1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include "hw.h" 18 #include "hw-ops.h" 19 #include "../regd.h" 20 #include "ar9002_phy.h" 21 #include "ar5008_initvals.h" 22 23 /* All code below is for AR5008, AR9001, AR9002 */ 24 25 #define AR5008_OFDM_RATES 8 26 #define AR5008_HT_SS_RATES 8 27 #define AR5008_HT_DS_RATES 8 28 29 #define AR5008_HT20_SHIFT 16 30 #define AR5008_HT40_SHIFT 24 31 32 #define AR5008_11NA_OFDM_SHIFT 0 33 #define AR5008_11NA_HT_SS_SHIFT 8 34 #define AR5008_11NA_HT_DS_SHIFT 16 35 36 #define AR5008_11NG_OFDM_SHIFT 4 37 #define AR5008_11NG_HT_SS_SHIFT 12 38 #define AR5008_11NG_HT_DS_SHIFT 20 39 40 static const int firstep_table[] = 41 /* level: 0 1 2 3 4 5 6 7 8 */ 42 { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */ 43 44 /* 45 * register values to turn OFDM weak signal detection OFF 46 */ 47 static const int m1ThreshLow_off = 127; 48 static const int m2ThreshLow_off = 127; 49 static const int m1Thresh_off = 127; 50 static const int m2Thresh_off = 127; 51 static const int m2CountThr_off = 31; 52 static const int m2CountThrLow_off = 63; 53 static const int m1ThreshLowExt_off = 127; 54 static const int m2ThreshLowExt_off = 127; 55 static const int m1ThreshExt_off = 127; 56 static const int m2ThreshExt_off = 127; 57 58 static const struct ar5416IniArray bank0 = STATIC_INI_ARRAY(ar5416Bank0); 59 static const struct ar5416IniArray bank1 = STATIC_INI_ARRAY(ar5416Bank1); 60 static const struct ar5416IniArray bank2 = STATIC_INI_ARRAY(ar5416Bank2); 61 static const struct ar5416IniArray bank3 = STATIC_INI_ARRAY(ar5416Bank3); 62 static const struct ar5416IniArray bank7 = STATIC_INI_ARRAY(ar5416Bank7); 63 64 static void ar5008_write_bank6(struct ath_hw *ah, unsigned int *writecnt) 65 { 66 struct ar5416IniArray *array = &ah->iniBank6; 67 u32 *data = ah->analogBank6Data; 68 int r; 69 70 ENABLE_REGWRITE_BUFFER(ah); 71 72 for (r = 0; r < array->ia_rows; r++) { 73 REG_WRITE(ah, INI_RA(array, r, 0), data[r]); 74 DO_DELAY(*writecnt); 75 } 76 77 REGWRITE_BUFFER_FLUSH(ah); 78 } 79 80 /** 81 * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters 82 * @rfbuf: 83 * @reg32: 84 * @numBits: 85 * @firstBit: 86 * @column: 87 * 88 * Performs analog "swizzling" of parameters into their location. 89 * Used on external AR2133/AR5133 radios. 90 */ 91 static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32, 92 u32 numBits, u32 firstBit, 93 u32 column) 94 { 95 u32 tmp32, mask, arrayEntry, lastBit; 96 int32_t bitPosition, bitsLeft; 97 98 tmp32 = ath9k_hw_reverse_bits(reg32, numBits); 99 arrayEntry = (firstBit - 1) / 8; 100 bitPosition = (firstBit - 1) % 8; 101 bitsLeft = numBits; 102 while (bitsLeft > 0) { 103 lastBit = (bitPosition + bitsLeft > 8) ? 104 8 : bitPosition + bitsLeft; 105 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) << 106 (column * 8); 107 rfBuf[arrayEntry] &= ~mask; 108 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) << 109 (column * 8)) & mask; 110 bitsLeft -= 8 - bitPosition; 111 tmp32 = tmp32 >> (8 - bitPosition); 112 bitPosition = 0; 113 arrayEntry++; 114 } 115 } 116 117 /* 118 * Fix on 2.4 GHz band for orientation sensitivity issue by increasing 119 * rf_pwd_icsyndiv. 120 * 121 * Theoretical Rules: 122 * if 2 GHz band 123 * if forceBiasAuto 124 * if synth_freq < 2412 125 * bias = 0 126 * else if 2412 <= synth_freq <= 2422 127 * bias = 1 128 * else // synth_freq > 2422 129 * bias = 2 130 * else if forceBias > 0 131 * bias = forceBias & 7 132 * else 133 * no change, use value from ini file 134 * else 135 * no change, invalid band 136 * 137 * 1st Mod: 138 * 2422 also uses value of 2 139 * <approved> 140 * 141 * 2nd Mod: 142 * Less than 2412 uses value of 0, 2412 and above uses value of 2 143 */ 144 static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq) 145 { 146 struct ath_common *common = ath9k_hw_common(ah); 147 u32 tmp_reg; 148 int reg_writes = 0; 149 u32 new_bias = 0; 150 151 if (!AR_SREV_5416(ah) || synth_freq >= 3000) 152 return; 153 154 BUG_ON(AR_SREV_9280_20_OR_LATER(ah)); 155 156 if (synth_freq < 2412) 157 new_bias = 0; 