1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 /**
18  * DOC: Programming Atheros 802.11n analog front end radios
19  *
20  * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
21  * devices have either an external AR2133 analog front end radio for single
22  * band 2.4 GHz communication or an AR5133 analog front end radio for dual
23  * band 2.4 GHz / 5 GHz communication.
24  *
25  * All devices after the AR5416 and AR5418 family starting with the AR9280
26  * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
27  * into a single-chip and require less programming.
28  *
29  * The following single-chips exist with a respective embedded radio:
30  *
31  * AR9280 - 11n dual-band 2x2 MIMO for PCIe
32  * AR9281 - 11n single-band 1x2 MIMO for PCIe
33  * AR9285 - 11n single-band 1x1 for PCIe
34  * AR9287 - 11n single-band 2x2 MIMO for PCIe
35  *
36  * AR9220 - 11n dual-band 2x2 MIMO for PCI
37  * AR9223 - 11n single-band 2x2 MIMO for PCI
38  *
39  * AR9287 - 11n single-band 1x1 MIMO for USB
40  */
41 
42 #include "hw.h"
43 #include "ar9002_phy.h"
44 
45 /**
46  * ar9002_hw_set_channel - set channel on single-chip device
47  * @ah: atheros hardware structure
48  * @chan:
49  *
50  * This is the function to change channel on single-chip devices, that is
51  * all devices after ar9280.
52  *
53  * This function takes the channel value in MHz and sets
54  * hardware channel value. Assumes writes have been enabled to analog bus.
55  *
56  * Actual Expression,
57  *
58  * For 2GHz channel,
59  * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
60  * (freq_ref = 40MHz)
61  *
62  * For 5GHz channel,
63  * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
64  * (freq_ref = 40MHz/(24>>amodeRefSel))
65  */
66 static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
67 {
68 	u16 bMode, fracMode, aModeRefSel = 0;
69 	u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
70 	struct chan_centers centers;
71 	u32 refDivA = 24;
72 
73 	ath9k_hw_get_channel_centers(ah, chan, &centers);
74 	freq = centers.synth_center;
75 
76 	reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
77 	reg32 &= 0xc0000000;
78 
79 	if (freq < 4800) { /* 2 GHz, fractional mode */
80 		u32 txctl;
81 		int regWrites = 0;
82 
83 		bMode = 1;
84 		fracMode = 1;
85 		aModeRefSel = 0;
86 		channelSel = CHANSEL_2G(freq);
87 
88 		if (AR_SREV_9287_11_OR_LATER(ah)) {
89 			if (freq == 2484) {
90 				/* Enable channel spreading for channel 14 */
91 				REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
92 						1, regWrites);
93 			} else {
94 				REG_WRITE_ARRAY(&ah->iniCckfirNormal,
95 						1, regWrites);
96 			}
97 		} else {
98 			txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
99 			if (freq == 2484) {
100 				/* Enable channel spreading for channel 14 */
101 				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102 					  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103 			} else {
104 				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105 					  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
106 			}
107 		}
108 	} else {
109 		bMode = 0;
110 		fracMode = 0;
111 
112 		switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113 		case 0:
114 			if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
115 				aModeRefSel = 0;
116 			else if ((freq % 20) == 0)
117 				aModeRefSel = 3;
118 			else if ((freq % 10) == 0)
119 				aModeRefSel = 2;
120 			if (aModeRefSel)
121 				break;
122 		case 1:
123 		default:
124 			aModeRefSel = 0;
125 			/*
126 			 * Enable 2G (fractional) mode for channels
127 			 * which are 5MHz spaced.
128 			 */
129 			fracMode = 1;
130 			refDivA = 1;
131 			channelSel = CHANSEL_5G(freq);
132 
133 			/* RefDivA setting */
134 			ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
135 				      AR_AN_SYNTH9_REFDIVA,
136 				      AR_AN_SYNTH9_REFDIVA_S, refDivA);
137 
138 		}
139 
140 		if (!fracMode) {
141 			ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
142 			channelSel = ndiv & 0x1ff;
143 			channelFrac = (ndiv & 0xfffffe00) * 2;
144 			channelSel = (channelSel << 17) | channelFrac;
145 		}
146 	}
147 
148 	reg32 = reg32 |
149 	    (bMode << 29) |
150 	    (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
151 
152 	REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
153 
154 	ah->curchan = chan;
155 
156 	return 0;
157 }
158 
159 /**
160  * ar9002_hw_spur_mitigate - convert baseband spur frequency
161  * @ah: atheros hardware structure
162  * @chan:
163  *
164  * For single-chip solutions. Converts to baseband spur frequency given the
165  * input channel frequency and compute register settings below.
