1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include "../regd.h"
20 #include "ar9002_phy.h"
21 #include "ar5008_initvals.h"
22 
23 /* All code below is for AR5008, AR9001, AR9002 */
24 
25 #define AR5008_OFDM_RATES		8
26 #define AR5008_HT_SS_RATES		8
27 #define AR5008_HT_DS_RATES		8
28 
29 #define AR5008_HT20_SHIFT		16
30 #define AR5008_HT40_SHIFT		24
31 
32 #define AR5008_11NA_OFDM_SHIFT		0
33 #define AR5008_11NA_HT_SS_SHIFT		8
34 #define AR5008_11NA_HT_DS_SHIFT		16
35 
36 #define AR5008_11NG_OFDM_SHIFT		4
37 #define AR5008_11NG_HT_SS_SHIFT		12
38 #define AR5008_11NG_HT_DS_SHIFT		20
39 
40 static const int firstep_table[] =
41 /* level:  0   1   2   3   4   5   6   7   8  */
42 	{ -4, -2,  0,  2,  4,  6,  8, 10, 12 }; /* lvl 0-8, default 2 */
43 
44 /*
45  * register values to turn OFDM weak signal detection OFF
46  */
47 static const int m1ThreshLow_off = 127;
48 static const int m2ThreshLow_off = 127;
49 static const int m1Thresh_off = 127;
50 static const int m2Thresh_off = 127;
51 static const int m2CountThr_off =  31;
52 static const int m2CountThrLow_off =  63;
53 static const int m1ThreshLowExt_off = 127;
54 static const int m2ThreshLowExt_off = 127;
55 static const int m1ThreshExt_off = 127;
56 static const int m2ThreshExt_off = 127;
57 
58 static const struct ar5416IniArray bank0 = STATIC_INI_ARRAY(ar5416Bank0);
59 static const struct ar5416IniArray bank1 = STATIC_INI_ARRAY(ar5416Bank1);
60 static const struct ar5416IniArray bank2 = STATIC_INI_ARRAY(ar5416Bank2);
61 static const struct ar5416IniArray bank3 = STATIC_INI_ARRAY(ar5416Bank3);
62 static const struct ar5416IniArray bank7 = STATIC_INI_ARRAY(ar5416Bank7);
63 
64 static void ar5008_write_bank6(struct ath_hw *ah, unsigned int *writecnt)
65 {
66 	struct ar5416IniArray *array = &ah->iniBank6;
67 	u32 *data = ah->analogBank6Data;
68 	int r;
69 
70 	ENABLE_REGWRITE_BUFFER(ah);
71 
72 	for (r = 0; r < array->ia_rows; r++) {
73 		REG_WRITE(ah, INI_RA(array, r, 0), data[r]);
74 		DO_DELAY(*writecnt);
75 	}
76 
77 	REGWRITE_BUFFER_FLUSH(ah);
78 }
79 
80 /**
81  * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters
82  * @rfbuf:
83  * @reg32:
84  * @numBits:
85  * @firstBit:
86  * @column:
87  *
88  * Performs analog "swizzling" of parameters into their location.
89  * Used on external AR2133/AR5133 radios.
90  */
91 static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
92 					   u32 numBits, u32 firstBit,
93 					   u32 column)
94 {
95 	u32 tmp32, mask, arrayEntry, lastBit;
96 	int32_t bitPosition, bitsLeft;
97 
98 	tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
99 	arrayEntry = (firstBit - 1) / 8;
100 	bitPosition = (firstBit - 1) % 8;
101 	bitsLeft = numBits;
102 	while (bitsLeft > 0) {
103 		lastBit = (bitPosition + bitsLeft > 8) ?
104 		    8 : bitPosition + bitsLeft;
105 		mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
106 		    (column * 8);
107 		rfBuf[arrayEntry] &= ~mask;
108 		rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
109 				      (column * 8)) & mask;
110 		bitsLeft -= 8 - bitPosition;
111 		tmp32 = tmp32 >> (8 - bitPosition);
112 		bitPosition = 0;
113 		arrayEntry++;
114 	}
115 }
116 
117 /*
118  * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
119  * rf_pwd_icsyndiv.
120  *
121  * Theoretical Rules:
122  *   if 2 GHz band
123  *      if forceBiasAuto
124  *         if synth_freq < 2412
125  *            bias = 0
126  *         else if 2412 <= synth_freq <= 2422
127  *            bias = 1
128  *         else // synth_freq > 2422
129  *            bias = 2
130  *      else if forceBias > 0
131  *         bias = forceBias & 7
132  *      else
133  *         no change, use value from ini file
134  *   else
135  *      no change, invalid band
136  *
137  *  1st Mod:
138  *    2422 also uses value of 2
139  *    <approved>
140  *
141  *  2nd Mod:
142  *    Less than 2412 uses value of 0, 2412 and above uses value of 2
143  */
144 static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
145 {
146 	struct ath_common *common = ath9k_hw_common(ah);
147 	u32 tmp_reg;
148 	int reg_writes = 0;
149 	u32 new_bias = 0;
150 
151 	if (!AR_SREV_5416(ah) || synth_freq >= 3000)
152 		return;
153 
154 	BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
155 
156 	if (synth_freq < 2412)
157 		new_bias = 0;
158 	else if (synth_freq < 2422)
159 		new_bias = 1;
160 	else
161 		new_bias = 2;
162 
163 	/* pre-reverse this field */
164 	tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
165 
166 	ath_dbg(common, CONFIG, "Force rf_pwd_icsyndiv to %1d on %4d\n",
167 		new_bias, synth_freq);
168 
169 	/* swizzle rf_pwd_icsyndiv */
170 	ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
171 
172 	/* write Bank 6 with new params */
173 	ar5008_write_bank6(ah, &reg_writes);
174 }
175 
176 /**
177  * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
178  * @ah: atheros hardware structure
179  * @chan:
180  *
181  * For the external AR2133/AR5133 radios, takes the MHz channel value and set
182  * the channel value. Assumes writes enabled to analog bus and bank6 register
183  * cache in ah->analogBank6Data.
