xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/ar9002_phy.c (revision efdbd7345f8836f7495f3ac6ee237d86cb3bb6b0)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 /**
18  * DOC: Programming Atheros 802.11n analog front end radios
19  *
20  * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
21  * devices have either an external AR2133 analog front end radio for single
22  * band 2.4 GHz communication or an AR5133 analog front end radio for dual
23  * band 2.4 GHz / 5 GHz communication.
24  *
25  * All devices after the AR5416 and AR5418 family starting with the AR9280
26  * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
27  * into a single-chip and require less programming.
28  *
29  * The following single-chips exist with a respective embedded radio:
30  *
31  * AR9280 - 11n dual-band 2x2 MIMO for PCIe
32  * AR9281 - 11n single-band 1x2 MIMO for PCIe
33  * AR9285 - 11n single-band 1x1 for PCIe
34  * AR9287 - 11n single-band 2x2 MIMO for PCIe
35  *
36  * AR9220 - 11n dual-band 2x2 MIMO for PCI
37  * AR9223 - 11n single-band 2x2 MIMO for PCI
38  *
39  * AR9287 - 11n single-band 1x1 MIMO for USB
40  */
41 
42 #include "hw.h"
43 #include "ar9002_phy.h"
44 
45 /**
46  * ar9002_hw_set_channel - set channel on single-chip device
47  * @ah: atheros hardware structure
48  * @chan:
49  *
50  * This is the function to change channel on single-chip devices, that is
51  * all devices after ar9280.
52  *
53  * This function takes the channel value in MHz and sets
54  * hardware channel value. Assumes writes have been enabled to analog bus.
55  *
56  * Actual Expression,
57  *
58  * For 2GHz channel,
59  * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
60  * (freq_ref = 40MHz)
61  *
62  * For 5GHz channel,
63  * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
64  * (freq_ref = 40MHz/(24>>amodeRefSel))
65  */
66 static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
67 {
68 	u16 bMode, fracMode, aModeRefSel = 0;
69 	u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
70 	struct chan_centers centers;
71 	u32 refDivA = 24;
72 
73 	ath9k_hw_get_channel_centers(ah, chan, &centers);
74 	freq = centers.synth_center;
75 
76 	reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
77 	reg32 &= 0xc0000000;
78 
79 	if (freq < 4800) { /* 2 GHz, fractional mode */
80 		u32 txctl;
81 		int regWrites = 0;
82 
83 		bMode = 1;
84 		fracMode = 1;
85 		aModeRefSel = 0;
86 		channelSel = CHANSEL_2G(freq);
87 
88 		if (AR_SREV_9287_11_OR_LATER(ah)) {
89 			if (freq == 2484) {
90 				/* Enable channel spreading for channel 14 */
91 				REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
92 						1, regWrites);
93 			} else {
94 				REG_WRITE_ARRAY(&ah->iniCckfirNormal,
95 						1, regWrites);
96 			}
97 		} else {
98 			txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
99 			if (freq == 2484) {
100 				/* Enable channel spreading for channel 14 */
101 				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102 					  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103 			} else {
104 				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105 					  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
106 			}
107 		}
108 	} else {
109 		bMode = 0;
110 		fracMode = 0;
111 
112 		switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113 		case 0:
114 			if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
115 				aModeRefSel = 0;
116 			else if ((freq % 20) == 0)
117 				aModeRefSel = 3;
118 			else if ((freq % 10) == 0)
119 				aModeRefSel = 2;
120 			if (aModeRefSel)
121 				break;
122 		case 1:
123 		default:
124 			aModeRefSel = 0;
125 			/*
126 			 * Enable 2G (fractional) mode for channels
127 			 * which are 5MHz spaced.
128 			 */
129 			fracMode = 1;
130 			refDivA = 1;
131 			channelSel = CHANSEL_5G(freq);
132 
133 			/* RefDivA setting */
134 			ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
135 				      AR_AN_SYNTH9_REFDIVA,
136 				      AR_AN_SYNTH9_REFDIVA_S, refDivA);
137 
138 		}
139 
140 		if (!fracMode) {
141 			ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
142 			channelSel = ndiv & 0x1ff;
143 			channelFrac = (ndiv & 0xfffffe00) * 2;
144 			channelSel = (channelSel << 17) | channelFrac;
145 		}
146 	}
147 
148 	reg32 = reg32 |
149 	    (bMode << 29) |
150 	    (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
151 
152 	REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
153 
154 	ah->curchan = chan;
155 
156 	return 0;
157 }
158 
159 /**
160  * ar9002_hw_spur_mitigate - convert baseband spur frequency
161  * @ah: atheros hardware structure
162  * @chan:
163  *
164  * For single-chip solutions. Converts to baseband spur frequency given the
165  * input channel frequency and compute register settings below.
