1 /* 2 * Copyright (c) 2008-2010 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 /** 18 * DOC: Programming Atheros 802.11n analog front end radios 19 * 20 * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express 21 * devices have either an external AR2133 analog front end radio for single 22 * band 2.4 GHz communication or an AR5133 analog front end radio for dual 23 * band 2.4 GHz / 5 GHz communication. 24 * 25 * All devices after the AR5416 and AR5418 family starting with the AR9280 26 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded 27 * into a single-chip and require less programming. 28 * 29 * The following single-chips exist with a respective embedded radio: 30 * 31 * AR9280 - 11n dual-band 2x2 MIMO for PCIe 32 * AR9281 - 11n single-band 1x2 MIMO for PCIe 33 * AR9285 - 11n single-band 1x1 for PCIe 34 * AR9287 - 11n single-band 2x2 MIMO for PCIe 35 * 36 * AR9220 - 11n dual-band 2x2 MIMO for PCI 37 * AR9223 - 11n single-band 2x2 MIMO for PCI 38 * 39 * AR9287 - 11n single-band 1x1 MIMO for USB 40 */ 41 42 #include "hw.h" 43 #include "ar9002_phy.h" 44 45 /** 46 * ar9002_hw_set_channel - set channel on single-chip device 47 * @ah: atheros hardware structure 48 * @chan: 49 * 50 * This is the function to change channel on single-chip devices, that is 51 * all devices after ar9280. 52 * 53 * This function takes the channel value in MHz and sets 54 * hardware channel value. Assumes writes have been enabled to analog bus. 55 * 56 * Actual Expression, 57 * 58 * For 2GHz channel, 59 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) 60 * (freq_ref = 40MHz) 61 * 62 * For 5GHz channel, 63 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10) 64 * (freq_ref = 40MHz/(24>>amodeRefSel)) 65 */ 66 static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan) 67 { 68 u16 bMode, fracMode, aModeRefSel = 0; 69 u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0; 70 struct chan_centers centers; 71 u32 refDivA = 24; 72 73 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 74 freq = centers.synth_center; 75 76 reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL); 77 reg32 &= 0xc0000000; 78 79 if (freq < 4800) { /* 2 GHz, fractional mode */ 80 u32 txctl; 81 int regWrites = 0; 82 83 bMode = 1; 84 fracMode = 1; 85 aModeRefSel = 0; 86 channelSel = CHANSEL_2G(freq); 87 88 if (AR_SREV_9287_11_OR_LATER(ah)) { 89 if (freq == 2484) { 90 /* Enable channel spreading for channel 14 */ 91 REG_WRITE_ARRAY(&ah->iniCckfirJapan2484, 92 1, regWrites); 93 } else { 94 REG_WRITE_ARRAY(&ah->iniCckfirNormal, 95 1, regWrites); 96 } 97 } else { 98 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL); 99 if (freq == 2484) { 100 /* Enable channel spreading for channel 14 */ 101 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 102 txctl | AR_PHY_CCK_TX_CTRL_JAPAN); 103 } else { 104 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 105 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN); 106 } 107 } 108 } else { 109 bMode = 0; 110 fracMode = 0; 111 112 switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) { 113 case 0: 114 if ((freq % 20) == 0) 115 aModeRefSel = 3; 116 else if ((freq % 10) == 0) 117 aModeRefSel = 2; 118 if (aModeRefSel) 119 break; 120 case 1: 121 default: 122 aModeRefSel = 0; 123 /* 124 * Enable 2G (fractional) mode for channels 125 * which are 5MHz spaced. 126 */ 127 fracMode = 1; 128 refDivA = 1; 129 channelSel = CHANSEL_5G(freq); 130 131 /* RefDivA setting */ 132 REG_RMW_FIELD(ah, AR_AN_SYNTH9, 133 AR_AN_SYNTH9_REFDIVA, refDivA); 134 135 } 136 137 if (!fracMode) { 138 ndiv = (freq * (refDivA >> aModeRefSel)) / 60; 139 channelSel = ndiv & 0x1ff; 140 channelFrac = (ndiv & 0xfffffe00) * 2; 141 channelSel = (channelSel << 17) | channelFrac; 142 } 143 } 144 145 reg32 = reg32 | 146 (bMode << 29) | 147 (fracMode << 28) | (aModeRefSel << 26) | (channelSel); 148 149 REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32); 150 151 ah->curchan = chan; 152 ah->curchan_rad_index = -1; 153 154 return 0; 155 } 156 157 /** 158 * ar9002_hw_spur_mitigate - convert baseband spur frequency 159 * @ah: atheros hardware structure 160 * @chan: 161 * 162 * For single-chip solutions. Converts to baseband spur frequency given the 163 * input channel frequency and compute register settings below. 