158 else if (synth_freq < 2422) 159 new_bias = 1; 160 else 161 new_bias = 2; 162 163 /* pre-reverse this field */ 164 tmp_reg = ath9k_hw_reverse_bits(new_bias, 3); 165 166 ath_dbg(common, CONFIG, "Force rf_pwd_icsyndiv to %1d on %4d\n", 167 new_bias, synth_freq); 168 169 /* swizzle rf_pwd_icsyndiv */ 170 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3); 171 172 /* write Bank 6 with new params */ 173 ar5008_write_bank6(ah, ®_writes); 174 } 175 176 /** 177 * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios 178 * @ah: atheros hardware structure 179 * @chan: 180 * 181 * For the external AR2133/AR5133 radios, takes the MHz channel value and set 182 * the channel value. Assumes writes enabled to analog bus and bank6 register 183 * cache in ah->analogBank6Data. 184 */ 185 static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan) 186 { 187 struct ath_common *common = ath9k_hw_common(ah); 188 u32 channelSel = 0; 189 u32 bModeSynth = 0; 190 u32 aModeRefSel = 0; 191 u32 reg32 = 0; 192 u16 freq; 193 struct chan_centers centers; 194 195 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 196 freq = centers.synth_center; 197 198 if (freq < 4800) { 199 u32 txctl; 200 201 if (((freq - 2192) % 5) == 0) { 202 channelSel = ((freq - 672) * 2 - 3040) / 10; 203 bModeSynth = 0; 204 } else if (((freq - 2224) % 5) == 0) { 205 channelSel = ((freq - 704) * 2 - 3040) / 10; 206 bModeSynth = 1; 207 } else { 208 ath_err(common, "Invalid channel %u MHz\n", freq); 209 return -EINVAL; 210 } 211 212 channelSel = (channelSel << 2) & 0xff; 213 channelSel = ath9k_hw_reverse_bits(channelSel, 8); 214 215 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL); 216 if (freq == 2484) { 217 218 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 219 txctl | AR_PHY_CCK_TX_CTRL_JAPAN); 220 } else { 221 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 222 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN); 223 } 224 225 } else if ((freq % 20) == 0 && freq >= 5120) { 226 channelSel = 227 ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8); 228 aModeRefSel = ath9k_hw_reverse_bits(1, 2); 229 } else if ((freq % 10) == 0) { 230 channelSel = 231 ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8); 232 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah)) 233 aModeRefSel = ath9k_hw_reverse_bits(2, 2); 234 else 235 aModeRefSel = ath9k_hw_reverse_bits(1, 2); 236 } else if ((freq % 5) == 0) { 237 channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8); 238 aModeRefSel = ath9k_hw_reverse_bits(1, 2); 239 } else { 240 ath_err(common, "Invalid channel %u MHz\n", freq); 241 return -EINVAL; 242 } 243 244 ar5008_hw_force_bias(ah, freq); 245 246 reg32 = 247 (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) | 248 (1 << 5) | 0x1; 249 250 REG_WRITE(ah, AR_PHY(0x37), reg32); 251 252 ah->curchan = chan; 253 254 return 0; 255 } 256 257 /** 258 * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios 259 * @ah: atheros hardware structure 260 * @chan: 261 * 262 * For non single-chip solutions. Converts to baseband spur frequency given the 263 * input channel frequency and compute register settings below. 264 */ 265 static void ar5008_hw_spur_mitigate(struct ath_hw *ah, 266 struct ath9k_channel *chan) 267 { 268 int bb_spur = AR_NO_SPUR; 269 int bin, cur_bin; 270 int spur_freq_sd; 271 int spur_delta_phase; 272 int denominator; 273 int upper, lower, cur_vit_mask; 274 int tmp, new; 275 int i; 276 static int pilot_mask_reg[4] = { 277 AR_PHY_TIMING7, AR_PHY_TIMING8, 278 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 279 }; 280 static int chan_mask_reg[4] = { 281 AR_PHY_TIMING9, AR_PHY_TIMING10, 282 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 283 }; 284 static int inc[4] = { 0, 100, 0, 0 }; 285 286 int8_t mask_m[123]; 287 int8_t mask_p[123]; 288 int8_t mask_amt; 289 int tmp_mask; 290 int cur_bb_spur; 291 bool is2GHz = IS_CHAN_2GHZ(chan); 292 293 memset(&mask_m, 0, sizeof(int8_t) * 123); 294 memset(&mask_p, 0, sizeof(int8_t) * 123); 295 296 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 