1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 /**
18  * DOC: Programming Atheros 802.11n analog front end radios
19  *
20  * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
21  * devices have either an external AR2133 analog front end radio for single
22  * band 2.4 GHz communication or an AR5133 analog front end radio for dual
23  * band 2.4 GHz / 5 GHz communication.
24  *
25  * All devices after the AR5416 and AR5418 family starting with the AR9280
26  * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
27  * into a single-chip and require less programming.
28  *
29  * The following single-chips exist with a respective embedded radio:
30  *
31  * AR9280 - 11n dual-band 2x2 MIMO for PCIe
32  * AR9281 - 11n single-band 1x2 MIMO for PCIe
33  * AR9285 - 11n single-band 1x1 for PCIe
34  * AR9287 - 11n single-band 2x2 MIMO for PCIe
35  *
36  * AR9220 - 11n dual-band 2x2 MIMO for PCI
37  * AR9223 - 11n single-band 2x2 MIMO for PCI
38  *
39  * AR9287 - 11n single-band 1x1 MIMO for USB
40  */
41 
42 #include "hw.h"
43 #include "ar9002_phy.h"
44 
45 /**
46  * ar9002_hw_set_channel - set channel on single-chip device
47  * @ah: atheros hardware structure
48  * @chan:
49  *
50  * This is the function to change channel on single-chip devices, that is
51  * all devices after ar9280.
52  *
53  * This function takes the channel value in MHz and sets
54  * hardware channel value. Assumes writes have been enabled to analog bus.
55  *
56  * Actual Expression,
57  *
58  * For 2GHz channel,
59  * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
60  * (freq_ref = 40MHz)
61  *
62  * For 5GHz channel,
63  * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
64  * (freq_ref = 40MHz/(24>>amodeRefSel))
65  */
66 static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
67 {
68 	u16 bMode, fracMode, aModeRefSel = 0;
69 	u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
70 	struct chan_centers centers;
71 	u32 refDivA = 24;
72 
73 	ath9k_hw_get_channel_centers(ah, chan, &centers);
74 	freq = centers.synth_center;
75 
76 	reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
77 	reg32 &= 0xc0000000;
78 
79 	if (freq < 4800) { /* 2 GHz, fractional mode */
80 		u32 txctl;
81 		int regWrites = 0;
82 
83 		bMode = 1;
84 		fracMode = 1;
85 		aModeRefSel = 0;
86 		channelSel = CHANSEL_2G(freq);
87 
88 		if (AR_SREV_9287_11_OR_LATER(ah)) {
89 			if (freq == 2484) {
90 				/* Enable channel spreading for channel 14 */
91 				REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
92 						1, regWrites);
93 			} else {
94 				REG_WRITE_ARRAY(&ah->iniCckfirNormal,
95 						1, regWrites);
96 			}
97 		} else {
98 			txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
99 			if (freq == 2484) {
100 				/* Enable channel spreading for channel 14 */
101 				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102 					  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103 			} else {
104 				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105 					  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
106 			}
107 		}
108 	} else {
109 		bMode = 0;
110 		fracMode = 0;
111 
112 		switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113 		case 0:
114 			if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
115 				aModeRefSel = 0;
116 			else if ((freq % 20) == 0)
117 				aModeRefSel = 3;
118 			else if ((freq % 10) == 0)
119 				aModeRefSel = 2;
120 			if (aModeRefSel)
121 				break;
122 			/* fall through */
123 		case 1:
124 		default:
125 			aModeRefSel = 0;
126 			/*
127 			 * Enable 2G (fractional) mode for channels
128 			 * which are 5MHz spaced.
129 			 */
130 			fracMode = 1;
131 			refDivA = 1;
132 			channelSel = CHANSEL_5G(freq);
133 
134 			/* RefDivA setting */
135 			ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
136 				      AR_AN_SYNTH9_REFDIVA,
137 				      AR_AN_SYNTH9_REFDIVA_S, refDivA);
138 
139 		}
140 
141 		if (!fracMode) {
142 			ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
143 			channelSel = ndiv & 0x1ff;
144 			channelFrac = (ndiv & 0xfffffe00) * 2;
145 			channelSel = (channelSel << 17) | channelFrac;
146 		}
147 	}
148 
149 	reg32 = reg32 |
150 	    (bMode << 29) |
151 	    (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
152 
153 	REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
154 
155 	ah->curchan = chan;
156 
157 	return 0;
158 }
159 
160 /**
161  * ar9002_hw_spur_mitigate - convert baseband spur frequency
162  * @ah: atheros hardware structure
163  * @chan:
164  *
165  * For single-chip solutions. Converts to baseband spur frequency given the
166  * input channel frequency and compute register settings below.
