1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 /**
18  * DOC: Programming Atheros 802.11n analog front end radios
19  *
20  * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
21  * devices have either an external AR2133 analog front end radio for single
22  * band 2.4 GHz communication or an AR5133 analog front end radio for dual
23  * band 2.4 GHz / 5 GHz communication.
24  *
25  * All devices after the AR5416 and AR5418 family starting with the AR9280
26  * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
27  * into a single-chip and require less programming.
28  *
29  * The following single-chips exist with a respective embedded radio:
30  *
31  * AR9280 - 11n dual-band 2x2 MIMO for PCIe
32  * AR9281 - 11n single-band 1x2 MIMO for PCIe
33  * AR9285 - 11n single-band 1x1 for PCIe
34  * AR9287 - 11n single-band 2x2 MIMO for PCIe
35  *
36  * AR9220 - 11n dual-band 2x2 MIMO for PCI
37  * AR9223 - 11n single-band 2x2 MIMO for PCI
38  *
39  * AR9287 - 11n single-band 1x1 MIMO for USB
40  */
41 
42 #include "hw.h"
43 #include "ar9002_phy.h"
44 
45 /**
46  * ar9002_hw_set_channel - set channel on single-chip device
47  * @ah: atheros hardware structure
48  * @chan:
49  *
50  * This is the function to change channel on single-chip devices, that is
51  * all devices after ar9280.
52  *
53  * This function takes the channel value in MHz and sets
54  * hardware channel value. Assumes writes have been enabled to analog bus.
55  *
56  * Actual Expression,
57  *
58  * For 2GHz channel,
59  * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
60  * (freq_ref = 40MHz)
61  *
62  * For 5GHz channel,
63  * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
64  * (freq_ref = 40MHz/(24>>amodeRefSel))
65  */
66 static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
67 {
68 	u16 bMode, fracMode, aModeRefSel = 0;
69 	u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
70 	struct chan_centers centers;
71 	u32 refDivA = 24;
72 
73 	ath9k_hw_get_channel_centers(ah, chan, &centers);
74 	freq = centers.synth_center;
75 
76 	reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
77 	reg32 &= 0xc0000000;
78 
79 	if (freq < 4800) { /* 2 GHz, fractional mode */
80 		u32 txctl;
81 		int regWrites = 0;
82 
83 		bMode = 1;
84 		fracMode = 1;
85 		aModeRefSel = 0;
86 		channelSel = CHANSEL_2G(freq);
87 
88 		if (AR_SREV_9287_11_OR_LATER(ah)) {
89 			if (freq == 2484) {
90 				/* Enable channel spreading for channel 14 */
91 				REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
92 						1, regWrites);
93 			} else {
94 				REG_WRITE_ARRAY(&ah->iniCckfirNormal,
95 						1, regWrites);
96 			}
97 		} else {
98 			txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
99 			if (freq == 2484) {
100 				/* Enable channel spreading for channel 14 */
101 				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102 					  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103 			} else {
104 				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105 					  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
106 			}
107 		}
108 	} else {
109 		bMode = 0;
110 		fracMode = 0;
111 
112 		switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113 		case 0:
114 			if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
115 				aModeRefSel = 0;
116 			else if ((freq % 20) == 0)
117 				aModeRefSel = 3;
118 			else if ((freq % 10) == 0)
119 				aModeRefSel = 2;
120 			if (aModeRefSel)
121 				break;
122 		case 1:
123 		default:
124 			aModeRefSel = 0;
125 			/*
126 			 * Enable 2G (fractional) mode for channels
127 			 * which are 5MHz spaced.
128 			 */
129 			fracMode = 1;
130 			refDivA = 1;
131 			channelSel = CHANSEL_5G(freq);
132 
133 			/* RefDivA setting */
134 			ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
135 				      AR_AN_SYNTH9_REFDIVA,
136 				      AR_AN_SYNTH9_REFDIVA_S, refDivA);
137 
138 		}
139 
140 		if (!fracMode) {
141 			ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
142 			channelSel = ndiv & 0x1ff;
143 			channelFrac = (ndiv & 0xfffffe00) * 2;
144 			channelSel = (channelSel << 17) | channelFrac;
145 		}
146 	}
147 
148 	reg32 = reg32 |
149 	    (bMode << 29) |
150 	    (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
151 
152 	REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
153 
154 	ah->curchan = chan;
155 
156 	return 0;
157 }
158 
159 /**
160  * ar9002_hw_spur_mitigate - convert baseband spur frequency
161  * @ah: atheros hardware structure
162  * @chan:
163  *
164  * For single-chip solutions. Converts to baseband spur frequency given the
165  * input channel frequency and compute register settings below.
