1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 /** 18 * DOC: Programming Atheros 802.11n analog front end radios 19 * 20 * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express 21 * devices have either an external AR2133 analog front end radio for single 22 * band 2.4 GHz communication or an AR5133 analog front end radio for dual 23 * band 2.4 GHz / 5 GHz communication. 24 * 25 * All devices after the AR5416 and AR5418 family starting with the AR9280 26 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded 27 * into a single-chip and require less programming. 28 * 29 * The following single-chips exist with a respective embedded radio: 30 * 31 * AR9280 - 11n dual-band 2x2 MIMO for PCIe 32 * AR9281 - 11n single-band 1x2 MIMO for PCIe 33 * AR9285 - 11n single-band 1x1 for PCIe 34 * AR9287 - 11n single-band 2x2 MIMO for PCIe 35 * 36 * AR9220 - 11n dual-band 2x2 MIMO for PCI 37 * AR9223 - 11n single-band 2x2 MIMO for PCI 38 * 39 * AR9287 - 11n single-band 1x1 MIMO for USB 40 */ 41 42 #include "hw.h" 43 #include "ar9002_phy.h" 44 45 /** 46 * ar9002_hw_set_channel - set channel on single-chip device 47 * @ah: atheros hardware structure 48 * @chan: 49 * 50 * This is the function to change channel on single-chip devices, that is 51 * all devices after ar9280. 52 * 53 * This function takes the channel value in MHz and sets 54 * hardware channel value. Assumes writes have been enabled to analog bus. 55 * 56 * Actual Expression, 57 * 58 * For 2GHz channel, 59 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) 60 * (freq_ref = 40MHz) 61 * 62 * For 5GHz channel, 63 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10) 64 * (freq_ref = 40MHz/(24>>amodeRefSel)) 65 */ 66 static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan) 67 { 68 u16 bMode, fracMode, aModeRefSel = 0; 69 u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0; 70 struct chan_centers centers; 71 u32 refDivA = 24; 72 73 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 74 freq = centers.synth_center; 75 76 reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL); 77 reg32 &= 0xc0000000; 78 79 if (freq < 4800) { /* 2 GHz, fractional mode */ 80 u32 txctl; 81 int regWrites = 0; 82 83 bMode = 1; 84 fracMode = 1; 85 aModeRefSel = 0; 86 channelSel = CHANSEL_2G(freq); 87 88 if (AR_SREV_9287_11_OR_LATER(ah)) { 89 if (freq == 2484) { 90 /* Enable channel spreading for channel 14 */ 91 REG_WRITE_ARRAY(&ah->iniCckfirJapan2484, 92 1, regWrites); 93 } else { 94 REG_WRITE_ARRAY(&ah->iniCckfirNormal, 95 1, regWrites); 96 } 97 } else { 98 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL); 99 if (freq == 2484) { 100 /* Enable channel spreading for channel 14 */ 101 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 102 txctl | AR_PHY_CCK_TX_CTRL_JAPAN); 103 } else { 104 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 105 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN); 106 } 107 } 108 } else { 109 bMode = 0; 110 fracMode = 0; 111 112 switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) { 113 case 0: 114 if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) 115 aModeRefSel = 0; 116 else if ((freq % 20) == 0) 117 aModeRefSel = 3; 118 else if ((freq % 10) == 0) 119 aModeRefSel = 2; 120 if (aModeRefSel) 121 break; 122 case 1: 123 default: 124 aModeRefSel = 0; 125 /* 126 * Enable 2G (fractional) mode for channels 127 * which are 5MHz spaced. 128 */ 129 fracMode = 1; 130 refDivA = 1; 131 channelSel = CHANSEL_5G(freq); 132 133 /* RefDivA setting */ 134 ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9, 135 AR_AN_SYNTH9_REFDIVA, 136 AR_AN_SYNTH9_REFDIVA_S, refDivA); 137 138 } 139 140 if (!fracMode) { 141 ndiv = (freq * (refDivA >> aModeRefSel)) / 60; 142 channelSel = ndiv & 0x1ff; 143 channelFrac = (ndiv & 0xfffffe00) * 2; 144 channelSel = (channelSel << 17) | channelFrac; 145 } 146 } 147 148 reg32 = reg32 | 149 (bMode << 29) | 150 (fracMode << 28) | (aModeRefSel << 26) | (channelSel); 151 152 REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32); 153 154 ah->curchan = chan; 155 156 return 0; 157 } 158 159 /** 160 * ar9002_hw_spur_mitigate - convert baseband spur frequency 161 * @ah: atheros hardware structure 162 * @chan: 163 * 164 * For single-chip solutions. Converts to baseband spur frequency given the 165 * input channel frequency and compute register settings below. 