167  */
168 static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
169 				    struct ath9k_channel *chan)
170 {
171 	int bb_spur = AR_NO_SPUR;
172 	int freq;
173 	int bin;
174 	int bb_spur_off, spur_subchannel_sd;
175 	int spur_freq_sd;
176 	int spur_delta_phase;
177 	int denominator;
178 	int tmp, newVal;
179 	int i;
180 	struct chan_centers centers;
181 
182 	int cur_bb_spur;
183 	bool is2GHz = IS_CHAN_2GHZ(chan);
184 
185 	ath9k_hw_get_channel_centers(ah, chan, &centers);
186 	freq = centers.synth_center;
187 
188 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
189 		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
190 
191 		if (AR_NO_SPUR == cur_bb_spur)
192 			break;
193 
194 		if (is2GHz)
195 			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
196 		else
197 			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
198 
199 		cur_bb_spur = cur_bb_spur - freq;
200 
201 		if (IS_CHAN_HT40(chan)) {
202 			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
203 			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
204 				bb_spur = cur_bb_spur;
205 				break;
206 			}
207 		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
208 			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
209 			bb_spur = cur_bb_spur;
210 			break;
211 		}
212 	}
213 
214 	if (AR_NO_SPUR == bb_spur) {
215 		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
216 			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
217 		return;
218 	} else {
219 		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
220 			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
221 	}
222 
223 	bin = bb_spur * 320;
224 
225 	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
226 
227 	ENABLE_REGWRITE_BUFFER(ah);
228 
229 	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
230 			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
231 			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
232 			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
233 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
234 
235 	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
236 		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
237 		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
238 		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
239 		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
240 	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
241 
242 	if (IS_CHAN_HT40(chan)) {
243 		if (bb_spur < 0) {
244 			spur_subchannel_sd = 1;
245 			bb_spur_off = bb_spur + 10;
246 		} else {
247 			spur_subchannel_sd = 0;
248 			bb_spur_off = bb_spur - 10;
249 		}
250 	} else {
251 		spur_subchannel_sd = 0;
252 		bb_spur_off = bb_spur;
253 	}
254 
255 	if (IS_CHAN_HT40(chan))
256 		spur_delta_phase =
257 			((bb_spur * 262144) /
258 			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
259 	else
260 		spur_delta_phase =
261 			((bb_spur * 524288) /
262 			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
263 
264 	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
265 	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
266 
267 	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
268 		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
269 		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
270 	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
271 
272 	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
273 	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
274 
275 	ar5008_hw_cmn_spur_mitigate(ah, chan, bin);
276 
277 	REGWRITE_BUFFER_FLUSH(ah);
278 }
279 
280 static void ar9002_olc_init(struct ath_hw *ah)
281 {
282 	u32 i;
283 
284 	if (!OLC_FOR_AR9280_20_LATER)
285 		return;
286 
287 	if (OLC_FOR_AR9287_10_LATER) {
288 		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
289 				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
290 		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
291 				AR9287_AN_TXPC0_TXPCMODE,
292 				AR9287_AN_TXPC0_TXPCMODE_S,
293 				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
294 		udelay(100);
295 	} else {
296 		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
297 			ah->originalGain[i] =
298 				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
299 						AR_PHY_TX_GAIN);
300 		ah->PDADCdelta = 0;
301 	}
302 }
303 
304 static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
305 					 struct ath9k_channel *chan)
306 {
307 	int ref_div = 5;
308 	int pll_div = 0x2c;
309 	u32 pll;
310 
311 	if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
312 		if (AR_SREV_9280_20(ah)) {
313 			ref_div = 10;
314 			pll_div = 0x50;
315 		} else {
316 			pll_div = 0x28;
317 		}
318 	}
319 
320 	pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
321 	pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
322 
323 	if (chan && IS_CHAN_HALF_RATE(chan))
324 		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
325 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
