1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include "../regd.h"
20 #include "ar9002_phy.h"
21 #include "ar5008_initvals.h"
22 
23 /* All code below is for AR5008, AR9001, AR9002 */
24 
25 #define AR5008_OFDM_RATES		8
26 #define AR5008_HT_SS_RATES		8
27 #define AR5008_HT_DS_RATES		8
28 
29 #define AR5008_HT20_SHIFT		16
30 #define AR5008_HT40_SHIFT		24
31 
32 #define AR5008_11NA_OFDM_SHIFT		0
33 #define AR5008_11NA_HT_SS_SHIFT		8
34 #define AR5008_11NA_HT_DS_SHIFT		16
35 
36 #define AR5008_11NG_OFDM_SHIFT		4
37 #define AR5008_11NG_HT_SS_SHIFT		12
38 #define AR5008_11NG_HT_DS_SHIFT		20
39 
40 static const int firstep_table[] =
41 /* level:  0   1   2   3   4   5   6   7   8  */
42 	{ -4, -2,  0,  2,  4,  6,  8, 10, 12 }; /* lvl 0-8, default 2 */
43 
44 /*
45  * register values to turn OFDM weak signal detection OFF
46  */
47 static const int m1ThreshLow_off = 127;
48 static const int m2ThreshLow_off = 127;
49 static const int m1Thresh_off = 127;
50 static const int m2Thresh_off = 127;
51 static const int m2CountThr_off =  31;
52 static const int m2CountThrLow_off =  63;
53 static const int m1ThreshLowExt_off = 127;
54 static const int m2ThreshLowExt_off = 127;
55 static const int m1ThreshExt_off = 127;
56 static const int m2ThreshExt_off = 127;
57 
58 static const struct ar5416IniArray bank0 = STATIC_INI_ARRAY(ar5416Bank0);
59 static const struct ar5416IniArray bank1 = STATIC_INI_ARRAY(ar5416Bank1);
60 static const struct ar5416IniArray bank2 = STATIC_INI_ARRAY(ar5416Bank2);
61 static const struct ar5416IniArray bank3 = STATIC_INI_ARRAY(ar5416Bank3);
62 static const struct ar5416IniArray bank7 = STATIC_INI_ARRAY(ar5416Bank7);
63 
64 static void ar5008_write_bank6(struct ath_hw *ah, unsigned int *writecnt)
65 {
66 	struct ar5416IniArray *array = &ah->iniBank6;
67 	u32 *data = ah->analogBank6Data;
68 	int r;
69 
70 	ENABLE_REGWRITE_BUFFER(ah);
71 
72 	for (r = 0; r < array->ia_rows; r++) {
73 		REG_WRITE(ah, INI_RA(array, r, 0), data[r]);
74 		DO_DELAY(*writecnt);
75 	}
76 
77 	REGWRITE_BUFFER_FLUSH(ah);
78 }
79 
80 /**
81  * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters
82  * @rfbuf:
83  * @reg32:
84  * @numBits:
85  * @firstBit:
86  * @column:
87  *
88  * Performs analog "swizzling" of parameters into their location.
89  * Used on external AR2133/AR5133 radios.
90  */
91 static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
92 					   u32 numBits, u32 firstBit,
93 					   u32 column)
94 {
95 	u32 tmp32, mask, arrayEntry, lastBit;
96 	int32_t bitPosition, bitsLeft;
97 
98 	tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
99 	arrayEntry = (firstBit - 1) / 8;
100 	bitPosition = (firstBit - 1) % 8;
101 	bitsLeft = numBits;
102 	while (bitsLeft > 0) {
103 		lastBit = (bitPosition + bitsLeft > 8) ?
104 		    8 : bitPosition + bitsLeft;
105 		mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
106 		    (column * 8);
107 		rfBuf[arrayEntry] &= ~mask;
108 		rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
109 				      (column * 8)) & mask;
110 		bitsLeft -= 8 - bitPosition;
111 		tmp32 = tmp32 >> (8 - bitPosition);
112 		bitPosition = 0;
113 		arrayEntry++;
114 	}
115 }
116 
117 /*
118  * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
119  * rf_pwd_icsyndiv.
120  *
121  * Theoretical Rules:
122  *   if 2 GHz band
123  *      if forceBiasAuto
124  *         if synth_freq < 2412
125  *            bias = 0
126  *         else if 2412 <= synth_freq <= 2422
127  *            bias = 1
128  *         else // synth_freq > 2422
129  *            bias = 2
130  *      else if forceBias > 0
131  *         bias = forceBias & 7
132  *      else
133  *         no change, use value from ini file
134  *   else
135  *      no change, invalid band
136  *
137  *  1st Mod:
138  *    2422 also uses value of 2
139  *    <approved>
140  *
141  *  2nd Mod:
142  *    Less than 2412 uses value of 0, 2412 and above uses value of 2
143  */
144 static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
145 {
146 	struct ath_common *common = ath9k_hw_common(ah);
147 	u32 tmp_reg;
148 	int reg_writes = 0;
149 	u32 new_bias = 0;
150 
151 	if (!AR_SREV_5416(ah) || synth_freq >= 3000)
152 		return;
153 
154 	BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
155 
156 	if (synth_freq < 2412)
157 		new_bias = 0;
158 	else if (synth_freq < 2422)
159 		new_bias = 1;
160 	else
161 		new_bias = 2;
162 
163 	/* pre-reverse this field */
164 	tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
165 
166 	ath_dbg(common, CONFIG, "Force rf_pwd_icsyndiv to %1d on %4d\n",
167 		new_bias, synth_freq);
168 
169 	/* swizzle rf_pwd_icsyndiv */
170 	ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
171 
172 	/* write Bank 6 with new params */
173 	ar5008_write_bank6(ah, &reg_writes);
174 }
175 
176 /**
177  * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
178  * @ah: atheros hardware structure
179  * @chan:
180  *
181  * For the external AR2133/AR5133 radios, takes the MHz channel value and set
182  * the channel value. Assumes writes enabled to analog bus and bank6 register
183  * cache in ah->analogBank6Data.