184  */
185 static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
186 {
187 	struct ath_common *common = ath9k_hw_common(ah);
188 	u32 channelSel = 0;
189 	u32 bModeSynth = 0;
190 	u32 aModeRefSel = 0;
191 	u32 reg32 = 0;
192 	u16 freq;
193 	struct chan_centers centers;
194 
195 	ath9k_hw_get_channel_centers(ah, chan, &centers);
196 	freq = centers.synth_center;
197 
198 	if (freq < 4800) {
199 		u32 txctl;
200 
201 		if (((freq - 2192) % 5) == 0) {
202 			channelSel = ((freq - 672) * 2 - 3040) / 10;
203 			bModeSynth = 0;
204 		} else if (((freq - 2224) % 5) == 0) {
205 			channelSel = ((freq - 704) * 2 - 3040) / 10;
206 			bModeSynth = 1;
207 		} else {
208 			ath_err(common, "Invalid channel %u MHz\n", freq);
209 			return -EINVAL;
210 		}
211 
212 		channelSel = (channelSel << 2) & 0xff;
213 		channelSel = ath9k_hw_reverse_bits(channelSel, 8);
214 
215 		txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
216 		if (freq == 2484) {
217 
218 			REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
219 				  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
220 		} else {
221 			REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
222 				  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
223 		}
224 
225 	} else if ((freq % 20) == 0 && freq >= 5120) {
226 		channelSel =
227 		    ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
228 		aModeRefSel = ath9k_hw_reverse_bits(1, 2);
229 	} else if ((freq % 10) == 0) {
230 		channelSel =
231 		    ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
232 		if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
233 			aModeRefSel = ath9k_hw_reverse_bits(2, 2);
234 		else
235 			aModeRefSel = ath9k_hw_reverse_bits(1, 2);
236 	} else if ((freq % 5) == 0) {
237 		channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
238 		aModeRefSel = ath9k_hw_reverse_bits(1, 2);
239 	} else {
240 		ath_err(common, "Invalid channel %u MHz\n", freq);
241 		return -EINVAL;
242 	}
243 
244 	ar5008_hw_force_bias(ah, freq);
245 
246 	reg32 =
247 	    (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
248 	    (1 << 5) | 0x1;
249 
250 	REG_WRITE(ah, AR_PHY(0x37), reg32);
251 
252 	ah->curchan = chan;
253 
254 	return 0;
255 }
256 
257 void ar5008_hw_cmn_spur_mitigate(struct ath_hw *ah,
258 			  struct ath9k_channel *chan, int bin)
259 {
260 	int cur_bin;
261 	int upper, lower, cur_vit_mask;
262 	int i;
263 	int8_t mask_m[123] = {0};
264 	int8_t mask_p[123] = {0};
265 	int8_t mask_amt;
266 	int tmp_mask;
267 	static const int pilot_mask_reg[4] = {
268 		AR_PHY_TIMING7, AR_PHY_TIMING8,
269 		AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
270 	};
271 	static const int chan_mask_reg[4] = {
272 		AR_PHY_TIMING9, AR_PHY_TIMING10,
273 		AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
274 	};
275 	static const int inc[4] = { 0, 100, 0, 0 };
276 
277 	cur_bin = -6000;
278 	upper = bin + 100;
279 	lower = bin - 100;
280 
281 	for (i = 0; i < 4; i++) {
282 		int pilot_mask = 0;
283 		int chan_mask = 0;
284 		int bp = 0;
285 
286 		for (bp = 0; bp < 30; bp++) {
287 			if ((cur_bin > lower) && (cur_bin < upper)) {
288 				pilot_mask = pilot_mask | 0x1 << bp;
289 				chan_mask = chan_mask | 0x1 << bp;
290 			}
291 			cur_bin += 100;
292 		}
293 		cur_bin += inc[i];
294 		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
295 		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
296 	}
297 
298 	cur_vit_mask = 6100;
299 	upper = bin + 120;
300 	lower = bin - 120;
301 
302 	for (i = 0; i < ARRAY_SIZE(mask_m); i++) {
303 		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
304 			/* workaround for gcc bug #37014 */
305 			volatile int tmp_v = abs(cur_vit_mask - bin);
306 
307 			if (tmp_v < 75)
308 				mask_amt = 1;
309 			else
310 				mask_amt = 0;
311 			if (cur_vit_mask < 0)
312 				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
313 			else
314 				mask_p[cur_vit_mask / 100] = mask_amt;
315 		}
316 		cur_vit_mask -= 100;
317 	}
318 
319 	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
320 		| (mask_m[48] << 26) | (mask_m[49] << 24)
321 		| (mask_m[50] << 22) | (mask_m[51] << 20)
322 		| (mask_m[52] << 18) | (mask_m[53] << 16)
323 		| (mask_m[54] << 14) | (mask_m[55] << 12)
324 		| (mask_m[56] << 10) | (mask_m[57] << 8)
325 		| (mask_m[58] << 6) | (mask_m[59] << 4)
326 		| (mask_m[60] << 2) | (mask_m[61] << 0);
327 	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
328 	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
329 
330 	tmp_mask = (mask_m[31] << 28)
331 		| (mask_m[32] << 26) | (mask_m[33] << 24)
332 		| (mask_m[34] << 22) | (mask_m[35] << 20)
333 		| (mask_m[36] << 18) | (mask_m[37] << 16)
334 		| (mask_m[48] << 14) | (mask_m[39] << 12)
335 		| (mask_m[40] << 10) | (mask_m[41] << 8)
336 		| (mask_m[42] << 6) | (mask_m[43] << 4)
337 		| (mask_m[44] << 2) | (mask_m[45] << 0);
338 	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
339 	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
340 
341 	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
342 		| (mask_m[18] << 26) | (mask_m[18] << 24)
343 		| (mask_m[20] << 22) | (mask_m[20] << 20)
344 		| (mask_m[22] << 18) | (mask_m[22] << 16)
345 		| (mask_m[24] << 14) | (mask_m[24] << 12)
346 		| (mask_m[25] << 10) | (mask_m[26] << 8)
347 		| (mask_m[27] << 6) | (mask_m[28] << 4)
348 		| (mask_m[29] << 2) | (mask_m[30] << 0);
349 	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
350 	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
351 
352 	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
