 */
1005 		{ {42, 40, 40, 34} },
1006 		{ {42, 40, 40, 34} },
1007 		{ {42, 40, 40, 34} },
1008 		{ {42, 40, 40, 34} },
1009 		{ {42, 40, 40, 34} },
1010 		{ {42, 40, 40, 34} },
1011 		{ {42, 40, 40, 34} },
1012 		{ {42, 40, 40, 34} },
1013 	 },
1014 	.calTargetPower5GHT20 = {
1015 		/*
1016 		 * 0_8_16,1-3_9-11_17-19,
1017 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1018 		 */
1019 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1020 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1021 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1022 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1023 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1024 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1025 		{ {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1026 		{ {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1027 	 },
1028 	.calTargetPower5GHT40 =  {
1029 		/*
1030 		 * 0_8_16,1-3_9-11_17-19,
1031 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1032 		 */
1033 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1034 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1035 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1036 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1037 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1038 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1039 		{ {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1040 		{ {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1041 	 },
1042 	.ctlIndex_5G =  {
1043 		0x10, 0x16, 0x18, 0x40, 0x46,
1044 		0x48, 0x30, 0x36, 0x38
1045 	},
1046 	.ctl_freqbin_5G =  {
1047 		{
1048 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1049 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1050 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1051 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1052 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1053 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1054 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1055 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1056 		},
1057 		{
1058 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1059 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1060 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1061 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1062 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1063 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1064 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1065 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1066 		},
1067 
1068 		{
1069 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1070 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1071 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1072 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1073 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1074 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1075 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1076 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1077 		},
1078 
1079 		{
1080 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1081 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1082 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1083 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1084 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1085 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1086 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1087 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1088 		},
1089 
1090 		{
1091 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1092 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1093 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1094 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1095 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1096 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1097 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1098 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1099 		},
1100 
1101 		{
1102 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1103 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1104 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1105 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1106 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1107 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1108 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1109 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1110 		},
1111 
1112 		{
1113 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1114 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1115 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1116 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1117 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1118 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1119 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1120 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1121 		},
1122 
1123 		{
1124 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1125 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1126 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1127 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1128 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1129 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1130 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1131 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1132 		},
1133 
1134 		{
1135 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1136 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1137 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1138 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1139 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1140 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1141 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1142 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1143 		}
1144 	 },
1145 	.ctlPowerData_5G = {
1146 		{
1147 			{
1148 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1149 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1150 			}
1151 		},
1152 		{
1153 			{
1154 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1155 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1156 			}
1157 		},
1158 		{
1159 			{
1160 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1161 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1162 			}
1163 		},
1164 		{
1165 			{
1166 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1167 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1168 			}
1169 		},
1170 		{
1171 			{
1172 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1173 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1174 			}
1175 		},
1176 		{
1177 			{
1178 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1179 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1180 			}
1181 		},
1182 		{
1183 			{
1184 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1185 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1186 			}
1187 		},
1188 		{
1189 			{
1190 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1191 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1192 			}
1193 		},
1194 		{
1195 			{
1196 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1197 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1198 			}
1199 		},
1200 	 }
1201 };
1202 
1203 
1204 static const struct ar9300_eeprom ar9300_h112 = {
1205 	.eepromVersion = 2,
1206 	.templateVersion = 3,
1207 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1208 	.custData = {"h112-241-f0000"},
1209 	.baseEepHeader = {
1210 		.regDmn = { LE16(0), LE16(0x1f) },
1211 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1212 		.opCapFlags = {
1213 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1214 			.eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
1215 		},
1216 		.rfSilent = 0,
1217 		.blueToothOptions = 0,
1218 		.deviceCap = 0,
1219 		.deviceType = 5, /* takes lower byte in eeprom location */
1220 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1221 		.params_for_tuning_caps = {0, 0},
1222 		.featureEnable = 0x0d,
1223 		/*
1224 		 * bit0 - enable tx temp comp - disabled
1225 		 * bit1 - enable tx volt comp - disabled
1226 		 * bit2 - enable fastClock - enabled
1227 		 * bit3 - enable doubling - enabled
1228 		 * bit4 - enable internal regulator - disabled
1229 		 * bit5 - enable pa predistortion - disabled
1230 		 */
1231 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1232 		.eepromWriteEnableGpio = 6,
1233 		.wlanDisableGpio = 0,
1234 		.wlanLedGpio = 8,
1235 		.rxBandSelectGpio = 0xff,
1236 		.txrxgain = 0x10,
1237 		.swreg = 0,
1238 	},
1239 	.modalHeader2G = {
1240 		/* ar9300_modal_eep_header  2g */
1241 		/* 4 idle,t1,t2,b(4 bits per setting) */
1242 		.antCtrlCommon = LE32(0x110),
1243 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1244 		.antCtrlCommon2 = LE32(0x44444),
1245 
1246 		/*
1247 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1248 		 * rx1, rx12, b (2 bits each)
1249 		 */
1250 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1251 
1252 		/*
1253 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
1254 		 * for ar9280 (0xa20c/b20c 5:0)
1255 		 */
1256 		.xatten1DB = {0, 0, 0},
1257 
1258 		/*
1259 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1260 		 * for ar9280 (0xa20c/b20c 16:12
1261 		 */
1262 		.xatten1Margin = {0, 0, 0},
1263 		.tempSlope = 25,
1264 		.voltSlope = 0,
1265 
1266 		/*
1267 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1268 		 * channels in usual fbin coding format
1269 		 */
1270 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1271 
1272 		/*
1273 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1274 		 * if the register is per chain
1275 		 */
1276 		.noiseFloorThreshCh = {-1, 0, 0},
1277 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1278 		.quick_drop = 0,
1279 		.xpaBiasLvl = 0,
1280 		.txFrameToDataStart = 0x0e,
1281 		.txFrameToPaOn = 0x0e,
1282 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1283 		.antennaGain = 0,
1284 		.switchSettling = 0x2c,
1285 		.adcDesiredSize = -30,
1286 		.txEndToXpaOff = 0,
1287 		.txEndToRxOn = 0x2,
1288 		.txFrameToXpaOn = 0xe,
1289 		.thresh62 = 28,
1290 		.papdRateMaskHt20 = LE32(0x0c80c080),
1291 		.papdRateMaskHt40 = LE32(0x0080c080),
1292 		.switchcomspdt = 0,
1293 		.xlna_bias_strength = 0,
1294 		.futureModal = {
1295 			0, 0, 0, 0, 0, 0, 0,
1296 		},
1297 	},
1298 	.base_ext1 = {
1299 		.ant_div_control = 0,
1300 		.future = {0, 0},
1301 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1302 	},
1303 	.calFreqPier2G = {
1304 		FREQ2FBIN(2412, 1),
1305 		FREQ2FBIN(2437, 1),
1306 		FREQ2FBIN(2462, 1),
1307 	},
1308 	/* ar9300_cal_data_per_freq_op_loop 2g */
1309 	.calPierData2G = {
1310 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1311 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1312 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1313 	},
1314 	.calTarget_freqbin_Cck = {
1315 		FREQ2FBIN(2412, 1),
1316 		FREQ2FBIN(2472, 1),
1317 	},
1318 	.calTarget_freqbin_2G = {
1319 		FREQ2FBIN(2412, 1),
1320 		FREQ2FBIN(2437, 1),
1321 		FREQ2FBIN(2472, 1)
1322 	},
1323 	.calTarget_freqbin_2GHT20 = {
1324 		FREQ2FBIN(2412, 1),
1325 		FREQ2FBIN(2437, 1),
1326 		FREQ2FBIN(2472, 1)
1327 	},
1328 	.calTarget_freqbin_2GHT40 = {
1329 		FREQ2FBIN(2412, 1),
1330 		FREQ2FBIN(2437, 1),
1331 		FREQ2FBIN(2472, 1)
1332 	},
1333 	.calTargetPowerCck = {
1334 		/* 1L-5L,5S,11L,11S */
1335 		{ {34, 34, 34, 34} },
1336 		{ {34, 34, 34, 34} },
1337 	},
1338 	.calTargetPower2G = {
1339 		/* 6-24,36,48,54 */
1340 		{ {34, 34, 32, 32} },
1341 		{ {34, 34, 32, 32} },
1342 		{ {34, 34, 32, 32} },
1343 	},
1344 	.calTargetPower2GHT20 = {
1345 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1346 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1347 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1348 	},
1349 	.calTargetPower2GHT40 = {
1350 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1351 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1352 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1353 	},
1354 	.ctlIndex_2G =  {
1355 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1356 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1357 	},
1358 	.ctl_freqbin_2G = {
1359 		{
1360 			FREQ2FBIN(2412, 1),
1361 			FREQ2FBIN(2417, 1),
1362 			FREQ2FBIN(2457, 1),
1363 			FREQ2FBIN(2462, 1)
1364 		},
1365 		{
1366 			FREQ2FBIN(2412, 1),
1367 			FREQ2FBIN(2417, 1),
1368 			FREQ2FBIN(2462, 1),
1369 			0xFF,
1370 		},
1371 
1372 		{
1373 			FREQ2FBIN(2412, 1),
1374 			FREQ2FBIN(2417, 1),
1375 			FREQ2FBIN(2462, 1),
1376 			0xFF,
1377 		},
1378 		{
1379 			FREQ2FBIN(2422, 1),
1380 			FREQ2FBIN(2427, 1),
1381 			FREQ2FBIN(2447, 1),
1382 			FREQ2FBIN(2452, 1)
1383 		},
1384 
1385 		{
1386 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1387 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1388 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1389 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1390 		},
1391 
1392 		{
1393 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1394 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1395 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1396 			0,
1397 		},
1398 
1399 		{
1400 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1401 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1402 			FREQ2FBIN(2472, 1),
1403 			0,
1404 		},
1405 
1406 		{
1407 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1408 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1409 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1410 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1411 		},
1412 
1413 		{
1414 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1415 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1416 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1417 		},
1418 
1419 		{
1420 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1421 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1422 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1423 			0
1424 		},
1425 
1426 		{
1427 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1428 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1429 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1430 			0
1431 		},
1432 
1433 		{
1434 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1435 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1436 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1437 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1438 		}
1439 	},
1440 	.ctlPowerData_2G = {
1441 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1442 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1443 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1444 
1445 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1446 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1447 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1448 
1449 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1450 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1451 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1452 
1453 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1454 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1455 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1456 	},
1457 	.modalHeader5G = {
1458 		/* 4 idle,t1,t2,b (4 bits per setting) */
1459 		.antCtrlCommon = LE32(0x220),
1460 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1461 		.antCtrlCommon2 = LE32(0x44444),
1462 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1463 		.antCtrlChain = {
1464 			LE16(0x150), LE16(0x150), LE16(0x150),
1465 		},
1466 		/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1467 		.xatten1DB = {0, 0, 0},
1468 
1469 		/*
1470 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1471 		 * for merlin (0xa20c/b20c 16:12
1472 		 */
1473 		.xatten1Margin = {0, 0, 0},
1474 		.tempSlope = 45,
1475 		.voltSlope = 0,
1476 		/* spurChans spur channels in usual fbin coding format */
1477 		.spurChans = {0, 0, 0, 0, 0},
1478 		/* noiseFloorThreshCh Check if the register is per chain */
1479 		.noiseFloorThreshCh = {-1, 0, 0},
1480 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1481 		.quick_drop = 0,
1482 		.xpaBiasLvl = 0,
1483 		.txFrameToDataStart = 0x0e,
1484 		.txFrameToPaOn = 0x0e,
1485 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1486 		.antennaGain = 0,
1487 		.switchSettling = 0x2d,
1488 		.adcDesiredSize = -30,
1489 		.txEndToXpaOff = 0,
1490 		.txEndToRxOn = 0x2,
1491 		.txFrameToXpaOn = 0xe,
1492 		.thresh62 = 28,
1493 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
1494 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
1495 		.switchcomspdt = 0,
1496 		.xlna_bias_strength = 0,
1497 		.futureModal = {
1498 			0, 0, 0, 0, 0, 0, 0,
1499 		},
1500 	},
1501 	.base_ext2 = {
1502 		.tempSlopeLow = 40,
1503 		.tempSlopeHigh = 50,
1504 		.xatten1DBLow = {0, 0, 0},
1505 		.xatten1MarginLow = {0, 0, 0},
1506 		.xatten1DBHigh = {0, 0, 0},
1507 		.xatten1MarginHigh = {0, 0, 0}
1508 	},
1509 	.calFreqPier5G = {
1510 		FREQ2FBIN(5180, 0),
1511 		FREQ2FBIN(5220, 0),
1512 		FREQ2FBIN(5320, 0),
1513 		FREQ2FBIN(5400, 0),
1514 		FREQ2FBIN(5500, 0),
1515 		FREQ2FBIN(5600, 0),
1516 		FREQ2FBIN(5700, 0),
1517 		FREQ2FBIN(5785, 0)
1518 	},
1519 	.calPierData5G = {
1520 		{
1521 			{0, 0, 0, 0, 0},
1522 			{0, 0, 0, 0, 0},
1523 			{0, 0, 0, 0, 0},
1524 			{0, 0, 0, 0, 0},
1525 			{0, 0, 0, 0, 0},
1526 			{0, 0, 0, 0, 0},
1527 			{0, 0, 0, 0, 0},
1528 			{0, 0, 0, 0, 0},
1529 		},
1530 		{
1531 			{0, 0, 0, 0, 0},
1532 			{0, 0, 0, 0, 0},
1533 			{0, 0, 0, 0, 0},
1534 			{0, 0, 0, 0, 0},
1535 			{0, 0, 0, 0, 0},
1536 			{0, 0, 0, 0, 0},
1537 			{0, 0, 0, 0, 0},
1538 			{0, 0, 0, 0, 0},
1539 		},
1540 		{
1541 			{0, 0, 0, 0, 0},
1542 			{0, 0, 0, 0, 0},
1543 			{0, 0, 0, 0, 0},
1544 			{0, 0, 0, 0, 0},
1545 			{0, 0, 0, 0, 0},
1546 			{0, 0, 0, 0, 0},
1547 			{0, 0, 0, 0, 0},
1548 			{0, 0, 0, 0, 0},
1549 		},
1550 
1551 	},
1552 	.calTarget_freqbin_5G = {
1553 		FREQ2FBIN(5180, 0),
1554 		FREQ2FBIN(5240, 0),
1555 		FREQ2FBIN(5320, 0),
1556 		FREQ2FBIN(5400, 0),
1557 		FREQ2FBIN(5500, 0),
1558 		FREQ2FBIN(5600, 0),
1559 		FREQ2FBIN(5700, 0),
1560 		FREQ2FBIN(5825, 0)
1561 	},
1562 	.calTarget_freqbin_5GHT20 = {
1563 		FREQ2FBIN(5180, 0),
1564 		FREQ2FBIN(5240, 0),
1565 		FREQ2FBIN(5320, 0),
1566 		FREQ2FBIN(5400, 0),
1567 		FREQ2FBIN(5500, 0),
1568 		FREQ2FBIN(5700, 0),
1569 		FREQ2FBIN(5745, 0),
1570 		FREQ2FBIN(5825, 0)
1571 	},
1572 	.calTarget_freqbin_5GHT40 = {
1573 		FREQ2FBIN(5180, 0),
1574 		FREQ2FBIN(5240, 0),
1575 		FREQ2FBIN(5320, 0),
1576 		FREQ2FBIN(5400, 0),
1577 		FREQ2FBIN(5500, 0),
1578 		FREQ2FBIN(5700, 0),
1579 		FREQ2FBIN(5745, 0),
1580 		FREQ2FBIN(5825, 0)
1581 	},
1582 	.calTargetPower5G = {
1583 		/* 6-24,36,48,54 */
1584 		{ {30, 30, 28, 24} },
1585 		{ {30, 30, 28, 24} },
1586 		{ {30, 30, 28, 24} },
1587 		{ {30, 30, 28, 24} },
1588 		{ {30, 30, 28, 24} },
1589 		{ {30, 30, 28, 24} },
1590 		{ {30, 30, 28, 24} },
1591 		{ {30, 30, 28, 24} },
1592 	},
1593 	.calTargetPower5GHT20 = {
1594 		/*
1595 		 * 0_8_16,1-3_9-11_17-19,
1596 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1597 		 */
1598 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1599 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1600 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1601 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1602 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1603 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1604 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1605 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1606 	},
1607 	.calTargetPower5GHT40 =  {
1608 		/*
1609 		 * 0_8_16,1-3_9-11_17-19,
1610 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1611 		 */
1612 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1613 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1614 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1615 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1616 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1617 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1618 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1619 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1620 	},
1621 	.ctlIndex_5G =  {
1622 		0x10, 0x16, 0x18, 0x40, 0x46,
1623 		0x48, 0x30, 0x36, 0x38
1624 	},
1625 	.ctl_freqbin_5G =  {
1626 		{
1627 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1628 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1629 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1630 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1631 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1632 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1633 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1634 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1635 		},
1636 		{
1637 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1638 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1639 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1640 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1641 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1642 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1643 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1644 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1645 		},
1646 
1647 		{
1648 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1649 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1650 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1651 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1652 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1653 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1654 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1655 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1656 		},
1657 
1658 		{