326 		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
327 
328 	return pll;
329 }
330 
331 static void ar9002_hw_do_getnf(struct ath_hw *ah,
332 			      int16_t nfarray[NUM_NF_READINGS])
333 {
334 	int16_t nf;
335 
336 	nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
337 	nfarray[0] = sign_extend32(nf, 8);
338 
339 	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
340 	if (IS_CHAN_HT40(ah->curchan))
341 		nfarray[3] = sign_extend32(nf, 8);
342 
343 	if (!(ah->rxchainmask & BIT(1)))
344 		return;
345 
346 	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
347 	nfarray[1] = sign_extend32(nf, 8);
348 
349 	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
350 	if (IS_CHAN_HT40(ah->curchan))
351 		nfarray[4] = sign_extend32(nf, 8);
352 }
353 
354 static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
355 {
356 	if (AR_SREV_9285(ah)) {
357 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
358 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
359 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
360 	} else if (AR_SREV_9287(ah)) {
361 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
362 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
363 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
364 	} else if (AR_SREV_9271(ah)) {
365 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
366 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
367 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
368 	} else {
369 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
370 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
371 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
372 		ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
373 		ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
374 		ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
375 	}
376 }
377 
378 static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
379 				   struct ath_hw_antcomb_conf *antconf)
380 {
381 	u32 regval;
382 
383 	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
384 	antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
385 				  AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
386 	antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
387 				 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
388 	antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
389 				  AR_PHY_9285_FAST_DIV_BIAS_S;
390 	antconf->lna1_lna2_switch_delta = -1;
391 	antconf->lna1_lna2_delta = -3;
392 	antconf->div_group = 0;
393 }
394 
395 static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
396 				   struct ath_hw_antcomb_conf *antconf)
397 {
398 	u32 regval;
399 
400 	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
401 	regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
402 		    AR_PHY_9285_ANT_DIV_ALT_LNACONF |
403 		    AR_PHY_9285_FAST_DIV_BIAS);
404 	regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
405 		   & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
406 	regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
407 		   & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
408 	regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
409 		   & AR_PHY_9285_FAST_DIV_BIAS);
410 
411 	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
412 }
413 
414 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
415 
416 static void ar9002_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable)
417 {
418 	struct ath_btcoex_hw *btcoex = &ah->btcoex_hw;
419 	u8 antdiv_ctrl1, antdiv_ctrl2;
420 	u32 regval;
421 
422 	if (enable) {
423 		antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_ENABLE;
424 		antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_ENABLE;
425 
426 		/*
427 		 * Don't disable BT ant to allow BB to control SWCOM.
428 		 */
429 		btcoex->bt_coex_mode2 &= (~(AR_BT_DISABLE_BT_ANT));
430 		REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
431 
432 		REG_WRITE(ah, AR_PHY_SWITCH_COM, ATH_BT_COEX_ANT_DIV_SWITCH_COM);
433 		REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
434 	} else {
435 		/*
436 		 * Disable antenna diversity, use LNA1 only.
437 		 */
438 		antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_FIXED_A;
439 		antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_FIXED_A;
440 
441 		/*
442 		 * Disable BT Ant. to allow concurrent BT and WLAN receive.
443 		 */
444 		btcoex->bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
445 		REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
446 
447 		/*
448 		 * Program SWCOM table to make sure RF switch always parks
449 		 * at BT side.
450 		 */
451 		REG_WRITE(ah, AR_PHY_SWITCH_COM, 0);
452 		REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
453 	}
454 
455 	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
456 	regval &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
457         /*
458 	 * Clear ant_fast_div_bias [14:9] since for WB195,
459 	 * the main LNA is always LNA1.