353 		| (mask_m[2] << 26) | (mask_m[3] << 24)
354 		| (mask_m[4] << 22) | (mask_m[5] << 20)
355 		| (mask_m[6] << 18) | (mask_m[7] << 16)
356 		| (mask_m[8] << 14) | (mask_m[9] << 12)
357 		| (mask_m[10] << 10) | (mask_m[11] << 8)
358 		| (mask_m[12] << 6) | (mask_m[13] << 4)
359 		| (mask_m[14] << 2) | (mask_m[15] << 0);
360 	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
361 	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
362 
363 	tmp_mask = (mask_p[15] << 28)
364 		| (mask_p[14] << 26) | (mask_p[13] << 24)
365 		| (mask_p[12] << 22) | (mask_p[11] << 20)
366 		| (mask_p[10] << 18) | (mask_p[9] << 16)
367 		| (mask_p[8] << 14) | (mask_p[7] << 12)
368 		| (mask_p[6] << 10) | (mask_p[5] << 8)
369 		| (mask_p[4] << 6) | (mask_p[3] << 4)
370 		| (mask_p[2] << 2) | (mask_p[1] << 0);
371 	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
372 	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
373 
374 	tmp_mask = (mask_p[30] << 28)
375 		| (mask_p[29] << 26) | (mask_p[28] << 24)
376 		| (mask_p[27] << 22) | (mask_p[26] << 20)
377 		| (mask_p[25] << 18) | (mask_p[24] << 16)
378 		| (mask_p[23] << 14) | (mask_p[22] << 12)
379 		| (mask_p[21] << 10) | (mask_p[20] << 8)
380 		| (mask_p[19] << 6) | (mask_p[18] << 4)
381 		| (mask_p[17] << 2) | (mask_p[16] << 0);
382 	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
383 	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
384 
385 	tmp_mask = (mask_p[45] << 28)
386 		| (mask_p[44] << 26) | (mask_p[43] << 24)
387 		| (mask_p[42] << 22) | (mask_p[41] << 20)
388 		| (mask_p[40] << 18) | (mask_p[39] << 16)
389 		| (mask_p[38] << 14) | (mask_p[37] << 12)
390 		| (mask_p[36] << 10) | (mask_p[35] << 8)
391 		| (mask_p[34] << 6) | (mask_p[33] << 4)
392 		| (mask_p[32] << 2) | (mask_p[31] << 0);
393 	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
394 	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
395 
396 	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
397 		| (mask_p[59] << 26) | (mask_p[58] << 24)
398 		| (mask_p[57] << 22) | (mask_p[56] << 20)
399 		| (mask_p[55] << 18) | (mask_p[54] << 16)
400 		| (mask_p[53] << 14) | (mask_p[52] << 12)
401 		| (mask_p[51] << 10) | (mask_p[50] << 8)
402 		| (mask_p[49] << 6) | (mask_p[48] << 4)
403 		| (mask_p[47] << 2) | (mask_p[46] << 0);
404 	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
405 	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
406 }
407 
408 /**
409  * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios
410  * @ah: atheros hardware structure
411  * @chan:
412  *
413  * For non single-chip solutions. Converts to baseband spur frequency given the
414  * input channel frequency and compute register settings below.
415  */
416 static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
417 				    struct ath9k_channel *chan)
418 {
419 	int bb_spur = AR_NO_SPUR;
420 	int bin;
421 	int spur_freq_sd;
422 	int spur_delta_phase;
423 	int denominator;
424 	int tmp, new;
425 	int i;
426 
427 	int cur_bb_spur;
428 	bool is2GHz = IS_CHAN_2GHZ(chan);
429 
430 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
431 		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
432 		if (AR_NO_SPUR == cur_bb_spur)
433 			break;
434 		cur_bb_spur = cur_bb_spur - (chan->channel * 10);
435 		if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
436 			bb_spur = cur_bb_spur;
437 			break;
438 		}
439 	}
440 
441 	if (AR_NO_SPUR == bb_spur)
442 		return;
443 
444 	bin = bb_spur * 32;
445 
446 	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
447 	new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
448 		     AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
449 		     AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
450 		     AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
451 
452 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
453 
454 	new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
455 	       AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
456 	       AR_PHY_SPUR_REG_MASK_RATE_SELECT |
457 	       AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
458 	       SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
459 	REG_WRITE(ah, AR_PHY_SPUR_REG, new);
460 
461 	spur_delta_phase = ((bb_spur * 524288) / 100) &
462 		AR_PHY_TIMING11_SPUR_DELTA_PHASE;
463 
464 	denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
465 	spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
466 
467 	new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
468 	       SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
469 	       SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
470 	REG_WRITE(ah, AR_PHY_TIMING11, new);
471 
472 	ar5008_hw_cmn_spur_mitigate(ah, chan, bin);
473 }
474 
475 /**
476  * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming
477  * @ah: atheros hardware structure
478  *
479  * Only required for older devices with external AR2133/AR5133 radios.
480  */
481 static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
482 {
483 	int size = ah->iniBank6.ia_rows * sizeof(u32);
484 
485 	if (AR_SREV_9280_20_OR_LATER(ah))
486 	    return 0;
487 
488 	ah->analogBank6Data = devm_kzalloc(ah->dev, size, GFP_KERNEL);
489 	if (!ah->analogBank6Data)
490 		return -ENOMEM;
491 
492 	return 0;
493 }
494 
495 
496 /* *
497  * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
498  * @ah: atheros hardware structure
499  * @chan:
500  * @modesIndex:
501  *
502  * Used for the external AR2133/AR5133 radios.