1659 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1660 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1661 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1662 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1663 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1664 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1665 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1666 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1667 		},
1668 
1669 		{
1670 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1671 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1672 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1673 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1674 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1675 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1676 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1677 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1678 		},
1679 
1680 		{
1681 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1682 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1683 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1684 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1685 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1686 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1687 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1688 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1689 		},
1690 
1691 		{
1692 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1693 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1694 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1695 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1696 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1697 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1698 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1699 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1700 		},
1701 
1702 		{
1703 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1704 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1705 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1706 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1707 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1708 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1709 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1710 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1711 		},
1712 
1713 		{
1714 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1715 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1716 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1717 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1718 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1719 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1720 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1721 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1722 		}
1723 	},
1724 	.ctlPowerData_5G = {
1725 		{
1726 			{
1727 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1728 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1729 			}
1730 		},
1731 		{
1732 			{
1733 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1734 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1735 			}
1736 		},
1737 		{
1738 			{
1739 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1740 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1741 			}
1742 		},
1743 		{
1744 			{
1745 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1746 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1747 			}
1748 		},
1749 		{
1750 			{
1751 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1752 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1753 			}
1754 		},
1755 		{
1756 			{
1757 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1758 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1759 			}
1760 		},
1761 		{
1762 			{
1763 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1764 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1765 			}
1766 		},
1767 		{
1768 			{
1769 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1770 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1771 			}
1772 		},
1773 		{
1774 			{
1775 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1776 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1777 			}
1778 		},
1779 	}
1780 };
1781 
1782 
1783 static const struct ar9300_eeprom ar9300_x112 = {
1784 	.eepromVersion = 2,
1785 	.templateVersion = 5,
1786 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1787 	.custData = {"x112-041-f0000"},
1788 	.baseEepHeader = {
1789 		.regDmn = { LE16(0), LE16(0x1f) },
1790 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1791 		.opCapFlags = {
1792 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1793 			.eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
1794 		},
1795 		.rfSilent = 0,
1796 		.blueToothOptions = 0,
1797 		.deviceCap = 0,
1798 		.deviceType = 5, /* takes lower byte in eeprom location */
1799 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1800 		.params_for_tuning_caps = {0, 0},
1801 		.featureEnable = 0x0d,
1802 		/*
1803 		 * bit0 - enable tx temp comp - disabled
1804 		 * bit1 - enable tx volt comp - disabled
1805 		 * bit2 - enable fastclock - enabled
1806 		 * bit3 - enable doubling - enabled
1807 		 * bit4 - enable internal regulator - disabled
1808 		 * bit5 - enable pa predistortion - disabled
1809 		 */
1810 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1811 		.eepromWriteEnableGpio = 6,
1812 		.wlanDisableGpio = 0,
1813 		.wlanLedGpio = 8,
1814 		.rxBandSelectGpio = 0xff,
1815 		.txrxgain = 0x0,
1816 		.swreg = 0,
1817 	},
1818 	.modalHeader2G = {
1819 		/* ar9300_modal_eep_header  2g */
1820 		/* 4 idle,t1,t2,b(4 bits per setting) */
1821 		.antCtrlCommon = LE32(0x110),
1822 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1823 		.antCtrlCommon2 = LE32(0x22222),
1824 
1825 		/*
1826 		 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1827 		 * rx1, rx12, b (2 bits each)
1828 		 */
1829 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1830 
1831 		/*
1832 		 * xatten1DB[AR9300_max_chains];  3 xatten1_db
1833 		 * for ar9280 (0xa20c/b20c 5:0)
1834 		 */
1835 		.xatten1DB = {0x1b, 0x1b, 0x1b},
1836 
1837 		/*
1838 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1839 		 * for ar9280 (0xa20c/b20c 16:12
1840 		 */
1841 		.xatten1Margin = {0x15, 0x15, 0x15},
1842 		.tempSlope = 50,
1843 		.voltSlope = 0,
1844 
1845 		/*
1846 		 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1847 		 * channels in usual fbin coding format
1848 		 */
1849 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1850 
1851 		/*
1852 		 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1853 		 * if the register is per chain
1854 		 */
1855 		.noiseFloorThreshCh = {-1, 0, 0},
1856 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1857 		.quick_drop = 0,
1858 		.xpaBiasLvl = 0,
1859 		.txFrameToDataStart = 0x0e,
1860 		.txFrameToPaOn = 0x0e,
1861 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1862 		.antennaGain = 0,
1863 		.switchSettling = 0x2c,
1864 		.adcDesiredSize = -30,
1865 		.txEndToXpaOff = 0,
1866 		.txEndToRxOn = 0x2,
1867 		.txFrameToXpaOn = 0xe,
1868 		.thresh62 = 28,
1869 		.papdRateMaskHt20 = LE32(0x0c80c080),
1870 		.papdRateMaskHt40 = LE32(0x0080c080),
1871 		.switchcomspdt = 0,
1872 		.xlna_bias_strength = 0,
1873 		.futureModal = {
1874 			0, 0, 0, 0, 0, 0, 0,
1875 		},
1876 	},
1877 	.base_ext1 = {
1878 		.ant_div_control = 0,
1879 		.future = {0, 0},
1880 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1881 	},
1882 	.calFreqPier2G = {
1883 		FREQ2FBIN(2412, 1),
1884 		FREQ2FBIN(2437, 1),
1885 		FREQ2FBIN(2472, 1),
1886 	},
1887 	/* ar9300_cal_data_per_freq_op_loop 2g */
1888 	.calPierData2G = {
1889 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1890 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1891 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1892 	},
1893 	.calTarget_freqbin_Cck = {
1894 		FREQ2FBIN(2412, 1),
1895 		FREQ2FBIN(2472, 1),
1896 	},
1897 	.calTarget_freqbin_2G = {
1898 		FREQ2FBIN(2412, 1),
1899 		FREQ2FBIN(2437, 1),
1900 		FREQ2FBIN(2472, 1)
1901 	},
1902 	.calTarget_freqbin_2GHT20 = {
1903 		FREQ2FBIN(2412, 1),
1904 		FREQ2FBIN(2437, 1),
1905 		FREQ2FBIN(2472, 1)
1906 	},
1907 	.calTarget_freqbin_2GHT40 = {
1908 		FREQ2FBIN(2412, 1),
1909 		FREQ2FBIN(2437, 1),
1910 		FREQ2FBIN(2472, 1)
1911 	},
1912 	.calTargetPowerCck = {
1913 		/* 1L-5L,5S,11L,11s */
1914 		{ {38, 38, 38, 38} },
1915 		{ {38, 38, 38, 38} },
1916 	},
1917 	.calTargetPower2G = {
1918 		/* 6-24,36,48,54 */
1919 		{ {38, 38, 36, 34} },
1920 		{ {38, 38, 36, 34} },
1921 		{ {38, 38, 34, 32} },
1922 	},
1923 	.calTargetPower2GHT20 = {
1924 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1925 		{ {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1926 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1927 	},
1928 	.calTargetPower2GHT40 = {
1929 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1930 		{ {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1931 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1932 	},
1933 	.ctlIndex_2G =  {
1934 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1935 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1936 	},
1937 	.ctl_freqbin_2G = {
1938 		{
1939 			FREQ2FBIN(2412, 1),
1940 			FREQ2FBIN(2417, 1),
1941 			FREQ2FBIN(2457, 1),
1942 			FREQ2FBIN(2462, 1)
1943 		},
1944 		{
1945 			FREQ2FBIN(2412, 1),
1946 			FREQ2FBIN(2417, 1),
1947 			FREQ2FBIN(2462, 1),
1948 			0xFF,
1949 		},
1950 
1951 		{
1952 			FREQ2FBIN(2412, 1),
1953 			FREQ2FBIN(2417, 1),
1954 			FREQ2FBIN(2462, 1),
1955 			0xFF,
1956 		},
1957 		{
1958 			FREQ2FBIN(2422, 1),
1959 			FREQ2FBIN(2427, 1),
1960 			FREQ2FBIN(2447, 1),
1961 			FREQ2FBIN(2452, 1)
1962 		},
1963 
1964 		{
1965 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1966 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1967 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1968 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1969 		},
1970 
1971 		{
1972 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1973 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1974 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1975 			0,
1976 		},
1977 
1978 		{
1979 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1980 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1981 			FREQ2FBIN(2472, 1),
1982 			0,
1983 		},
1984 
1985 		{
1986 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1987 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1988 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1989 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1990 		},
1991 
1992 		{
1993 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1994 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1995 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1996 		},
1997 
1998 		{
1999 			/* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2000 			/* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2001 			/* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2002 			0
2003 		},
2004 
2005 		{
2006 			/* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2007 			/* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2008 			/* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2009 			0
2010 		},
2011 
2012 		{
2013 			/* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2014 			/* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2015 			/* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2016 			/* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2017 		}
2018 	},
2019 	.ctlPowerData_2G = {
2020 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2021 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2022 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2023 
2024 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2025 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2026 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2027 
2028 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2029 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2030 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2031 
2032 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2033 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2034 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2035 	},
2036 	.modalHeader5G = {
2037 		/* 4 idle,t1,t2,b (4 bits per setting) */
2038 		.antCtrlCommon = LE32(0x110),
2039 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2040 		.antCtrlCommon2 = LE32(0x22222),
2041 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2042 		.antCtrlChain = {
2043 			LE16(0x0), LE16(0x0), LE16(0x0),
2044 		},
2045 		/* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2046 		.xatten1DB = {0x13, 0x19, 0x17},
2047 
2048 		/*
2049 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2050 		 * for merlin (0xa20c/b20c 16:12
2051 		 */
2052 		.xatten1Margin = {0x19, 0x19, 0x19},
2053 		.tempSlope = 70,
2054 		.voltSlope = 15,
2055 		/* spurChans spur channels in usual fbin coding format */
2056 		.spurChans = {0, 0, 0, 0, 0},
2057 		/* noiseFloorThreshch check if the register is per chain */
2058 		.noiseFloorThreshCh = {-1, 0, 0},
2059 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2060 		.quick_drop = 0,
2061 		.xpaBiasLvl = 0,
2062 		.txFrameToDataStart = 0x0e,
2063 		.txFrameToPaOn = 0x0e,
2064 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2065 		.antennaGain = 0,
2066 		.switchSettling = 0x2d,
2067 		.adcDesiredSize = -30,
2068 		.txEndToXpaOff = 0,
2069 		.txEndToRxOn = 0x2,
2070 		.txFrameToXpaOn = 0xe,
2071 		.thresh62 = 28,
2072 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2073 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2074 		.switchcomspdt = 0,
2075 		.xlna_bias_strength = 0,
2076 		.futureModal = {
2077 			0, 0, 0, 0, 0, 0, 0,
2078 		},
2079 	},
2080 	.base_ext2 = {
2081 		.tempSlopeLow = 72,
2082 		.tempSlopeHigh = 105,
2083 		.xatten1DBLow = {0x10, 0x14, 0x10},
2084 		.xatten1MarginLow = {0x19, 0x19 , 0x19},
2085 		.xatten1DBHigh = {0x1d, 0x20, 0x24},
2086 		.xatten1MarginHigh = {0x10, 0x10, 0x10}
2087 	},
2088 	.calFreqPier5G = {
2089 		FREQ2FBIN(5180, 0),
2090 		FREQ2FBIN(5220, 0),
2091 		FREQ2FBIN(5320, 0),
2092 		FREQ2FBIN(5400, 0),
2093 		FREQ2FBIN(5500, 0),
2094 		FREQ2FBIN(5600, 0),
2095 		FREQ2FBIN(5700, 0),
2096 		FREQ2FBIN(5785, 0)
2097 	},
2098 	.calPierData5G = {
2099 		{
2100 			{0, 0, 0, 0, 0},
2101 			{0, 0, 0, 0, 0},
2102 			{0, 0, 0, 0, 0},
2103 			{0, 0, 0, 0, 0},
2104 			{0, 0, 0, 0, 0},
2105 			{0, 0, 0, 0, 0},
2106 			{0, 0, 0, 0, 0},
2107 			{0, 0, 0, 0, 0},
2108 		},
2109 		{
2110 			{0, 0, 0, 0, 0},
2111 			{0, 0, 0, 0, 0},
2112 			{0, 0, 0, 0, 0},
2113 			{0, 0, 0, 0, 0},
2114 			{0, 0, 0, 0, 0},
2115 			{0, 0, 0, 0, 0},
2116 			{0, 0, 0, 0, 0},
2117 			{0, 0, 0, 0, 0},
2118 		},
2119 		{
2120 			{0, 0, 0, 0, 0},
2121 			{0, 0, 0, 0, 0},
2122 			{0, 0, 0, 0, 0},
2123 			{0, 0, 0, 0, 0},
2124 			{0, 0, 0, 0, 0},
2125 			{0, 0, 0, 0, 0},
2126 			{0, 0, 0, 0, 0},
2127 			{0, 0, 0, 0, 0},
2128 		},
2129 
2130 	},
2131 	.calTarget_freqbin_5G = {
2132 		FREQ2FBIN(5180, 0),
2133 		FREQ2FBIN(5220, 0),
2134 		FREQ2FBIN(5320, 0),
2135 		FREQ2FBIN(5400, 0),
2136 		FREQ2FBIN(5500, 0),
2137 		FREQ2FBIN(5600, 0),
2138 		FREQ2FBIN(5725, 0),
2139 		FREQ2FBIN(5825, 0)
2140 	},
2141 	.calTarget_freqbin_5GHT20 = {
2142 		FREQ2FBIN(5180, 0),
2143 		FREQ2FBIN(5220, 0),
2144 		FREQ2FBIN(5320, 0),
2145 		FREQ2FBIN(5400, 0),
2146 		FREQ2FBIN(5500, 0),
2147 		FREQ2FBIN(5600, 0),
2148 		FREQ2FBIN(5725, 0),
2149 		FREQ2FBIN(5825, 0)
2150 	},
2151 	.calTarget_freqbin_5GHT40 = {
2152 		FREQ2FBIN(5180, 0),
2153 		FREQ2FBIN(5220, 0),
2154 		FREQ2FBIN(5320, 0),
2155 		FREQ2FBIN(5400, 0),
2156 		FREQ2FBIN(5500, 0),
2157 		FREQ2FBIN(5600, 0),
2158 		FREQ2FBIN(5725, 0),
2159 		FREQ2FBIN(5825, 0)
2160 	},
2161 	.calTargetPower5G = {
2162 		/* 6-24,36,48,54 */
2163 		{ {32, 32, 28, 26} },
2164 		{ {32, 32, 28, 26} },
2165 		{ {32, 32, 28, 26} },
2166 		{ {32, 32, 26, 24} },
2167 		{ {32, 32, 26, 24} },
2168 		{ {32, 32, 24, 22} },
2169 		{ {30, 30, 24, 22} },
2170 		{ {30, 30, 24, 22} },
2171 	},
2172 	.calTargetPower5GHT20 = {
2173 		/*
2174 		 * 0_8_16,1-3_9-11_17-19,
2175 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2176 		 */
2177 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2178 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2179 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2180 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2181 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2182 		{ {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2183 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2184 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2185 	},
2186 	.calTargetPower5GHT40 =  {
2187 		/*
2188 		 * 0_8_16,1-3_9-11_17-19,
2189 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2190 		 */
2191 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2192 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2193 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2194 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2195 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2196 		{ {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2197 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2198 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2199 	},
2200 	.ctlIndex_5G =  {
2201 		0x10, 0x16, 0x18, 0x40, 0x46,
2202 		0x48, 0x30, 0x36, 0x38
2203 	},
2204 	.ctl_freqbin_5G =  {
2205 		{
2206 			/* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2207 			/* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2208 			/* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2209 			/* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2210 			/* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2211 			/* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2212 			/* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2213 			/* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2214 		},
2215 		{
2216 			/* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2217 			/* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2218 			/* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2219 			/* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2220 			/* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2221 			/* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2222 			/* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2223 			/* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2224 		},
2225 
2226 		{
2227 			/* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2228 			/* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2229 			/* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2230 			/* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2231 			/* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2232 			/* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2233 			/* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2234 			/* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2235 		},
2236 
2237 		{
2238 			/* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2239 			/* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2240 			/* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2241 			/* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2242 			/* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2243 			/* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2244 			/* Data[3].ctledges[6].bchannel */ 0xFF,
2245 			/* Data[3].ctledges[7].bchannel */ 0xFF,
2246 		},
2247 
2248 		{
2249 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2250 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2251 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2252 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2253 			/* Data[4].ctledges[4].bchannel */ 0xFF,
2254 			/* Data[4].ctledges[5].bchannel */ 0xFF,
2255 			/* Data[4].ctledges[6].bchannel */ 0xFF,
2256 			/* Data[4].ctledges[7].bchannel */ 0xFF,
2257 		},
2258 
2259 		{
2260 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2261 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2262 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2263 			/* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2264 			/* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2265 			/* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2266 			/* Data[5].ctledges[6].bchannel */ 0xFF,
2267 			/* Data[5].ctledges[7].bchannel */ 0xFF
2268 		},
2269 
2270 		{
2271 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2272 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2273 			/* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2274 			/* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2275 			/* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2276 			/* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2277 			/* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2278 			/* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2279 		},
2280 
2281 		{
2282 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2283 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2284 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2285 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2286 			/* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2287 			/* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2288 			/* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2289 			/* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2290 		},
2291 
2292 		{
2293 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2294 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2295 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2296 			/* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2297 			/* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2298 			/* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2299 			/* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2300 			/* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2301 		}