164 */ 165 static void ar9002_hw_spur_mitigate(struct ath_hw *ah, 166 struct ath9k_channel *chan) 167 { 168 int bb_spur = AR_NO_SPUR; 169 int freq; 170 int bin, cur_bin; 171 int bb_spur_off, spur_subchannel_sd; 172 int spur_freq_sd; 173 int spur_delta_phase; 174 int denominator; 175 int upper, lower, cur_vit_mask; 176 int tmp, newVal; 177 int i; 178 static const int pilot_mask_reg[4] = { 179 AR_PHY_TIMING7, AR_PHY_TIMING8, 180 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 181 }; 182 static const int chan_mask_reg[4] = { 183 AR_PHY_TIMING9, AR_PHY_TIMING10, 184 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 185 }; 186 static const int inc[4] = { 0, 100, 0, 0 }; 187 struct chan_centers centers; 188 189 int8_t mask_m[123]; 190 int8_t mask_p[123]; 191 int8_t mask_amt; 192 int tmp_mask; 193 int cur_bb_spur; 194 bool is2GHz = IS_CHAN_2GHZ(chan); 195 196 memset(&mask_m, 0, sizeof(int8_t) * 123); 197 memset(&mask_p, 0, sizeof(int8_t) * 123); 198 199 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 200 freq = centers.synth_center; 201 202 ah->config.spurmode = SPUR_ENABLE_EEPROM; 203 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 204 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz); 205 206 if (AR_NO_SPUR == cur_bb_spur) 207 break; 208 209 if (is2GHz) 210 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ; 211 else 212 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ; 213 214 cur_bb_spur = cur_bb_spur - freq; 215 216 if (IS_CHAN_HT40(chan)) { 217 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) && 218 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) { 219 bb_spur = cur_bb_spur; 220 break; 221 } 222 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) && 223 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) { 224 bb_spur = cur_bb_spur; 225 break; 226 } 227 } 228 229 if (AR_NO_SPUR == bb_spur) { 230 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, 231 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); 232 return; 233 } else { 234 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, 235 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); 236 } 237 238 bin = bb_spur * 320; 239 240 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0)); 241 242 ENABLE_REGWRITE_BUFFER(ah); 243 244 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | 245 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | 246 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | 247 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); 248 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal); 249 250 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | 251 AR_PHY_SPUR_REG_ENABLE_MASK_PPM | 252 AR_PHY_SPUR_REG_MASK_RATE_SELECT | 253 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | 254 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); 255 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal); 256 257 if (IS_CHAN_HT40(chan)) { 258 if (bb_spur < 0) { 259 spur_subchannel_sd = 1; 260 bb_spur_off = bb_spur + 10; 261 } else { 262 spur_subchannel_sd = 0; 263 bb_spur_off = bb_spur - 10; 264 } 265 } else { 266 spur_subchannel_sd = 0; 267 bb_spur_off = bb_spur; 268 } 269 270 if (IS_CHAN_HT40(chan)) 271 spur_delta_phase = 272 ((bb_spur * 262144) / 273 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; 274 else 275 spur_delta_phase = 276 ((bb_spur * 524288) / 277 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; 278 279 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40; 280 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff; 281 282 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | 283 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | 284 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); 285 REG_WRITE(ah, AR_PHY_TIMING11, newVal); 286 287 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S; 288 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal); 289 290 cur_bin = -6000; 291 upper = bin + 100; 292 lower = bin - 100; 293 294 for (i = 0; i < 4; i++) { 295 int pilot_mask = 0; 296 int chan_mask = 0; 297 int bp = 0; 298 for (bp = 0; bp < 30; bp++) { 299 if ((cur_bin > lower) && (cur_bin < upper)) { 300 pilot_mask = pilot_mask | 0x1 << bp; 301 chan_mask = chan_mask | 0x1 << bp; 302 } 303 cur_bin += 100; 304 } 305 cur_bin += inc[i]; 306 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); 307 REG_WRITE(ah, chan_mask_reg[i], chan_mask); 308 } 309 310 cur_vit_mask = 6100; 311 upper = bin + 120; 312 lower = bin - 120; 313 314 for (i = 0; i < 123; i++) { 315 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { 316 317 /* workaround for gcc bug #37014 */ 318 volatile int tmp_v = abs(cur_vit_mask - bin); 319 320 if (tmp_v < 75) 321 mask_amt = 1; 322 else 323 mask_amt = 0; 324 if (cur_vit_mask < 0) 325 mask_m[abs(cur_vit_mask / 100)] = mask_amt; 326 else 