503  *
504  * Reads the EEPROM header info from the device structure and programs
505  * all rf registers. This routine requires access to the analog
506  * rf device. This is not required for single-chip devices.
507  */
508 static bool ar5008_hw_set_rf_regs(struct ath_hw *ah,
509 				  struct ath9k_channel *chan,
510 				  u16 modesIndex)
511 {
512 	u32 eepMinorRev;
513 	u32 ob5GHz = 0, db5GHz = 0;
514 	u32 ob2GHz = 0, db2GHz = 0;
515 	int regWrites = 0;
516 	int i;
517 
518 	/*
519 	 * Software does not need to program bank data
520 	 * for single chip devices, that is AR9280 or anything
521 	 * after that.
522 	 */
523 	if (AR_SREV_9280_20_OR_LATER(ah))
524 		return true;
525 
526 	/* Setup rf parameters */
527 	eepMinorRev = ah->eep_ops->get_eeprom_rev(ah);
528 
529 	for (i = 0; i < ah->iniBank6.ia_rows; i++)
530 		ah->analogBank6Data[i] = INI_RA(&ah->iniBank6, i, modesIndex);
531 
532 	/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
533 	if (eepMinorRev >= 2) {
534 		if (IS_CHAN_2GHZ(chan)) {
535 			ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
536 			db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
537 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
538 						       ob2GHz, 3, 197, 0);
539 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
540 						       db2GHz, 3, 194, 0);
541 		} else {
542 			ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
543 			db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
544 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
545 						       ob5GHz, 3, 203, 0);
546 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
547 						       db5GHz, 3, 200, 0);
548 		}
549 	}
550 
551 	/* Write Analog registers */
552 	REG_WRITE_ARRAY(&bank0, 1, regWrites);
553 	REG_WRITE_ARRAY(&bank1, 1, regWrites);
554 	REG_WRITE_ARRAY(&bank2, 1, regWrites);
555 	REG_WRITE_ARRAY(&bank3, modesIndex, regWrites);
556 	ar5008_write_bank6(ah, &regWrites);
557 	REG_WRITE_ARRAY(&bank7, 1, regWrites);
558 
559 	return true;
560 }
561 
562 static void ar5008_hw_init_bb(struct ath_hw *ah,
563 			      struct ath9k_channel *chan)
564 {
565 	u32 synthDelay;
566 
567 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
568 
569 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
570 
571 	ath9k_hw_synth_delay(ah, chan, synthDelay);
572 }
573 
574 static void ar5008_hw_init_chain_masks(struct ath_hw *ah)
575 {
576 	int rx_chainmask, tx_chainmask;
577 
578 	rx_chainmask = ah->rxchainmask;
579 	tx_chainmask = ah->txchainmask;
580 
581 
582 	switch (rx_chainmask) {
583 	case 0x5:
584 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
585 			    AR_PHY_SWAP_ALT_CHAIN);
586 	case 0x3:
587 		if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
588 			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
589 			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
590 			break;
591 		}
592 	case 0x1:
593 	case 0x2:
594 	case 0x7:
595 		ENABLE_REGWRITE_BUFFER(ah);
596 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
597 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
598 		break;
599 	default:
600 		ENABLE_REGWRITE_BUFFER(ah);
601 		break;
602 	}
603 
604 	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
605 
606 	REGWRITE_BUFFER_FLUSH(ah);
607 
608 	if (tx_chainmask == 0x5) {
609 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
610 			    AR_PHY_SWAP_ALT_CHAIN);
611 	}
612 	if (AR_SREV_9100(ah))
613 		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
614 			  REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
615 }
616 
617 static void ar5008_hw_override_ini(struct ath_hw *ah,
618 				   struct ath9k_channel *chan)
619 {
620 	u32 val;
621 
622 	/*
623 	 * Set the RX_ABORT and RX_DIS and clear if off only after
624 	 * RXE is set for MAC. This prevents frames with corrupted
625 	 * descriptor status.
626 	 */
627 	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
628 
629 	if (AR_SREV_9280_20_OR_LATER(ah)) {
630 		/*
631 		 * For AR9280 and above, there is a new feature that allows
632 		 * Multicast search based on both MAC Address and Key ID.
633 		 * By default, this feature is enabled. But since the driver
634 		 * is not using this feature, we switch it off; otherwise
635 		 * multicast search based on MAC addr only will fail.
636 		 */
637 		val = REG_READ(ah, AR_PCU_MISC_MODE2) &
638 			(~AR_ADHOC_MCAST_KEYID_ENABLE);
639 
640 		if (!AR_SREV_9271(ah))
641 			val &= ~AR_PCU_MISC_MODE2_HWWAR1;
642 
643 		if (AR_SREV_9287_11_OR_LATER(ah))
644 			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
645 
646 		val |= AR_PCU_MISC_MODE2_CFP_IGNORE;
647 
648 		REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
649 	}
650 
651 	if (AR_SREV_9280_20_OR_LATER(ah))
652 		return;
653 	/*
654 	 * Disable BB clock gating
655 	 * Necessary to avoid issues on AR5416 2.0
656 	 */
657 	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
658 
659 	/*
660 	 * Disable RIFS search on some chips to avoid baseband
661 	 * hang issues.