166  */
167 static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
168 				    struct ath9k_channel *chan)
169 {
170 	int bb_spur = AR_NO_SPUR;
171 	int freq;
172 	int bin;
173 	int bb_spur_off, spur_subchannel_sd;
174 	int spur_freq_sd;
175 	int spur_delta_phase;
176 	int denominator;
177 	int tmp, newVal;
178 	int i;
179 	struct chan_centers centers;
180 
181 	int cur_bb_spur;
182 	bool is2GHz = IS_CHAN_2GHZ(chan);
183 
184 	ath9k_hw_get_channel_centers(ah, chan, &centers);
185 	freq = centers.synth_center;
186 
187 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
188 		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
189 
190 		if (AR_NO_SPUR == cur_bb_spur)
191 			break;
192 
193 		if (is2GHz)
194 			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
195 		else
196 			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
197 
198 		cur_bb_spur = cur_bb_spur - freq;
199 
200 		if (IS_CHAN_HT40(chan)) {
201 			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
202 			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
203 				bb_spur = cur_bb_spur;
204 				break;
205 			}
206 		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
207 			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
208 			bb_spur = cur_bb_spur;
209 			break;
210 		}
211 	}
212 
213 	if (AR_NO_SPUR == bb_spur) {
214 		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
215 			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
216 		return;
217 	} else {
218 		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
219 			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
220 	}
221 
222 	bin = bb_spur * 320;
223 
224 	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
225 
226 	ENABLE_REGWRITE_BUFFER(ah);
227 
228 	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
229 			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
230 			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
231 			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
232 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
233 
234 	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
235 		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
236 		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
237 		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
238 		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
239 	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
240 
241 	if (IS_CHAN_HT40(chan)) {
242 		if (bb_spur < 0) {
243 			spur_subchannel_sd = 1;
244 			bb_spur_off = bb_spur + 10;
245 		} else {
246 			spur_subchannel_sd = 0;
247 			bb_spur_off = bb_spur - 10;
248 		}
249 	} else {
250 		spur_subchannel_sd = 0;
251 		bb_spur_off = bb_spur;
252 	}
253 
254 	if (IS_CHAN_HT40(chan))
255 		spur_delta_phase =
256 			((bb_spur * 262144) /
257 			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
258 	else
259 		spur_delta_phase =
260 			((bb_spur * 524288) /
261 			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
262 
263 	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
264 	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
265 
266 	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
267 		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
268 		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
269 	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
270 
271 	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
272 	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
273 
274 	ar5008_hw_cmn_spur_mitigate(ah, chan, bin);
275 
276 	REGWRITE_BUFFER_FLUSH(ah);
277 }
278 
279 static void ar9002_olc_init(struct ath_hw *ah)
280 {
281 	u32 i;
282 
283 	if (!OLC_FOR_AR9280_20_LATER)
284 		return;
285 
286 	if (OLC_FOR_AR9287_10_LATER) {
287 		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
288 				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
289 		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
290 				AR9287_AN_TXPC0_TXPCMODE,
291 				AR9287_AN_TXPC0_TXPCMODE_S,
292 				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
293 		udelay(100);
294 	} else {
295 		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
296 			ah->originalGain[i] =
297 				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
298 						AR_PHY_TX_GAIN);
299 		ah->PDADCdelta = 0;
300 	}
301 }
302 
303 static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
304 					 struct ath9k_channel *chan)
305 {
306 	int ref_div = 5;
307 	int pll_div = 0x2c;
308 	u32 pll;
309 
310 	if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
311 		if (AR_SREV_9280_20(ah)) {
312 			ref_div = 10;
313 			pll_div = 0x50;
314 		} else {
315 			pll_div = 0x28;
316 		}
317 	}
318 
319 	pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
320 	pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
321 
322 	if (chan && IS_CHAN_HALF_RATE(chan))
323 		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
324 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
325 		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
326 
327 	return pll;
328 }
329 
330 static void ar9002_hw_do_getnf(struct ath_hw *ah,
331 			      int16_t nfarray[NUM_NF_READINGS])
332 {
333 	int16_t nf;
334 
335 	nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
336 	nfarray[0] = sign_extend32(nf, 8);
337 
338 	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
339 	if (IS_CHAN_HT40(ah->curchan))
340 		nfarray[3] = sign_extend32(nf, 8);
341 
342 	if (!(ah->rxchainmask & BIT(1)))
343 		return;
344 
345 	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
346 	nfarray[1] = sign_extend32(nf, 8);
347 
348 	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
349 	if (IS_CHAN_HT40(ah->curchan))
350 		nfarray[4] = sign_extend32(nf, 8);
351 }
352 
353 static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
354 {
355 	if (AR_SREV_9285(ah)) {
356 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