327 mask_p[cur_vit_mask / 100] = mask_amt; 328 } 329 cur_vit_mask -= 100; 330 } 331 332 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) 333 | (mask_m[48] << 26) | (mask_m[49] << 24) 334 | (mask_m[50] << 22) | (mask_m[51] << 20) 335 | (mask_m[52] << 18) | (mask_m[53] << 16) 336 | (mask_m[54] << 14) | (mask_m[55] << 12) 337 | (mask_m[56] << 10) | (mask_m[57] << 8) 338 | (mask_m[58] << 6) | (mask_m[59] << 4) 339 | (mask_m[60] << 2) | (mask_m[61] << 0); 340 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); 341 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); 342 343 tmp_mask = (mask_m[31] << 28) 344 | (mask_m[32] << 26) | (mask_m[33] << 24) 345 | (mask_m[34] << 22) | (mask_m[35] << 20) 346 | (mask_m[36] << 18) | (mask_m[37] << 16) 347 | (mask_m[48] << 14) | (mask_m[39] << 12) 348 | (mask_m[40] << 10) | (mask_m[41] << 8) 349 | (mask_m[42] << 6) | (mask_m[43] << 4) 350 | (mask_m[44] << 2) | (mask_m[45] << 0); 351 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); 352 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); 353 354 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) 355 | (mask_m[18] << 26) | (mask_m[18] << 24) 356 | (mask_m[20] << 22) | (mask_m[20] << 20) 357 | (mask_m[22] << 18) | (mask_m[22] << 16) 358 | (mask_m[24] << 14) | (mask_m[24] << 12) 359 | (mask_m[25] << 10) | (mask_m[26] << 8) 360 | (mask_m[27] << 6) | (mask_m[28] << 4) 361 | (mask_m[29] << 2) | (mask_m[30] << 0); 362 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); 363 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); 364 365 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) 366 | (mask_m[2] << 26) | (mask_m[3] << 24) 367 | (mask_m[4] << 22) | (mask_m[5] << 20) 368 | (mask_m[6] << 18) | (mask_m[7] << 16) 369 | (mask_m[8] << 14) | (mask_m[9] << 12) 370 | (mask_m[10] << 10) | (mask_m[11] << 8) 371 | (mask_m[12] << 6) | (mask_m[13] << 4) 372 | (mask_m[14] << 2) | (mask_m[15] << 0); 373 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); 374 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); 375 376 tmp_mask = (mask_p[15] << 28) 377 | (mask_p[14] << 26) | (mask_p[13] << 24) 378 | (mask_p[12] << 22) | (mask_p[11] << 20) 379 | (mask_p[10] << 18) | (mask_p[9] << 16) 380 | (mask_p[8] << 14) | (mask_p[7] << 12) 381 | (mask_p[6] << 10) | (mask_p[5] << 8) 382 | (mask_p[4] << 6) | (mask_p[3] << 4) 383 | (mask_p[2] << 2) | (mask_p[1] << 0); 384 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); 385 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); 386 387 tmp_mask = (mask_p[30] << 28) 388 | (mask_p[29] << 26) | (mask_p[28] << 24) 389 | (mask_p[27] << 22) | (mask_p[26] << 20) 390 | (mask_p[25] << 18) | (mask_p[24] << 16) 391 | (mask_p[23] << 14) | (mask_p[22] << 12) 392 | (mask_p[21] << 10) | (mask_p[20] << 8) 393 | (mask_p[19] << 6) | (mask_p[18] << 4) 394 | (mask_p[17] << 2) | (mask_p[16] << 0); 395 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); 396 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); 397 398 tmp_mask = (mask_p[45] << 28) 399 | (mask_p[44] << 26) | (mask_p[43] << 24) 400 | (mask_p[42] << 22) | (mask_p[41] << 20) 401 | (mask_p[40] << 18) | (mask_p[39] << 16) 402 | (mask_p[38] << 14) | (mask_p[37] << 12) 403 | (mask_p[36] << 10) | (mask_p[35] << 8) 404 | (mask_p[34] << 6) | (mask_p[33] << 4) 405 | (mask_p[32] << 2) | (mask_p[31] << 0); 406 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); 407 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); 408 409 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) 410 | (mask_p[59] << 26) | (mask_p[58] << 24) 411 | (mask_p[57] << 22) | (mask_p[56] << 20) 412 | (mask_p[55] << 18) | (mask_p[54] << 16) 413 | (mask_p[53] << 14) | (mask_p[52] << 12) 414 | (mask_p[51] << 10) | (mask_p[50] << 8) 415 | (mask_p[49] << 6) | (mask_p[48] << 4) 416 | (mask_p[47] << 2) | (mask_p[46] << 0); 417 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); 418 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); 419 420 REGWRITE_BUFFER_FLUSH(ah); 421 } 422 423 static void ar9002_olc_init(struct ath_hw *ah) 424 { 425 u32 i; 426 427 if (!OLC_FOR_AR9280_20_LATER) 428 return; 429 430 if (OLC_FOR_AR9287_10_LATER) { 431 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9, 432 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL); 433 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0, 434 AR9287_AN_TXPC0_TXPCMODE, 435 AR9287_AN_TXPC0_TXPCMODE_S, 436 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE); 437 udelay(100); 438 } else { 439 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++) 