166  */
167 static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
168 				    struct ath9k_channel *chan)
169 {
170 	int bb_spur = AR_NO_SPUR;
171 	int freq;
172 	int bin, cur_bin;
173 	int bb_spur_off, spur_subchannel_sd;
174 	int spur_freq_sd;
175 	int spur_delta_phase;
176 	int denominator;
177 	int upper, lower, cur_vit_mask;
178 	int tmp, newVal;
179 	int i;
180 	static const int pilot_mask_reg[4] = {
181 		AR_PHY_TIMING7, AR_PHY_TIMING8,
182 		AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
183 	};
184 	static const int chan_mask_reg[4] = {
185 		AR_PHY_TIMING9, AR_PHY_TIMING10,
186 		AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
187 	};
188 	static const int inc[4] = { 0, 100, 0, 0 };
189 	struct chan_centers centers;
190 
191 	int8_t mask_m[123];
192 	int8_t mask_p[123];
193 	int8_t mask_amt;
194 	int tmp_mask;
195 	int cur_bb_spur;
196 	bool is2GHz = IS_CHAN_2GHZ(chan);
197 
198 	memset(&mask_m, 0, sizeof(int8_t) * 123);
199 	memset(&mask_p, 0, sizeof(int8_t) * 123);
200 
201 	ath9k_hw_get_channel_centers(ah, chan, &centers);
202 	freq = centers.synth_center;
203 
204 	ah->config.spurmode = SPUR_ENABLE_EEPROM;
205 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
206 		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
207 
208 		if (AR_NO_SPUR == cur_bb_spur)
209 			break;
210 
211 		if (is2GHz)
212 			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
213 		else
214 			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
215 
216 		cur_bb_spur = cur_bb_spur - freq;
217 
218 		if (IS_CHAN_HT40(chan)) {
219 			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
220 			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
221 				bb_spur = cur_bb_spur;
222 				break;
223 			}
224 		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
225 			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
226 			bb_spur = cur_bb_spur;
227 			break;
228 		}
229 	}
230 
231 	if (AR_NO_SPUR == bb_spur) {
232 		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
233 			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
234 		return;
235 	} else {
236 		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
237 			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
238 	}
239 
240 	bin = bb_spur * 320;
241 
242 	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
243 
244 	ENABLE_REGWRITE_BUFFER(ah);
245 
246 	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
247 			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
248 			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
249 			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
250 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
251 
252 	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
253 		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
254 		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
255 		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
256 		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
257 	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
258 
259 	if (IS_CHAN_HT40(chan)) {
260 		if (bb_spur < 0) {
261 			spur_subchannel_sd = 1;
262 			bb_spur_off = bb_spur + 10;
263 		} else {
264 			spur_subchannel_sd = 0;
265 			bb_spur_off = bb_spur - 10;
266 		}
267 	} else {
268 		spur_subchannel_sd = 0;
269 		bb_spur_off = bb_spur;
270 	}
271 
272 	if (IS_CHAN_HT40(chan))
273 		spur_delta_phase =
274 			((bb_spur * 262144) /
275 			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
276 	else
277 		spur_delta_phase =
278 			((bb_spur * 524288) /
279 			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
280 
281 	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
282 	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
283 
284 	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
285 		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
286 		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
287 	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
288 
289 	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
290 	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
291 
292 	cur_bin = -6000;
293 	upper = bin + 100;
294 	lower = bin - 100;
295 
296 	for (i = 0; i < 4; i++) {
297 		int pilot_mask = 0;
298 		int chan_mask = 0;
299 		int bp = 0;
300 		for (bp = 0; bp < 30; bp++) {
301 			if ((cur_bin > lower) && (cur_bin < upper)) {
302 				pilot_mask = pilot_mask | 0x1 << bp;
303 				chan_mask = chan_mask | 0x1 << bp;
304 			}
305 			cur_bin += 100;
306 		}
307 		cur_bin += inc[i];
308 		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
309 		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
310 	}
311 
312 	cur_vit_mask = 6100;
313 	upper = bin + 120;
314 	lower = bin - 120;
315 
316 	for (i = 0; i < 123; i++) {
317 		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
318 
319 			/* workaround for gcc bug #37014 */
320 			volatile int tmp_v = abs(cur_vit_mask - bin);