662 	 */
663 	if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
664 		val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
665 		val &= ~AR_PHY_RIFS_INIT_DELAY;
666 		REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
667 	}
668 }
669 
670 static void ar5008_hw_set_channel_regs(struct ath_hw *ah,
671 				       struct ath9k_channel *chan)
672 {
673 	u32 phymode;
674 	u32 enableDacFifo = 0;
675 
676 	if (AR_SREV_9285_12_OR_LATER(ah))
677 		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
678 					 AR_PHY_FC_ENABLE_DAC_FIFO);
679 
680 	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
681 		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
682 
683 	if (IS_CHAN_HT40(chan)) {
684 		phymode |= AR_PHY_FC_DYN2040_EN;
685 
686 		if (IS_CHAN_HT40PLUS(chan))
687 			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
688 
689 	}
690 	ENABLE_REGWRITE_BUFFER(ah);
691 	REG_WRITE(ah, AR_PHY_TURBO, phymode);
692 
693 	/* This function do only REG_WRITE, so
694 	 * we can include it to REGWRITE_BUFFER. */
695 	ath9k_hw_set11nmac2040(ah, chan);
696 
697 	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
698 	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
699 
700 	REGWRITE_BUFFER_FLUSH(ah);
701 }
702 
703 
704 static int ar5008_hw_process_ini(struct ath_hw *ah,
705 				 struct ath9k_channel *chan)
706 {
707 	struct ath_common *common = ath9k_hw_common(ah);
708 	int i, regWrites = 0;
709 	u32 modesIndex, freqIndex;
710 
711 	if (IS_CHAN_5GHZ(chan)) {
712 		freqIndex = 1;
713 		modesIndex = IS_CHAN_HT40(chan) ? 2 : 1;
714 	} else {
715 		freqIndex = 2;
716 		modesIndex = IS_CHAN_HT40(chan) ? 3 : 4;
717 	}
718 
719 	/*
720 	 * Set correct baseband to analog shift setting to
721 	 * access analog chips.
722 	 */
723 	REG_WRITE(ah, AR_PHY(0), 0x00000007);
724 
725 	/* Write ADDAC shifts */
726 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
727 	if (ah->eep_ops->set_addac)
728 		ah->eep_ops->set_addac(ah, chan);
729 
730 	REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
731 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
732 
733 	ENABLE_REGWRITE_BUFFER(ah);
734 
735 	for (i = 0; i < ah->iniModes.ia_rows; i++) {
736 		u32 reg = INI_RA(&ah->iniModes, i, 0);
737 		u32 val = INI_RA(&ah->iniModes, i, modesIndex);
738 
739 		if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
740 			val &= ~AR_AN_TOP2_PWDCLKIND;
741 
742 		REG_WRITE(ah, reg, val);
743 
744 		if (reg >= 0x7800 && reg < 0x78a0
745 		    && ah->config.analog_shiftreg
746 		    && (common->bus_ops->ath_bus_type != ATH_USB)) {
747 			udelay(100);
748 		}
749 
750 		DO_DELAY(regWrites);
751 	}
752 
753 	REGWRITE_BUFFER_FLUSH(ah);
754 
755 	if (AR_SREV_9280(ah) || AR_SREV_9287_11_OR_LATER(ah))
756 		REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
757 
758 	if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
759 	    AR_SREV_9287_11_OR_LATER(ah))
760 		REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
761 
762 	if (AR_SREV_9271_10(ah)) {
763 		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENA);
764 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_ADC_ON, 0xa);
765 	}
766 
767 	ENABLE_REGWRITE_BUFFER(ah);
768 
769 	/* Write common array parameters */
770 	for (i = 0; i < ah->iniCommon.ia_rows; i++) {
771 		u32 reg = INI_RA(&ah->iniCommon, i, 0);
772 		u32 val = INI_RA(&ah->iniCommon, i, 1);
773 
774 		REG_WRITE(ah, reg, val);
775 
776 		if (reg >= 0x7800 && reg < 0x78a0
777 		    && ah->config.analog_shiftreg
778 		    && (common->bus_ops->ath_bus_type != ATH_USB)) {
779 			udelay(100);
780 		}
781 
782 		DO_DELAY(regWrites);
783 	}
784 
785 	REGWRITE_BUFFER_FLUSH(ah);
786 
787 	REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
788 
789 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
790 		REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex,
791 				regWrites);
792 
793 	ar5008_hw_override_ini(ah, chan);
794 	ar5008_hw_set_channel_regs(ah, chan);
795 	ar5008_hw_init_chain_masks(ah);
796 	ath9k_olc_init(ah);
797 	ath9k_hw_apply_txpower(ah, chan, false);
798 
799 	/* Write analog registers */
800 	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
801 		ath_err(ath9k_hw_common(ah), "ar5416SetRfRegs failed\n");
802 		return -EIO;
803 	}
804 
805 	return 0;
806 }
807 
808 static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
809 {
810 	u32 rfMode = 0;
811 
812 	if (chan == NULL)
813 		return;
814 
815 	if (IS_CHAN_2GHZ(chan))
816 		rfMode |= AR_PHY_MODE_DYNAMIC;
817 	else
818 		rfMode |= AR_PHY_MODE_OFDM;
819 
820 	if (!AR_SREV_9280_20_OR_LATER(ah))
821 		rfMode |= (IS_CHAN_5GHZ(chan)) ?