166 */ 167 static void ar9002_hw_spur_mitigate(struct ath_hw *ah, 168 struct ath9k_channel *chan) 169 { 170 int bb_spur = AR_NO_SPUR; 171 int freq; 172 int bin, cur_bin; 173 int bb_spur_off, spur_subchannel_sd; 174 int spur_freq_sd; 175 int spur_delta_phase; 176 int denominator; 177 int upper, lower, cur_vit_mask; 178 int tmp, newVal; 179 int i; 180 static const int pilot_mask_reg[4] = { 181 AR_PHY_TIMING7, AR_PHY_TIMING8, 182 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 183 }; 184 static const int chan_mask_reg[4] = { 185 AR_PHY_TIMING9, AR_PHY_TIMING10, 186 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 187 }; 188 static const int inc[4] = { 0, 100, 0, 0 }; 189 struct chan_centers centers; 190 191 int8_t mask_m[123]; 192 int8_t mask_p[123]; 193 int8_t mask_amt; 194 int tmp_mask; 195 int cur_bb_spur; 196 bool is2GHz = IS_CHAN_2GHZ(chan); 197 198 memset(&mask_m, 0, sizeof(int8_t) * 123); 199 memset(&mask_p, 0, sizeof(int8_t) * 123); 200 201 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 202 freq = centers.synth_center; 203 204 ah->config.spurmode = SPUR_ENABLE_EEPROM; 205 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 206 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz); 207 208 if (AR_NO_SPUR == cur_bb_spur) 209 break; 210 211 if (is2GHz) 212 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ; 213 else 214 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ; 215 216 cur_bb_spur = cur_bb_spur - freq; 217 218 if (IS_CHAN_HT40(chan)) { 219 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) && 220 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) { 221 bb_spur = cur_bb_spur; 222 break; 223 } 224 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) && 225 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) { 226 bb_spur = cur_bb_spur; 227 break; 228 } 229 } 230 231 if (AR_NO_SPUR == bb_spur) { 232 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, 233 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); 234 return; 235 } else { 236 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, 237 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); 238 } 239 240 bin = bb_spur * 320; 241 242 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0)); 243 244 ENABLE_REGWRITE_BUFFER(ah); 245 246 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | 247 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | 248 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | 249 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); 250 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal); 251 252 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | 253 AR_PHY_SPUR_REG_ENABLE_MASK_PPM | 254 AR_PHY_SPUR_REG_MASK_RATE_SELECT | 255 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | 256 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); 257 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal); 258 259 if (IS_CHAN_HT40(chan)) { 260 if (bb_spur < 0) { 261 spur_subchannel_sd = 1; 262 bb_spur_off = bb_spur + 10; 263 } else { 264 spur_subchannel_sd = 0; 265 bb_spur_off = bb_spur - 10; 266 } 267 } else { 268 spur_subchannel_sd = 0; 269 bb_spur_off = bb_spur; 270 } 271 272 if (IS_CHAN_HT40(chan)) 273 spur_delta_phase = 274 ((bb_spur * 262144) / 275 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; 276 else 277 spur_delta_phase = 278 ((bb_spur * 524288) / 279 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; 280 281 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40; 282 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff; 283 284 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | 285 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | 286 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); 287 REG_WRITE(ah, AR_PHY_TIMING11, newVal); 288 289 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S; 290 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal); 291 292 cur_bin = -6000; 293 upper = bin + 100; 294 lower = bin - 100; 295 296 for (i = 0; i < 4; i++) { 297 int pilot_mask = 0; 298 int chan_mask = 0; 299 int bp = 0; 300 for (bp = 0; bp < 30; bp++) { 301 if ((cur_bin > lower) && (cur_bin < upper)) { 302 pilot_mask = pilot_mask | 0x1 << bp; 303 chan_mask = chan_mask | 0x1 << bp; 304 } 305 cur_bin += 100; 306 } 307 cur_bin += inc[i]; 308 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); 309 REG_WRITE(ah, chan_mask_reg[i], chan_mask); 310 } 311 312 cur_vit_mask = 6100; 313 upper = bin + 120; 314 lower = bin - 120; 315 316 for (i = 0; i < 123; i++) { 317 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { 318 319 /* workaround for gcc bug #37014 */ 320 volatile int tmp_v = abs(cur_vit_mask - bin); 321 322 if (tmp_v < 75) 323 mask_amt = 1; 324 else 325 mask_amt = 0; 326 if (cur_vit_mask < 0) 327 mask_m[abs(cur_vit_mask / 100)] = mask_amt; 328 else 329 mask_p[cur_vit_mask / 100] = mask_amt; 330 } 331 cur_vit_mask -= 100; 332 } 333 334 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) 335 | (mask_m[48] << 26) | (mask_m[49] << 24) 336 | (mask_m[50] << 22) | (mask_m[51] << 20) 337 | (mask_m[52] << 18) | (mask_m[53] << 16) 338 | (mask_m[54] << 14) | (mask_m[55] << 12) 339 | (mask_m[56] << 10) | (mask_m[57] << 8) 340 | (mask_m[58] << 6) | (mask_m[59] << 4) 341 | (mask_m[60] << 2) | (mask_m[61] << 0); 342 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); 343 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); 344 345 tmp_mask = (mask_m[31] << 28) 346 | (mask_m[32] << 26) | (mask_m[33] << 24) 347 | (mask_m[34] << 22) | (mask_m[35] << 20) 348 | (mask_m[36] << 18) | (mask_m[37] << 16) 349 | (mask_m[48] << 14) | (mask_m[39] << 12) 350 | (mask_m[40] << 10) | (mask_m[41] << 8) 351 | (mask_m[42] << 6) | (mask_m[43] << 4) 352 | (mask_m[44] << 2) | (mask_m[45] << 0); 353 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); 354 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); 355 356 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) 357 | (mask_m[18] << 26) | (mask_m[18] << 24) 358 | (mask_m[20] << 22) | (mask_m[20] << 20) 359 | (mask_m[22] << 18) | (mask_m[22] << 16) 360 | (mask_m[24] << 14) | (mask_m[24] << 12) 361 | (mask_m[25] << 10) | (mask_m[26] << 8) 362 | (mask_m[27] << 6) | (mask_m[28] << 4) 363 | (mask_m[29] << 2) | (mask_m[30] << 0); 364 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); 365 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); 366 367 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) 368 | (mask_m[2] << 26) | (mask_m[3] << 24) 369 | (mask_m[4] << 22) | (mask_m[5] << 20) 370 | (mask_m[6] << 18) | (mask_m[7] << 16) 371 | (mask_m[8] << 14) | (mask_m[9] << 12) 372 | (mask_m[10] << 10) | (mask_m[11] << 8) 373 | (mask_m[12] << 6) | (mask_m[13] << 4) 374 | (mask_m[14] << 2) | (mask_m[15] << 0); 375 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); 376 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); 377 378 tmp_mask = (mask_p[15] << 28) 379 | (mask_p[14] << 26) | (mask_p[13] << 24) 380 | (mask_p[12] << 22) | (mask_p[11] << 20) 381 | (mask_p[10] << 18) | (mask_p[9] << 16) 382 | (mask_p[8] << 14) | (mask_p[7] << 12) 383 | (mask_p[6] << 10) | (mask_p[5] << 8) 384 | (mask_p[4] << 6) | (mask_p[3] << 4) 385 | (mask_p[2] << 2) | (mask_p[1] << 0); 386 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); 387 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); 388 389 tmp_mask = (mask_p[30] << 28) 390 | (mask_p[29] << 26) | (mask_p[28] << 24) 391 | (mask_p[27] << 22) | (mask_p[26] << 20) 392 | (mask_p[25] << 18) | (mask_p[24] << 16) 393 | (mask_p[23] << 14) | (mask_p[22] << 12) 394 | (mask_p[21] << 