184  */
185 static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
186 {
187 	struct ath_common *common = ath9k_hw_common(ah);
188 	u32 channelSel = 0;
189 	u32 bModeSynth = 0;
190 	u32 aModeRefSel = 0;
191 	u32 reg32 = 0;
192 	u16 freq;
193 	struct chan_centers centers;
194 
195 	ath9k_hw_get_channel_centers(ah, chan, &centers);
196 	freq = centers.synth_center;
197 
198 	if (freq < 4800) {
199 		u32 txctl;
200 
201 		if (((freq - 2192) % 5) == 0) {
202 			channelSel = ((freq - 672) * 2 - 3040) / 10;
203 			bModeSynth = 0;
204 		} else if (((freq - 2224) % 5) == 0) {
205 			channelSel = ((freq - 704) * 2 - 3040) / 10;
206 			bModeSynth = 1;
207 		} else {
208 			ath_err(common, "Invalid channel %u MHz\n", freq);
209 			return -EINVAL;
210 		}
211 
212 		channelSel = (channelSel << 2) & 0xff;
213 		channelSel = ath9k_hw_reverse_bits(channelSel, 8);
214 
215 		txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
216 		if (freq == 2484) {
217 
218 			REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
219 				  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
220 		} else {
221 			REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
222 				  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
223 		}
224 
225 	} else if ((freq % 20) == 0 && freq >= 5120) {
226 		channelSel =
227 		    ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
228 		aModeRefSel = ath9k_hw_reverse_bits(1, 2);
229 	} else if ((freq % 10) == 0) {
230 		channelSel =
231 		    ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
232 		if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
233 			aModeRefSel = ath9k_hw_reverse_bits(2, 2);
234 		else
235 			aModeRefSel = ath9k_hw_reverse_bits(1, 2);
236 	} else if ((freq % 5) == 0) {
237 		channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
238 		aModeRefSel = ath9k_hw_reverse_bits(1, 2);
239 	} else {
240 		ath_err(common, "Invalid channel %u MHz\n", freq);
241 		return -EINVAL;
242 	}
243 
244 	ar5008_hw_force_bias(ah, freq);
245 
246 	reg32 =
247 	    (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
248 	    (1 << 5) | 0x1;
249 
250 	REG_WRITE(ah, AR_PHY(0x37), reg32);
251 
252 	ah->curchan = chan;
253 
254 	return 0;
255 }
256 
257 /**
258  * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios
259  * @ah: atheros hardware structure
260  * @chan:
261  *
262  * For non single-chip solutions. Converts to baseband spur frequency given the
263  * input channel frequency and compute register settings below.
264  */
265 static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
266 				    struct ath9k_channel *chan)
267 {
268 	int bb_spur = AR_NO_SPUR;
269 	int bin, cur_bin;
270 	int spur_freq_sd;
271 	int spur_delta_phase;
272 	int denominator;
273 	int upper, lower, cur_vit_mask;
274 	int tmp, new;
275 	int i;
276 	static int pilot_mask_reg[4] = {
277 		AR_PHY_TIMING7, AR_PHY_TIMING8,
278 		AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
279 	};
280 	static int chan_mask_reg[4] = {
281 		AR_PHY_TIMING9, AR_PHY_TIMING10,
282 		AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
283 	};
284 	static int inc[4] = { 0, 100, 0, 0 };
285 
286 	int8_t mask_m[123];
287 	int8_t mask_p[123];
288 	int8_t mask_amt;
289 	int tmp_mask;
290 	int cur_bb_spur;
291 	bool is2GHz = IS_CHAN_2GHZ(chan);
292 
293 	memset(&mask_m, 0, sizeof(int8_t) * 123);
294 	memset(&mask_p, 0, sizeof(int8_t) * 123);
295 
296 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
297 		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
298 		if (AR_NO_SPUR == cur_bb_spur)
299 			break;
300 		cur_bb_spur = cur_bb_spur - (chan->channel * 10);
301 		if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
302 			bb_spur = cur_bb_spur;
303 			break;
304 		}
305 	}
306 
307 	if (AR_NO_SPUR == bb_spur)
308 		return;
309 
310 	bin = bb_spur * 32;
311 
312 	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
313 	new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
314 		     AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
315 		     AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
316 		     AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
317 
318 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
319 
320 	new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
321 	       AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
322 	       AR_PHY_SPUR_REG_MASK_RATE_SELECT |
323 	       AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
324 	       SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
325 	REG_WRITE(ah, AR_PHY_SPUR_REG, new);
326 
327 	spur_delta_phase = ((bb_spur * 524288) / 100) &
328 		AR_PHY_TIMING11_SPUR_DELTA_PHASE;
329 
330 	denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
331 	spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
332 
333 	new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
334 	       SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
335 	       SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
336 	REG_WRITE(ah, AR_PHY_TIMING11, new);
337 
338 	cur_bin = -6000;
339 	upper = bin + 100;
340 	lower = bin - 100;
341 
342 	for (i = 0; i < 4; i++) {
343 		int pilot_mask = 0;
344 		int chan_mask = 0;
345 		int bp = 0;
346 		for (bp = 0; bp < 30; bp++) {
347 			if ((cur_bin > lower) && (cur_bin < upper)) {
348 				pilot_mask = pilot_mask | 0x1 << bp;
349 				chan_mask = chan_mask | 0x1 << bp;
350 			}
351 			cur_bin += 100;
352 		}
353 		cur_bin += inc[i];
354 		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