822 			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
823 
824 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
825 		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
826 
827 	REG_WRITE(ah, AR_PHY_MODE, rfMode);
828 }
829 
830 static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah)
831 {
832 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
833 }
834 
835 static void ar5008_hw_set_delta_slope(struct ath_hw *ah,
836 				      struct ath9k_channel *chan)
837 {
838 	u32 coef_scaled, ds_coef_exp, ds_coef_man;
839 	u32 clockMhzScaled = 0x64000000;
840 	struct chan_centers centers;
841 
842 	if (IS_CHAN_HALF_RATE(chan))
843 		clockMhzScaled = clockMhzScaled >> 1;
844 	else if (IS_CHAN_QUARTER_RATE(chan))
845 		clockMhzScaled = clockMhzScaled >> 2;
846 
847 	ath9k_hw_get_channel_centers(ah, chan, &centers);
848 	coef_scaled = clockMhzScaled / centers.synth_center;
849 
850 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
851 				      &ds_coef_exp);
852 
853 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
854 		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
855 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
856 		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
857 
858 	coef_scaled = (9 * coef_scaled) / 10;
859 
860 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
861 				      &ds_coef_exp);
862 
863 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
864 		      AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
865 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
866 		      AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
867 }
868 
869 static bool ar5008_hw_rfbus_req(struct ath_hw *ah)
870 {
871 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
872 	return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
873 			   AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
874 }
875 
876 static void ar5008_hw_rfbus_done(struct ath_hw *ah)
877 {
878 	u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
879 
880 	ath9k_hw_synth_delay(ah, ah->curchan, synthDelay);
881 
882 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
883 }
884 
885 static void ar5008_restore_chainmask(struct ath_hw *ah)
886 {
887 	int rx_chainmask = ah->rxchainmask;
888 
889 	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
890 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
891 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
892 	}
893 }
894 
895 static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah,
896 					 struct ath9k_channel *chan)
897 {
898 	u32 pll;
899 
900 	pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
901 
902 	if (chan && IS_CHAN_HALF_RATE(chan))
903 		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
904 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
905 		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
906 
907 	if (chan && IS_CHAN_5GHZ(chan))
908 		pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
909 	else
910 		pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
911 
912 	return pll;
913 }
914 
915 static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah,
916 					 struct ath9k_channel *chan)
917 {
918 	u32 pll;
919 
920 	pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
921 
922 	if (chan && IS_CHAN_HALF_RATE(chan))
923 		pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
924 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
925 		pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
926 
927 	if (chan && IS_CHAN_5GHZ(chan))
928 		pll |= SM(0xa, AR_RTC_PLL_DIV);
929 	else
930 		pll |= SM(0xb, AR_RTC_PLL_DIV);
931 
932 	return pll;
933 }
934 
935 static bool ar5008_hw_ani_control_new(struct ath_hw *ah,
936 				      enum ath9k_ani_cmd cmd,
937 				      int param)
938 {
939 	struct ath_common *common = ath9k_hw_common(ah);
940 	struct ath9k_channel *chan = ah->curchan;
941 	struct ar5416AniState *aniState = &ah->ani;
942 	s32 value;
943 
944 	switch (cmd & ah->ani_function) {
945 	case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
946 		/*
947 		 * on == 1 means ofdm weak signal detection is ON
948 		 * on == 1 is the default, for less noise immunity
949 		 *
950 		 * on == 0 means ofdm weak signal detection is OFF
951 		 * on == 0 means more noise imm
952 		 */
953 		u32 on = param ? 1 : 0;
954 		/*
955 		 * make register setting for default
956 		 * (weak sig detect ON) come from INI file
957 		 */
958 		int m1ThreshLow = on ?
959 			aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
960 		int m2ThreshLow = on ?
961 			aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
962 		int m1Thresh = on ?
963 			aniState->iniDef.m1Thresh : m1Thresh_off;
964 		int m2Thresh = on ?
965 			aniState->iniDef.m2Thresh : m2Thresh_off;
966 		int m2CountThr = on ?
967 			aniState->iniDef.m2CountThr : m2CountThr_off;
968 		int m2CountThrLow = on ?
969 			aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
970 		int m1ThreshLowExt = on ?
971 			aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
972 		int m2ThreshLowExt = on ?
973 			aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
974 		int m1ThreshExt = on ?
975 			aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
976 		int m2ThreshExt = on ?
977 			aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
978 
979 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
980 			      AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
981 			      m1ThreshLow);
982 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
983 			      AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
984 			      m2ThreshLow);
985 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
986 			      AR_PHY_SFCORR_M1_THRESH, m1Thresh);
987 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
988 			      AR_PHY_SFCORR_M2_THRESH, m2Thresh);
989 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
990 			      AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
991 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
992 			      AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
993 			      m2CountThrLow);
994 
995 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
996 			      AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
997 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
998 			      AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
999 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1000 			      AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
1001 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1002 			      AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
1003 
1004 		if (on)
1005 			REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
1006 				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1007 		else
1008 			REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
1009 				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1010 
1011 		if (on != aniState->ofdmWeakSigDetect) {
1012 			ath_dbg(common, ANI,
1013 				"** ch %d: ofdm weak signal: %s=>%s\n",
1014 				chan->channel,
1015 				aniState->ofdmWeakSigDetect ?
1016 				"on" : "off",
1017 				on ? "on" : "off");
1018 			if (on)
1019 				ah->stats.ast_ani_ofdmon++;
1020 			else
1021 				ah->stats.ast_ani_ofdmoff++;
1022 			aniState->ofdmWeakSigDetect = on;
1023 		}
1024 		break;
1025 	}
1026 	case ATH9K_ANI_FIRSTEP_LEVEL:{
1027 		u32 level = param;
1028 
1029 		value = level * 2;
1030 		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
1031 			      AR_PHY_FIND_SIG_FIRSTEP, value);
1032 		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
1033 			      AR_PHY_FIND_SIG_FIRSTEP_LOW, value);
1034 
1035 		if (level != aniState->firstepLevel) {
1036 			ath_dbg(common, ANI,
1037 				"** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
1038 				chan->channel,
1039 				aniState->firstepLevel,
1040 				level,
1041 				ATH9K_ANI_FIRSTEP_LVL,
1042 				value,
1043 				aniState->iniDef.firstep);
1044 			ath_dbg(common, ANI,
1045 				"** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
1046 				chan->channel,
1047 				aniState->firstepLevel,
1048 				level,
1049 				ATH9K_ANI_FIRSTEP_LVL,
1050 				value,
1051 				aniState->iniDef.firstepLow);
1052 			if (level > aniState->firstepLevel)
1053 				ah->stats.ast_ani_stepup++;
1054 			else if (level < aniState->firstepLevel)
1055 				ah->stats.ast_ani_stepdown++;
1056 			aniState->firstepLevel = level;
1057 		}
1058 		break;
1059 	}
1060 	case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
1061 		u32 level = param;
1062 
1063 		value = (level + 1) * 2;
1064 		REG_RMW_FIELD(ah, AR_PHY_TIMING5,
1065 			      AR_PHY_TIMING5_CYCPWR_THR1, value);
1066 
1067 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1068 				  AR_PHY_EXT_TIMING5_CYCPWR_THR1, value - 1);
1069 
1070 		if (level != aniState->spurImmunityLevel) {
1071 			ath_dbg(common, ANI,
1072 				"** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
1073 				chan->channel,
1074 				aniState->spurImmunityLevel,
1075 				level,
1076 				ATH9K_ANI_SPUR_IMMUNE_LVL,
1077 				value,
1078 				aniState->iniDef.cycpwrThr1);
1079 			ath_dbg(common, ANI,
1080 				"** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
1081 				chan->channel,
1082 				aniState->spurImmunityLevel,
1083 				level,
1084 				ATH9K_ANI_SPUR_IMMUNE_LVL,
1085 				value,
1086 				aniState->iniDef.cycpwrThr1Ext);
1087 			if (level > aniState->spurImmunityLevel)
1088 				ah->stats.ast_ani_spurup++;
1089 			else if (level < aniState->spurImmunityLevel)
1090 				ah->stats.ast_ani_spurdown++;
1091 			aniState->spurImmunityLevel = level;
1092 		}
1093 		break;
1094 	}
1095 	case ATH9K_ANI_MRC_CCK:
1096 		/*
1097 		 * You should not see this as AR5008, AR9001, AR9002
1098 		 * does not have hardware support for MRC CCK.