10) | (mask_p[20] << 8) 395 | (mask_p[19] << 6) | (mask_p[18] << 4) 396 | (mask_p[17] << 2) | (mask_p[16] << 0); 397 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); 398 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); 399 400 tmp_mask = (mask_p[45] << 28) 401 | (mask_p[44] << 26) | (mask_p[43] << 24) 402 | (mask_p[42] << 22) | (mask_p[41] << 20) 403 | (mask_p[40] << 18) | (mask_p[39] << 16) 404 | (mask_p[38] << 14) | (mask_p[37] << 12) 405 | (mask_p[36] << 10) | (mask_p[35] << 8) 406 | (mask_p[34] << 6) | (mask_p[33] << 4) 407 | (mask_p[32] << 2) | (mask_p[31] << 0); 408 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); 409 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); 410 411 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) 412 | (mask_p[59] << 26) | (mask_p[58] << 24) 413 | (mask_p[57] << 22) | (mask_p[56] << 20) 414 | (mask_p[55] << 18) | (mask_p[54] << 16) 415 | (mask_p[53] << 14) | (mask_p[52] << 12) 416 | (mask_p[51] << 10) | (mask_p[50] << 8) 417 | (mask_p[49] << 6) | (mask_p[48] << 4) 418 | (mask_p[47] << 2) | (mask_p[46] << 0); 419 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); 420 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); 421 422 REGWRITE_BUFFER_FLUSH(ah); 423 } 424 425 static void ar9002_olc_init(struct ath_hw *ah) 426 { 427 u32 i; 428 429 if (!OLC_FOR_AR9280_20_LATER) 430 return; 431 432 if (OLC_FOR_AR9287_10_LATER) { 433 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9, 434 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL); 435 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0, 436 AR9287_AN_TXPC0_TXPCMODE, 437 AR9287_AN_TXPC0_TXPCMODE_S, 438 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE); 439 udelay(100); 440 } else { 441 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++) 442 ah->originalGain[i] = 443 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4), 444 AR_PHY_TX_GAIN); 445 ah->PDADCdelta = 0; 446 } 447 } 448 449 static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah, 450 struct ath9k_channel *chan) 451 { 452 int ref_div = 5; 453 int pll_div = 0x2c; 454 u32 pll; 455 456 if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) { 457 if (AR_SREV_9280_20(ah)) { 458 ref_div = 10; 459 pll_div = 0x50; 460 } else { 461 pll_div = 0x28; 462 } 463 } 464 465 pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV); 466 pll |= SM(pll_div, AR_RTC_9160_PLL_DIV); 467 468 if (chan && IS_CHAN_HALF_RATE(chan)) 469 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); 470 else if (chan && IS_CHAN_QUARTER_RATE(chan)) 471 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); 472 473 return pll; 474 } 475 476 static void ar9002_hw_do_getnf(struct ath_hw *ah, 477 int16_t nfarray[NUM_NF_READINGS]) 478 { 479 int16_t nf; 480 481 nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR); 482 nfarray[0] = sign_extend32(nf, 8); 483 484 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR); 485 if (IS_CHAN_HT40(ah->curchan)) 486 nfarray[3] = sign_extend32(nf, 8); 487 488 if (!(ah->rxchainmask & BIT(1))) 489 return; 490 491 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR); 492 nfarray[1] = sign_extend32(nf, 8); 493 494 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR); 495 if (IS_CHAN_HT40(ah->curchan)) 496 nfarray[4] = sign_extend32(nf, 8); 497 } 498 499 static void ar9002_hw_set_nf_limits(struct ath_hw *ah) 500 { 501 if (AR_SREV_9285(ah)) { 502 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ; 503 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ; 504 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ; 505 } else if (AR_SREV_9287(ah)) { 506 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ; 507 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ; 508 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ; 509 } else if (AR_SREV_9271(ah)) { 510 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ; 511 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ; 512 