355 		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
356 	}
357 
358 	cur_vit_mask = 6100;
359 	upper = bin + 120;
360 	lower = bin - 120;
361 
362 	for (i = 0; i < 123; i++) {
363 		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
364 
365 			/* workaround for gcc bug #37014 */
366 			volatile int tmp_v = abs(cur_vit_mask - bin);
367 
368 			if (tmp_v < 75)
369 				mask_amt = 1;
370 			else
371 				mask_amt = 0;
372 			if (cur_vit_mask < 0)
373 				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
374 			else
375 				mask_p[cur_vit_mask / 100] = mask_amt;
376 		}
377 		cur_vit_mask -= 100;
378 	}
379 
380 	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
381 		| (mask_m[48] << 26) | (mask_m[49] << 24)
382 		| (mask_m[50] << 22) | (mask_m[51] << 20)
383 		| (mask_m[52] << 18) | (mask_m[53] << 16)
384 		| (mask_m[54] << 14) | (mask_m[55] << 12)
385 		| (mask_m[56] << 10) | (mask_m[57] << 8)
386 		| (mask_m[58] << 6) | (mask_m[59] << 4)
387 		| (mask_m[60] << 2) | (mask_m[61] << 0);
388 	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
389 	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
390 
391 	tmp_mask = (mask_m[31] << 28)
392 		| (mask_m[32] << 26) | (mask_m[33] << 24)
393 		| (mask_m[34] << 22) | (mask_m[35] << 20)
394 		| (mask_m[36] << 18) | (mask_m[37] << 16)
395 		| (mask_m[48] << 14) | (mask_m[39] << 12)
396 		| (mask_m[40] << 10) | (mask_m[41] << 8)
397 		| (mask_m[42] << 6) | (mask_m[43] << 4)
398 		| (mask_m[44] << 2) | (mask_m[45] << 0);
399 	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
400 	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
401 
402 	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
403 		| (mask_m[18] << 26) | (mask_m[18] << 24)
404 		| (mask_m[20] << 22) | (mask_m[20] << 20)
405 		| (mask_m[22] << 18) | (mask_m[22] << 16)
406 		| (mask_m[24] << 14) | (mask_m[24] << 12)
407 		| (mask_m[25] << 10) | (mask_m[26] << 8)
408 		| (mask_m[27] << 6) | (mask_m[28] << 4)
409 		| (mask_m[29] << 2) | (mask_m[30] << 0);
410 	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
411 	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
412 
413 	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
414 		| (mask_m[2] << 26) | (mask_m[3] << 24)
415 		| (mask_m[4] << 22) | (mask_m[5] << 20)
416 		| (mask_m[6] << 18) | (mask_m[7] << 16)
417 		| (mask_m[8] << 14) | (mask_m[9] << 12)
418 		| (mask_m[10] << 10) | (mask_m[11] << 8)
419 		| (mask_m[12] << 6) | (mask_m[13] << 4)
420 		| (mask_m[14] << 2) | (mask_m[15] << 0);
421 	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
422 	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
423 
424 	tmp_mask = (mask_p[15] << 28)
425 		| (mask_p[14] << 26) | (mask_p[13] << 24)
426 		| (mask_p[12] << 22) | (mask_p[11] << 20)
427 		| (mask_p[10] << 18) | (mask_p[9] << 16)
428 		| (mask_p[8] << 14) | (mask_p[7] << 12)
429 		| (mask_p[6] << 10) | (mask_p[5] << 8)
430 		| (mask_p[4] << 6) | (mask_p[3] << 4)
431 		| (mask_p[2] << 2) | (mask_p[1] << 0);
432 	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
433 	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
434 
435 	tmp_mask = (mask_p[30] << 28)
436 		| (mask_p[29] << 26) | (mask_p[28] << 24)
437 		| (mask_p[27] << 22) | (mask_p[26] << 20)
438 		| (mask_p[25] << 18) | (mask_p[24] << 16)
439 		| (mask_p[23] << 14) | (mask_p[22] << 12)
440 		| (mask_p[21] << 10) | (mask_p[20] << 8)
441 		| (mask_p[19] << 6) | (mask_p[18] << 4)
442 		| (mask_p[17] << 2) | (mask_p[16] << 0);
443 	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
444 	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
445 
446 	tmp_mask = (mask_p[45] << 28)
447 		| (mask_p[44] << 26) | (mask_p[43] << 24)
448 		| (mask_p[42] << 22) | (mask_p[41] << 20)
449 		| (mask_p[40] << 18) | (mask_p[39] << 16)
450 		| (mask_p[38] << 14) | (mask_p[37] << 12)
451 		| (mask_p[36] << 10) | (mask_p[35] << 8)
452 		| (mask_p[34] << 6) | (mask_p[33] << 4)
453 		| (mask_p[32] << 2) | (mask_p[31] << 0);
454 	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
455 	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
456 
457 	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
458 		| (mask_p[59] << 26) | (mask_p[58] << 24)
459 		| (mask_p[57] << 22) | (mask_p[56] << 20)
460 		| (mask_p[55] << 18) | (mask_p[54] << 16)
461 		| (mask_p[53] << 14) | (mask_p[52] << 12)
462 		| (mask_p[51] << 10) | (mask_p[50] << 8)
463 		| (mask_p[49] << 6) | (mask_p[48] << 4)
464 		| (mask_p[47] << 2) | (mask_p[46] << 0);
465 	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
466 	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
467 }
468 
469 /**
470  * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming
471  * @ah: atheros hardware structure
472  *
473  * Only required for older devices with external AR2133/AR5133 radios.
474  */
475 static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
476 {
477 	int size = ah->iniBank6.ia_rows * sizeof(u32);
478 
479 	if (AR_SREV_9280_20_OR_LATER(ah))
480 	    return 0;
481 
482 	ah->analogBank6Data = devm_kzalloc(ah->dev, size, GFP_KERNEL);
483 	if (!ah->analogBank6Data)
484 		return -ENOMEM;
485 
486 	return 0;
487 }
488 
489 
490 /* *
491  * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
492  * @ah: atheros hardware structure
493  * @chan:
494  * @modesIndex:
495  *
496  * Used for the external AR2133/AR5133 radios.
497  *
498  * Reads the EEPROM header info from the device structure and programs
499  * all rf registers. This routine requires access to the analog
500  * rf device. This is not required for single-chip devices.