1099 		 */
1100 		WARN_ON(1);
1101 		break;
1102 	default:
1103 		ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
1104 		return false;
1105 	}
1106 
1107 	ath_dbg(common, ANI,
1108 		"ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
1109 		aniState->spurImmunityLevel,
1110 		aniState->ofdmWeakSigDetect ? "on" : "off",
1111 		aniState->firstepLevel,
1112 		aniState->mrcCCK ? "on" : "off",
1113 		aniState->listenTime,
1114 		aniState->ofdmPhyErrCount,
1115 		aniState->cckPhyErrCount);
1116 	return true;
1117 }
1118 
1119 static void ar5008_hw_do_getnf(struct ath_hw *ah,
1120 			      int16_t nfarray[NUM_NF_READINGS])
1121 {
1122 	int16_t nf;
1123 
1124 	nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
1125 	nfarray[0] = sign_extend32(nf, 8);
1126 
1127 	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
1128 	nfarray[1] = sign_extend32(nf, 8);
1129 
1130 	nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
1131 	nfarray[2] = sign_extend32(nf, 8);
1132 
1133 	if (!IS_CHAN_HT40(ah->curchan))
1134 		return;
1135 
1136 	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
1137 	nfarray[3] = sign_extend32(nf, 8);
1138 
1139 	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
1140 	nfarray[4] = sign_extend32(nf, 8);
1141 
1142 	nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
1143 	nfarray[5] = sign_extend32(nf, 8);
1144 }
1145 
1146 /*
1147  * Initialize the ANI register values with default (ini) values.
1148  * This routine is called during a (full) hardware reset after
1149  * all the registers are initialised from the INI.
1150  */
1151 static void ar5008_hw_ani_cache_ini_regs(struct ath_hw *ah)
1152 {
1153 	struct ath_common *common = ath9k_hw_common(ah);
1154 	struct ath9k_channel *chan = ah->curchan;
1155 	struct ar5416AniState *aniState = &ah->ani;
1156 	struct ath9k_ani_default *iniDef;
1157 	u32 val;
1158 
1159 	iniDef = &aniState->iniDef;
1160 
1161 	ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz\n",
1162 		ah->hw_version.macVersion,
1163 		ah->hw_version.macRev,
1164 		ah->opmode,
1165 		chan->channel);
1166 
1167 	val = REG_READ(ah, AR_PHY_SFCORR);
1168 	iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
1169 	iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
1170 	iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
1171 
1172 	val = REG_READ(ah, AR_PHY_SFCORR_LOW);
1173 	iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
1174 	iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
1175 	iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
1176 
1177 	val = REG_READ(ah, AR_PHY_SFCORR_EXT);
1178 	iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
1179 	iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
1180 	iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
1181 	iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
1182 	iniDef->firstep = REG_READ_FIELD(ah,
1183 					 AR_PHY_FIND_SIG,
1184 					 AR_PHY_FIND_SIG_FIRSTEP);
1185 	iniDef->firstepLow = REG_READ_FIELD(ah,
1186 					    AR_PHY_FIND_SIG_LOW,
1187 					    AR_PHY_FIND_SIG_FIRSTEP_LOW);
1188 	iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
1189 					    AR_PHY_TIMING5,
1190 					    AR_PHY_TIMING5_CYCPWR_THR1);
1191 	iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
1192 					       AR_PHY_EXT_CCA,
1193 					       AR_PHY_EXT_TIMING5_CYCPWR_THR1);
1194 
1195 	/* these levels just got reset to defaults by the INI */
1196 	aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
1197 	aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
1198 	aniState->ofdmWeakSigDetect = true;
1199 	aniState->mrcCCK = false; /* not available on pre AR9003 */
1200 }
1201 
1202 static void ar5008_hw_set_nf_limits(struct ath_hw *ah)
1203 {
1204 	ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ;
1205 	ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ;
1206 	ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ;
1207 	ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ;
1208 	ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ;
1209 	ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ;
1210 }
1211 
1212 static void ar5008_hw_set_radar_params(struct ath_hw *ah,
1213 				       struct ath_hw_radar_conf *conf)
1214 {
1215 	u32 radar_0 = 0, radar_1;
1216 
1217 	if (!conf) {
1218 		REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
1219 		return;
1220 	}
1221 
1222 	radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
1223 	radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
1224 	radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
1225 	radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
1226 	radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
1227 	radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
1228 
1229 	radar_1 = REG_READ(ah, AR_PHY_RADAR_1);
1230 	radar_1 &= ~(AR_PHY_RADAR_1_MAXLEN | AR_PHY_RADAR_1_RELSTEP_THRESH |
1231 		     AR_PHY_RADAR_1_RELPWR_THRESH);
1232 	radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