166  */
167 static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
168 				    struct ath9k_channel *chan)
169 {
170 	int bb_spur = AR_NO_SPUR;
171 	int freq;
172 	int bin;
173 	int bb_spur_off, spur_subchannel_sd;
174 	int spur_freq_sd;
175 	int spur_delta_phase;
176 	int denominator;
177 	int tmp, newVal;
178 	int i;
179 	struct chan_centers centers;
180 
181 	int8_t mask_m[123];
182 	int8_t mask_p[123];
183 	int cur_bb_spur;
184 	bool is2GHz = IS_CHAN_2GHZ(chan);
185 
186 	memset(&mask_m, 0, sizeof(int8_t) * 123);
187 	memset(&mask_p, 0, sizeof(int8_t) * 123);
188 
189 	ath9k_hw_get_channel_centers(ah, chan, &centers);
190 	freq = centers.synth_center;
191 
192 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
193 		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
194 
195 		if (AR_NO_SPUR == cur_bb_spur)
196 			break;
197 
198 		if (is2GHz)
199 			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
200 		else
201 			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
202 
203 		cur_bb_spur = cur_bb_spur - freq;
204 
205 		if (IS_CHAN_HT40(chan)) {
206 			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
207 			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
208 				bb_spur = cur_bb_spur;
209 				break;
210 			}
211 		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
212 			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
213 			bb_spur = cur_bb_spur;
214 			break;
215 		}
216 	}
217 
218 	if (AR_NO_SPUR == bb_spur) {
219 		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
220 			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
221 		return;
222 	} else {
223 		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
224 			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
225 	}
226 
227 	bin = bb_spur * 320;
228 
229 	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
230 
231 	ENABLE_REGWRITE_BUFFER(ah);
232 
233 	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
234 			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
235 			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
236 			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
237 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
238 
239 	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
240 		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
241 		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
242 		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
243 		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
244 	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
245 
246 	if (IS_CHAN_HT40(chan)) {
247 		if (bb_spur < 0) {
248 			spur_subchannel_sd = 1;
249 			bb_spur_off = bb_spur + 10;
250 		} else {
251 			spur_subchannel_sd = 0;
252 			bb_spur_off = bb_spur - 10;
253 		}
254 	} else {
255 		spur_subchannel_sd = 0;
256 		bb_spur_off = bb_spur;
257 	}
258 
259 	if (IS_CHAN_HT40(chan))
260 		spur_delta_phase =
261 			((bb_spur * 262144) /
262 			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
263 	else
264 		spur_delta_phase =
265 			((bb_spur * 524288) /
266 			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
267 
268 	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
269 	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
270 
271 	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
272 		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
273 		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
274 	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
275 
276 	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
277 	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
278 
279 	ar5008_hw_cmn_spur_mitigate(ah, chan, bin);
280 
281 	REGWRITE_BUFFER_FLUSH(ah);
282 }
283 
284 static void ar9002_olc_init(struct ath_hw *ah)
285 {
286 	u32 i;
287 
288 	if (!OLC_FOR_AR9280_20_LATER)
289 		return;
290 
291 	if (OLC_FOR_AR9287_10_LATER) {
292 		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
293 				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
294 		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
295 				AR9287_AN_TXPC0_TXPCMODE,
296 				AR9287_AN_TXPC0_TXPCMODE_S,
297 				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
298 		udelay(100);
299 	} else {
300 		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
301 			ah->originalGain[i] =
302 				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
303 						AR_PHY_TX_GAIN);
304 		ah->PDADCdelta = 0;
305 	}
306 }
307 
308 static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
309 					 struct ath9k_channel *chan)
310 {
311 	int ref_div = 5;
312 	int pll_div = 0x2c;
313 	u32 pll;
314 
315 	if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
316 		if (AR_SREV_9280_20(ah)) {
317 			ref_div = 10;
318 			pll_div = 0x50;
319 		} else {
320 			pll_div = 0x28;
321 		}
322 	}
323 
324 	pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
325 	pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
326 
327 	if (chan && IS_CHAN_HALF_RATE(chan))
328 		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