501  */
502 static bool ar5008_hw_set_rf_regs(struct ath_hw *ah,
503 				  struct ath9k_channel *chan,
504 				  u16 modesIndex)
505 {
506 	u32 eepMinorRev;
507 	u32 ob5GHz = 0, db5GHz = 0;
508 	u32 ob2GHz = 0, db2GHz = 0;
509 	int regWrites = 0;
510 	int i;
511 
512 	/*
513 	 * Software does not need to program bank data
514 	 * for single chip devices, that is AR9280 or anything
515 	 * after that.
516 	 */
517 	if (AR_SREV_9280_20_OR_LATER(ah))
518 		return true;
519 
520 	/* Setup rf parameters */
521 	eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
522 
523 	for (i = 0; i < ah->iniBank6.ia_rows; i++)
524 		ah->analogBank6Data[i] = INI_RA(&ah->iniBank6, i, modesIndex);
525 
526 	/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
527 	if (eepMinorRev >= 2) {
528 		if (IS_CHAN_2GHZ(chan)) {
529 			ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
530 			db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
531 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
532 						       ob2GHz, 3, 197, 0);
533 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
534 						       db2GHz, 3, 194, 0);
535 		} else {
536 			ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
537 			db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
538 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
539 						       ob5GHz, 3, 203, 0);
540 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
541 						       db5GHz, 3, 200, 0);
542 		}
543 	}
544 
545 	/* Write Analog registers */
546 	REG_WRITE_ARRAY(&bank0, 1, regWrites);
547 	REG_WRITE_ARRAY(&bank1, 1, regWrites);
548 	REG_WRITE_ARRAY(&bank2, 1, regWrites);
549 	REG_WRITE_ARRAY(&bank3, modesIndex, regWrites);
550 	ar5008_write_bank6(ah, &regWrites);
551 	REG_WRITE_ARRAY(&bank7, 1, regWrites);
552 
553 	return true;
554 }
555 
556 static void ar5008_hw_init_bb(struct ath_hw *ah,
557 			      struct ath9k_channel *chan)
558 {
559 	u32 synthDelay;
560 
561 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
562 
563 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
564 
565 	ath9k_hw_synth_delay(ah, chan, synthDelay);
566 }
567 
568 static void ar5008_hw_init_chain_masks(struct ath_hw *ah)
569 {
570 	int rx_chainmask, tx_chainmask;
571 
572 	rx_chainmask = ah->rxchainmask;
573 	tx_chainmask = ah->txchainmask;
574 
575 
576 	switch (rx_chainmask) {
577 	case 0x5:
578 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
579 			    AR_PHY_SWAP_ALT_CHAIN);
580 	case 0x3:
581 		if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
582 			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
583 			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
584 			break;
585 		}
586 	case 0x1:
587 	case 0x2:
588 	case 0x7:
589 		ENABLE_REGWRITE_BUFFER(ah);
590 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
591 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
592 		break;
593 	default:
594 		ENABLE_REGWRITE_BUFFER(ah);
595 		break;
596 	}
597 
598 	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
599 
600 	REGWRITE_BUFFER_FLUSH(ah);
601 
602 	if (tx_chainmask == 0x5) {
603 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
604 			    AR_PHY_SWAP_ALT_CHAIN);
605 	}
606 	if (AR_SREV_9100(ah))
607 		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
608 			  REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
609 }
610 
611 static void ar5008_hw_override_ini(struct ath_hw *ah,
612 				   struct ath9k_channel *chan)
613 {
614 	u32 val;
615 
616 	/*
617 	 * Set the RX_ABORT and RX_DIS and clear if off only after
618 	 * RXE is set for MAC. This prevents frames with corrupted
619 	 * descriptor status.
620 	 */
621 	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
622 
623 	if (AR_SREV_9280_20_OR_LATER(ah)) {
624 		/*
625 		 * For AR9280 and above, there is a new feature that allows
626 		 * Multicast search based on both MAC Address and Key ID.
627 		 * By default, this feature is enabled. But since the driver
628 		 * is not using this feature, we switch it off; otherwise
629 		 * multicast search based on MAC addr only will fail.
630 		 */
631 		val = REG_READ(ah, AR_PCU_MISC_MODE2) &
632 			(~AR_ADHOC_MCAST_KEYID_ENABLE);
633 
634 		if (!AR_SREV_9271(ah))
635 			val &= ~AR_PCU_MISC_MODE2_HWWAR1;
636 
637 		if (AR_SREV_9287_11_OR_LATER(ah))
638 			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
639 
640 		val |= AR_PCU_MISC_MODE2_CFP_IGNORE;
641 
642 		REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
643 	}
644 
645 	if (AR_SREV_9280_20_OR_LATER(ah))
646 		return;
647 	/*
648 	 * Disable BB clock gating
649 	 * Necessary to avoid issues on AR5416 2.0
650 	 */
651 	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
652 
653 	/*
654 	 * Disable RIFS search on some chips to avoid baseband
655 	 * hang issues.
656 	 */
657 	if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
658 		val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
659 		val &= ~AR_PHY_RIFS_INIT_DELAY;
660 		REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
661 	}
662 }
663 
664 static void ar5008_hw_set_channel_regs(struct ath_hw *ah,
665 				       struct ath9k_channel *chan)
666 {
667 	u32 phymode;
668 	u32 enableDacFifo = 0;
669 
670 	if (AR_SREV_9285_12_OR_LATER(ah))
671 		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
672 					 AR_PHY_FC_ENABLE_DAC_FIFO);
673 
674 	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
675 		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
676 
677 	if (IS_CHAN_HT40(chan)) {
678 		phymode |= AR_PHY_FC_DYN2040_EN;
679 
680 		if (IS_CHAN_HT40PLUS(chan))
681 			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
682 
683 	}
684 	REG_WRITE(ah, AR_PHY_TURBO, phymode);
685 
686 	ath9k_hw_set11nmac2040(ah, chan);
687 
688 	ENABLE_REGWRITE_BUFFER(ah);
689 
690 	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
691 	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
692 
693 	REGWRITE_BUFFER_FLUSH(ah);
694 }
695 
696 
697 static int ar5008_hw_process_ini(struct ath_hw *ah,
698 				 struct ath9k_channel *chan)
699 {
700 	struct ath_common *common = ath9k_hw_common(ah);
701 	int i, regWrites = 0;
702 	u32 modesIndex, freqIndex;
703 
704 	if (IS_CHAN_5GHZ(chan)) {
705 		freqIndex = 1;
706 		modesIndex = IS_CHAN_HT40(chan) ? 2 : 1;
707 	} else {
708 		freqIndex = 2;
709 		modesIndex = IS_CHAN_HT40(chan) ? 3 : 4;
710 	}
711 
712 	/*
713 	 * Set correct baseband to analog shift setting to
714 	 * access analog chips.