357 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
358 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
359 	} else if (AR_SREV_9287(ah)) {
360 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
361 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
362 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
363 	} else if (AR_SREV_9271(ah)) {
364 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
365 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
366 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
367 	} else {
368 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
369 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
370 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
371 		ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
372 		ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
373 		ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
374 	}
375 }
376 
377 static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
378 				   struct ath_hw_antcomb_conf *antconf)
379 {
380 	u32 regval;
381 
382 	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
383 	antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
384 				  AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
385 	antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
386 				 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
387 	antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
388 				  AR_PHY_9285_FAST_DIV_BIAS_S;
389 	antconf->lna1_lna2_switch_delta = -1;
390 	antconf->lna1_lna2_delta = -3;
391 	antconf->div_group = 0;
392 }
393 
394 static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
395 				   struct ath_hw_antcomb_conf *antconf)
396 {
397 	u32 regval;
398 
399 	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
400 	regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
401 		    AR_PHY_9285_ANT_DIV_ALT_LNACONF |
402 		    AR_PHY_9285_FAST_DIV_BIAS);
403 	regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
404 		   & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
405 	regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
406 		   & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
407 	regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
408 		   & AR_PHY_9285_FAST_DIV_BIAS);
409 
410 	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
411 }
412 
413 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
414 
415 static void ar9002_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable)
416 {
417 	struct ath_btcoex_hw *btcoex = &ah->btcoex_hw;
418 	u8 antdiv_ctrl1, antdiv_ctrl2;
419 	u32 regval;
420 
421 	if (enable) {
422 		antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_ENABLE;
423 		antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_ENABLE;
424 
425 		/*
426 		 * Don't disable BT ant to allow BB to control SWCOM.
427 		 */
428 		btcoex->bt_coex_mode2 &= (~(AR_BT_DISABLE_BT_ANT));
429 		REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
430 
431 		REG_WRITE(ah, AR_PHY_SWITCH_COM, ATH_BT_COEX_ANT_DIV_SWITCH_COM);
432 		REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
433 	} else {
434 		/*
435 		 * Disable antenna diversity, use LNA1 only.
436 		 */
437 		antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_FIXED_A;
438 		antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_FIXED_A;
439 
440 		/*
441 		 * Disable BT Ant. to allow concurrent BT and WLAN receive.
442 		 */
443 		btcoex->bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
444 		REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
445 
446 		/*
447 		 * Program SWCOM table to make sure RF switch always parks
448 		 * at BT side.
449 		 */
450 		REG_WRITE(ah, AR_PHY_SWITCH_COM, 0);
451 		REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
452 	}
453 
454 	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
455 	regval &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
456         /*
457 	 * Clear ant_fast_div_bias [14:9] since for WB195,
458 	 * the main LNA is always LNA1.
459 	 */
460 	regval &= (~(AR_PHY_9285_FAST_DIV_BIAS));
461 	regval |= SM(antdiv_ctrl1, AR_PHY_9285_ANT_DIV_CTL);
462 	regval |= SM(antdiv_ctrl2, AR_PHY_9285_ANT_DIV_ALT_LNACONF);
463 	regval |= SM((antdiv_ctrl2 >> 2), AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
464 	regval |= SM((antdiv_ctrl1 >> 1), AR_PHY_9285_ANT_DIV_ALT_GAINTB);
465 	regval |= SM((antdiv_ctrl1 >> 2), AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
466 	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
467 
468 	regval = REG_READ(ah, AR_PHY_CCK_DETECT);
469 	regval &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
470 	regval |= SM((antdiv_ctrl1 >> 3), AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
471 	REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
472 }
473 
474 #endif
475 
476 static void ar9002_hw_spectral_scan_config(struct ath_hw *ah,
477 				    struct ath_spec_scan *param)
478 {
479 	u32 repeat_bit;
480 	u8 count;
481 
482 	if (!param->enabled) {
483 		REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
484 			    AR_PHY_SPECTRAL_SCAN_ENABLE);
485 		return;
486 	}
487 	REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA);
488 	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
489 
490 	if (AR_SREV_9280(ah))
491 		repeat_bit = AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT;
492 	else
493 		repeat_bit = AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT_KIWI;
494 
495 	if (param->short_repeat)
496 		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, repeat_bit);
497 	else
498 		REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN, repeat_bit);
499 
500 	/* on AR92xx, the highest bit of count will make the the chip send
501 	 * spectral samples endlessly. Check if this really was intended,
502 	 * and fix otherwise.