2302 	},
2303 	.ctlPowerData_5G = {
2304 		{
2305 			{
2306 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2307 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2308 			}
2309 		},
2310 		{
2311 			{
2312 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2313 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2314 			}
2315 		},
2316 		{
2317 			{
2318 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2319 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2320 			}
2321 		},
2322 		{
2323 			{
2324 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2325 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2326 			}
2327 		},
2328 		{
2329 			{
2330 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2331 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2332 			}
2333 		},
2334 		{
2335 			{
2336 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2337 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2338 			}
2339 		},
2340 		{
2341 			{
2342 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2343 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2344 			}
2345 		},
2346 		{
2347 			{
2348 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2349 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2350 			}
2351 		},
2352 		{
2353 			{
2354 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2355 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2356 			}
2357 		},
2358 	}
2359 };
2360 
2361 static const struct ar9300_eeprom ar9300_h116 = {
2362 	.eepromVersion = 2,
2363 	.templateVersion = 4,
2364 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2365 	.custData = {"h116-041-f0000"},
2366 	.baseEepHeader = {
2367 		.regDmn = { LE16(0), LE16(0x1f) },
2368 		.txrxMask =  0x33, /* 4 bits tx and 4 bits rx */
2369 		.opCapFlags = {
2370 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2371 			.eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
2372 		},
2373 		.rfSilent = 0,
2374 		.blueToothOptions = 0,
2375 		.deviceCap = 0,
2376 		.deviceType = 5, /* takes lower byte in eeprom location */
2377 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2378 		.params_for_tuning_caps = {0, 0},
2379 		.featureEnable = 0x0d,
2380 		 /*
2381 		  * bit0 - enable tx temp comp - disabled
2382 		  * bit1 - enable tx volt comp - disabled
2383 		  * bit2 - enable fastClock - enabled
2384 		  * bit3 - enable doubling - enabled
2385 		  * bit4 - enable internal regulator - disabled
2386 		  * bit5 - enable pa predistortion - disabled
2387 		  */
2388 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
2389 		.eepromWriteEnableGpio = 6,
2390 		.wlanDisableGpio = 0,
2391 		.wlanLedGpio = 8,
2392 		.rxBandSelectGpio = 0xff,
2393 		.txrxgain = 0x10,
2394 		.swreg = 0,
2395 	 },
2396 	.modalHeader2G = {
2397 	/* ar9300_modal_eep_header  2g */
2398 		/* 4 idle,t1,t2,b(4 bits per setting) */
2399 		.antCtrlCommon = LE32(0x110),
2400 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2401 		.antCtrlCommon2 = LE32(0x44444),
2402 
2403 		/*
2404 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2405 		 * rx1, rx12, b (2 bits each)
2406 		 */
2407 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2408 
2409 		/*
2410 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
2411 		 * for ar9280 (0xa20c/b20c 5:0)
2412 		 */
2413 		.xatten1DB = {0x1f, 0x1f, 0x1f},
2414 
2415 		/*
2416 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2417 		 * for ar9280 (0xa20c/b20c 16:12
2418 		 */
2419 		.xatten1Margin = {0x12, 0x12, 0x12},
2420 		.tempSlope = 25,
2421 		.voltSlope = 0,
2422 
2423 		/*
2424 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2425 		 * channels in usual fbin coding format
2426 		 */
2427 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2428 
2429 		/*
2430 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2431 		 * if the register is per chain
2432 		 */
2433 		.noiseFloorThreshCh = {-1, 0, 0},
2434 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2435 		.quick_drop = 0,
2436 		.xpaBiasLvl = 0,
2437 		.txFrameToDataStart = 0x0e,
2438 		.txFrameToPaOn = 0x0e,
2439 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2440 		.antennaGain = 0,
2441 		.switchSettling = 0x2c,
2442 		.adcDesiredSize = -30,
2443 		.txEndToXpaOff = 0,
2444 		.txEndToRxOn = 0x2,
2445 		.txFrameToXpaOn = 0xe,
2446 		.thresh62 = 28,
2447 		.papdRateMaskHt20 = LE32(0x0c80C080),
2448 		.papdRateMaskHt40 = LE32(0x0080C080),
2449 		.switchcomspdt = 0,
2450 		.xlna_bias_strength = 0,
2451 		.futureModal = {
2452 			0, 0, 0, 0, 0, 0, 0,
2453 		},
2454 	 },
2455 	 .base_ext1 = {
2456 		.ant_div_control = 0,
2457 		.future = {0, 0},
2458 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
2459 	 },
2460 	.calFreqPier2G = {
2461 		FREQ2FBIN(2412, 1),
2462 		FREQ2FBIN(2437, 1),
2463 		FREQ2FBIN(2462, 1),
2464 	 },
2465 	/* ar9300_cal_data_per_freq_op_loop 2g */
2466 	.calPierData2G = {
2467 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2468 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2469 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2470 	 },
2471 	.calTarget_freqbin_Cck = {
2472 		FREQ2FBIN(2412, 1),
2473 		FREQ2FBIN(2472, 1),
2474 	 },
2475 	.calTarget_freqbin_2G = {
2476 		FREQ2FBIN(2412, 1),
2477 		FREQ2FBIN(2437, 1),
2478 		FREQ2FBIN(2472, 1)
2479 	 },
2480 	.calTarget_freqbin_2GHT20 = {
2481 		FREQ2FBIN(2412, 1),
2482 		FREQ2FBIN(2437, 1),
2483 		FREQ2FBIN(2472, 1)
2484 	 },
2485 	.calTarget_freqbin_2GHT40 = {
2486 		FREQ2FBIN(2412, 1),
2487 		FREQ2FBIN(2437, 1),
2488 		FREQ2FBIN(2472, 1)
2489 	 },
2490 	.calTargetPowerCck = {
2491 		 /* 1L-5L,5S,11L,11S */
2492 		 { {34, 34, 34, 34} },
2493 		 { {34, 34, 34, 34} },
2494 	},
2495 	.calTargetPower2G = {
2496 		 /* 6-24,36,48,54 */
2497 		 { {34, 34, 32, 32} },
2498 		 { {34, 34, 32, 32} },
2499 		 { {34, 34, 32, 32} },
2500 	},
2501 	.calTargetPower2GHT20 = {
2502 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2503 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2504 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2505 	},
2506 	.calTargetPower2GHT40 = {
2507 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2508 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2509 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2510 	},
2511 	.ctlIndex_2G =  {
2512 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2513 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2514 	},
2515 	.ctl_freqbin_2G = {
2516 		{
2517 			FREQ2FBIN(2412, 1),
2518 			FREQ2FBIN(2417, 1),
2519 			FREQ2FBIN(2457, 1),
2520 			FREQ2FBIN(2462, 1)
2521 		},
2522 		{
2523 			FREQ2FBIN(2412, 1),
2524 			FREQ2FBIN(2417, 1),
2525 			FREQ2FBIN(2462, 1),
2526 			0xFF,
2527 		},
2528 
2529 		{
2530 			FREQ2FBIN(2412, 1),
2531 			FREQ2FBIN(2417, 1),
2532 			FREQ2FBIN(2462, 1),
2533 			0xFF,
2534 		},
2535 		{
2536 			FREQ2FBIN(2422, 1),
2537 			FREQ2FBIN(2427, 1),
2538 			FREQ2FBIN(2447, 1),
2539 			FREQ2FBIN(2452, 1)
2540 		},
2541 
2542 		{
2543 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2544 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2545 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2546 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2547 		},
2548 
2549 		{
2550 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2551 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2552 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2553 			0,
2554 		},
2555 
2556 		{
2557 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2558 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2559 			FREQ2FBIN(2472, 1),
2560 			0,
2561 		},
2562 
2563 		{
2564 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2565 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2566 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2567 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2568 		},
2569 
2570 		{
2571 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2572 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2573 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2574 		},
2575 
2576 		{
2577 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2578 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2579 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2580 			0
2581 		},
2582 
2583 		{
2584 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2585 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2586 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2587 			0
2588 		},
2589 
2590 		{
2591 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2592 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2593 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2594 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2595 		}
2596 	 },
2597 	.ctlPowerData_2G = {
2598 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2599 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2600 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2601 
2602 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2603 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2604 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2605 
2606 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2607 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2608 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2609 
2610 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2611 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2612 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2613 	 },
2614 	.modalHeader5G = {
2615 		/* 4 idle,t1,t2,b (4 bits per setting) */
2616 		.antCtrlCommon = LE32(0x220),
2617 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2618 		.antCtrlCommon2 = LE32(0x44444),
2619 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2620 		.antCtrlChain = {
2621 			LE16(0x150), LE16(0x150), LE16(0x150),
2622 		},
2623 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2624 		.xatten1DB = {0x19, 0x19, 0x19},
2625 
2626 		/*
2627 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2628 		 * for merlin (0xa20c/b20c 16:12
2629 		 */
2630 		.xatten1Margin = {0x14, 0x14, 0x14},
2631 		.tempSlope = 70,
2632 		.voltSlope = 0,
2633 		/* spurChans spur channels in usual fbin coding format */
2634 		.spurChans = {0, 0, 0, 0, 0},
2635 		/* noiseFloorThreshCh Check if the register is per chain */
2636 		.noiseFloorThreshCh = {-1, 0, 0},
2637 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2638 		.quick_drop = 0,
2639 		.xpaBiasLvl = 0,
2640 		.txFrameToDataStart = 0x0e,
2641 		.txFrameToPaOn = 0x0e,
2642 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2643 		.antennaGain = 0,
2644 		.switchSettling = 0x2d,
2645 		.adcDesiredSize = -30,
2646 		.txEndToXpaOff = 0,
2647 		.txEndToRxOn = 0x2,
2648 		.txFrameToXpaOn = 0xe,
2649 		.thresh62 = 28,
2650 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2651 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2652 		.switchcomspdt = 0,
2653 		.xlna_bias_strength = 0,
2654 		.futureModal = {
2655 			0, 0, 0, 0, 0, 0, 0,
2656 		},
2657 	 },
2658 	.base_ext2 = {
2659 		.tempSlopeLow = 35,
2660 		.tempSlopeHigh = 50,
2661 		.xatten1DBLow = {0, 0, 0},
2662 		.xatten1MarginLow = {0, 0, 0},
2663 		.xatten1DBHigh = {0, 0, 0},
2664 		.xatten1MarginHigh = {0, 0, 0}
2665 	 },
2666 	.calFreqPier5G = {
2667 		FREQ2FBIN(5160, 0),
2668 		FREQ2FBIN(5220, 0),
2669 		FREQ2FBIN(5320, 0),
2670 		FREQ2FBIN(5400, 0),
2671 		FREQ2FBIN(5500, 0),
2672 		FREQ2FBIN(5600, 0),
2673 		FREQ2FBIN(5700, 0),
2674 		FREQ2FBIN(5785, 0)
2675 	},
2676 	.calPierData5G = {
2677 			{
2678 				{0, 0, 0, 0, 0},
2679 				{0, 0, 0, 0, 0},
2680 				{0, 0, 0, 0, 0},
2681 				{0, 0, 0, 0, 0},
2682 				{0, 0, 0, 0, 0},
2683 				{0, 0, 0, 0, 0},
2684 				{0, 0, 0, 0, 0},
2685 				{0, 0, 0, 0, 0},
2686 			},
2687 			{
2688 				{0, 0, 0, 0, 0},
2689 				{0, 0, 0, 0, 0},
2690 				{0, 0, 0, 0, 0},
2691 				{0, 0, 0, 0, 0},
2692 				{0, 0, 0, 0, 0},
2693 				{0, 0, 0, 0, 0},
2694 				{0, 0, 0, 0, 0},
2695 				{0, 0, 0, 0, 0},
2696 			},
2697 			{
2698 				{0, 0, 0, 0, 0},
2699 				{0, 0, 0, 0, 0},
2700 				{0, 0, 0, 0, 0},
2701 				{0, 0, 0, 0, 0},
2702 				{0, 0, 0, 0, 0},
2703 				{0, 0, 0, 0, 0},
2704 				{0, 0, 0, 0, 0},
2705 				{0, 0, 0, 0, 0},
2706 			},
2707 
2708 	},
2709 	.calTarget_freqbin_5G = {
2710 		FREQ2FBIN(5180, 0),
2711 		FREQ2FBIN(5240, 0),
2712 		FREQ2FBIN(5320, 0),
2713 		FREQ2FBIN(5400, 0),
2714 		FREQ2FBIN(5500, 0),
2715 		FREQ2FBIN(5600, 0),
2716 		FREQ2FBIN(5700, 0),
2717 		FREQ2FBIN(5825, 0)
2718 	},
2719 	.calTarget_freqbin_5GHT20 = {
2720 		FREQ2FBIN(5180, 0),
2721 		FREQ2FBIN(5240, 0),
2722 		FREQ2FBIN(5320, 0),
2723 		FREQ2FBIN(5400, 0),
2724 		FREQ2FBIN(5500, 0),
2725 		FREQ2FBIN(5700, 0),
2726 		FREQ2FBIN(5745, 0),
2727 		FREQ2FBIN(5825, 0)
2728 	},
2729 	.calTarget_freqbin_5GHT40 = {
2730 		FREQ2FBIN(5180, 0),
2731 		FREQ2FBIN(5240, 0),
2732 		FREQ2FBIN(5320, 0),
2733 		FREQ2FBIN(5400, 0),
2734 		FREQ2FBIN(5500, 0),
2735 		FREQ2FBIN(5700, 0),
2736 		FREQ2FBIN(5745, 0),
2737 		FREQ2FBIN(5825, 0)
2738 	 },
2739 	.calTargetPower5G = {
2740 		/* 6-24,36,48,54 */
2741 		{ {30, 30, 28, 24} },
2742 		{ {30, 30, 28, 24} },
2743 		{ {30, 30, 28, 24} },
2744 		{ {30, 30, 28, 24} },
2745 		{ {30, 30, 28, 24} },
2746 		{ {30, 30, 28, 24} },
2747 		{ {30, 30, 28, 24} },
2748 		{ {30, 30, 28, 24} },
2749 	 },
2750 	.calTargetPower5GHT20 = {
2751 		/*
2752 		 * 0_8_16,1-3_9-11_17-19,
2753 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2754 		 */
2755 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2756 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2757 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2758 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2759 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2760 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2761 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2762 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2763 	 },
2764 	.calTargetPower5GHT40 =  {
2765 		/*
2766 		 * 0_8_16,1-3_9-11_17-19,
2767 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2768 		 */
2769 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2770 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2771 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2772 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2773 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2774 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2775 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2776 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2777 	 },
2778 	.ctlIndex_5G =  {
2779 		0x10, 0x16, 0x18, 0x40, 0x46,
2780 		0x48, 0x30, 0x36, 0x38
2781 	},
2782 	.ctl_freqbin_5G =  {
2783 		{
2784 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2785 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2786 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2787 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2788 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2789 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2790 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2791 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2792 		},
2793 		{
2794 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2795 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2796 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2797 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2798 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2799 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2800 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2801 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2802 		},
2803 
2804 		{
2805 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2806 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2807 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2808 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2809 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2810 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2811 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2812 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2813 		},
2814 
2815 		{
2816 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2817 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2818 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2819 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2820 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2821 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2822 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
2823 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
2824 		},
2825 
2826 		{
2827 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2828 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2829 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2830 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2831 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
2832 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
2833 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
2834 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
2835 		},
2836 
2837 		{
2838 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2839 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2840 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2841 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2842 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2843 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2844 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
2845 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
2846 		},
2847 
2848 		{
2849 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2850 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2851 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2852 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2853 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2854 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2855 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2856 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2857 		},
2858 
2859 		{
2860 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2861 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2862 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2863 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2864 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2865 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2866 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2867 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2868 		},
2869 
2870 		{
2871 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2872 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2873 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2874 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2875 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2876 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2877 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2878 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2879 		}
2880 	 },
2881 	.ctlPowerData_5G = {
2882 		{
2883 			{
2884 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2885 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2886 			}
2887 		},
2888 		{
2889 			{
2890 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2891 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2892 			}
2893 		},
2894 		{
2895 			{
2896 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2897 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2898 			}
2899 		},
2900 		{
2901 			{
2902 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2903 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2904 			}
2905 		},
2906 		{
2907 			{
2908 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2909 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2910 			}
2911 		},
2912 		{
2913 			{
2914 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2915 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2916 			}
2917 		},
2918 		{
2919 			{
2920 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2921 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2922 			}
2923 		},
2924 		{
2925 			{
2926 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2927 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2928 			}
2929 		},
2930 		{
2931 			{
2932 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2933 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2934 			}
2935 		},
2936 	 }
2937 };
2938 
2939 
2940 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2941 	&ar9300_default,
2942 	&ar9300_x112,
2943 	&ar9300_h116,
2944 	&ar9300_h112,
2945 	&ar9300_x113,
2946 };
2947 
2948 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2949 {
2950 	int it;
2951 
2952 	for (it = 0; it < ARRAY_SIZE(ar9300_eep_templates); it++)
2953 		if (ar9300_eep_templates[it]->templateVersion == id)
2954 			return ar9300_eep_templates[it];
2955 	return NULL;
2956 }
2957 
2958 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2959 {
2960 	return 0;
2961 }
2962 
2963 static int interpolate(int x, int xa, int xb, int ya, int yb)
2964 {
2965 	int bf, factor, plus;
2966 
2967 	bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2968 	factor = bf / 2;
2969 	plus = bf % 2;
2970 	return ya + factor + plus;
2971 }
2972 
2973 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
2974 				      enum eeprom_param param)
2975 {
2976 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2977 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
2978 
2979 	switch (param) {
2980 	case EEP_MAC_LSW:
2981 		return get_unaligned_be16(eep->macAddr);
2982 	case EEP_MAC_MID:
2983 		return get_unaligned_be16(eep->macAddr + 2);
2984 	case EEP_MAC_MSW:
2985 		return get_unaligned_be16(eep->macAddr + 4);
2986 	case EEP_REG_0:
2987 		return le16_to_cpu(pBase->regDmn[0]);
2988 	case EEP_OP_CAP:
2989 		return pBase->deviceCap;
2990 	case EEP_OP_MODE:
2991 		return pBase->opCapFlags.opFlags;
2992 	case EEP_RF_SILENT:
2993 		return pBase->rfSilent;
2994 	case EEP_TX_MASK:
2995 		return (pBase->txrxMask >> 4) & 0xf;
2996 	case EEP_RX_MASK:
2997 		return pBase->txrxMask & 0xf;
2998 	case EEP_PAPRD:
2999 		return !!(pBase->featureEnable & BIT(5));
3000 	case EEP_CHAIN_MASK_REDUCE:
3001 		return (pBase->miscConfiguration >> 0x3) & 0x1;
3002 	case EEP_ANT_DIV_CTL1:
3003 		if (AR_SREV_9565(ah))
3004 			return AR9300_EEP_ANTDIV_CONTROL_DEFAULT_VALUE;
3005 		else
3006 			return eep->base_ext1.ant_div_control;
3007 	case EEP_ANTENNA_GAIN_5G:
3008 		return eep->modalHeader5G.antennaGain;
3009 	case EEP_ANTENNA_GAIN_2G:
3010 		return eep->modalHeader2G.antennaGain;
3011 	default:
3012 		return 0;
3013 	}
3014 }
3015 
3016 static bool ar9300_eeprom_read_byte(struct ath_hw *ah, int address,
3017 				    u8 *buffer)
3018 {
3019 	u16 val;
3020 
3021 	if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
3022 		return false;
3023 
3024 	*buffer = (val >> (8 * (address % 2))) & 0xff;
3025 	return true;
3026 }
3027 
3028 static bool ar9300_eeprom_read_word(struct ath_hw *ah, int address,
3029 				    u8 *buffer)
3030 {
3031 	u16 val;
3032 
3033 	if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
3034 		return false;
3035 
3036 	buffer[0] = val >> 8;
3037 	buffer[1] = val & 0xff;
3038 
3039 	return true;
3040 }
3041 
3042 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3043 			       int count)
3044 {
3045 	struct ath_common *common = ath9k_hw_common(ah);
3046 	int i;
3047 
3048 	if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3049 		ath_dbg(common, EEPROM, "eeprom address not in range\n");
3050 		return false;
3051 	}
3052 
3053 	/*
3054 	 * Since we're reading the bytes in reverse order from a little-endian
3055 	 * word stream, an even address means we only use the lower half of
3056 	 * the 16-bit word at that address
3057 	 */
3058 	if (address % 2 == 0) {
3059 		if (!ar9300_eeprom_read_byte(ah, address--, buffer++))
3060 			goto error;
3061 
3062 		count--;
3063 	}
3064 
3065 	for (i = 0; i < count / 2; i++) {
3066 		if (!ar9300_eeprom_read_word(ah, address, buffer))
3067 			goto error;
3068 
3069 		address -= 2;
3070 		buffer += 2;
3071 	}
3072 
3073 	if (count % 2)
3074 		if (!ar9300_eeprom_read_byte(ah, address, buffer))
3075 			goto error;
3076 
3077 	return true;
3078 
3079 error:
3080 	ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
3081 		address);
3082 	return false;
3083 }
3084 
3085 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3086 {
3087 	REG_READ(ah, AR9300_OTP_BASE(ah) + (4 * addr));
3088 
3089 	if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS(ah), AR9300_OTP_STATUS_TYPE,
3090 			   AR9300_OTP_STATUS_VALID, 1000))
3091 		return false;
3092 
3093 	*data = REG_READ(ah, AR9300_OTP_READ_DATA(ah));
3094 	return true;
3095 }
3096 
3097 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3098 			    int count)
3099 {
3100 	u32 data;
3101 	int i;
3102 
3103 	for (i = 0; i < count; i++) {
3104 		int offset = 8 * ((address - i) % 4);
3105 		if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3106 			return false;
3107 
3108 		buffer[i] = (data >> offset) & 0xff;
3109 	}
3110 
3111 	return true;
3112 }
3113 
3114 
3115 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3116 				   int *length, int *major, int *minor)
3117 {
3118 	unsigned long value[4];
3119 
3120 	value[0] = best[0];
3121 	value[1] = best[1];
3122 	value[2] = best[2];
3123 	value[3] = best[3];
3124 	*code = ((value[0] >> 5) & 0x0007);
3125 	*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3126 	*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3127 	*major = (value[2] & 0x000f);
3128 	*minor = (value[3] & 0x00ff);
3129 }
3130 
3131 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3132 {
3133 	int it, checksum = 0;
3134 
3135 	for (it = 0; it < dsize; it++) {
3136 		checksum += data[it];
3137 		checksum &= 0xffff;
3138 	}
3139 
3140 	return checksum;
3141 }
3142 
3143 static bool ar9300_uncompress_block(struct ath_hw *ah,
3144 				    u8 *mptr,
3145 				    int mdataSize,
3146 				    u8 *block,
3147 				    int size)
3148 {
3149 	int it;
3150 	int spot;
3151 	int offset;
3152 	int length;
3153 	struct ath_common *common = ath9k_hw_common(ah);
3154 
3155 	spot = 0;
3156 
3157 	for (it = 0; it < size; it += (length+2)) {
3158 		offset = block[it];
3159 		offset &= 0xff;
3160 		spot += offset;
3161 		length = block[it+1];
3162 		length &= 0xff;
3163 
3164 		if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3165 			ath_dbg(common, EEPROM,
3166 				"Restore at %d: spot=%d offset=%d length=%d\n",
3167 				it, spot, offset, length);
3168 			memcpy(&mptr[spot], &block[it+2], length);
3169 			spot += length;
3170 		} else if (length > 0) {
3171 			ath_dbg(common, EEPROM,
3172 				"Bad restore at %d: spot=%d offset=%d length=%d\n",
3173 				it, spot, offset, length);
3174 			return false;
3175 		}
3176 	}
3177 	return true;
3178 }
3179 
3180 static int ar9300_compress_decision(struct ath_hw *ah,
3181 				    int it,
3182 				    int code,
3183 				    int reference,
3184 				    u8 *mptr,
3185 				    u8 *word, int length, int mdata_size)
3186 {
3187 	struct ath_common *common = ath9k_hw_common(ah);
3188 	const struct ar9300_eeprom *eep = NULL;
3189 
3190 	switch (code) {
3191 	case _CompressNone:
3192 		if (length != mdata_size) {
3193 			ath_dbg(common, EEPROM,
3194 				"EEPROM structure size mismatch memory=%d eeprom=%d\n",
3195 				mdata_size, length);
3196 			return -1;
3197 		}
3198 		memcpy(mptr, word + COMP_HDR_LEN, length);
3199 		ath_dbg(common, EEPROM,
3200 			"restored eeprom %d: uncompressed, length %d\n",
3201 			it, length);
3202 		break;
3203 	case _CompressBlock:
3204 		if (reference != 0) {
3205 			eep = ar9003_eeprom_struct_find_by_id(reference);
3206 			if (eep == NULL) {
3207 				ath_dbg(common, EEPROM,
3208 					"can't find reference eeprom struct %d\n",
3209 					reference);
3210 				return -1;
3211 			}
3212 			memcpy(mptr, eep, mdata_size);
3213 		}
3214 		ath_dbg(common, EEPROM,
3215 			"restore eeprom %d: block, reference %d, length %d\n",
3216 			it, reference, length);
3217 		ar9300_uncompress_block(ah, mptr, mdata_size,
3218 					(word + COMP_HDR_LEN), length);
3219 		break;
3220 	default:
3221 		ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
3222 		return -1;
3223 	}
3224 	return 0;
3225 }
3226 
3227 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3228 			       int count);
3229 
3230 static bool ar9300_check_header(void *data)
3231 {
3232 	u32 *word = data;
3233 	return !(*word == 0 || *word == ~0);
3234 }
3235 
3236 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3237 				       int base_addr)
3238 {
3239 	u8 header[4];
3240 
3241 	if (!read(ah, base_addr, header, 4))
3242 		return false;
3243 
3244 	return ar9300_check_header(header);
3245 }
3246 
3247 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3248 				       int mdata_size)
3249 {
3250 	u16 *data = (u16 *) mptr;
3251 	int i;
3252 
3253 	for (i = 0; i < mdata_size / 2; i++, data++)
3254 		if (!ath9k_hw_nvram_read(ah, i, data))
3255 			return -EIO;
3256 
3257 	return 0;
3258 }
3259 /*
3260  * Read the configuration data from the eeprom.
3261  * The data can be put in any specified memory buffer.
3262  *
3263  * Returns -1 on error.
3264  * Returns address of next memory location on success.
3265  */
3266 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3267 					  u8 *mptr, int mdata_size)
3268 {
3269 #define MDEFAULT 15
3270 #define MSTATE 100
3271 	int cptr;
3272 	u8 *word;
3273 	int code;
3274 	int reference, length, major, minor;
3275 	int osize;
3276 	int it;
3277 	u16 checksum, mchecksum;
3278 	struct ath_common *common = ath9k_hw_common(ah);
3279 	struct ar9300_eeprom *eep;
3280 	eeprom_read_op read;
3281 
3282 	if (ath9k_hw_use_flash(ah)) {
3283 		u8 txrx;
3284 
3285 		if (ar9300_eeprom_restore_flash(ah, mptr, mdata_size))
3286 			return -EIO;
3287 
3288 		/* check if eeprom contains valid data */
3289 		eep = (struct ar9300_eeprom *) mptr;
3290 		txrx = eep->baseEepHeader.txrxMask;
3291 		if (txrx != 0 && txrx != 0xff)
3292 			return 0;
3293 	}
3294 
3295 	word = kzalloc(2048, GFP_KERNEL);
3296 	if (!word)
3297 		return -ENOMEM;
3298 
3299 	memcpy(mptr, &ar9300_default, mdata_size);
3300 
3301 	read = ar9300_read_eeprom;
3302 	if (AR_SREV_9485(ah))
3303 		cptr = AR9300_BASE_ADDR_4K;
3304 	else if (AR_SREV_9330(ah))
3305 		cptr = AR9300_BASE_ADDR_512;
3306 	else
3307 		cptr = AR9300_BASE_ADDR;
3308 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3309 		cptr);
3310 	if (ar9300_check_eeprom_header(ah, read, cptr))
3311 		goto found;
3312 
3313 	cptr = AR9300_BASE_ADDR_4K;
3314 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3315 		cptr);
3316 	if (ar9300_check_eeprom_header(ah, read, cptr))
3317 		goto found;
3318 
3319 	cptr = AR9300_BASE_ADDR_512;
3320 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3321 		cptr);
3322 	if (ar9300_check_eeprom_header(ah, read, cptr))
3323 		goto found;
3324 
3325 	read = ar9300_read_otp;
3326 	cptr = AR9300_BASE_ADDR;
3327 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3328 	if (ar9300_check_eeprom_header(ah, read, cptr))
3329 		goto found;
3330 
3331 	cptr = AR9300_BASE_ADDR_512;
3332 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3333 	if (ar9300_check_eeprom_header(ah, read, cptr))
3334 		goto found;
3335 
3336 	goto fail;
3337 
3338 found:
3339 	ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
3340 
3341 	for (it = 0; it < MSTATE; it++) {
3342 		if (!read(ah, cptr, word, COMP_HDR_LEN))
3343 			goto fail;
3344 
3345 		if (!ar9300_check_header(word))
3346 			break;
3347 
3348 		ar9300_comp_hdr_unpack(word, &code, &reference,
3349 				       &length, &major, &minor);
3350 		ath_dbg(common, EEPROM,
3351 			"Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3352 			cptr, code, reference, length, major, minor);
3353 		if ((!AR_SREV_9485(ah) && length >= 1024) ||
3354 		    (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485) ||
3355 		    (length > cptr)) {
3356 			ath_dbg(common, EEPROM, "Skipping bad header\n");
3357 			cptr -= COMP_HDR_LEN;
3358 			continue;
3359 		}
3360 
3361 		osize = length;
3362 		read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3363 		checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3364 		mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3365 		ath_dbg(common, EEPROM, "checksum %x %x\n",
3366 			checksum, mchecksum);
3367 		if (checksum == mchecksum) {
3368 			ar9300_compress_decision(ah, it, code, reference, mptr,
3369 						 word, length, mdata_size);
3370 		} else {
3371 			ath_dbg(common, EEPROM,
3372 				"skipping block with bad checksum\n");
3373 		}
3374 		cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3375 	}
3376 
3377 	kfree(word);
3378 	return cptr;
3379 
3380 fail:
3381 	kfree(word);
3382 	return -1;
3383 }
3384 
3385 /*
3386  * Restore the configuration structure by reading the eeprom.
3387  * This function destroys any existing in-memory structure
3388  * content.
3389  */
3390 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3391 {
3392 	u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3393 
3394 	if (ar9300_eeprom_restore_internal(ah, mptr,
3395 			sizeof(struct ar9300_eeprom)) < 0)
3396 		return false;
3397 
3398 	return true;
3399 }
3400 
3401 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
3402 static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
3403 				    struct ar9300_modal_eep_header *modal_hdr)
3404 {
3405 	PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
3406 	PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
3407 	PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
3408 	PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
3409 	PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
3410 	PR_EEP("Ant. Gain", modal_hdr->antennaGain);
3411 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
3412 	PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
3413 	PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
3414 	PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
3415 	PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
3416 	PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
3417 	PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
3418 	PR_EEP("Temp Slope", modal_hdr->tempSlope);
3419 	PR_EEP("Volt Slope", modal_hdr->voltSlope);
3420 	PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
3421 	PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
3422 	PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
3423 	PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
3424 	PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
3425 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
3426 	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
3427 	PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3428 	PR_EEP("Quick Drop", modal_hdr->quick_drop);
3429 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
3430 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
3431 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
3432 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
3433 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
3434 	PR_EEP("txClip", modal_hdr->txClip);
3435 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
3436 
3437 	return len;
3438 }
3439 
3440 static u32 ar9003_dump_cal_data(struct ath_hw *ah, char *buf, u32 len, u32 size,
3441 				bool is_2g)
3442 {
3443 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3444 	struct ar9300_base_eep_hdr *pBase;
3445 	struct ar9300_cal_data_per_freq_op_loop *cal_pier;
3446 	int cal_pier_nr;
3447 	int freq;
3448 	int i, j;
3449 
3450 	pBase = &eep->baseEepHeader;
3451 
3452 	if (is_2g)
3453 		cal_pier_nr = AR9300_NUM_2G_CAL_PIERS;
3454 	else
3455 		cal_pier_nr = AR9300_NUM_5G_CAL_PIERS;
3456 
3457 	for (i = 0; i < AR9300_MAX_CHAINS; i++) {
3458 		if (!((pBase->txrxMask >> i) & 1))
3459 			continue;
3460 
3461 		len += scnprintf(buf + len, size - len, "Chain %d\n", i);
3462 
3463 		len += scnprintf(buf + len, size - len,
3464 			"Freq\t ref\tvolt\ttemp\tnf_cal\tnf_pow\trx_temp\n");
3465 
3466 		for (j = 0; j < cal_pier_nr; j++) {
3467 			if (is_2g) {
3468 				cal_pier = &eep->calPierData2G[i][j];
3469 				freq = 2300 + eep->calFreqPier2G[j];
3470 			} else {
3471 				cal_pier = &eep->calPierData5G[i][j];
3472 				freq = 4800 + eep->calFreqPier5G[j] * 5;
3473 			}
3474 
3475 			len += scnprintf(buf + len, size - len,
3476 				"%d\t", freq);
3477 
3478 			len += scnprintf(buf + len, size - len,
3479 				"%d\t%d\t%d\t%d\t%d\t%d\n",
3480 				cal_pier->refPower,
3481 				cal_pier->voltMeas,
3482 				cal_pier->tempMeas,
3483 				cal_pier->rxTempMeas ?
3484 				N2DBM(cal_pier->rxNoisefloorCal) : 0,
3485 				cal_pier->rxTempMeas ?
3486 				N2DBM(cal_pier->rxNoisefloorPower) : 0,
3487 				cal_pier->rxTempMeas);
3488 		}
3489 	}
3490 
3491 	return len;
3492 }
3493 
3494 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3495 				       u8 *buf, u32 len, u32 size)
3496 {
3497 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3498 	struct ar9300_base_eep_hdr *pBase;
3499 
3500 	if (!dump_base_hdr) {
3501 		len += scnprintf(buf + len, size - len,
3502 				 "%20s :\n", "2GHz modal Header");
3503 		len = ar9003_dump_modal_eeprom(buf, len, size,
3504 						&eep->modalHeader2G);
3505 
3506 		len += scnprintf(buf + len, size - len, "Calibration data\n");
3507 		len = ar9003_dump_cal_data(ah, buf, len, size, true);
3508 
3509 		len += scnprintf(buf + len, size - len,
3510 				 "%20s :\n", "5GHz modal Header");
3511 		len = ar9003_dump_modal_eeprom(buf, len, size,
3512 						&eep->modalHeader5G);
3513 
3514 		len += scnprintf(buf + len, size - len, "Calibration data\n");
3515 		len = ar9003_dump_cal_data(ah, buf, len, size, false);
3516 
3517 		goto out;
3518 	}
3519 
3520 	pBase = &eep->baseEepHeader;
3521 
3522 	PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
3523 	PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
3524 	PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
3525 	PR_EEP("TX Mask", (pBase->txrxMask >> 4));
3526 	PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
3527 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
3528 				AR5416_OPFLAGS_11A));
3529 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
3530 				AR5416_OPFLAGS_11G));
3531 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
3532 					AR5416_OPFLAGS_N_2G_HT20));
3533 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
3534 					AR5416_OPFLAGS_N_2G_HT40));
3535 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
3536 					AR5416_OPFLAGS_N_5G_HT20));
3537 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
3538 					AR5416_OPFLAGS_N_5G_HT40));
3539 	PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc &
3540 				AR5416_EEPMISC_BIG_ENDIAN));
3541 	PR_EEP("RF Silent", pBase->rfSilent);
3542 	PR_EEP("BT option", pBase->blueToothOptions);
3543 	PR_EEP("Device Cap", pBase->deviceCap);
3544 	PR_EEP("Device Type", pBase->deviceType);
3545 	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
3546 	PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
3547 	PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
3548 	PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
3549 	PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
3550 	PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
3551 	PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
3552 	PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
3553 	PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
3554 	PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3555 	PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
3556 	PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
3557 	PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
3558 	PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
3559 	PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
3560 	PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
3561 	PR_EEP("Tx Gain", pBase->txrxgain >> 4);
3562 	PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
3563 	PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
3564 
3565 	len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
3566 			 ah->eeprom.ar9300_eep.macAddr);
3567 out:
3568 	if (len > size)
3569 		len = size;
3570 
3571 	return len;
3572 }
3573 #else
3574 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3575 				       u8 *buf, u32 len, u32 size)
3576 {
3577 	return 0;
3578 }
3579 #endif
3580 
3581 /* XXX: review hardware docs */
3582 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3583 {
3584 	return ah->eeprom.ar9300_eep.eepromVersion;
3585 }
3586 
3587 /* XXX: could be read from the eepromVersion, not sure yet */
3588 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3589 {
3590 	return 0;
3591 }
3592 
3593 static struct ar9300_modal_eep_header *ar9003_modal_header(struct ath_hw *ah,
3594 							   bool is2ghz)
3595 {
3596 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3597 
3598 	if (is2ghz)
3599 		return &eep->modalHeader2G;
3600 	else
3601 		return &eep->modalHeader5G;
3602 }
3603 
3604 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3605 {
3606 	int bias = ar9003_modal_header(ah, is2ghz)->xpaBiasLvl;
3607 
3608 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
3609 	    AR_SREV_9531(ah) || AR_SREV_9561(ah))
3610 		REG_RMW_FIELD(ah, AR_CH0_TOP2(ah), AR_CH0_TOP2_XPABIASLVL, bias);
3611 	else if (AR_SREV_9462(ah) || AR_SREV_9550(ah) || AR_SREV_9565(ah))
3612 		REG_RMW_FIELD(ah, AR_CH0_TOP(ah), AR_CH0_TOP_XPABIASLVL, bias);
3613 	else {
3614 		REG_RMW_FIELD(ah, AR_CH0_TOP(ah), AR_CH0_TOP_XPABIASLVL, bias);
3615 		REG_RMW_FIELD(ah, AR_CH0_THERM(ah),
3616 				AR_CH0_THERM_XPABIASLVL_MSB,
3617 				bias >> 2);
3618 		REG_RMW_FIELD(ah, AR_CH0_THERM(ah),
3619 				AR_CH0_THERM_XPASHORT2GND, 1);
3620 	}
3621 }
3622 
3623 static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is2ghz)
3624 {
3625 	return le16_to_cpu(ar9003_modal_header(ah, is2ghz)->switchcomspdt);
3626 }
3627 
3628 u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3629 {
3630 	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon);
3631 }
3632 
3633 u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3634 {
3635 	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon2);
3636 }
3637 
3638 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah, int chain,
3639 					bool is2ghz)
3640 {
3641 	__le16 val = ar9003_modal_header(ah, is2ghz)->antCtrlChain[chain];
3642 	return le16_to_cpu(val);
3643 }
3644 
3645 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3646 {
3647 	struct ath_common *common = ath9k_hw_common(ah);
3648 	struct ath9k_hw_capabilities *pCap = &ah->caps;
3649 	int chain;
3650 	u32 regval, value, gpio;
3651 	static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3652 			AR_PHY_SWITCH_CHAIN_0,
3653 			AR_PHY_SWITCH_CHAIN_1,
3654 			AR_PHY_SWITCH_CHAIN_2,
3655 	};
3656 
3657 	if (AR_SREV_9485(ah) && (ar9003_hw_get_rx_gain_idx(ah) == 0)) {
3658 		if (ah->config.xlna_gpio)
3659 			gpio = ah->config.xlna_gpio;
3660 		else
3661 			gpio = AR9300_EXT_LNA_CTL_GPIO_AR9485;
3662 
3663 		ath9k_hw_gpio_request_out(ah, gpio, NULL,
3664 					  AR_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED);
3665 	}
3666 
3667 	value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3668 
3669 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3670 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3671 				AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3672 	} else if (AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
3673 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3674 				AR_SWITCH_TABLE_COM_AR9550_ALL, value);
3675 	} else
3676 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3677 			      AR_SWITCH_TABLE_COM_ALL, value);
3678 
3679 
3680 	/*
3681 	 *   AR9462 defines new switch table for BT/WLAN,
3682 	 *       here's new field name in XXX.ref for both 2G and 5G.