321 
322 			if (tmp_v < 75)
323 				mask_amt = 1;
324 			else
325 				mask_amt = 0;
326 			if (cur_vit_mask < 0)
327 				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
328 			else
329 				mask_p[cur_vit_mask / 100] = mask_amt;
330 		}
331 		cur_vit_mask -= 100;
332 	}
333 
334 	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
335 		| (mask_m[48] << 26) | (mask_m[49] << 24)
336 		| (mask_m[50] << 22) | (mask_m[51] << 20)
337 		| (mask_m[52] << 18) | (mask_m[53] << 16)
338 		| (mask_m[54] << 14) | (mask_m[55] << 12)
339 		| (mask_m[56] << 10) | (mask_m[57] << 8)
340 		| (mask_m[58] << 6) | (mask_m[59] << 4)
341 		| (mask_m[60] << 2) | (mask_m[61] << 0);
342 	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
343 	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
344 
345 	tmp_mask = (mask_m[31] << 28)
346 		| (mask_m[32] << 26) | (mask_m[33] << 24)
347 		| (mask_m[34] << 22) | (mask_m[35] << 20)
348 		| (mask_m[36] << 18) | (mask_m[37] << 16)
349 		| (mask_m[48] << 14) | (mask_m[39] << 12)
350 		| (mask_m[40] << 10) | (mask_m[41] << 8)
351 		| (mask_m[42] << 6) | (mask_m[43] << 4)
352 		| (mask_m[44] << 2) | (mask_m[45] << 0);
353 	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
354 	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
355 
356 	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
357 		| (mask_m[18] << 26) | (mask_m[18] << 24)
358 		| (mask_m[20] << 22) | (mask_m[20] << 20)
359 		| (mask_m[22] << 18) | (mask_m[22] << 16)
360 		| (mask_m[24] << 14) | (mask_m[24] << 12)
361 		| (mask_m[25] << 10) | (mask_m[26] << 8)
362 		| (mask_m[27] << 6) | (mask_m[28] << 4)
363 		| (mask_m[29] << 2) | (mask_m[30] << 0);
364 	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
365 	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
366 
367 	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
368 		| (mask_m[2] << 26) | (mask_m[3] << 24)
369 		| (mask_m[4] << 22) | (mask_m[5] << 20)
370 		| (mask_m[6] << 18) | (mask_m[7] << 16)
371 		| (mask_m[8] << 14) | (mask_m[9] << 12)
372 		| (mask_m[10] << 10) | (mask_m[11] << 8)
373 		| (mask_m[12] << 6) | (mask_m[13] << 4)
374 		| (mask_m[14] << 2) | (mask_m[15] << 0);
375 	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
376 	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
377 
378 	tmp_mask = (mask_p[15] << 28)
379 		| (mask_p[14] << 26) | (mask_p[13] << 24)
380 		| (mask_p[12] << 22) | (mask_p[11] << 20)
381 		| (mask_p[10] << 18) | (mask_p[9] << 16)
382 		| (mask_p[8] << 14) | (mask_p[7] << 12)
383 		| (mask_p[6] << 10) | (mask_p[5] << 8)
384 		| (mask_p[4] << 6) | (mask_p[3] << 4)
385 		| (mask_p[2] << 2) | (mask_p[1] << 0);
386 	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
387 	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
388 
389 	tmp_mask = (mask_p[30] << 28)
390 		| (mask_p[29] << 26) | (mask_p[28] << 24)
391 		| (mask_p[27] << 22) | (mask_p[26] << 20)
392 		| (mask_p[25] << 18) | (mask_p[24] << 16)
393 		| (mask_p[23] << 14) | (mask_p[22] << 12)
394 		| (mask_p[21] << 10) | (mask_p[20] << 8)
395 		| (mask_p[19] << 6) | (mask_p[18] << 4)
396 		| (mask_p[17] << 2) | (mask_p[16] << 0);
397 	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
398 	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
399 
400 	tmp_mask = (mask_p[45] << 28)
401 		| (mask_p[44] << 26) | (mask_p[43] << 24)
402 		| (mask_p[42] << 22) | (mask_p[41] << 20)
403 		| (mask_p[40] << 18) | (mask_p[39] << 16)
404 		| (mask_p[38] << 14) | (mask_p[37] << 12)
405 		| (mask_p[36] << 10) | (mask_p[35] << 8)
406 		| (mask_p[34] << 6) | (mask_p[33] << 4)
407 		| (mask_p[32] << 2) | (mask_p[31] << 0);
408 	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
409 	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
410 
411 	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
412 		| (mask_p[59] << 26) | (mask_p[58] << 24)
413 		| (mask_p[57] << 22) | (mask_p[56] << 20)
414 		| (mask_p[55] << 18) | (mask_p[54] << 16)
415 		| (mask_p[53] << 14) | (mask_p[52] << 12)
416 		| (mask_p[51] << 10) | (mask_p[50] << 8)
417 		| (mask_p[49] << 6) | (mask_p[48] << 4)
418 		| (mask_p[47] << 2) | (mask_p[46] << 0);
419 	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
420 	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
421 
422 	REGWRITE_BUFFER_FLUSH(ah);
423 }
424 
425 static void ar9002_olc_init(struct ath_hw *ah)
426 {
427 	u32 i;
428 
429 	if (!OLC_FOR_AR9280_20_LATER)
430 		return;
431 
432 	if (OLC_FOR_AR9287_10_LATER) {
433 		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
434 				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
435 		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
436 				AR9287_AN_TXPC0_TXPCMODE,
437 				AR9287_AN_TXPC0_TXPCMODE_S,
438 				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
439 		udelay(100);
440 	} else {
441 		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