329 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
330 		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
331 
332 	return pll;
333 }
334 
335 static void ar9002_hw_do_getnf(struct ath_hw *ah,
336 			      int16_t nfarray[NUM_NF_READINGS])
337 {
338 	int16_t nf;
339 
340 	nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
341 	nfarray[0] = sign_extend32(nf, 8);
342 
343 	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
344 	if (IS_CHAN_HT40(ah->curchan))
345 		nfarray[3] = sign_extend32(nf, 8);
346 
347 	if (!(ah->rxchainmask & BIT(1)))
348 		return;
349 
350 	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
351 	nfarray[1] = sign_extend32(nf, 8);
352 
353 	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
354 	if (IS_CHAN_HT40(ah->curchan))
355 		nfarray[4] = sign_extend32(nf, 8);
356 }
357 
358 static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
359 {
360 	if (AR_SREV_9285(ah)) {
361 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
362 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
363 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
364 	} else if (AR_SREV_9287(ah)) {
365 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
366 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
367 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
368 	} else if (AR_SREV_9271(ah)) {
369 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
370 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
371 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
372 	} else {
373 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
374 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
375 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
376 		ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
377 		ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
378 		ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
379 	}
380 }
381 
382 static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
383 				   struct ath_hw_antcomb_conf *antconf)
384 {
385 	u32 regval;
386 
387 	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
388 	antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
389 				  AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
390 	antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
391 				 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
392 	antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
393 				  AR_PHY_9285_FAST_DIV_BIAS_S;
394 	antconf->lna1_lna2_switch_delta = -1;
395 	antconf->lna1_lna2_delta = -3;
396 	antconf->div_group = 0;
397 }
398 
399 static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
400 				   struct ath_hw_antcomb_conf *antconf)
401 {
402 	u32 regval;
403 
404 	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
405 	regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
406 		    AR_PHY_9285_ANT_DIV_ALT_LNACONF |
407 		    AR_PHY_9285_FAST_DIV_BIAS);
408 	regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
409 		   & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
410 	regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
411 		   & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
412 	regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
413 		   & AR_PHY_9285_FAST_DIV_BIAS);
414 
415 	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
416 }
417 
418 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
419 
420 static void ar9002_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable)
421 {
422 	struct ath_btcoex_hw *btcoex = &ah->btcoex_hw;
423 	u8 antdiv_ctrl1, antdiv_ctrl2;
424 	u32 regval;
425 
426 	if (enable) {
427 		antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_ENABLE;
428 		antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_ENABLE;
429 
430 		/*
431 		 * Don't disable BT ant to allow BB to control SWCOM.
432 		 */
433 		btcoex->bt_coex_mode2 &= (~(AR_BT_DISABLE_BT_ANT));
434 		REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
435 
436 		REG_WRITE(ah, AR_PHY_SWITCH_COM, ATH_BT_COEX_ANT_DIV_SWITCH_COM);
437 		REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
438 	} else {
439 		/*
440 		 * Disable antenna diversity, use LNA1 only.
441 		 */
442 		antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_FIXED_A;
443 		antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_FIXED_A;
444 
445 		/*
446 		 * Disable BT Ant. to allow concurrent BT and WLAN receive.
447 		 */
448 		btcoex->bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
449 		REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
450 
451 		/*
452 		 * Program SWCOM table to make sure RF switch always parks
453 		 * at BT side.
454 		 */
455 		REG_WRITE(ah, AR_PHY_SWITCH_COM, 0);
456 		REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
457 	}
458 
459 	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
460 	regval &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
461         /*
462 	 * Clear ant_fast_div_bias [14:9] since for WB195,
463 	 * the main LNA is always LNA1.