3683 	 *   Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3684 	 *   15:12   R/W     SWITCH_TABLE_COM_SPDT_WLAN_RX
3685 	 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3686 	 *
3687 	 *   11:8     R/W     SWITCH_TABLE_COM_SPDT_WLAN_TX
3688 	 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3689 	 *
3690 	 *   7:4 R/W  SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3691 	 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3692 	 */
3693 	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565(ah)) {
3694 		value = ar9003_switch_com_spdt_get(ah, is2ghz);
3695 		REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
3696 				AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3697 		REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE);
3698 	}
3699 
3700 	value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3701 	if (AR_SREV_9485(ah) && common->bt_ant_diversity) {
3702 		value &= ~AR_SWITCH_TABLE_COM2_ALL;
3703 		value |= ah->config.ant_ctrl_comm2g_switch_enable;
3704 
3705 	}
3706 	REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3707 
3708 	if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
3709 		value = ar9003_hw_ant_ctrl_chain_get(ah, 1, is2ghz);
3710 		REG_RMW_FIELD(ah, switch_chain_reg[0],
3711 			      AR_SWITCH_TABLE_ALL, value);
3712 	}
3713 
3714 	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3715 		if ((ah->rxchainmask & BIT(chain)) ||
3716 		    (ah->txchainmask & BIT(chain))) {
3717 			value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3718 							     is2ghz);
3719 			REG_RMW_FIELD(ah, switch_chain_reg[chain],
3720 				      AR_SWITCH_TABLE_ALL, value);
3721 		}
3722 	}
3723 
3724 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
3725 		value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3726 		/*
3727 		 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3728 		 * are the fields present
3729 		 */
3730 		regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3731 		regval &= (~AR_ANT_DIV_CTRL_ALL);
3732 		regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3733 		/* enable_lnadiv */
3734 		regval &= (~AR_PHY_ANT_DIV_LNADIV);
3735 		regval |= ((value >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S;
3736 
3737 		if (AR_SREV_9485(ah) && common->bt_ant_diversity)
3738 			regval |= AR_ANT_DIV_ENABLE;
3739 
3740 		if (AR_SREV_9565(ah)) {
3741 			if (common->bt_ant_diversity) {
3742 				regval |= (1 << AR_PHY_ANT_SW_RX_PROT_S);
3743 
3744 				REG_SET_BIT(ah, AR_PHY_RESTART,
3745 					    AR_PHY_RESTART_ENABLE_DIV_M2FLAG);
3746 
3747 				/* Force WLAN LNA diversity ON */
3748 				REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV,
3749 					    AR_BTCOEX_WL_LNADIV_FORCE_ON);
3750 			} else {
3751 				regval &= ~(1 << AR_PHY_ANT_DIV_LNADIV_S);
3752 				regval &= ~(1 << AR_PHY_ANT_SW_RX_PROT_S);
3753 
3754 				REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL,
3755 					    (1 << AR_PHY_ANT_SW_RX_PROT_S));
3756 
3757 				/* Force WLAN LNA diversity OFF */
3758 				REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV,
3759 					    AR_BTCOEX_WL_LNADIV_FORCE_ON);
3760 			}
3761 		}
3762 
3763 		REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3764 
3765 		/* enable fast_div */
3766 		regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3767 		regval &= (~AR_FAST_DIV_ENABLE);
3768 		regval |= ((value >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S;
3769 
3770 		if ((AR_SREV_9485(ah) || AR_SREV_9565(ah))
3771 		    && common->bt_ant_diversity)
3772 			regval |= AR_FAST_DIV_ENABLE;
3773 
3774 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3775 
3776 		if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
3777 			regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3778 			/*
3779 			 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3780 			 * main_tb, alt_tb
3781 			 */
3782 			regval &= (~(AR_PHY_ANT_DIV_MAIN_LNACONF |
3783 				     AR_PHY_ANT_DIV_ALT_LNACONF |
3784 				     AR_PHY_ANT_DIV_ALT_GAINTB |
3785 				     AR_PHY_ANT_DIV_MAIN_GAINTB));
3786 			/* by default use LNA1 for the main antenna */
3787 			regval |= (ATH_ANT_DIV_COMB_LNA1 <<
3788 				   AR_PHY_ANT_DIV_MAIN_LNACONF_S);
3789 			regval |= (ATH_ANT_DIV_COMB_LNA2 <<
3790 				   AR_PHY_ANT_DIV_ALT_LNACONF_S);
3791 			REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3792 		}
3793 	}
3794 }
3795 
3796 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3797 {
3798 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3799 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3800 	int drive_strength;
3801 	unsigned long reg;
3802 
3803 	drive_strength = pBase->miscConfiguration & BIT(0);
3804 	if (!drive_strength)
3805 		return;
3806 
3807 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3808 	reg &= ~0x00ffffc0;
3809 	reg |= 0x5 << 21;
3810 	reg |= 0x5 << 18;
3811 	reg |= 0x5 << 15;
3812 	reg |= 0x5 << 12;
3813 	reg |= 0x5 << 9;
3814 	reg |= 0x5 << 6;
3815 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3816 
3817 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3818 	reg &= ~0xffffffe0;
3819 	reg |= 0x5 << 29;
3820 	reg |= 0x5 << 26;
3821 	reg |= 0x5 << 23;
3822 	reg |= 0x5 << 20;
3823 	reg |= 0x5 << 17;
3824 	reg |= 0x5 << 14;
3825 	reg |= 0x5 << 11;
3826 	reg |= 0x5 << 8;
3827 	reg |= 0x5 << 5;
3828 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3829 
3830 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3831 	reg &= ~0xff800000;
3832 	reg |= 0x5 << 29;
3833 	reg |= 0x5 << 26;
3834 	reg |= 0x5 << 23;
3835 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3836 }
3837 
3838 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3839 				     struct ath9k_channel *chan)
3840 {
3841 	int f[3], t[3];
3842 	u16 value;
3843 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3844 
3845 	if (chain >= 0 && chain < 3) {
3846 		if (IS_CHAN_2GHZ(chan))
3847 			return eep->modalHeader2G.xatten1DB[chain];
3848 		else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3849 			t[0] = eep->base_ext2.xatten1DBLow[chain];
3850 			f[0] = 5180;
3851 			t[1] = eep->modalHeader5G.xatten1DB[chain];
3852 			f[1] = 5500;
3853 			t[2] = eep->base_ext2.xatten1DBHigh[chain];
3854 			f[2] = 5785;
3855 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3856 							    f, t, 3);
3857 			return value;
3858 		} else
3859 			return eep->modalHeader5G.xatten1DB[chain];
3860 	}
3861 
3862 	return 0;
3863 }
3864 
3865 
3866 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3867 					    struct ath9k_channel *chan)
3868 {
3869 	int f[3], t[3];
3870 	u16 value;
3871 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3872 
3873 	if (chain >= 0 && chain < 3) {
3874 		if (IS_CHAN_2GHZ(chan))
3875 			return eep->modalHeader2G.xatten1Margin[chain];
3876 		else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3877 			t[0] = eep->base_ext2.xatten1MarginLow[chain];
3878 			f[0] = 5180;
3879 			t[1] = eep->modalHeader5G.xatten1Margin[chain];
3880 			f[1] = 5500;
3881 			t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3882 			f[2] = 5785;
3883 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3884 							    f, t, 3);
3885 			return value;
3886 		} else
3887 			return eep->modalHeader5G.xatten1Margin[chain];
3888 	}
3889 
3890 	return 0;
3891 }
3892 
3893 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3894 {
3895 	int i;
3896 	u16 value;
3897 	unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3898 					  AR_PHY_EXT_ATTEN_CTL_1,
3899 					  AR_PHY_EXT_ATTEN_CTL_2,
3900 					 };
3901 
3902 	if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
3903 		value = ar9003_hw_atten_chain_get(ah, 1, chan);
3904 		REG_RMW_FIELD(ah, ext_atten_reg[0],
3905 			      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3906 
3907 		value = ar9003_hw_atten_chain_get_margin(ah, 1, chan);
3908 		REG_RMW_FIELD(ah, ext_atten_reg[0],
3909 			      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3910 			      value);
3911 	}
3912 
3913 	/* Test value. if 0 then attenuation is unused. Don't load anything. */
3914 	for (i = 0; i < AR9300_MAX_CHAINS; i++) {
3915 		if (ah->txchainmask & BIT(i)) {
3916 			value = ar9003_hw_atten_chain_get(ah, i, chan);
3917 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3918 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3919 
3920 			if (AR_SREV_9485(ah) &&
3921 			    (ar9003_hw_get_rx_gain_idx(ah) == 0) &&
3922 			    ah->config.xatten_margin_cfg)
3923 				value = 5;
3924 			else
3925 				value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3926 
3927 			if (ah->config.alt_mingainidx)
3928 				REG_RMW_FIELD(ah, AR_PHY_EXT_ATTEN_CTL_0,
3929 					      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3930 					      value);
3931 
3932 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3933 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3934 				      value);
3935 		}
3936 	}
3937 }
3938 
3939 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3940 {
3941 	int timeout = 100;
3942 
3943 	while (pmu_set != REG_READ(ah, pmu_reg)) {
3944 		if (timeout-- == 0)
3945 			return false;
3946 		REG_WRITE(ah, pmu_reg, pmu_set);
3947 		udelay(10);
3948 	}
3949 
3950 	return true;
3951 }
3952 
3953 void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3954 {
3955 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3956 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3957 	u32 reg_val;
3958 
3959 	if (pBase->featureEnable & BIT(4)) {
3960 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3961 			int reg_pmu_set;
3962 
3963 			reg_pmu_set = REG_READ(ah, AR_PHY_PMU2(ah)) & ~AR_PHY_PMU2_PGM;
3964 			REG_WRITE(ah, AR_PHY_PMU2(ah), reg_pmu_set);
3965 			if (!is_pmu_set(ah, AR_PHY_PMU2(ah), reg_pmu_set))
3966 				return;
3967 
3968 			if (AR_SREV_9330(ah)) {
3969 				if (ah->is_clk_25mhz) {
3970 					reg_pmu_set = (3 << 1) | (8 << 4) |
3971 						      (3 << 8) | (1 << 14) |
3972 						      (6 << 17) | (1 << 20) |
3973 						      (3 << 24);
3974 				} else {
3975 					reg_pmu_set = (4 << 1)  | (7 << 4) |
3976 						      (3 << 8)  | (1 << 14) |
3977 						      (6 << 17) | (1 << 20) |
3978 						      (3 << 24);
3979 				}
3980 			} else {
3981 				reg_pmu_set = (5 << 1) | (7 << 4) |
3982 					      (2 << 8) | (2 << 14) |
3983 					      (6 << 17) | (1 << 20) |
3984 					      (3 << 24) | (1 << 28);
3985 			}
3986 
3987 			REG_WRITE(ah, AR_PHY_PMU1(ah), reg_pmu_set);
3988 			if (!is_pmu_set(ah, AR_PHY_PMU1(ah), reg_pmu_set))
3989 				return;
3990 
3991 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2(ah)) & ~0xFFC00000)
3992 					| (4 << 26);
3993 			REG_WRITE(ah, AR_PHY_PMU2(ah), reg_pmu_set);
3994 			if (!is_pmu_set(ah, AR_PHY_PMU2(ah), reg_pmu_set))
3995 				return;
3996 
3997 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2(ah)) & ~0x00200000)
3998 					| (1 << 21);
3999 			REG_WRITE(ah, AR_PHY_PMU2(ah), reg_pmu_set);
4000 			if (!is_pmu_set(ah, AR_PHY_PMU2(ah), reg_pmu_set))
4001 				return;
4002 		} else if (AR_SREV_9462(ah) || AR_SREV_9565(ah) ||
4003 			   AR_SREV_9561(ah)) {
4004 			reg_val = le32_to_cpu(pBase->swreg);
4005 			REG_WRITE(ah, AR_PHY_PMU1(ah), reg_val);
4006 
4007 			if (AR_SREV_9561(ah))
4008 				REG_WRITE(ah, AR_PHY_PMU2(ah), 0x10200000);
4009 		} else {
4010 			/* Internal regulator is ON. Write swreg register. */
4011 			reg_val = le32_to_cpu(pBase->swreg);
4012 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
4013 				  REG_READ(ah, AR_RTC_REG_CONTROL1) &
4014 				  (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
4015 			REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
4016 			/* Set REG_CONTROL1.SWREG_PROGRAM */
4017 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
4018 				  REG_READ(ah,
4019 					   AR_RTC_REG_CONTROL1) |
4020 					   AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
4021 		}
4022 	} else {
4023 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
4024 			REG_RMW_FIELD(ah, AR_PHY_PMU2(ah), AR_PHY_PMU2_PGM, 0);
4025 			while (REG_READ_FIELD(ah, AR_PHY_PMU2(ah),
4026 						AR_PHY_PMU2_PGM))
4027 				udelay(10);
4028 
4029 			REG_RMW_FIELD(ah, AR_PHY_PMU1(ah), AR_PHY_PMU1_PWD, 0x1);
4030 			while (!REG_READ_FIELD(ah, AR_PHY_PMU1(ah),
4031 						AR_PHY_PMU1_PWD))
4032 				udelay(10);
4033 			REG_RMW_FIELD(ah, AR_PHY_PMU2(ah), AR_PHY_PMU2_PGM, 0x1);
4034 			while (!REG_READ_FIELD(ah, AR_PHY_PMU2(ah),
4035 						AR_PHY_PMU2_PGM))
4036 				udelay(10);
4037 		} else if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
4038 			REG_RMW_FIELD(ah, AR_PHY_PMU1(ah), AR_PHY_PMU1_PWD, 0x1);
4039 		else {
4040 			reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK(ah)) |
4041 				AR_RTC_FORCE_SWREG_PRD;
4042 			REG_WRITE(ah, AR_RTC_SLEEP_CLK(ah), reg_val);
4043 		}
4044 	}
4045 
4046 }
4047 
4048 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
4049 {
4050 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4051 	u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
4052 
4053 	if (AR_SREV_9340(ah) || AR_SREV_9531(ah))
4054 		return;
4055 
4056 	if (eep->baseEepHeader.featureEnable & 0x40) {
4057 		tuning_caps_param &= 0x7f;
4058 		REG_RMW_FIELD(ah, AR_CH0_XTAL(ah), AR_CH0_XTAL_CAPINDAC,
4059 			      tuning_caps_param);
4060 		REG_RMW_FIELD(ah, AR_CH0_XTAL(ah), AR_CH0_XTAL_CAPOUTDAC,
4061 			      tuning_caps_param);
4062 	}
4063 }
4064 
4065 static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
4066 {
4067 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4068 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
4069 	int quick_drop;
4070 	s32 t[3], f[3] = {5180, 5500, 5785};
4071 
4072 	if (!(pBase->miscConfiguration & BIT(4)))
4073 		return;
4074 
4075 	if (AR_SREV_9300(ah) || AR_SREV_9580(ah) || AR_SREV_9340(ah)) {
4076 		if (freq < 4000) {
4077 			quick_drop = eep->modalHeader2G.quick_drop;
4078 		} else {
4079 			t[0] = eep->base_ext1.quick_drop_low;
4080 			t[1] = eep->modalHeader5G.quick_drop;
4081 			t[2] = eep->base_ext1.quick_drop_high;
4082 			quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
4083 		}
4084 		REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
4085 	}
4086 }
4087 
4088 static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, bool is2ghz)
4089 {
4090 	u32 value;
4091 
4092 	value = ar9003_modal_header(ah, is2ghz)->txEndToXpaOff;
4093 
4094 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4095 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
4096 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4097 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
4098 }
4099 
4100 static void ar9003_hw_xpa_timing_control_apply(struct ath_hw *ah, bool is2ghz)
4101 {
4102 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4103 	u8 xpa_ctl;
4104 
4105 	if (!(eep->baseEepHeader.featureEnable & 0x80))
4106 		return;
4107 
4108 	if (!AR_SREV_9300(ah) &&
4109 	    !AR_SREV_9340(ah) &&
4110 	    !AR_SREV_9580(ah) &&
4111 	    !AR_SREV_9531(ah) &&
4112 	    !AR_SREV_9561(ah))
4113 		return;
4114 
4115 	xpa_ctl = ar9003_modal_header(ah, is2ghz)->txFrameToXpaOn;
4116 	if (is2ghz)
4117 		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4118 			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON, xpa_ctl);
4119 	else
4120 		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4121 			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON, xpa_ctl);
4122 }
4123 
4124 static void ar9003_hw_xlna_bias_strength_apply(struct ath_hw *ah, bool is2ghz)
4125 {
4126 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4127 	u8 bias;
4128 
4129 	if (!(eep->baseEepHeader.miscConfiguration & 0x40))
4130 		return;
4131 
4132 	if (!AR_SREV_9300(ah))
4133 		return;
4134 
4135 	bias = ar9003_modal_header(ah, is2ghz)->xlna_bias_strength;
4136 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4137 		      bias & 0x3);
4138 	bias >>= 2;
4139 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4140 		      bias & 0x3);
4141 	bias >>= 2;
4142 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4143 		      bias & 0x3);
4144 }
4145 
4146 static int ar9003_hw_get_thermometer(struct ath_hw *ah)
4147 {
4148 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4149 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
4150 	int thermometer =  (pBase->miscConfiguration >> 1) & 0x3;
4151 
4152 	return --thermometer;
4153 }
4154 
4155 static void ar9003_hw_thermometer_apply(struct ath_hw *ah)
4156 {
4157 	struct ath9k_hw_capabilities *pCap = &ah->caps;
4158 	int thermometer = ar9003_hw_get_thermometer(ah);
4159 	u8 therm_on = (thermometer < 0) ? 0 : 1;
4160 
4161 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4162 		      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4163 	if (pCap->chip_chainmask & BIT(1))
4164 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4165 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4166 	if (pCap->chip_chainmask & BIT(2))
4167 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4168 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4169 
4170 	therm_on = thermometer == 0;
4171 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4172 		      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4173 	if (pCap->chip_chainmask & BIT(1)) {
4174 		therm_on = thermometer == 1;
4175 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4176 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4177 	}
4178 	if (pCap->chip_chainmask & BIT(2)) {
4179 		therm_on = thermometer == 2;
4180 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4181 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4182 	}
4183 }
4184 
4185 static void ar9003_hw_thermo_cal_apply(struct ath_hw *ah)
4186 {
4187 	u32 data = 0, ko, kg;
4188 
4189 	if (!AR_SREV_9462_20_OR_LATER(ah))
4190 		return;
4191 
4192 	ar9300_otp_read_word(ah, 1, &data);
4193 	ko = data & 0xff;
4194 	kg = (data >> 8) & 0xff;
4195 	if (ko || kg) {
4196 		REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4197 			      AR_PHY_BB_THERM_ADC_3_THERM_ADC_OFFSET, ko);
4198 		REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4199 			      AR_PHY_BB_THERM_ADC_3_THERM_ADC_SCALE_GAIN,
4200 			      kg + 256);
4201 	}
4202 }
4203 
4204 static void ar9003_hw_apply_minccapwr_thresh(struct ath_hw *ah,
4205 					     bool is2ghz)
4206 {
4207 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4208 	const u_int32_t cca_ctrl[AR9300_MAX_CHAINS] = {
4209 		AR_PHY_CCA_CTRL_0,
4210 		AR_PHY_CCA_CTRL_1,
4211 		AR_PHY_CCA_CTRL_2,
4212 	};
4213 	int chain;
4214 	u32 val;
4215 
4216 	if (is2ghz) {
4217 		if (!(eep->base_ext1.misc_enable & BIT(2)))
4218 			return;
4219 	} else {
4220 		if (!(eep->base_ext1.misc_enable & BIT(3)))
4221 			return;
4222 	}
4223 
4224 	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
4225 		if (!(ah->caps.tx_chainmask & BIT(chain)))
4226 			continue;
4227 
4228 		val = ar9003_modal_header(ah, is2ghz)->noiseFloorThreshCh[chain];
4229 		REG_RMW_FIELD(ah, cca_ctrl[chain],
4230 			      AR_PHY_EXT_CCA0_THRESH62_1, val);
4231 	}
4232 
4233 }
4234 
4235 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
4236 					     struct ath9k_channel *chan)
4237 {
4238 	bool is2ghz = IS_CHAN_2GHZ(chan);
4239 	ar9003_hw_xpa_timing_control_apply(ah, is2ghz);
4240 	ar9003_hw_xpa_bias_level_apply(ah, is2ghz);
4241 	ar9003_hw_ant_ctrl_apply(ah, is2ghz);
4242 	ar9003_hw_drive_strength_apply(ah);
4243 	ar9003_hw_xlna_bias_strength_apply(ah, is2ghz);
4244 	ar9003_hw_atten_apply(ah, chan);
4245 	ar9003_hw_quick_drop_apply(ah, chan->channel);
4246 	if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) && !AR_SREV_9531(ah))
4247 		ar9003_hw_internal_regulator_apply(ah);
4248 	ar9003_hw_apply_tuning_caps(ah);
4249 	ar9003_hw_apply_minccapwr_thresh(ah, is2ghz);
4250 	ar9003_hw_txend_to_xpa_off_apply(ah, is2ghz);
4251 	ar9003_hw_thermometer_apply(ah);
4252 	ar9003_hw_thermo_cal_apply(ah);
4253 }
4254 
4255 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
4256 				      struct ath9k_channel *chan)
4257 {
4258 }
4259 
4260 /*
4261  * Returns the interpolated y value corresponding to the specified x value
4262  * from the np ordered pairs of data (px,py).