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ; 513 } else { 514 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ; 515 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ; 516 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ; 517 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ; 518 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ; 519 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ; 520 } 521 } 522 523 static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah, 524 struct ath_hw_antcomb_conf *antconf) 525 { 526 u32 regval; 527 528 regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); 529 antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >> 530 AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S; 531 antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >> 532 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S; 533 antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >> 534 AR_PHY_9285_FAST_DIV_BIAS_S; 535 antconf->lna1_lna2_switch_delta = -1; 536 antconf->lna1_lna2_delta = -3; 537 antconf->div_group = 0; 538 } 539 540 static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah, 541 struct ath_hw_antcomb_conf *antconf) 542 { 543 u32 regval; 544 545 regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); 546 regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF | 547 AR_PHY_9285_ANT_DIV_ALT_LNACONF | 548 AR_PHY_9285_FAST_DIV_BIAS); 549 regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S) 550 & AR_PHY_9285_ANT_DIV_MAIN_LNACONF); 551 regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S) 552 & AR_PHY_9285_ANT_DIV_ALT_LNACONF); 553 regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S) 554 & AR_PHY_9285_FAST_DIV_BIAS); 555 556 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval); 557 } 558 559 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT 560 561 static void ar9002_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable) 562 { 563 struct ath_btcoex_hw *btcoex = &ah->btcoex_hw; 564 u8 antdiv_ctrl1, antdiv_ctrl2; 565 u32 regval; 566 567 if (enable) { 568 antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_ENABLE; 569 antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_ENABLE; 570 571 /* 572 * Don't disable BT ant to allow BB to control SWCOM. 573 */ 574 btcoex->bt_coex_mode2 &= (~(AR_BT_DISABLE_BT_ANT)); 575 REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2); 576 577 REG_WRITE(ah, AR_PHY_SWITCH_COM, ATH_BT_COEX_ANT_DIV_SWITCH_COM); 578 REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000); 579 } else { 580 /* 581 * Disable antenna diversity, use LNA1 only. 582 */ 583 antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_FIXED_A; 584 antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_FIXED_A; 585 586 /* 587 * Disable BT Ant. to allow concurrent BT and WLAN receive. 588 */ 589 btcoex->bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT; 590 REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2); 591 592 /* 593 * Program SWCOM table to make sure RF switch always parks 594 * at BT side. 595 */ 596 REG_WRITE(ah, AR_PHY_SWITCH_COM, 0); 597 REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000); 598 } 599 600 regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); 601 regval &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL)); 602 /* 603 * Clear ant_fast_div_bias [14:9] since for WB195, 604 * the main LNA is always LNA1. 