1233 	radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
1234 	radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
1235 	radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
1236 	radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
1237 
1238 	REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
1239 	REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
1240 	if (conf->ext_channel)
1241 		REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1242 	else
1243 		REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1244 }
1245 
1246 static void ar5008_hw_set_radar_conf(struct ath_hw *ah)
1247 {
1248 	struct ath_hw_radar_conf *conf = &ah->radar_conf;
1249 
1250 	conf->fir_power = -33;
1251 	conf->radar_rssi = 20;
1252 	conf->pulse_height = 10;
1253 	conf->pulse_rssi = 15;
1254 	conf->pulse_inband = 15;
1255 	conf->pulse_maxlen = 255;
1256 	conf->pulse_inband_step = 12;
1257 	conf->radar_inband = 8;
1258 }
1259 
1260 static void ar5008_hw_init_txpower_cck(struct ath_hw *ah, int16_t *rate_array)
1261 {
1262 #define CCK_DELTA(x) ((OLC_FOR_AR9280_20_LATER) ? max((x) - 2, 0) : (x))
1263 	ah->tx_power[0] = CCK_DELTA(rate_array[rate1l]);
1264 	ah->tx_power[1] = CCK_DELTA(min(rate_array[rate2l],
1265 					rate_array[rate2s]));
1266 	ah->tx_power[2] = CCK_DELTA(min(rate_array[rate5_5l],
1267 					rate_array[rate5_5s]));
1268 	ah->tx_power[3] = CCK_DELTA(min(rate_array[rate11l],
1269 					rate_array[rate11s]));
1270 #undef CCK_DELTA
1271 }
1272 
1273 static void ar5008_hw_init_txpower_ofdm(struct ath_hw *ah, int16_t *rate_array,
1274 					int offset)
1275 {
1276 	int i, idx = 0;
1277 
1278 	for (i = offset; i < offset + AR5008_OFDM_RATES; i++) {
1279 		ah->tx_power[i] = rate_array[idx];
1280 		idx++;
1281 	}
1282 }
1283 
1284 static void ar5008_hw_init_txpower_ht(struct ath_hw *ah, int16_t *rate_array,
1285 				      int ss_offset, int ds_offset,
1286 				      bool is_40, int ht40_delta)
1287 {
1288 	int i, mcs_idx = (is_40) ? AR5008_HT40_SHIFT : AR5008_HT20_SHIFT;
1289 
1290 	for (i = ss_offset; i < ss_offset + AR5008_HT_SS_RATES; i++) {
1291 		ah->tx_power[i] = rate_array[mcs_idx] + ht40_delta;
1292 		mcs_idx++;
1293 	}
1294 	memcpy(&ah->tx_power[ds_offset], &ah->tx_power[ss_offset],
1295 	       AR5008_HT_SS_RATES);
1296 }
1297 
1298 void ar5008_hw_init_rate_txpower(struct ath_hw *ah, int16_t *rate_array,
1299 				 struct ath9k_channel *chan, int ht40_delta)
1300 {
1301 	if (IS_CHAN_5GHZ(chan)) {
1302 		ar5008_hw_init_txpower_ofdm(ah, rate_array,
1303 					    AR5008_11NA_OFDM_SHIFT);
1304 		if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1305 			ar5008_hw_init_txpower_ht(ah, rate_array,
1306 						  AR5008_11NA_HT_SS_SHIFT,
1307 						  AR5008_11NA_HT_DS_SHIFT,
1308 						  IS_CHAN_HT40(chan),
1309 						  ht40_delta);
1310 		}
1311 	} else {
1312 		ar5008_hw_init_txpower_cck(ah, rate_array);
1313 		ar5008_hw_init_txpower_ofdm(ah, rate_array,
1314 					    AR5008_11NG_OFDM_SHIFT);
1315 		if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1316 			ar5008_hw_init_txpower_ht(ah, rate_array,
1317 						  AR5008_11NG_HT_SS_SHIFT,
1318 						  AR5008_11NG_HT_DS_SHIFT,
1319 						  IS_CHAN_HT40(chan),
1320 						  ht40_delta);
1321 		}
1322 	}
1323 }
1324 
1325 int ar5008_hw_attach_phy_ops(struct ath_hw *ah)
1326 {
1327 	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
1328 	static const u32 ar5416_cca_regs[6] = {
1329 		AR_PHY_CCA,
1330 		AR_PHY_CH1_CCA,
1331 		AR_PHY_CH2_CCA,
1332 		AR_PHY_EXT_CCA,
1333 		AR_PHY_CH1_EXT_CCA,
1334 		AR_PHY_CH2_EXT_CCA
1335 	};
1336 	int ret;
1337 
1338 	ret = ar5008_hw_rf_alloc_ext_banks(ah);
1339 	if (ret)
1340 	    return ret;
1341 
1342 	priv_ops->rf_set_freq = ar5008_hw_set_channel;
1343 	priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
1344 
1345 	priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
1346 	priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
1347 	priv_ops->init_bb = ar5008_hw_init_bb;
1348 	priv_ops->process_ini = ar5008_hw_process_ini;
1349 	priv_ops->set_rfmode = ar5008_hw_set_rfmode;
1350 	priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive;
1351 	priv_ops->set_delta_slope = ar5008_hw_set_delta_slope;
1352 	priv_ops->rfbus_req = ar5008_hw_rfbus_req;
1353 	priv_ops->rfbus_done = ar5008_hw_rfbus_done;
1354 	priv_ops->restore_chainmask = ar5008_restore_chainmask;
1355 	priv_ops->do_getnf = ar5008_hw_do_getnf;
1356 	priv_ops->set_radar_params = ar5008_hw_set_radar_params;
1357 
1358 	priv_ops->ani_control = ar5008_hw_ani_control_new;
1359 	priv_ops->ani_cache_ini_regs = ar5008_hw_ani_cache_ini_regs;
1360 
1361 	if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
1362 		priv_ops->compute_pll_control = ar9160_hw_compute_pll_control;
1363 	else
1364 		priv_ops->compute_pll_control = ar5008_hw_compute_pll_control;
1365 
1366 	ar5008_hw_set_nf_limits(ah);
1367 	ar5008_hw_set_radar_conf(ah);
1368 	memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs));
1369 	return 0;
1370 }
1371