715 	 */
716 	REG_WRITE(ah, AR_PHY(0), 0x00000007);
717 
718 	/* Write ADDAC shifts */
719 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
720 	if (ah->eep_ops->set_addac)
721 		ah->eep_ops->set_addac(ah, chan);
722 
723 	REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
724 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
725 
726 	ENABLE_REGWRITE_BUFFER(ah);
727 
728 	for (i = 0; i < ah->iniModes.ia_rows; i++) {
729 		u32 reg = INI_RA(&ah->iniModes, i, 0);
730 		u32 val = INI_RA(&ah->iniModes, i, modesIndex);
731 
732 		if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
733 			val &= ~AR_AN_TOP2_PWDCLKIND;
734 
735 		REG_WRITE(ah, reg, val);
736 
737 		if (reg >= 0x7800 && reg < 0x78a0
738 		    && ah->config.analog_shiftreg
739 		    && (common->bus_ops->ath_bus_type != ATH_USB)) {
740 			udelay(100);
741 		}
742 
743 		DO_DELAY(regWrites);
744 	}
745 
746 	REGWRITE_BUFFER_FLUSH(ah);
747 
748 	if (AR_SREV_9280(ah) || AR_SREV_9287_11_OR_LATER(ah))
749 		REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
750 
751 	if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
752 	    AR_SREV_9287_11_OR_LATER(ah))
753 		REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
754 
755 	if (AR_SREV_9271_10(ah)) {
756 		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENA);
757 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_ADC_ON, 0xa);
758 	}
759 
760 	ENABLE_REGWRITE_BUFFER(ah);
761 
762 	/* Write common array parameters */
763 	for (i = 0; i < ah->iniCommon.ia_rows; i++) {
764 		u32 reg = INI_RA(&ah->iniCommon, i, 0);
765 		u32 val = INI_RA(&ah->iniCommon, i, 1);
766 
767 		REG_WRITE(ah, reg, val);
768 
769 		if (reg >= 0x7800 && reg < 0x78a0
770 		    && ah->config.analog_shiftreg
771 		    && (common->bus_ops->ath_bus_type != ATH_USB)) {
772 			udelay(100);
773 		}
774 
775 		DO_DELAY(regWrites);
776 	}
777 
778 	REGWRITE_BUFFER_FLUSH(ah);
779 
780 	REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
781 
782 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
783 		REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex,
784 				regWrites);
785 
786 	ar5008_hw_override_ini(ah, chan);
787 	ar5008_hw_set_channel_regs(ah, chan);
788 	ar5008_hw_init_chain_masks(ah);
789 	ath9k_olc_init(ah);
790 	ath9k_hw_apply_txpower(ah, chan, false);
791 
792 	/* Write analog registers */
793 	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
794 		ath_err(ath9k_hw_common(ah), "ar5416SetRfRegs failed\n");
795 		return -EIO;
796 	}
797 
798 	return 0;
799 }
800 
801 static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
802 {
803 	u32 rfMode = 0;
804 
805 	if (chan == NULL)
806 		return;
807 
808 	if (IS_CHAN_2GHZ(chan))
809 		rfMode |= AR_PHY_MODE_DYNAMIC;
810 	else
811 		rfMode |= AR_PHY_MODE_OFDM;
812 
813 	if (!AR_SREV_9280_20_OR_LATER(ah))
814 		rfMode |= (IS_CHAN_5GHZ(chan)) ?