605 */ 606 regval &= (~(AR_PHY_9285_FAST_DIV_BIAS)); 607 regval |= SM(antdiv_ctrl1, AR_PHY_9285_ANT_DIV_CTL); 608 regval |= SM(antdiv_ctrl2, AR_PHY_9285_ANT_DIV_ALT_LNACONF); 609 regval |= SM((antdiv_ctrl2 >> 2), AR_PHY_9285_ANT_DIV_MAIN_LNACONF); 610 regval |= SM((antdiv_ctrl1 >> 1), AR_PHY_9285_ANT_DIV_ALT_GAINTB); 611 regval |= SM((antdiv_ctrl1 >> 2), AR_PHY_9285_ANT_DIV_MAIN_GAINTB); 612 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval); 613 614 regval = REG_READ(ah, AR_PHY_CCK_DETECT); 615 regval &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); 616 regval |= SM((antdiv_ctrl1 >> 3), AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); 617 REG_WRITE(ah, AR_PHY_CCK_DETECT, regval); 618 } 619 620 #endif 621 622 static void ar9002_hw_spectral_scan_config(struct ath_hw *ah, 623 struct ath_spec_scan *param) 624 { 625 u8 count; 626 627 if (!param->enabled) { 628 REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN, 629 AR_PHY_SPECTRAL_SCAN_ENABLE); 630 return; 631 } 632 REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA); 633 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE); 634 635 if (param->short_repeat) 636 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, 637 AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT); 638 else 639 REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN, 640 AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT); 641 642 /* on AR92xx, the highest bit of count will make the the chip send 643 * spectral samples endlessly. Check if this really was intended, 644 * and fix otherwise. 645 */ 646 count = param->count; 647 if (param->endless) 648 count = 0x80; 649 else if (count & 0x80) 650 count = 0x7f; 651 652 REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN, 653 AR_PHY_SPECTRAL_SCAN_COUNT, count); 654 REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN, 655 AR_PHY_SPECTRAL_SCAN_PERIOD, param->period); 656 REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN, 657 AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period); 658 659 return; 660 } 661 662 static void ar9002_hw_spectral_scan_trigger(struct ath_hw *ah) 663 { 664 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE); 665 /* Activate spectral scan */ 666 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, 667 AR_PHY_SPECTRAL_SCAN_ACTIVE); 668 } 669 670 static void ar9002_hw_spectral_scan_wait(struct ath_hw *ah) 671 { 672 struct ath_common *common = ath9k_hw_common(ah); 673 674 /* Poll for spectral scan complete */ 675 if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN, 676 AR_PHY_SPECTRAL_SCAN_ACTIVE, 677 0, AH_WAIT_TIMEOUT)) { 678 ath_err(common, "spectral scan wait failed\n"); 679 return; 680 } 681 } 682 683 static void ar9002_hw_tx99_start(struct ath_hw *ah, u32 qnum) 684 { 685 REG_SET_BIT(ah, 0x9864, 0x7f000); 686 REG_SET_BIT(ah, 0x9924, 0x7f00fe); 687 REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS); 688 REG_WRITE(ah, AR_CR, AR_CR_RXD); 689 REG_WRITE(ah, AR_DLCL_IFS(qnum), 0); 690 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); 691 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20); 692 REG_WRITE(ah, AR_D_FPCTL, 0x10|qnum); 693 REG_WRITE(ah, AR_TIME_OUT, 0x00000400); 694 REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff); 695 REG_SET_BIT(ah, AR_QMISC(qnum), AR_Q_MISC_DCU_EARLY_TERM_REQ); 696 } 697 698 static void ar9002_hw_tx99_stop(struct ath_hw *ah) 699 { 700 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS); 701 } 702 703 void ar9002_hw_attach_phy_ops(struct ath_hw *ah) 704 { 705 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah); 706 struct ath_hw_ops *ops = ath9k_hw_ops(ah); 707 708 priv_ops->set_rf_regs = NULL; 709 priv_ops->rf_set_freq = ar9002_hw_set_channel; 710 priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate; 711 priv_ops->olc_init = ar9002_olc_init; 712 priv_ops->compute_pll_control = ar9002_hw_compute_pll_control; 713 priv_ops->do_getnf = ar9002_hw_do_getnf; 714 715 ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get; 716 ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set; 717 ops->spectral_scan_config = ar9002_hw_spectral_scan_config; 718 ops->spectral_scan_trigger = ar9002_hw_spectral_scan_trigger; 719 ops->spectral_scan_wait = ar9002_hw_spectral_scan_wait; 720 721 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT 722 ops->set_bt_ant_diversity = ar9002_hw_set_bt_ant_diversity; 723 #endif 724 ops->tx99_start = ar9002_hw_tx99_start; 725 ops->tx99_stop = ar9002_hw_tx99_stop; 726 727 ar9002_hw_set_nf_limits(ah); 728 } 729