442 			ah->originalGain[i] =
443 				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
444 						AR_PHY_TX_GAIN);
445 		ah->PDADCdelta = 0;
446 	}
447 }
448 
449 static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
450 					 struct ath9k_channel *chan)
451 {
452 	int ref_div = 5;
453 	int pll_div = 0x2c;
454 	u32 pll;
455 
456 	if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
457 		if (AR_SREV_9280_20(ah)) {
458 			ref_div = 10;
459 			pll_div = 0x50;
460 		} else {
461 			pll_div = 0x28;
462 		}
463 	}
464 
465 	pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
466 	pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
467 
468 	if (chan && IS_CHAN_HALF_RATE(chan))
469 		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
470 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
471 		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
472 
473 	return pll;
474 }
475 
476 static void ar9002_hw_do_getnf(struct ath_hw *ah,
477 			      int16_t nfarray[NUM_NF_READINGS])
478 {
479 	int16_t nf;
480 
481 	nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
482 	nfarray[0] = sign_extend32(nf, 8);
483 
484 	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
485 	if (IS_CHAN_HT40(ah->curchan))
486 		nfarray[3] = sign_extend32(nf, 8);
487 
488 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
489 		return;
490 
491 	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
492 	nfarray[1] = sign_extend32(nf, 8);
493 
494 	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
495 	if (IS_CHAN_HT40(ah->curchan))
496 		nfarray[4] = sign_extend32(nf, 8);
497 }
498 
499 static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
500 {
501 	if (AR_SREV_9285(ah)) {
502 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
503 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
504 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
505 	} else if (AR_SREV_9287(ah)) {
506 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
507 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
508 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
509 	} else if (AR_SREV_9271(ah)) {
510 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
511 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
512 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
513 	} else {
514 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
515 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
516 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
517 		ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
518 		ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
519 		ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
520 	}
521 }
522 
523 static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
524 				   struct ath_hw_antcomb_conf *antconf)
525 {
526 	u32 regval;
527 
528 	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
529 	antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
530 				  AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
531 	antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
532 				 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
533 	antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
534 				  AR_PHY_9285_FAST_DIV_BIAS_S;
535 	antconf->lna1_lna2_delta = -3;
536 	antconf->div_group = 0;
537 }
538 
539 static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
540 				   struct ath_hw_antcomb_conf *antconf)
541 {
542 	u32 regval;
543 
544 	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
545 	regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
546 		    AR_PHY_9285_ANT_DIV_ALT_LNACONF |
547 		    AR_PHY_9285_FAST_DIV_BIAS);
548 	regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
549 		   & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
550 	regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
551 		   & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
552 	regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
553 		   & AR_PHY_9285_FAST_DIV_BIAS);
554 
555 	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
556 }
557 
558 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
559 
560 static void ar9002_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable)
561 {
562 	struct ath_btcoex_hw *btcoex = &ah->btcoex_hw;
563 	u8 antdiv_ctrl1, antdiv_ctrl2;
564 	u32 regval;
565 
566 	if (enable) {
567 		antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_ENABLE;
568 		antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_ENABLE;
569 
570 		/*
571 		 * Don't disable BT ant to allow BB to control SWCOM.
572 		 */
573 		btcoex->bt_coex_mode2 &= (~(AR_BT_DISABLE_BT_ANT));
574 		REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
575 
576 		REG_WRITE(ah, AR_PHY_SWITCH_COM, ATH_BT_COEX_ANT_DIV_SWITCH_COM);
577 		REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
578 	} else {
579 		/*
580 		 * Disable antenna diversity, use LNA1 only.