815 			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
816 
817 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
818 		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
819 
820 	REG_WRITE(ah, AR_PHY_MODE, rfMode);
821 }
822 
823 static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah)
824 {
825 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
826 }
827 
828 static void ar5008_hw_set_delta_slope(struct ath_hw *ah,
829 				      struct ath9k_channel *chan)
830 {
831 	u32 coef_scaled, ds_coef_exp, ds_coef_man;
832 	u32 clockMhzScaled = 0x64000000;
833 	struct chan_centers centers;
834 
835 	if (IS_CHAN_HALF_RATE(chan))
836 		clockMhzScaled = clockMhzScaled >> 1;
837 	else if (IS_CHAN_QUARTER_RATE(chan))
838 		clockMhzScaled = clockMhzScaled >> 2;
839 
840 	ath9k_hw_get_channel_centers(ah, chan, &centers);
841 	coef_scaled = clockMhzScaled / centers.synth_center;
842 
843 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
844 				      &ds_coef_exp);
845 
846 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
847 		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
848 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
849 		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
850 
851 	coef_scaled = (9 * coef_scaled) / 10;
852 
853 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
854 				      &ds_coef_exp);
855 
856 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
857 		      AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
858 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
859 		      AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
860 }
861 
862 static bool ar5008_hw_rfbus_req(struct ath_hw *ah)
863 {
864 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
865 	return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
866 			   AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
867 }
868 
869 static void ar5008_hw_rfbus_done(struct ath_hw *ah)
870 {
871 	u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
872 
873 	ath9k_hw_synth_delay(ah, ah->curchan, synthDelay);
874 
875 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
876 }
877 
878 static void ar5008_restore_chainmask(struct ath_hw *ah)
879 {
880 	int rx_chainmask = ah->rxchainmask;
881 
882 	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
883 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
884 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
885 	}
886 }
887 
888 static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah,
889 					 struct ath9k_channel *chan)
890 {
891 	u32 pll;
892 
893 	pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
894 
895 	if (chan && IS_CHAN_HALF_RATE(chan))
896 		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
897 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
898 		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
899 
900 	if (chan && IS_CHAN_5GHZ(chan))
901 		pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
902 	else
903 		pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
904 
905 	return pll;
906 }
907 
908 static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah,
909 					 struct ath9k_channel *chan)
910 {
911 	u32 pll;
912 
913 	pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
914 
915 	if (chan && IS_CHAN_HALF_RATE(chan))
916 		pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
917 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
918 		pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
919 
920 	if (chan && IS_CHAN_5GHZ(chan))
921 		pll |= SM(0xa, AR_RTC_PLL_DIV);
922 	else
923 		pll |= SM(0xb, AR_RTC_PLL_DIV);
924 
925 	return pll;
926 }
927 
928 static bool ar5008_hw_ani_control_new(struct ath_hw *ah,
929 				      enum ath9k_ani_cmd cmd,
930 				      int param)
931 {
932 	struct ath_common *common = ath9k_hw_common(ah);
933 	struct ath9k_channel *chan = ah->curchan;
934 	struct ar5416AniState *aniState = &ah->ani;
935 	s32 value;
936 
937 	switch (cmd & ah->ani_function) {
938 	case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
939 		/*
940 		 * on == 1 means ofdm weak signal detection is ON
941 		 * on == 1 is the default, for less noise immunity
942 		 *
943 		 * on == 0 means ofdm weak signal detection is OFF
944 		 * on == 0 means more noise imm
945 		 */
946 		u32 on = param ? 1 : 0;
947 		/*
948 		 * make register setting for default
949 		 * (weak sig detect ON) come from INI file
950 		 */
951 		int m1ThreshLow = on ?
952 			aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
953 		int m2ThreshLow = on ?
954 			aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
955 		int m1Thresh = on ?
956 			aniState->iniDef.m1Thresh : m1Thresh_off;
957 		int m2Thresh = on ?
958 			aniState->iniDef.m2Thresh : m2Thresh_off;
959 		int m2CountThr = on ?
960 			aniState->iniDef.m2CountThr : m2CountThr_off;
961 		int m2CountThrLow = on ?
962 			aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
963 		int m1ThreshLowExt = on ?
964 			aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
965 		int m2ThreshLowExt = on ?
966 			aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
967 		int m1ThreshExt = on ?
968 			aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
969 		int m2ThreshExt = on ?
970 			aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
971 
972 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
973 			      AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
974 			      m1ThreshLow);
975 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
976 			      AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
977 			      m2ThreshLow);
978 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
979 			      AR_PHY_SFCORR_M1_THRESH, m1Thresh);
980 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
981 			      AR_PHY_SFCORR_M2_THRESH, m2Thresh);
982 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
983 			      AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
984 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
985 			      AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
986 			      m2CountThrLow);
987 
988 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
989 			      AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
990 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
991 			      AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
992 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
993 			      AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
994 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
995 			      AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
996 
997 		if (on)
998 			REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
999 				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1000 		else
1001 			REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
1002 				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1003 
1004 		if (on != aniState->ofdmWeakSigDetect) {
1005 			ath_dbg(common, ANI,
1006 				"** ch %d: ofdm weak signal: %s=>%s\n",
1007 				chan->channel,
1008 				aniState->ofdmWeakSigDetect ?
1009 				"on" : "off",
1010 				on ? "on" : "off");
1011 			if (on)
1012 				ah->stats.ast_ani_ofdmon++;
1013 			else
1014 				ah->stats.ast_ani_ofdmoff++;
1015 			aniState->ofdmWeakSigDetect = on;
1016 		}
1017 		break;
1018 	}
1019 	case ATH9K_ANI_FIRSTEP_LEVEL:{
1020 		u32 level = param;
1021 
1022 		value = level * 2;
1023 		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
1024 			      AR_PHY_FIND_SIG_FIRSTEP, value);
1025 		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
1026 			      AR_PHY_FIND_SIG_FIRSTEP_LOW, value);
1027 
1028 		if (level != aniState->firstepLevel) {
1029 			ath_dbg(common, ANI,
1030 				"** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
1031 				chan->channel,
1032 				aniState->firstepLevel,
1033 				level,
1034 				ATH9K_ANI_FIRSTEP_LVL,
1035 				value,
1036 				aniState->iniDef.firstep);
1037 			ath_dbg(common, ANI,
1038 				"** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
1039 				chan->channel,
1040 				aniState->firstepLevel,
1041 				level,
1042 				ATH9K_ANI_FIRSTEP_LVL,
1043 				value,
1044 				aniState->iniDef.firstepLow);
1045 			if (level > aniState->firstepLevel)
1046 				ah->stats.ast_ani_stepup++;
1047 			else if (level < aniState->firstepLevel)
1048 				ah->stats.ast_ani_stepdown++;
1049 			aniState->firstepLevel = level;
1050 		}
1051 		break;
1052 	}
1053 	case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
1054 		u32 level = param;
1055 
1056 		value = (level + 1) * 2;
1057 		REG_RMW_FIELD(ah, AR_PHY_TIMING5,
1058 			      AR_PHY_TIMING5_CYCPWR_THR1, value);
1059 
1060 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1061 				  AR_PHY_EXT_TIMING5_CYCPWR_THR1, value - 1);
1062 
1063 		if (level != aniState->spurImmunityLevel) {
1064 			ath_dbg(common, ANI,
1065 				"** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
1066 				chan->channel,
1067 				aniState->spurImmunityLevel,
1068 				level,
1069 				ATH9K_ANI_SPUR_IMMUNE_LVL,
1070 				value,
1071 				aniState->iniDef.cycpwrThr1);
1072 			ath_dbg(common, ANI,
1073 				"** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
1074 				chan->channel,
1075 				aniState->spurImmunityLevel,
1076 				level,
1077 				ATH9K_ANI_SPUR_IMMUNE_LVL,
1078 				value,
1079 				aniState->iniDef.cycpwrThr1Ext);
1080 			if (level > aniState->spurImmunityLevel)
1081 				ah->stats.ast_ani_spurup++;
1082 			else if (level < aniState->spurImmunityLevel)
1083 				ah->stats.ast_ani_spurdown++;
1084 			aniState->spurImmunityLevel = level;
1085 		}
1086 		break;
1087 	}
1088 	case ATH9K_ANI_MRC_CCK:
1089 		/*
1090 		 * You should not see this as AR5008, AR9001, AR9002
1091 		 * does not have hardware support for MRC CCK.