464 	 */
465 	regval &= (~(AR_PHY_9285_FAST_DIV_BIAS));
466 	regval |= SM(antdiv_ctrl1, AR_PHY_9285_ANT_DIV_CTL);
467 	regval |= SM(antdiv_ctrl2, AR_PHY_9285_ANT_DIV_ALT_LNACONF);
468 	regval |= SM((antdiv_ctrl2 >> 2), AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
469 	regval |= SM((antdiv_ctrl1 >> 1), AR_PHY_9285_ANT_DIV_ALT_GAINTB);
470 	regval |= SM((antdiv_ctrl1 >> 2), AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
471 	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
472 
473 	regval = REG_READ(ah, AR_PHY_CCK_DETECT);
474 	regval &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
475 	regval |= SM((antdiv_ctrl1 >> 3), AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
476 	REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
477 }
478 
479 #endif
480 
481 static void ar9002_hw_spectral_scan_config(struct ath_hw *ah,
482 				    struct ath_spec_scan *param)
483 {
484 	u8 count;
485 
486 	if (!param->enabled) {
487 		REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
488 			    AR_PHY_SPECTRAL_SCAN_ENABLE);
489 		return;
490 	}
491 	REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA);
492 	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
493 
494 	if (param->short_repeat)
495 		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
496 			    AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
497 	else
498 		REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
499 			    AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
500 
501 	/* on AR92xx, the highest bit of count will make the the chip send
502 	 * spectral samples endlessly. Check if this really was intended,
503 	 * and fix otherwise.
504 	 */
505 	count = param->count;
506 	if (param->endless) {
507 		if (AR_SREV_9271(ah))
508 			count = 0;
509 		else
510 			count = 0x80;
511 	} else if (count & 0x80)
512 		count = 0x7f;
513 
514 	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
515 		      AR_PHY_SPECTRAL_SCAN_COUNT, count);
516 	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
517 		      AR_PHY_SPECTRAL_SCAN_PERIOD, param->period);
518 	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
519 		      AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period);
520 
521 	return;
522 }
523 
524 static void ar9002_hw_spectral_scan_trigger(struct ath_hw *ah)
525 {
526 	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
527 	/* Activate spectral scan */
528 	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
529 		    AR_PHY_SPECTRAL_SCAN_ACTIVE);
530 }
531 
532 static void ar9002_hw_spectral_scan_wait(struct ath_hw *ah)
533 {
534 	struct ath_common *common = ath9k_hw_common(ah);
535 
536 	/* Poll for spectral scan complete */
537 	if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN,
538 			   AR_PHY_SPECTRAL_SCAN_ACTIVE,
539 			   0, AH_WAIT_TIMEOUT)) {
540 		ath_err(common, "spectral scan wait failed\n");
541 		return;
542 	}
543 }
544 
545 static void ar9002_hw_tx99_start(struct ath_hw *ah, u32 qnum)
546 {
547 	REG_SET_BIT(ah, 0x9864, 0x7f000);
548 	REG_SET_BIT(ah, 0x9924, 0x7f00fe);
549 	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
550 	REG_WRITE(ah, AR_CR, AR_CR_RXD);
551 	REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
552 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20);
553 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
554 	REG_WRITE(ah, AR_D_FPCTL, 0x10|qnum);
555 	REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
556 	REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
557 	REG_SET_BIT(ah, AR_QMISC(qnum), AR_Q_MISC_DCU_EARLY_TERM_REQ);
558 }
559 
560 static void ar9002_hw_tx99_stop(struct ath_hw *ah)
561 {
562 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
563 }
564 
565 void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
566 {
567 	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
568 	struct ath_hw_ops *ops = ath9k_hw_ops(ah);
569 
570 	priv_ops->set_rf_regs = NULL;
571 	priv_ops->rf_set_freq = ar9002_hw_set_channel;
572 	priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
573 	priv_ops->olc_init = ar9002_olc_init;
574 	priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
575 	priv_ops->do_getnf = ar9002_hw_do_getnf;
576 
577 	ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
578 	ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
579 	ops->spectral_scan_config = ar9002_hw_spectral_scan_config;
580 	ops->spectral_scan_trigger = ar9002_hw_spectral_scan_trigger;
581 	ops->spectral_scan_wait = ar9002_hw_spectral_scan_wait;
582 
583 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
584 	ops->set_bt_ant_diversity = ar9002_hw_set_bt_ant_diversity;
585 #endif
586 	ops->tx99_start = ar9002_hw_tx99_start;
587 	ops->tx99_stop = ar9002_hw_tx99_stop;
588 
589 	ar9002_hw_set_nf_limits(ah);
590 }
591