440 ah->originalGain[i] = 441 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4), 442 AR_PHY_TX_GAIN); 443 ah->PDADCdelta = 0; 444 } 445 } 446 447 static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah, 448 struct ath9k_channel *chan) 449 { 450 u32 pll; 451 452 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV); 453 454 if (chan && IS_CHAN_HALF_RATE(chan)) 455 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); 456 else if (chan && IS_CHAN_QUARTER_RATE(chan)) 457 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); 458 459 if (chan && IS_CHAN_5GHZ(chan)) { 460 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 461 pll = 0x142c; 462 else if (AR_SREV_9280_20(ah)) 463 pll = 0x2850; 464 else 465 pll |= SM(0x28, AR_RTC_9160_PLL_DIV); 466 } else { 467 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV); 468 } 469 470 return pll; 471 } 472 473 static void ar9002_hw_do_getnf(struct ath_hw *ah, 474 int16_t nfarray[NUM_NF_READINGS]) 475 { 476 int16_t nf; 477 478 nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR); 479 nfarray[0] = sign_extend32(nf, 8); 480 481 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR); 482 if (IS_CHAN_HT40(ah->curchan)) 483 nfarray[3] = sign_extend32(nf, 8); 484 485 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 486 return; 487 488 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR); 489 nfarray[1] = sign_extend32(nf, 8); 490 491 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR); 492 if (IS_CHAN_HT40(ah->curchan)) 493 nfarray[4] = sign_extend32(nf, 8); 494 } 495 496 static void ar9002_hw_set_nf_limits(struct ath_hw *ah) 497 { 498 if (AR_SREV_9285(ah)) { 499 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ; 500 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ; 501 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ; 502 } else if (AR_SREV_9287(ah)) { 503 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ; 504 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ; 505 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ; 506 } else if (AR_SREV_9271(ah)) { 507 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ; 508 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ; 509 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ; 510 } else { 511 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ; 512 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ; 513 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ; 514 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ; 515 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ; 516 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ; 517 } 518 } 519 520 void ar9002_hw_attach_phy_ops(struct ath_hw *ah) 521 { 522 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah); 523 524 priv_ops->set_rf_regs = NULL; 525 priv_ops->rf_alloc_ext_banks = NULL; 526 priv_ops->rf_free_ext_banks = NULL; 527 priv_ops->rf_set_freq = ar9002_hw_set_channel; 528 priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate; 529 priv_ops->olc_init = ar9002_olc_init; 530 priv_ops->compute_pll_control = ar9002_hw_compute_pll_control; 531 priv_ops->do_getnf = ar9002_hw_do_getnf; 532 533 ar9002_hw_set_nf_limits(ah); 534 } 535 536 void ath9k_hw_antdiv_comb_conf_get(struct ath_hw *ah, 537 struct ath_hw_antcomb_conf *antconf) 538 { 539 u32 regval; 540 541 regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); 542 antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >> 543 AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S; 544 antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >> 545 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S; 546 antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >> 547 AR_PHY_9285_FAST_DIV_BIAS_S; 548 } 549 EXPORT_SYMBOL(ath9k_hw_antdiv_comb_conf_get); 550 551 void ath9k_hw_antdiv_comb_conf_set(struct ath_hw *ah, 552 struct ath_hw_antcomb_conf *antconf) 553 { 554 u32 regval; 555 556 regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); 557 regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF | 558 AR_PHY_9285_ANT_DIV_ALT_LNACONF | 559 AR_PHY_9285_FAST_DIV_BIAS); 560 regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S) 561 & AR_PHY_9285_ANT_DIV_MAIN_LNACONF); 562 regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S) 563 & AR_PHY_9285_ANT_DIV_ALT_LNACONF); 564 regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S) 565 & AR_PHY_9285_FAST_DIV_BIAS); 566 567 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval); 568 } 569 EXPORT_SYMBOL(ath9k_hw_antdiv_comb_conf_set); 570