1092 		 */
1093 		WARN_ON(1);
1094 		break;
1095 	default:
1096 		ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
1097 		return false;
1098 	}
1099 
1100 	ath_dbg(common, ANI,
1101 		"ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
1102 		aniState->spurImmunityLevel,
1103 		aniState->ofdmWeakSigDetect ? "on" : "off",
1104 		aniState->firstepLevel,
1105 		aniState->mrcCCK ? "on" : "off",
1106 		aniState->listenTime,
1107 		aniState->ofdmPhyErrCount,
1108 		aniState->cckPhyErrCount);
1109 	return true;
1110 }
1111 
1112 static void ar5008_hw_do_getnf(struct ath_hw *ah,
1113 			      int16_t nfarray[NUM_NF_READINGS])
1114 {
1115 	int16_t nf;
1116 
1117 	nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
1118 	nfarray[0] = sign_extend32(nf, 8);
1119 
1120 	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
1121 	nfarray[1] = sign_extend32(nf, 8);
1122 
1123 	nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
1124 	nfarray[2] = sign_extend32(nf, 8);
1125 
1126 	if (!IS_CHAN_HT40(ah->curchan))
1127 		return;
1128 
1129 	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
1130 	nfarray[3] = sign_extend32(nf, 8);
1131 
1132 	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
1133 	nfarray[4] = sign_extend32(nf, 8);
1134 
1135 	nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
1136 	nfarray[5] = sign_extend32(nf, 8);
1137 }
1138 
1139 /*
1140  * Initialize the ANI register values with default (ini) values.
1141  * This routine is called during a (full) hardware reset after
1142  * all the registers are initialised from the INI.
1143  */
1144 static void ar5008_hw_ani_cache_ini_regs(struct ath_hw *ah)
1145 {
1146 	struct ath_common *common = ath9k_hw_common(ah);
1147 	struct ath9k_channel *chan = ah->curchan;
1148 	struct ar5416AniState *aniState = &ah->ani;
1149 	struct ath9k_ani_default *iniDef;
1150 	u32 val;
1151 
1152 	iniDef = &aniState->iniDef;
1153 
1154 	ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz\n",
1155 		ah->hw_version.macVersion,
1156 		ah->hw_version.macRev,
1157 		ah->opmode,
1158 		chan->channel);
1159 
1160 	val = REG_READ(ah, AR_PHY_SFCORR);
1161 	iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
1162 	iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
1163 	iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
1164 
1165 	val = REG_READ(ah, AR_PHY_SFCORR_LOW);
1166 	iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
1167 	iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
1168 	iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
1169 
1170 	val = REG_READ(ah, AR_PHY_SFCORR_EXT);
1171 	iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
1172 	iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
1173 	iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
1174 	iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
1175 	iniDef->firstep = REG_READ_FIELD(ah,
1176 					 AR_PHY_FIND_SIG,
1177 					 AR_PHY_FIND_SIG_FIRSTEP);
1178 	iniDef->firstepLow = REG_READ_FIELD(ah,
1179 					    AR_PHY_FIND_SIG_LOW,
1180 					    AR_PHY_FIND_SIG_FIRSTEP_LOW);
1181 	iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
1182 					    AR_PHY_TIMING5,
1183 					    AR_PHY_TIMING5_CYCPWR_THR1);
1184 	iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
1185 					       AR_PHY_EXT_CCA,
1186 					       AR_PHY_EXT_TIMING5_CYCPWR_THR1);
1187 
1188 	/* these levels just got reset to defaults by the INI */
1189 	aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
1190 	aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
1191 	aniState->ofdmWeakSigDetect = true;
1192 	aniState->mrcCCK = false; /* not available on pre AR9003 */
1193 }
1194 
1195 static void ar5008_hw_set_nf_limits(struct ath_hw *ah)
1196 {
1197 	ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ;
1198 	ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ;
1199 	ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ;
1200 	ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ;
1201 	ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ;
1202 	ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ;
1203 }
1204 
1205 static void ar5008_hw_set_radar_params(struct ath_hw *ah,
1206 				       struct ath_hw_radar_conf *conf)
1207 {
1208 	u32 radar_0 = 0, radar_1;
1209 
1210 	if (!conf) {
1211 		REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
1212 		return;
1213 	}
1214 
1215 	radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
1216 	radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
1217 	radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
1218 	radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
1219 	radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
1220 	radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
1221 
1222 	radar_1 = REG_READ(ah, AR_PHY_RADAR_1);
1223 	radar_1 &= ~(AR_PHY_RADAR_1_MAXLEN | AR_PHY_RADAR_1_RELSTEP_THRESH |
1224 		     AR_PHY_RADAR_1_RELPWR_THRESH);
1225 	radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