4263  * The pairs do not have to be in any order.
4264  * If the specified x value is less than any of the px,
4265  * the returned y value is equal to the py for the lowest px.
4266  * If the specified x value is greater than any of the px,
4267  * the returned y value is equal to the py for the highest px.
4268  */
4269 static int ar9003_hw_power_interpolate(int32_t x,
4270 				       int32_t *px, int32_t *py, u_int16_t np)
4271 {
4272 	int ip = 0;
4273 	int lx = 0, ly = 0, lhave = 0;
4274 	int hx = 0, hy = 0, hhave = 0;
4275 	int dx = 0;
4276 	int y = 0;
4277 
4278 	lhave = 0;
4279 	hhave = 0;
4280 
4281 	/* identify best lower and higher x calibration measurement */
4282 	for (ip = 0; ip < np; ip++) {
4283 		dx = x - px[ip];
4284 
4285 		/* this measurement is higher than our desired x */
4286 		if (dx <= 0) {
4287 			if (!hhave || dx > (x - hx)) {
4288 				/* new best higher x measurement */
4289 				hx = px[ip];
4290 				hy = py[ip];
4291 				hhave = 1;
4292 			}
4293 		}
4294 		/* this measurement is lower than our desired x */
4295 		if (dx >= 0) {
4296 			if (!lhave || dx < (x - lx)) {
4297 				/* new best lower x measurement */
4298 				lx = px[ip];
4299 				ly = py[ip];
4300 				lhave = 1;
4301 			}
4302 		}
4303 	}
4304 
4305 	/* the low x is good */
4306 	if (lhave) {
4307 		/* so is the high x */
4308 		if (hhave) {
4309 			/* they're the same, so just pick one */
4310 			if (hx == lx)
4311 				y = ly;
4312 			else	/* interpolate  */
4313 				y = interpolate(x, lx, hx, ly, hy);
4314 		} else		/* only low is good, use it */
4315 			y = ly;
4316 	} else if (hhave)	/* only high is good, use it */
4317 		y = hy;
4318 	else /* nothing is good,this should never happen unless np=0, ???? */
4319 		y = -(1 << 30);
4320 	return y;
4321 }
4322 
4323 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
4324 				       u16 rateIndex, u16 freq, bool is2GHz)
4325 {
4326 	u16 numPiers, i;
4327 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4328 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4329 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4330 	struct cal_tgt_pow_legacy *pEepromTargetPwr;
4331 	u8 *pFreqBin;
4332 
4333 	if (is2GHz) {
4334 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4335 		pEepromTargetPwr = eep->calTargetPower2G;
4336 		pFreqBin = eep->calTarget_freqbin_2G;
4337 	} else {
4338 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4339 		pEepromTargetPwr = eep->calTargetPower5G;
4340 		pFreqBin = eep->calTarget_freqbin_5G;
4341 	}
4342 
4343 	/*
4344 	 * create array of channels and targetpower from
4345 	 * targetpower piers stored on eeprom
4346 	 */
4347 	for (i = 0; i < numPiers; i++) {
4348 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4349 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4350 	}
4351 
4352 	/* interpolate to get target power for given frequency */
4353 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4354 						 freqArray,
4355 						 targetPowerArray, numPiers);
4356 }
4357 
4358 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
4359 					    u16 rateIndex,
4360 					    u16 freq, bool is2GHz)
4361 {
4362 	u16 numPiers, i;
4363 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4364 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4365 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4366 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4367 	u8 *pFreqBin;
4368 
4369 	if (is2GHz) {
4370 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4371 		pEepromTargetPwr = eep->calTargetPower2GHT20;
4372 		pFreqBin = eep->calTarget_freqbin_2GHT20;
4373 	} else {
4374 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4375 		pEepromTargetPwr = eep->calTargetPower5GHT20;
4376 		pFreqBin = eep->calTarget_freqbin_5GHT20;
4377 	}
4378 
4379 	/*
4380 	 * create array of channels and targetpower
4381 	 * from targetpower piers stored on eeprom
4382 	 */
4383 	for (i = 0; i < numPiers; i++) {
4384 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4385 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4386 	}
4387 
4388 	/* interpolate to get target power for given frequency */
4389 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4390 						 freqArray,
4391 						 targetPowerArray, numPiers);
4392 }
4393 
4394 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
4395 					    u16 rateIndex,
4396 					    u16 freq, bool is2GHz)
4397 {
4398 	u16 numPiers, i;
4399 	s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
4400 	s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
4401 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4402 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4403 	u8 *pFreqBin;
4404 
4405 	if (is2GHz) {
4406 		numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
4407 		pEepromTargetPwr = eep->calTargetPower2GHT40;
4408 		pFreqBin = eep->calTarget_freqbin_2GHT40;
4409 	} else {
4410 		numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
4411 		pEepromTargetPwr = eep->calTargetPower5GHT40;
4412 		pFreqBin = eep->calTarget_freqbin_5GHT40;
4413 	}
4414 
4415 	/*
4416 	 * create array of channels and targetpower from
4417 	 * targetpower piers stored on eeprom
4418 	 */
4419 	for (i = 0; i < numPiers; i++) {
4420 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4421 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4422 	}
4423 
4424 	/* interpolate to get target power for given frequency */
4425 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4426 						 freqArray,
4427 						 targetPowerArray, numPiers);
4428 }
4429 
4430 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
4431 					   u16 rateIndex, u16 freq)
4432 {
4433 	u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4434 	s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4435 	s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4436 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4437 	struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4438 	u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4439 
4440 	/*
4441 	 * create array of channels and targetpower from
4442 	 * targetpower piers stored on eeprom
4443 	 */
4444 	for (i = 0; i < numPiers; i++) {
4445 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], 1);
4446 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4447 	}
4448 
4449 	/* interpolate to get target power for given frequency */
4450 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4451 						 freqArray,
4452 						 targetPowerArray, numPiers);
4453 }
4454 
4455 static void ar9003_hw_selfgen_tpc_txpower(struct ath_hw *ah,
4456 					  struct ath9k_channel *chan,
4457 					  u8 *pwr_array)
4458 {
4459 	u32 val;
4460 
4461 	/* target power values for self generated frames (ACK,RTS/CTS) */
4462 	if (IS_CHAN_2GHZ(chan)) {
4463 		val = SM(pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_ACK) |
4464 		      SM(pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_CTS) |
4465 		      SM(0x3f, AR_TPC_CHIRP) | SM(0x3f, AR_TPC_RPT);
4466 	} else {
4467 		val = SM(pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_ACK) |
4468 		      SM(pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_CTS) |
4469 		      SM(0x3f, AR_TPC_CHIRP) | SM(0x3f, AR_TPC_RPT);
4470 	}
4471 	REG_WRITE(ah, AR_TPC, val);
4472 }
4473 
4474 /* Set tx power registers to array of values passed in */
4475 int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4476 {
4477 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
4478 	/* make sure forced gain is not set */
4479 	REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4480 
4481 	/* Write the OFDM power per rate set */
4482 
4483 	/* 6 (LSB), 9, 12, 18 (MSB) */
4484 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4485 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4486 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4487 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4488 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4489 
4490 	/* 24 (LSB), 36, 48, 54 (MSB) */
4491 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4492 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4493 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4494 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4495 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4496 
4497 	/* Write the CCK power per rate set */
4498 
4499 	/* 1L (LSB), reserved, 2L, 2S (MSB) */
4500 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4501 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4502 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4503 		  /* POW_SM(txPowerTimes2,  8) | this is reserved for AR9003 */
4504 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4505 
4506 	/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4507 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4508 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4509 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4510 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4511 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4512 	    );
4513 
4514         /* Write the power for duplicated frames - HT40 */
4515 
4516         /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4517 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4518 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4519 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4520 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24],  8) |
4521 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L],  0)
4522 	    );
4523 
4524 	/* Write the HT20 power per rate set */
4525 
4526 	/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4527 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4528 		  POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4529 		  POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4530 		  POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4531 		  POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4532 	    );
4533 
4534 	/* 6 (LSB), 7, 12, 13 (MSB) */
4535 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4536 		  POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4537 		  POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4538 		  POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4539 		  POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4540 	    );
4541 
4542 	/* 14 (LSB), 15, 20, 21 */
4543 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4544 		  POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4545 		  POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4546 		  POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4547 		  POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4548 	    );
4549 
4550 	/* Mixed HT20 and HT40 rates */
4551 
4552 	/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4553 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4554 		  POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4555 		  POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4556 		  POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4557 		  POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4558 	    );
4559 
4560 	/*
4561 	 * Write the HT40 power per rate set
4562 	 * correct PAR difference between HT40 and HT20/LEGACY
4563 	 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4564 	 */
4565 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4566 		  POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4567 		  POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4568 		  POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4569 		  POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4570 	    );
4571 
4572 	/* 6 (LSB), 7, 12, 13 (MSB) */
4573 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4574 		  POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4575 		  POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4576 		  POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4577 		  POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4578 	    );
4579 
4580 	/* 14 (LSB), 15, 20, 21 */
4581 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4582 		  POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4583 		  POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4584 		  POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4585 		  POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4586 	    );
4587 
4588 	return 0;
4589 #undef POW_SM
4590 }
4591 
4592 static void ar9003_hw_get_legacy_target_powers(struct ath_hw *ah, u16 freq,
4593 					       u8 *targetPowerValT2,
4594 					       bool is2GHz)
4595 {
4596 	targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4597 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4598 					 is2GHz);
4599 	targetPowerValT2[ALL_TARGET_LEGACY_36] =
4600 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4601 					 is2GHz);
4602 	targetPowerValT2[ALL_TARGET_LEGACY_48] =
4603 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4604 					 is2GHz);
4605 	targetPowerValT2[ALL_TARGET_LEGACY_54] =
4606 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4607 					 is2GHz);
4608 }
4609 
4610 static void ar9003_hw_get_cck_target_powers(struct ath_hw *ah, u16 freq,
4611 					    u8 *targetPowerValT2)
4612 {
4613 	targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4614 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4615 					     freq);
4616 	targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4617 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4618 	targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4619 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4620 	targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4621 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4622 }
4623 
4624 static void ar9003_hw_get_ht20_target_powers(struct ath_hw *ah, u16 freq,
4625 					     u8 *targetPowerValT2, bool is2GHz)
4626 {
4627 	targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4628 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4629 					      is2GHz);
4630 	targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4631 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4632 					      freq, is2GHz);
4633 	targetPowerValT2[ALL_TARGET_HT20_4] =
4634 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4635 					      is2GHz);
4636 	targetPowerValT2[ALL_TARGET_HT20_5] =
4637 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4638 					      is2GHz);
4639 	targetPowerValT2[ALL_TARGET_HT20_6] =
4640 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4641 					      is2GHz);
4642 	targetPowerValT2[ALL_TARGET_HT20_7] =
4643 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4644 					      is2GHz);
4645 	targetPowerValT2[ALL_TARGET_HT20_12] =
4646 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4647 					      is2GHz);
4648 	targetPowerValT2[ALL_TARGET_HT20_13] =
4649 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4650 					      is2GHz);
4651 	targetPowerValT2[ALL_TARGET_HT20_14] =
4652 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4653 					      is2GHz);
4654 	targetPowerValT2[ALL_TARGET_HT20_15] =
4655 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4656 					      is2GHz);
4657 	targetPowerValT2[ALL_TARGET_HT20_20] =
4658 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4659 					      is2GHz);
4660 	targetPowerValT2[ALL_TARGET_HT20_21] =
4661 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4662 					      is2GHz);
4663 	targetPowerValT2[ALL_TARGET_HT20_22] =
4664 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4665 					      is2GHz);
4666 	targetPowerValT2[ALL_TARGET_HT20_23] =
4667 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4668 					      is2GHz);
4669 }
4670 
4671 static void ar9003_hw_get_ht40_target_powers(struct ath_hw *ah,
4672 						   u16 freq,
4673 						   u8 *targetPowerValT2,
4674 						   bool is2GHz)
4675 {
4676 	/* XXX: hard code for now, need to get from eeprom struct */
4677 	u8 ht40PowerIncForPdadc = 0;
4678 
4679 	targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4680 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4681 					      is2GHz) + ht40PowerIncForPdadc;
4682 	targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4683 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4684 					      freq,
4685 					      is2GHz) + ht40PowerIncForPdadc;
4686 	targetPowerValT2[ALL_TARGET_HT40_4] =
4687 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4688 					      is2GHz) + ht40PowerIncForPdadc;
4689 	targetPowerValT2[ALL_TARGET_HT40_5] =
4690 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4691 					      is2GHz) + ht40PowerIncForPdadc;
4692 	targetPowerValT2[ALL_TARGET_HT40_6] =
4693 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4694 					      is2GHz) + ht40PowerIncForPdadc;
4695 	targetPowerValT2[ALL_TARGET_HT40_7] =
4696 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4697 					      is2GHz) + ht40PowerIncForPdadc;
4698 	targetPowerValT2[ALL_TARGET_HT40_12] =
4699 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4700 					      is2GHz) + ht40PowerIncForPdadc;
4701 	targetPowerValT2[ALL_TARGET_HT40_13] =
4702 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4703 					      is2GHz) + ht40PowerIncForPdadc;
4704 	targetPowerValT2[ALL_TARGET_HT40_14] =
4705 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4706 					      is2GHz) + ht40PowerIncForPdadc;
4707 	targetPowerValT2[ALL_TARGET_HT40_15] =
4708 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4709 					      is2GHz) + ht40PowerIncForPdadc;
4710 	targetPowerValT2[ALL_TARGET_HT40_20] =
4711 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4712 					      is2GHz) + ht40PowerIncForPdadc;
4713 	targetPowerValT2[ALL_TARGET_HT40_21] =
4714 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4715 					      is2GHz) + ht40PowerIncForPdadc;
4716 	targetPowerValT2[ALL_TARGET_HT40_22] =
4717 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4718 					      is2GHz) + ht40PowerIncForPdadc;
4719 	targetPowerValT2[ALL_TARGET_HT40_23] =
4720 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4721 					      is2GHz) + ht40PowerIncForPdadc;
4722 }
4723 
4724 static void ar9003_hw_get_target_power_eeprom(struct ath_hw *ah,
4725 					      struct ath9k_channel *chan,
4726 					      u8 *targetPowerValT2)
4727 {
4728 	bool is2GHz = IS_CHAN_2GHZ(chan);
4729 	unsigned int i = 0;
4730 	struct ath_common *common = ath9k_hw_common(ah);
4731 	u16 freq = chan->channel;
4732 
4733 	if (is2GHz)
4734 		ar9003_hw_get_cck_target_powers(ah, freq, targetPowerValT2);
4735 
4736 	ar9003_hw_get_legacy_target_powers(ah, freq, targetPowerValT2, is2GHz);
4737 	ar9003_hw_get_ht20_target_powers(ah, freq, targetPowerValT2, is2GHz);
4738 
4739 	if (IS_CHAN_HT40(chan))
4740 		ar9003_hw_get_ht40_target_powers(ah, freq, targetPowerValT2,
4741 						 is2GHz);
4742 
4743 	for (i = 0; i < ar9300RateSize; i++) {
4744 		ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
4745 			i, targetPowerValT2[i]);
4746 	}
4747 }
4748 
4749 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4750 				  bool is2ghz,
4751 				  int ipier,
4752 				  int ichain,
4753 				  int *pfrequency,
4754 				  int *pcorrection,
4755 				  int *ptemperature, int *pvoltage,
4756 				  int *pnf_cal, int *pnf_power)
4757 {
4758 	u8 *pCalPier;
4759 	struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4760 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4761 	struct ath_common *common = ath9k_hw_common(ah);
4762 
4763 	if (ichain >= AR9300_MAX_CHAINS) {
4764 		ath_dbg(common, EEPROM,
4765 			"Invalid chain index, must be less than %d\n",
4766 			AR9300_MAX_CHAINS);
4767 		return -1;
4768 	}
4769 
4770 	if (is2ghz) {
4771 		if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4772 			ath_dbg(common, EEPROM,
4773 				"Invalid 2GHz cal pier index, must be less than %d\n",
4774 				AR9300_NUM_2G_CAL_PIERS);
4775 			return -1;
4776 		}
4777 
4778 		pCalPier = &(eep->calFreqPier2G[ipier]);
4779 		pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4780 	} else {
4781 		if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4782 			ath_dbg(common, EEPROM,
4783 				"Invalid 5GHz cal pier index, must be less than %d\n",
4784 				AR9300_NUM_5G_CAL_PIERS);
4785 			return -1;
4786 		}
4787 		pCalPier = &(eep->calFreqPier5G[ipier]);
4788 		pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4789 	}
4790 
4791 	*pfrequency = ath9k_hw_fbin2freq(*pCalPier, is2ghz);
4792 	*pcorrection = pCalPierStruct->refPower;
4793 	*ptemperature = pCalPierStruct->tempMeas;
4794 	*pvoltage = pCalPierStruct->voltMeas;
4795 	*pnf_cal = pCalPierStruct->rxTempMeas ?