460 	 */
461 	regval &= (~(AR_PHY_9285_FAST_DIV_BIAS));
462 	regval |= SM(antdiv_ctrl1, AR_PHY_9285_ANT_DIV_CTL);
463 	regval |= SM(antdiv_ctrl2, AR_PHY_9285_ANT_DIV_ALT_LNACONF);
464 	regval |= SM((antdiv_ctrl2 >> 2), AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
465 	regval |= SM((antdiv_ctrl1 >> 1), AR_PHY_9285_ANT_DIV_ALT_GAINTB);
466 	regval |= SM((antdiv_ctrl1 >> 2), AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
467 	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
468 
469 	regval = REG_READ(ah, AR_PHY_CCK_DETECT);
470 	regval &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
471 	regval |= SM((antdiv_ctrl1 >> 3), AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
472 	REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
473 }
474 
475 #endif
476 
477 static void ar9002_hw_spectral_scan_config(struct ath_hw *ah,
478 				    struct ath_spec_scan *param)
479 {
480 	u32 repeat_bit;
481 	u8 count;
482 
483 	if (!param->enabled) {
484 		REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
485 			    AR_PHY_SPECTRAL_SCAN_ENABLE);
486 		return;
487 	}
488 	REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA);
489 	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
490 
491 	if (AR_SREV_9280(ah))
492 		repeat_bit = AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT;
493 	else
494 		repeat_bit = AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT_KIWI;
495 
496 	if (param->short_repeat)
497 		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, repeat_bit);
498 	else
499 		REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN, repeat_bit);
500 
501 	/* on AR92xx, the highest bit of count will make the the chip send
502 	 * spectral samples endlessly. Check if this really was intended,
503 	 * and fix otherwise.
504 	 */
505 	count = param->count;
506 	if (param->endless) {
507 		if (AR_SREV_9280(ah))
508 			count = 0x80;
509 		else
510 			count = 0;
511 	} else if (count & 0x80)
512 		count = 0x7f;
513 	else if (!count)
514 		count = 1;
515 
516 	if (AR_SREV_9280(ah)) {
517 		REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
518 			      AR_PHY_SPECTRAL_SCAN_COUNT, count);
519 	} else {
520 		REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
521 			      AR_PHY_SPECTRAL_SCAN_COUNT_KIWI, count);
522 		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
523 			    AR_PHY_SPECTRAL_SCAN_PHYERR_MASK_SELECT);
524 	}
525 
526 	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
527 		      AR_PHY_SPECTRAL_SCAN_PERIOD, param->period);
528 	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
529 		      AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period);
530 
531 	return;
532 }
533 
534 static void ar9002_hw_spectral_scan_trigger(struct ath_hw *ah)
535 {
536 	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
537 	/* Activate spectral scan */
538 	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
539 		    AR_PHY_SPECTRAL_SCAN_ACTIVE);
540 }
541 
542 static void ar9002_hw_spectral_scan_wait(struct ath_hw *ah)
543 {
544 	struct ath_common *common = ath9k_hw_common(ah);
545 
546 	/* Poll for spectral scan complete */
547 	if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN,
548 			   AR_PHY_SPECTRAL_SCAN_ACTIVE,
549 			   0, AH_WAIT_TIMEOUT)) {
550 		ath_err(common, "spectral scan wait failed\n");
551 		return;
552 	}
553 }
554 
555 static void ar9002_hw_tx99_start(struct ath_hw *ah, u32 qnum)
556 {
557 	REG_SET_BIT(ah, 0x9864, 0x7f000);
558 	REG_SET_BIT(ah, 0x9924, 0x7f00fe);
559 	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
560 	REG_WRITE(ah, AR_CR, AR_CR_RXD);
561 	REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
562 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20);
563 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
564 	REG_WRITE(ah, AR_D_FPCTL, 0x10|qnum);
565 	REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
566 	REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
567 	REG_SET_BIT(ah, AR_QMISC(qnum), AR_Q_MISC_DCU_EARLY_TERM_REQ);
568 }
569 
570 static void ar9002_hw_tx99_stop(struct ath_hw *ah)
571 {
572 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
573 }
574 
575 void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
576 {
577 	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
578 	struct ath_hw_ops *ops = ath9k_hw_ops(ah);
579 
580 	priv_ops->set_rf_regs = NULL;
581 	priv_ops->rf_set_freq = ar9002_hw_set_channel;
582 	priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
583 	priv_ops->olc_init = ar9002_olc_init;
584 	priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
585 	priv_ops->do_getnf = ar9002_hw_do_getnf;
586 
587 	ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
588 	ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
589 	ops->spectral_scan_config = ar9002_hw_spectral_scan_config;
590 	ops->spectral_scan_trigger = ar9002_hw_spectral_scan_trigger;
591 	ops->spectral_scan_wait = ar9002_hw_spectral_scan_wait;
592 
593 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
594 	ops->set_bt_ant_diversity = ar9002_hw_set_bt_ant_diversity;
595 #endif
596 	ops->tx99_start = ar9002_hw_tx99_start;
597 	ops->tx99_stop = ar9002_hw_tx99_stop;
598 
599 	ar9002_hw_set_nf_limits(ah);
600 }
601