1226 	radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
1227 	radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
1228 	radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
1229 	radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
1230 
1231 	REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
1232 	REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
1233 	if (conf->ext_channel)
1234 		REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1235 	else
1236 		REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1237 }
1238 
1239 static void ar5008_hw_set_radar_conf(struct ath_hw *ah)
1240 {
1241 	struct ath_hw_radar_conf *conf = &ah->radar_conf;
1242 
1243 	conf->fir_power = -33;
1244 	conf->radar_rssi = 20;
1245 	conf->pulse_height = 10;
1246 	conf->pulse_rssi = 15;
1247 	conf->pulse_inband = 15;
1248 	conf->pulse_maxlen = 255;
1249 	conf->pulse_inband_step = 12;
1250 	conf->radar_inband = 8;
1251 }
1252 
1253 static void ar5008_hw_init_txpower_cck(struct ath_hw *ah, int16_t *rate_array)
1254 {
1255 #define CCK_DELTA(x) ((OLC_FOR_AR9280_20_LATER) ? max((x) - 2, 0) : (x))
1256 	ah->tx_power[0] = CCK_DELTA(rate_array[rate1l]);
1257 	ah->tx_power[1] = CCK_DELTA(min(rate_array[rate2l],
1258 					rate_array[rate2s]));
1259 	ah->tx_power[2] = CCK_DELTA(min(rate_array[rate5_5l],
1260 					rate_array[rate5_5s]));
1261 	ah->tx_power[3] = CCK_DELTA(min(rate_array[rate11l],
1262 					rate_array[rate11s]));
1263 #undef CCK_DELTA
1264 }
1265 
1266 static void ar5008_hw_init_txpower_ofdm(struct ath_hw *ah, int16_t *rate_array,
1267 					int offset)
1268 {
1269 	int i, idx = 0;
1270 
1271 	for (i = offset; i < offset + AR5008_OFDM_RATES; i++) {
1272 		ah->tx_power[i] = rate_array[idx];
1273 		idx++;
1274 	}
1275 }
1276 
1277 static void ar5008_hw_init_txpower_ht(struct ath_hw *ah, int16_t *rate_array,
1278 				      int ss_offset, int ds_offset,
1279 				      bool is_40, int ht40_delta)
1280 {
1281 	int i, mcs_idx = (is_40) ? AR5008_HT40_SHIFT : AR5008_HT20_SHIFT;
1282 
1283 	for (i = ss_offset; i < ss_offset + AR5008_HT_SS_RATES; i++) {
1284 		ah->tx_power[i] = rate_array[mcs_idx] + ht40_delta;
1285 		mcs_idx++;
1286 	}
1287 	memcpy(&ah->tx_power[ds_offset], &ah->tx_power[ss_offset],
1288 	       AR5008_HT_SS_RATES);
1289 }
1290 
1291 void ar5008_hw_init_rate_txpower(struct ath_hw *ah, int16_t *rate_array,
1292 				 struct ath9k_channel *chan, int ht40_delta)
1293 {
1294 	if (IS_CHAN_5GHZ(chan)) {
1295 		ar5008_hw_init_txpower_ofdm(ah, rate_array,
1296 					    AR5008_11NA_OFDM_SHIFT);
1297 		if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1298 			ar5008_hw_init_txpower_ht(ah, rate_array,
1299 						  AR5008_11NA_HT_SS_SHIFT,
1300 						  AR5008_11NA_HT_DS_SHIFT,
1301 						  IS_CHAN_HT40(chan),
1302 						  ht40_delta);
1303 		}
1304 	} else {
1305 		ar5008_hw_init_txpower_cck(ah, rate_array);
1306 		ar5008_hw_init_txpower_ofdm(ah, rate_array,
1307 					    AR5008_11NG_OFDM_SHIFT);
1308 		if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1309 			ar5008_hw_init_txpower_ht(ah, rate_array,
1310 						  AR5008_11NG_HT_SS_SHIFT,
1311 						  AR5008_11NG_HT_DS_SHIFT,
1312 						  IS_CHAN_HT40(chan),
1313 						  ht40_delta);
1314 		}
1315 	}
1316 }
1317 
1318 int ar5008_hw_attach_phy_ops(struct ath_hw *ah)
1319 {
1320 	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
1321 	static const u32 ar5416_cca_regs[6] = {
1322 		AR_PHY_CCA,
1323 		AR_PHY_CH1_CCA,
1324 		AR_PHY_CH2_CCA,
1325 		AR_PHY_EXT_CCA,
1326 		AR_PHY_CH1_EXT_CCA,
1327 		AR_PHY_CH2_EXT_CCA
1328 	};
1329 	int ret;
1330 
1331 	ret = ar5008_hw_rf_alloc_ext_banks(ah);
1332 	if (ret)
1333 	    return ret;
1334 
1335 	priv_ops->rf_set_freq = ar5008_hw_set_channel;
1336 	priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
1337 
1338 	priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
1339 	priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
1340 	priv_ops->init_bb = ar5008_hw_init_bb;
1341 	priv_ops->process_ini = ar5008_hw_process_ini;
1342 	priv_ops->set_rfmode = ar5008_hw_set_rfmode;
1343 	priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive;
1344 	priv_ops->set_delta_slope = ar5008_hw_set_delta_slope;
1345 	priv_ops->rfbus_req = ar5008_hw_rfbus_req;
1346 	priv_ops->rfbus_done = ar5008_hw_rfbus_done;
1347 	priv_ops->restore_chainmask = ar5008_restore_chainmask;
1348 	priv_ops->do_getnf = ar5008_hw_do_getnf;
1349 	priv_ops->set_radar_params = ar5008_hw_set_radar_params;
1350 
1351 	priv_ops->ani_control = ar5008_hw_ani_control_new;
1352 	priv_ops->ani_cache_ini_regs = ar5008_hw_ani_cache_ini_regs;
1353 
1354 	if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
1355 		priv_ops->compute_pll_control = ar9160_hw_compute_pll_control;
1356 	else
1357 		priv_ops->compute_pll_control = ar5008_hw_compute_pll_control;
1358 
1359 	ar5008_hw_set_nf_limits(ah);
1360 	ar5008_hw_set_radar_conf(ah);
1361 	memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs));
1362 	return 0;
1363 }
1364