4796 			N2DBM(pCalPierStruct->rxNoisefloorCal) : 0;
4797 	*pnf_power = pCalPierStruct->rxTempMeas ?
4798 			N2DBM(pCalPierStruct->rxNoisefloorPower) : 0;
4799 
4800 	return 0;
4801 }
4802 
4803 static void ar9003_hw_power_control_override(struct ath_hw *ah,
4804 					     int frequency,
4805 					     int *correction,
4806 					     int *voltage, int *temperature)
4807 {
4808 	int temp_slope = 0, temp_slope1 = 0, temp_slope2 = 0;
4809 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4810 	int f[8], t[8], t1[3], t2[3], i;
4811 
4812 	REG_RMW(ah, AR_PHY_TPC_11_B0,
4813 		(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4814 		AR_PHY_TPC_OLPC_GAIN_DELTA);
4815 	if (ah->caps.tx_chainmask & BIT(1))
4816 		REG_RMW(ah, AR_PHY_TPC_11_B1,
4817 			(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4818 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4819 	if (ah->caps.tx_chainmask & BIT(2))
4820 		REG_RMW(ah, AR_PHY_TPC_11_B2,
4821 			(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4822 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4823 
4824 	/* enable open loop power control on chip */
4825 	REG_RMW(ah, AR_PHY_TPC_6_B0,
4826 		(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4827 		AR_PHY_TPC_6_ERROR_EST_MODE);
4828 	if (ah->caps.tx_chainmask & BIT(1))
4829 		REG_RMW(ah, AR_PHY_TPC_6_B1,
4830 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4831 			AR_PHY_TPC_6_ERROR_EST_MODE);
4832 	if (ah->caps.tx_chainmask & BIT(2))
4833 		REG_RMW(ah, AR_PHY_TPC_6_B2,
4834 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4835 			AR_PHY_TPC_6_ERROR_EST_MODE);
4836 
4837 	/*
4838 	 * enable temperature compensation
4839 	 * Need to use register names
4840 	 */
4841 	if (frequency < 4000) {
4842 		temp_slope = eep->modalHeader2G.tempSlope;
4843 	} else {
4844 		if (AR_SREV_9550(ah)) {
4845 			t[0] = eep->base_ext1.tempslopextension[2];
4846 			t1[0] = eep->base_ext1.tempslopextension[3];
4847 			t2[0] = eep->base_ext1.tempslopextension[4];
4848 			f[0] = 5180;
4849 
4850 			t[1] = eep->modalHeader5G.tempSlope;
4851 			t1[1] = eep->base_ext1.tempslopextension[0];
4852 			t2[1] = eep->base_ext1.tempslopextension[1];
4853 			f[1] = 5500;
4854 
4855 			t[2] = eep->base_ext1.tempslopextension[5];
4856 			t1[2] = eep->base_ext1.tempslopextension[6];
4857 			t2[2] = eep->base_ext1.tempslopextension[7];
4858 			f[2] = 5785;
4859 
4860 			temp_slope = ar9003_hw_power_interpolate(frequency,
4861 								 f, t, 3);
4862 			temp_slope1 = ar9003_hw_power_interpolate(frequency,
4863 								   f, t1, 3);
4864 			temp_slope2 = ar9003_hw_power_interpolate(frequency,
4865 								   f, t2, 3);
4866 
4867 			goto tempslope;
4868 		}
4869 
4870 		if ((eep->baseEepHeader.miscConfiguration & 0x20) != 0) {
4871 			for (i = 0; i < 8; i++) {
4872 				t[i] = eep->base_ext1.tempslopextension[i];
4873 				f[i] = FBIN2FREQ(eep->calFreqPier5G[i], 0);
4874 			}
4875 			temp_slope = ar9003_hw_power_interpolate((s32) frequency,
4876 								 f, t, 8);
4877 		} else if (eep->base_ext2.tempSlopeLow != 0) {
4878 			t[0] = eep->base_ext2.tempSlopeLow;
4879 			f[0] = 5180;
4880 			t[1] = eep->modalHeader5G.tempSlope;
4881 			f[1] = 5500;
4882 			t[2] = eep->base_ext2.tempSlopeHigh;
4883 			f[2] = 5785;
4884 			temp_slope = ar9003_hw_power_interpolate((s32) frequency,
4885 								 f, t, 3);
4886 		} else {
4887 			temp_slope = eep->modalHeader5G.tempSlope;
4888 		}
4889 	}
4890 
4891 tempslope:
4892 	if (AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
4893 		u8 txmask = (eep->baseEepHeader.txrxMask & 0xf0) >> 4;
4894 
4895 		/*
4896 		 * AR955x has tempSlope register for each chain.
4897 		 * Check whether temp_compensation feature is enabled or not.
4898 		 */
4899 		if (eep->baseEepHeader.featureEnable & 0x1) {
4900 			if (frequency < 4000) {
4901 				if (txmask & BIT(0))
4902 					REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4903 						      AR_PHY_TPC_19_ALPHA_THERM,
4904 						      eep->base_ext2.tempSlopeLow);
4905 				if (txmask & BIT(1))
4906 					REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4907 						      AR_PHY_TPC_19_ALPHA_THERM,
4908 						      temp_slope);
4909 				if (txmask & BIT(2))
4910 					REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4911 						      AR_PHY_TPC_19_ALPHA_THERM,
4912 						      eep->base_ext2.tempSlopeHigh);
4913 			} else {
4914 				if (txmask & BIT(0))
4915 					REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4916 						      AR_PHY_TPC_19_ALPHA_THERM,
4917 						      temp_slope);
4918 				if (txmask & BIT(1))
4919 					REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4920 						      AR_PHY_TPC_19_ALPHA_THERM,
4921 						      temp_slope1);
4922 				if (txmask & BIT(2))
4923 					REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4924 						      AR_PHY_TPC_19_ALPHA_THERM,
4925 						      temp_slope2);
4926 			}
4927 		} else {
4928 			/*
4929 			 * If temp compensation is not enabled,
4930 			 * set all registers to 0.
4931 			 */
4932 			if (txmask & BIT(0))
4933 				REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4934 					      AR_PHY_TPC_19_ALPHA_THERM, 0);
4935 			if (txmask & BIT(1))
4936 				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4937 					      AR_PHY_TPC_19_ALPHA_THERM, 0);
4938 			if (txmask & BIT(2))
4939 				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4940 					      AR_PHY_TPC_19_ALPHA_THERM, 0);
4941 		}
4942 	} else {
4943 		REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4944 			      AR_PHY_TPC_19_ALPHA_THERM, temp_slope);
4945 	}
4946 
4947 	if (AR_SREV_9462_20_OR_LATER(ah))
4948 		REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4949 			      AR_PHY_TPC_19_B1_ALPHA_THERM, temp_slope);
4950 
4951 
4952 	REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4953 		      temperature[0]);
4954 }
4955 
4956 /* Apply the recorded correction values. */
4957 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4958 {
4959 	int ichain, ipier, npier;
4960 	int lfrequency[AR9300_MAX_CHAINS],
4961 	    lcorrection[AR9300_MAX_CHAINS],
4962 	    ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS],
4963 	    lnf_cal[AR9300_MAX_CHAINS], lnf_pwr[AR9300_MAX_CHAINS];
4964 	int hfrequency[AR9300_MAX_CHAINS],
4965 	    hcorrection[AR9300_MAX_CHAINS],
4966 	    htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS],
4967 	    hnf_cal[AR9300_MAX_CHAINS], hnf_pwr[AR9300_MAX_CHAINS];
4968 	int fdiff;
4969 	int correction[AR9300_MAX_CHAINS],
4970 	    voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS],
4971 	    nf_cal[AR9300_MAX_CHAINS], nf_pwr[AR9300_MAX_CHAINS];
4972 	int pfrequency, pcorrection, ptemperature, pvoltage,
4973 	    pnf_cal, pnf_pwr;
4974 	struct ath_common *common = ath9k_hw_common(ah);
4975 	bool is2ghz = frequency < 4000;
4976 
4977 	if (is2ghz)
4978 		npier = AR9300_NUM_2G_CAL_PIERS;
4979 	else
4980 		npier = AR9300_NUM_5G_CAL_PIERS;
4981 
4982 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4983 		lfrequency[ichain] = 0;
4984 		hfrequency[ichain] = 100000;
4985 	}
4986 	/* identify best lower and higher frequency calibration measurement */
4987 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4988 		for (ipier = 0; ipier < npier; ipier++) {
4989 			if (!ar9003_hw_cal_pier_get(ah, is2ghz, ipier, ichain,
4990 						    &pfrequency, &pcorrection,
4991 						    &ptemperature, &pvoltage,
4992 						    &pnf_cal, &pnf_pwr)) {
4993 				fdiff = frequency - pfrequency;
4994 
4995 				/*
4996 				 * this measurement is higher than
4997 				 * our desired frequency
4998 				 */
4999 				if (fdiff <= 0) {
5000 					if (hfrequency[ichain] <= 0 ||
5001 					    hfrequency[ichain] >= 100000 ||
5002 					    fdiff >
5003 					    (frequency - hfrequency[ichain])) {
5004 						/*
5005 						 * new best higher
5006 						 * frequency measurement
5007 						 */
5008 						hfrequency[ichain] = pfrequency;
5009 						hcorrection[ichain] =
5010 						    pcorrection;
5011 						htemperature[ichain] =
5012 						    ptemperature;
5013 						hvoltage[ichain] = pvoltage;
5014 						hnf_cal[ichain] = pnf_cal;
5015 						hnf_pwr[ichain] = pnf_pwr;
5016 					}
5017 				}
5018 				if (fdiff >= 0) {
5019 					if (lfrequency[ichain] <= 0
5020 					    || fdiff <
5021 					    (frequency - lfrequency[ichain])) {
5022 						/*
5023 						 * new best lower
5024 						 * frequency measurement
5025 						 */
5026 						lfrequency[ichain] = pfrequency;
5027 						lcorrection[ichain] =
5028 						    pcorrection;
5029 						ltemperature[ichain] =
5030 						    ptemperature;
5031 						lvoltage[ichain] = pvoltage;
5032 						lnf_cal[ichain] = pnf_cal;
5033 						lnf_pwr[ichain] = pnf_pwr;
5034 					}
5035 				}
5036 			}
5037 		}
5038 	}
5039 
5040 	/* interpolate  */
5041 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
5042 		ath_dbg(common, EEPROM,
5043 			"ch=%d f=%d low=%d %d h=%d %d n=%d %d p=%d %d\n",
5044 			ichain, frequency, lfrequency[ichain],
5045 			lcorrection[ichain], hfrequency[ichain],
5046 			hcorrection[ichain], lnf_cal[ichain],
5047 			hnf_cal[ichain], lnf_pwr[ichain],
5048 			hnf_pwr[ichain]);
5049 		/* they're the same, so just pick one */
5050 		if (hfrequency[ichain] == lfrequency[ichain]) {
5051 			correction[ichain] = lcorrection[ichain];
5052 			voltage[ichain] = lvoltage[ichain];
5053 			temperature[ichain] = ltemperature[ichain];
5054 			nf_cal[ichain] = lnf_cal[ichain];
5055 			nf_pwr[ichain] = lnf_pwr[ichain];
5056 		}
5057 		/* the low frequency is good */
5058 		else if (frequency - lfrequency[ichain] < 1000) {
5059 			/* so is the high frequency, interpolate */
5060 			if (hfrequency[ichain] - frequency < 1000) {
5061 
5062 				correction[ichain] = interpolate(frequency,
5063 						lfrequency[ichain],
5064 						hfrequency[ichain],
5065 						lcorrection[ichain],
5066 						hcorrection[ichain]);
5067 
5068 				temperature[ichain] = interpolate(frequency,
5069 						lfrequency[ichain],
5070 						hfrequency[ichain],
5071 						ltemperature[ichain],
5072 						htemperature[ichain]);
5073 
5074 				voltage[ichain] = interpolate(frequency,
5075 						lfrequency[ichain],
5076 						hfrequency[ichain],
5077 						lvoltage[ichain],
5078 						hvoltage[ichain]);
5079 
5080 				nf_cal[ichain] = interpolate(frequency,
5081 						lfrequency[ichain],
5082 						hfrequency[ichain],
5083 						lnf_cal[ichain],
5084 						hnf_cal[ichain]);
5085 
5086 				nf_pwr[ichain] = interpolate(frequency,
5087 						lfrequency[ichain],
5088 						hfrequency[ichain],
5089 						lnf_pwr[ichain],
5090 						hnf_pwr[ichain]);
5091 			}
5092 			/* only low is good, use it */
5093 			else {
5094 				correction[ichain] = lcorrection[ichain];
5095 				temperature[ichain] = ltemperature[ichain];
5096 				voltage[ichain] = lvoltage[ichain];
5097 				nf_cal[ichain] = lnf_cal[ichain];
5098 				nf_pwr[ichain] = lnf_pwr[ichain];
5099 			}
5100 		}
5101 		/* only high is good, use it */
5102 		else if (hfrequency[ichain] - frequency < 1000) {
5103 			correction[ichain] = hcorrection[ichain];
5104 			temperature[ichain] = htemperature[ichain];
5105 			voltage[ichain] = hvoltage[ichain];
5106 			nf_cal[ichain] = hnf_cal[ichain];
5107 			nf_pwr[ichain] = hnf_pwr[ichain];
5108 		} else {	/* nothing is good, presume 0???? */
5109 			correction[ichain] = 0;
5110 			temperature[ichain] = 0;
5111 			voltage[ichain] = 0;
5112 			nf_cal[ichain] = 0;
5113 			nf_pwr[ichain] = 0;
5114 		}
5115 	}
5116 
5117 	ar9003_hw_power_control_override(ah, frequency, correction, voltage,
5118 					 temperature);
5119 
5120 	ath_dbg(common, EEPROM,
5121 		"for frequency=%d, calibration correction = %d %d %d\n",
5122 		frequency, correction[0], correction[1], correction[2]);
5123 
5124 	/* Store calibrated noise floor values */
5125 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++)
5126 		if (is2ghz) {
5127 			ah->nf_2g.cal[ichain] = nf_cal[ichain];
5128 			ah->nf_2g.pwr[ichain] = nf_pwr[ichain];
5129 		} else {
5130 			ah->nf_5g.cal[ichain] = nf_cal[ichain];
5131 			ah->nf_5g.pwr[ichain] = nf_pwr[ichain];
5132 		}
5133 
5134 	return 0;
5135 }
5136 
5137 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
5138 					   int idx,
5139 					   int edge,
5140 					   bool is2GHz)
5141 {
5142 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
5143 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
5144 
5145 	if (is2GHz)
5146 		return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
5147 	else
5148 		return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
5149 }
5150 
5151 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
5152 					     int idx,
5153 					     unsigned int edge,
5154 					     u16 freq,
5155 					     bool is2GHz)
5156 {
5157 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
5158 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
5159 
5160 	u8 *ctl_freqbin = is2GHz ?