581 		 */
582 		antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_FIXED_A;
583 		antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_FIXED_A;
584 
585 		/*
586 		 * Disable BT Ant. to allow concurrent BT and WLAN receive.
587 		 */
588 		btcoex->bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
589 		REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
590 
591 		/*
592 		 * Program SWCOM table to make sure RF switch always parks
593 		 * at BT side.
594 		 */
595 		REG_WRITE(ah, AR_PHY_SWITCH_COM, 0);
596 		REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
597 	}
598 
599 	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
600 	regval &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
601         /*
602 	 * Clear ant_fast_div_bias [14:9] since for WB195,
603 	 * the main LNA is always LNA1.
604 	 */
605 	regval &= (~(AR_PHY_9285_FAST_DIV_BIAS));
606 	regval |= SM(antdiv_ctrl1, AR_PHY_9285_ANT_DIV_CTL);
607 	regval |= SM(antdiv_ctrl2, AR_PHY_9285_ANT_DIV_ALT_LNACONF);
608 	regval |= SM((antdiv_ctrl2 >> 2), AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
609 	regval |= SM((antdiv_ctrl1 >> 1), AR_PHY_9285_ANT_DIV_ALT_GAINTB);
610 	regval |= SM((antdiv_ctrl1 >> 2), AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
611 	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
612 
613 	regval = REG_READ(ah, AR_PHY_CCK_DETECT);
614 	regval &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
615 	regval |= SM((antdiv_ctrl1 >> 3), AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
616 	REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
617 }
618 
619 #endif
620 
621 static void ar9002_hw_spectral_scan_config(struct ath_hw *ah,
622 				    struct ath_spec_scan *param)
623 {
624 	u8 count;
625 
626 	if (!param->enabled) {
627 		REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
628 			    AR_PHY_SPECTRAL_SCAN_ENABLE);
629 		return;
630 	}
631 	REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA);
632 	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
633 
634 	if (param->short_repeat)
635 		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
636 			    AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
637 	else
638 		REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
639 			    AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
640 
641 	/* on AR92xx, the highest bit of count will make the the chip send
642 	 * spectral samples endlessly. Check if this really was intended,
643 	 * and fix otherwise.
644 	 */
645 	count = param->count;
646 	if (param->endless)
647 		count = 0x80;
648 	else if (count & 0x80)
649 		count = 0x7f;
650 
651 	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
652 		      AR_PHY_SPECTRAL_SCAN_COUNT, count);
653 	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
654 		      AR_PHY_SPECTRAL_SCAN_PERIOD, param->period);
655 	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
656 		      AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period);
657 
658 	return;
659 }
660 
661 static void ar9002_hw_spectral_scan_trigger(struct ath_hw *ah)
662 {
663 	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
664 	/* Activate spectral scan */
665 	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
666 		    AR_PHY_SPECTRAL_SCAN_ACTIVE);
667 }
668 
669 static void ar9002_hw_spectral_scan_wait(struct ath_hw *ah)
670 {
671 	struct ath_common *common = ath9k_hw_common(ah);
672 
673 	/* Poll for spectral scan complete */
674 	if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN,
675 			   AR_PHY_SPECTRAL_SCAN_ACTIVE,
676 			   0, AH_WAIT_TIMEOUT)) {
677 		ath_err(common, "spectral scan wait failed\n");
678 		return;
679 	}
680 }
681 
682 void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
683 {
684 	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
685 	struct ath_hw_ops *ops = ath9k_hw_ops(ah);
686 
687 	priv_ops->set_rf_regs = NULL;
688 	priv_ops->rf_set_freq = ar9002_hw_set_channel;
689 	priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
690 	priv_ops->olc_init = ar9002_olc_init;
691 	priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
692 	priv_ops->do_getnf = ar9002_hw_do_getnf;
693 
694 	ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
695 	ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
696 	ops->spectral_scan_config = ar9002_hw_spectral_scan_config;
697 	ops->spectral_scan_trigger = ar9002_hw_spectral_scan_trigger;
698 	ops->spectral_scan_wait = ar9002_hw_spectral_scan_wait;
699 
700 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
701 	ops->set_bt_ant_diversity = ar9002_hw_set_bt_ant_diversity;
702 #endif
703 
704 	ar9002_hw_set_nf_limits(ah);
705 }
706