503 	 */
504 	count = param->count;
505 	if (param->endless) {
506 		if (AR_SREV_9280(ah))
507 			count = 0x80;
508 		else
509 			count = 0;
510 	} else if (count & 0x80)
511 		count = 0x7f;
512 	else if (!count)
513 		count = 1;
514 
515 	if (AR_SREV_9280(ah)) {
516 		REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
517 			      AR_PHY_SPECTRAL_SCAN_COUNT, count);
518 	} else {
519 		REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
520 			      AR_PHY_SPECTRAL_SCAN_COUNT_KIWI, count);
521 		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
522 			    AR_PHY_SPECTRAL_SCAN_PHYERR_MASK_SELECT);
523 	}
524 
525 	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
526 		      AR_PHY_SPECTRAL_SCAN_PERIOD, param->period);
527 	REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
528 		      AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period);
529 
530 	return;
531 }
532 
533 static void ar9002_hw_spectral_scan_trigger(struct ath_hw *ah)
534 {
535 	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
536 	/* Activate spectral scan */
537 	REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
538 		    AR_PHY_SPECTRAL_SCAN_ACTIVE);
539 }
540 
541 static void ar9002_hw_spectral_scan_wait(struct ath_hw *ah)
542 {
543 	struct ath_common *common = ath9k_hw_common(ah);
544 
545 	/* Poll for spectral scan complete */
546 	if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN,
547 			   AR_PHY_SPECTRAL_SCAN_ACTIVE,
548 			   0, AH_WAIT_TIMEOUT)) {
549 		ath_err(common, "spectral scan wait failed\n");
550 		return;
551 	}
552 }
553 
554 static void ar9002_hw_tx99_start(struct ath_hw *ah, u32 qnum)
555 {
556 	REG_SET_BIT(ah, 0x9864, 0x7f000);
557 	REG_SET_BIT(ah, 0x9924, 0x7f00fe);
558 	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
559 	REG_WRITE(ah, AR_CR, AR_CR_RXD);
560 	REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
561 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20);
562 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
563 	REG_WRITE(ah, AR_D_FPCTL, 0x10|qnum);
564 	REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
565 	REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
566 	REG_SET_BIT(ah, AR_QMISC(qnum), AR_Q_MISC_DCU_EARLY_TERM_REQ);
567 }
568 
569 static void ar9002_hw_tx99_stop(struct ath_hw *ah)
570 {
571 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
572 }
573 
574 void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
575 {
576 	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
577 	struct ath_hw_ops *ops = ath9k_hw_ops(ah);
578 
579 	priv_ops->set_rf_regs = NULL;
580 	priv_ops->rf_set_freq = ar9002_hw_set_channel;
581 	priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
582 	priv_ops->olc_init = ar9002_olc_init;
583 	priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
584 	priv_ops->do_getnf = ar9002_hw_do_getnf;
585 
586 	ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
587 	ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
588 	ops->spectral_scan_config = ar9002_hw_spectral_scan_config;
589 	ops->spectral_scan_trigger = ar9002_hw_spectral_scan_trigger;
590 	ops->spectral_scan_wait = ar9002_hw_spectral_scan_wait;
591 
592 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
593 	ops->set_bt_ant_diversity = ar9002_hw_set_bt_ant_diversity;
594 #endif
595 	ops->tx99_start = ar9002_hw_tx99_start;
596 	ops->tx99_stop = ar9002_hw_tx99_stop;
597 
598 	ar9002_hw_set_nf_limits(ah);
599 }
600