5161 		&eep->ctl_freqbin_2G[idx][0] :
5162 		&eep->ctl_freqbin_5G[idx][0];
5163 
5164 	if (is2GHz) {
5165 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
5166 		    CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
5167 			return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
5168 	} else {
5169 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
5170 		    CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
5171 			return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
5172 	}
5173 
5174 	return MAX_RATE_POWER;
5175 }
5176 
5177 /*
5178  * Find the maximum conformance test limit for the given channel and CTL info
5179  */
5180 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
5181 					u16 freq, int idx, bool is2GHz)
5182 {
5183 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
5184 	u8 *ctl_freqbin = is2GHz ?
5185 		&eep->ctl_freqbin_2G[idx][0] :
5186 		&eep->ctl_freqbin_5G[idx][0];
5187 	u16 num_edges = is2GHz ?
5188 		AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
5189 	unsigned int edge;
5190 
5191 	/* Get the edge power */
5192 	for (edge = 0;
5193 	     (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
5194 	     edge++) {
5195 		/*
5196 		 * If there's an exact channel match or an inband flag set
5197 		 * on the lower channel use the given rdEdgePower
5198 		 */
5199 		if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
5200 			twiceMaxEdgePower =
5201 				ar9003_hw_get_direct_edge_power(eep, idx,
5202 								edge, is2GHz);
5203 			break;
5204 		} else if ((edge > 0) &&
5205 			   (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
5206 						      is2GHz))) {
5207 			twiceMaxEdgePower =
5208 				ar9003_hw_get_indirect_edge_power(eep, idx,
5209 								  edge, freq,
5210 								  is2GHz);
5211 			/*
5212 			 * Leave loop - no more affecting edges possible in
5213 			 * this monotonic increasing list
5214 			 */
5215 			break;
5216 		}
5217 	}
5218 
5219 	if (is2GHz && !twiceMaxEdgePower)
5220 		twiceMaxEdgePower = 60;
5221 
5222 	return twiceMaxEdgePower;
5223 }
5224 
5225 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
5226 					       struct ath9k_channel *chan,
5227 					       u8 *pPwrArray, u16 cfgCtl,
5228 					       u8 antenna_reduction,
5229 					       u16 powerLimit)
5230 {
5231 	struct ath_common *common = ath9k_hw_common(ah);
5232 	struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
5233 	u16 twiceMaxEdgePower;
5234 	int i;
5235 	u16 scaledPower = 0, minCtlPower;
5236 	static const u16 ctlModesFor11a[] = {
5237 		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
5238 	};
5239 	static const u16 ctlModesFor11g[] = {
5240 		CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
5241 		CTL_11G_EXT, CTL_2GHT40
5242 	};
5243 	u16 numCtlModes;
5244 	const u16 *pCtlMode;
5245 	u16 ctlMode, freq;
5246 	struct chan_centers centers;
5247 	u8 *ctlIndex;
5248 	u8 ctlNum;
5249 	u16 twiceMinEdgePower;
5250 	bool is2ghz = IS_CHAN_2GHZ(chan);
5251 
5252 	ath9k_hw_get_channel_centers(ah, chan, &centers);
5253 	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
5254 						antenna_reduction);
5255 
5256 	if (is2ghz) {
5257 		/* Setup for CTL modes */
5258 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
5259 		numCtlModes =
5260 			ARRAY_SIZE(ctlModesFor11g) -
5261 				   SUB_NUM_CTL_MODES_AT_2G_40;
5262 		pCtlMode = ctlModesFor11g;
5263 		if (IS_CHAN_HT40(chan))
5264 			/* All 2G CTL's */
5265 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
5266 	} else {
5267 		/* Setup for CTL modes */
5268 		/* CTL_11A, CTL_5GHT20 */
5269 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
5270 					 SUB_NUM_CTL_MODES_AT_5G_40;
5271 		pCtlMode = ctlModesFor11a;
5272 		if (IS_CHAN_HT40(chan))
5273 			/* All 5G CTL's */
5274 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
5275 	}
5276 
5277 	/*
5278 	 * For MIMO, need to apply regulatory caps individually across
5279 	 * dynamically running modes: CCK, OFDM, HT20, HT40
5280 	 *
5281 	 * The outer loop walks through each possible applicable runtime mode.
5282 	 * The inner loop walks through each ctlIndex entry in EEPROM.
5283 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
5284 	 */
5285 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
5286 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
5287 			(pCtlMode[ctlMode] == CTL_2GHT40);
5288 		if (isHt40CtlMode)
5289 			freq = centers.synth_center;
5290 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
5291 			freq = centers.ext_center;
5292 		else
5293 			freq = centers.ctl_center;
5294 
5295 		ath_dbg(common, REGULATORY,
5296 			"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
5297 			ctlMode, numCtlModes, isHt40CtlMode,
5298 			(pCtlMode[ctlMode] & EXT_ADDITIVE));
5299 
5300 		/* walk through each CTL index stored in EEPROM */
5301 		if (is2ghz) {
5302 			ctlIndex = pEepData->ctlIndex_2G;
5303 			ctlNum = AR9300_NUM_CTLS_2G;
5304 		} else {
5305 			ctlIndex = pEepData->ctlIndex_5G;
5306 			ctlNum = AR9300_NUM_CTLS_5G;
5307 		}
5308 
5309 		twiceMaxEdgePower = MAX_RATE_POWER;
5310 		for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
5311 			ath_dbg(common, REGULATORY,
5312 				"LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
5313 				i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
5314 				chan->channel);
5315 
5316 			/*
5317 			 * compare test group from regulatory
5318 			 * channel list with test mode from pCtlMode
5319 			 * list
5320 			 */
5321 			if ((((cfgCtl & ~CTL_MODE_M) |
5322 			       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
5323 				ctlIndex[i]) ||
5324 			    (((cfgCtl & ~CTL_MODE_M) |
5325 			       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
5326 			     ((ctlIndex[i] & CTL_MODE_M) |
5327 			       SD_NO_CTL))) {
5328 				twiceMinEdgePower =
5329 				  ar9003_hw_get_max_edge_power(pEepData,
5330 							       freq, i,
5331 							       is2ghz);
5332 
5333 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
5334 					/*
5335 					 * Find the minimum of all CTL
5336 					 * edge powers that apply to
5337 					 * this channel
5338 					 */
5339 					twiceMaxEdgePower =
5340 						min(twiceMaxEdgePower,
5341 						    twiceMinEdgePower);
5342 				else {
5343 					/* specific */
5344 					twiceMaxEdgePower = twiceMinEdgePower;
5345 					break;
5346 				}
5347 			}
5348 		}
5349 
5350 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
5351 
5352 		ath_dbg(common, REGULATORY,
5353 			"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
5354 			ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
5355 			scaledPower, minCtlPower);
5356 
5357 		/* Apply ctl mode to correct target power set */
5358 		switch (pCtlMode[ctlMode]) {
5359 		case CTL_11B:
5360 			for (i = ALL_TARGET_LEGACY_1L_5L;
5361 			     i <= ALL_TARGET_LEGACY_11S; i++)
5362 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5363 						       minCtlPower);
5364 			break;
5365 		case CTL_11A:
5366 		case CTL_11G:
5367 			for (i = ALL_TARGET_LEGACY_6_24;
5368 			     i <= ALL_TARGET_LEGACY_54; i++)
5369 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5370 						       minCtlPower);
5371 			break;
5372 		case CTL_5GHT20:
5373 		case CTL_2GHT20:
5374 			for (i = ALL_TARGET_HT20_0_8_16;
5375 			     i <= ALL_TARGET_HT20_23; i++) {
5376 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5377 						       minCtlPower);
5378 				if (ath9k_hw_mci_is_enabled(ah))
5379 					pPwrArray[i] =
5380 						(u8)min((u16)pPwrArray[i],
5381 						ar9003_mci_get_max_txpower(ah,
5382 							pCtlMode[ctlMode]));
5383 			}
5384 			break;
5385 		case CTL_5GHT40:
5386 		case CTL_2GHT40:
5387 			for (i = ALL_TARGET_HT40_0_8_16;
5388 			     i <= ALL_TARGET_HT40_23; i++) {
5389 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5390 						       minCtlPower);
5391 				if (ath9k_hw_mci_is_enabled(ah))
5392 					pPwrArray[i] =
5393 						(u8)min((u16)pPwrArray[i],
5394 						ar9003_mci_get_max_txpower(ah,
5395 							pCtlMode[ctlMode]));
5396 			}
5397 			break;
5398 		default:
5399 			break;
5400 		}
5401 	} /* end ctl mode checking */
5402 }
5403 
5404 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
5405 {
5406 	u8 mod_idx = mcs_idx % 8;
5407 
5408 	if (mod_idx <= 3)
5409 		return mod_idx ? (base_pwridx + 1) : base_pwridx;
5410 	else
5411 		return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
5412 }
5413 
5414 static void ar9003_paprd_set_txpower(struct ath_hw *ah,
5415 				     struct ath9k_channel *chan,
5416 				     u8 *targetPowerValT2)
5417 {
5418 	int i;
5419 
5420 	if (!ar9003_is_paprd_enabled(ah))
5421 		return;
5422 
5423 	if (IS_CHAN_HT40(chan))
5424 		i = ALL_TARGET_HT40_7;
5425 	else
5426 		i = ALL_TARGET_HT20_7;
5427 
5428 	if (IS_CHAN_2GHZ(chan)) {
5429 		if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) &&
5430 		    !AR_SREV_9462(ah) && !AR_SREV_9565(ah)) {
5431 			if (IS_CHAN_HT40(chan))
5432 				i = ALL_TARGET_HT40_0_8_16;
5433 			else
5434 				i = ALL_TARGET_HT20_0_8_16;
5435 		}
5436 	}
5437 
5438 	ah->paprd_target_power = targetPowerValT2[i];
5439 }
5440 
5441 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
5442 					struct ath9k_channel *chan, u16 cfgCtl,
5443 					u8 twiceAntennaReduction,
5444 					u8 powerLimit, bool test)
5445 {
5446 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
5447 	struct ath_common *common = ath9k_hw_common(ah);
5448 	u8 targetPowerValT2[ar9300RateSize];
5449 	u8 target_power_val_t2_eep[ar9300RateSize];
5450 	u8 targetPowerValT2_tpc[ar9300RateSize];
5451 	unsigned int i = 0, paprd_scale_factor = 0;
5452 	u8 pwr_idx, min_pwridx = 0;
5453 
5454 	memset(targetPowerValT2, 0 , sizeof(targetPowerValT2));
5455 
5456 	/*
5457 	 * Get target powers from EEPROM - our baseline for TX Power
5458 	 */
5459 	ar9003_hw_get_target_power_eeprom(ah, chan, targetPowerValT2);
5460 
5461 	if (ar9003_is_paprd_enabled(ah)) {
5462 		ah->paprd_ratemask =
5463 			ar9003_get_paprd_rate_mask_ht20(ah, IS_CHAN_2GHZ(chan)) &
5464 			AR9300_PAPRD_RATE_MASK;
5465 
5466 		ah->paprd_ratemask_ht40 =
5467 			ar9003_get_paprd_rate_mask_ht40(ah, IS_CHAN_2GHZ(chan)) &
5468 			AR9300_PAPRD_RATE_MASK;
5469 
5470 		paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
5471 		min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
5472 						  ALL_TARGET_HT20_0_8_16;
5473 
5474 		if (!ah->paprd_table_write_done) {
5475 			memcpy(target_power_val_t2_eep, targetPowerValT2,
5476 			       sizeof(targetPowerValT2));
5477 			for (i = 0; i < 24; i++) {
5478 				pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
5479 				if (ah->paprd_ratemask & (1 << i)) {
5480 					if (targetPowerValT2[pwr_idx] &&
5481 					    targetPowerValT2[pwr_idx] ==
5482 					    target_power_val_t2_eep[pwr_idx])
5483 						targetPowerValT2[pwr_idx] -=
5484 							paprd_scale_factor;
5485 				}
5486 			}
5487 		}
5488 		memcpy(target_power_val_t2_eep, targetPowerValT2,
5489 		       sizeof(targetPowerValT2));
5490 	}
5491 
5492 	ar9003_hw_set_power_per_rate_table(ah, chan,
5493 					   targetPowerValT2, cfgCtl,
5494 					   twiceAntennaReduction,
5495 					   powerLimit);
5496 
5497 	memcpy(targetPowerValT2_tpc, targetPowerValT2,
5498 	       sizeof(targetPowerValT2));
5499 
5500 	if (ar9003_is_paprd_enabled(ah)) {
5501 		for (i = 0; i < ar9300RateSize; i++) {
5502 			if ((ah->paprd_ratemask & (1 << i)) &&
5503 			    (abs(targetPowerValT2[i] -
5504 				target_power_val_t2_eep[i]) >
5505 			    paprd_scale_factor)) {
5506 				ah->paprd_ratemask &= ~(1 << i);
5507 				ath_dbg(common, EEPROM,
5508 					"paprd disabled for mcs %d\n", i);
5509 			}
5510 		}
5511 	}
5512 
5513 	regulatory->max_power_level = 0;
5514 	for (i = 0; i < ar9300RateSize; i++) {
5515 		if (targetPowerValT2[i] > regulatory->max_power_level)
5516 			regulatory->max_power_level = targetPowerValT2[i];
5517 	}
5518 
5519 	ath9k_hw_update_regulatory_maxpower(ah);
5520 
5521 	if (test)
5522 		return;
5523 
5524 	for (i = 0; i < ar9300RateSize; i++) {
5525 		ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
5526 			i, targetPowerValT2[i]);
5527 	}
5528 
5529 	/* Write target power array to registers */
5530 	ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5531 	ar9003_hw_calibration_apply(ah, chan->channel);
5532 	ar9003_paprd_set_txpower(ah, chan, targetPowerValT2);
5533 
5534 	ar9003_hw_selfgen_tpc_txpower(ah, chan, targetPowerValT2);
5535 
5536 	/* TPC initializations */
5537 	if (ah->tpc_enabled) {
5538 		u32 val;
5539 
5540 		ar9003_hw_init_rate_txpower(ah, targetPowerValT2_tpc, chan);
5541 
5542 		/* Enable TPC */
5543 		REG_WRITE(ah, AR_PHY_PWRTX_MAX,
5544 			  AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
5545 		/* Disable per chain power reduction */
5546 		val = REG_READ(ah, AR_PHY_POWER_TX_SUB);
5547 		if (AR_SREV_9340(ah))
5548 			REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
5549 				  val & 0xFFFFFFC0);
5550 		else
5551 			REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
5552 				  val & 0xFFFFF000);
5553 	} else {
5554 		/* Disable TPC */
5555 		REG_WRITE(ah, AR_PHY_PWRTX_MAX, 0);
5556 	}
5557 }
5558 
5559 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
5560 					    u16 i, bool is2GHz)
5561 {
5562 	return AR_NO_SPUR;
5563 }
5564 
5565 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
5566 {
5567 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5568 
5569 	return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
5570 }
5571 
5572 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
5573 {
5574 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5575 
5576 	return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
5577 }
5578 
5579 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is2ghz)
5580 {
5581 	return ar9003_modal_header(ah, is2ghz)->spurChans;
5582 }
5583 
5584 u32 ar9003_get_paprd_rate_mask_ht20(struct ath_hw *ah, bool is2ghz)
5585 {
5586 	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->papdRateMaskHt20);
5587 }
5588 
5589 u32 ar9003_get_paprd_rate_mask_ht40(struct ath_hw *ah, bool is2ghz)
5590 {
5591 	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->papdRateMaskHt40);
5592 }
5593 
5594 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
5595 					   struct ath9k_channel *chan)
5596 {
5597 	bool is2ghz = IS_CHAN_2GHZ(chan);
5598 
5599 	if (is2ghz)
5600 		return MS(ar9003_get_paprd_rate_mask_ht20(ah, is2ghz),
5601 			  AR9300_PAPRD_SCALE_1);
5602 	else {
5603 		if (chan->channel >= 5700)
5604 			return MS(ar9003_get_paprd_rate_mask_ht20(ah, is2ghz),
5605 				  AR9300_PAPRD_SCALE_1);
5606 		else if (chan->channel >= 5400)
5607 			return MS(ar9003_get_paprd_rate_mask_ht40(ah, is2ghz),
5608 				  AR9300_PAPRD_SCALE_2);
5609 		else
5610 			return MS(ar9003_get_paprd_rate_mask_ht40(ah, is2ghz),
5611 				  AR9300_PAPRD_SCALE_1);
5612 	}
5613 }
5614 
5615 static u8 ar9003_get_eepmisc(struct ath_hw *ah)
5616 {
5617 	return ah->eeprom.ar9300_eep.baseEepHeader.opCapFlags.eepMisc;
5618 }
5619 
5620 const struct eeprom_ops eep_ar9300_ops = {
5621 	.check_eeprom = ath9k_hw_ar9300_check_eeprom,
5622 	.get_eeprom = ath9k_hw_ar9300_get_eeprom,
5623 	.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5624 	.dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5625 	.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5626 	.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5627 	.set_board_values = ath9k_hw_ar9300_set_board_values,
5628 	.set_addac = ath9k_hw_ar9300_set_addac,
5629 	.set_txpower = ath9k_hw_ar9300_set_txpower,
5630 	.get_spur_channel = ath9k_hw_ar9300_get_spur_channel,
5631 	.get_eepmisc = ar9003_get_eepmisc
5632 };
5633