297 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz); 298 if (AR_NO_SPUR == cur_bb_spur) 299 break; 300 cur_bb_spur = cur_bb_spur - (chan->channel * 10); 301 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) { 302 bb_spur = cur_bb_spur; 303 break; 304 } 305 } 306 307 if (AR_NO_SPUR == bb_spur) 308 return; 309 310 bin = bb_spur * 32; 311 312 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0)); 313 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | 314 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | 315 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | 316 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); 317 318 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new); 319 320 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | 321 AR_PHY_SPUR_REG_ENABLE_MASK_PPM | 322 AR_PHY_SPUR_REG_MASK_RATE_SELECT | 323 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | 324 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); 325 REG_WRITE(ah, AR_PHY_SPUR_REG, new); 326 327 spur_delta_phase = ((bb_spur * 524288) / 100) & 328 AR_PHY_TIMING11_SPUR_DELTA_PHASE; 329 330 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400; 331 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff; 332 333 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | 334 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | 335 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); 336 REG_WRITE(ah, AR_PHY_TIMING11, new); 337 338 cur_bin = -6000; 339 upper = bin + 100; 340 lower = bin - 100; 341 342 for (i = 0; i < 4; i++) { 343 int pilot_mask = 0; 344 int chan_mask = 0; 345 int bp = 0; 346 for (bp = 0; bp < 30; bp++) { 347 if ((cur_bin > lower) && (cur_bin < upper)) { 348 pilot_mask = pilot_mask | 0x1 << bp; 349 chan_mask = chan_mask | 0x1 << bp; 350 } 351 cur_bin += 100; 352 } 353 cur_bin += inc[i]; 354 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); 355 REG_WRITE(ah, chan_mask_reg[i], chan_mask); 356 } 357 358 cur_vit_mask = 6100; 359 upper = bin + 120; 360 lower = bin - 120; 361 362 for (i = 0; i < 123; i++) { 363 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { 364 365 /* workaround for gcc bug #37014 */ 366 volatile int tmp_v = abs(cur_vit_mask - bin); 367 368 if (tmp_v < 75) 369 mask_amt = 1; 370 else 371 mask_amt = 0; 372 if (cur_vit_mask < 0) 373 mask_m[abs(cur_vit_mask / 100)] = mask_amt; 374 else 375 mask_p[cur_vit_mask / 100] = mask_amt; 376 } 377 cur_vit_mask -= 100; 378 } 379 380 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) 381 | (mask_m[48] << 26) | (mask_m[49] << 24) 382 | (mask_m[50] << 22) | (mask_m[51] << 20) 383 | (mask_m[52] << 18) | (mask_m[53] << 16) 384 | (mask_m[54] << 14) | (mask_m[55] << 12) 385 | (mask_m[56] << 10) | (mask_m[57] << 8) 386 | (mask_m[58] << 6) | (mask_m[59] << 4) 387 | (mask_m[60] << 2) | (mask_m[61] << 0); 388 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); 389 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); 390 391 tmp_mask = (mask_m[31] << 28) 392 | (mask_m[32] << 26) | (mask_m[33] << 24) 393 | (mask_m[34] << 22) | (mask_m[35] << 20) 394 | (mask_m[36] << 18) | (mask_m[37] << 16) 395 | (mask_m[48] << 14) | (mask_m[39] << 12) 396 | (mask_m[40] << 10) | (mask_m[41] << 8) 397 | (mask_m[42] << 6) | (mask_m[43] << 4) 398 | (mask_m[44] << 2) | (mask_m[45] << 0); 399 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); 400 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); 401 402 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) 403 | (mask_m[18] << 26) | (mask_m[18] << 24) 404 | (mask_m[20] << 22) | (mask_m[20] << 20) 405 | (mask_m[22] << 18) | (mask_m[22] << 16) 406 | (mask_m[24] << 14) | (mask_m[24] << 12) 407 | (mask_m[25] << 10) | (mask_m[26] << 8) 408 | (mask_m[27] << 6) | (mask_m[28] << 4) 409 | (mask_m[29] << 2) | (mask_m[30] << 0); 410 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); 411 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); 412 413 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) 414 | (mask_m[2] << 26) | (mask_m[3] << 24) 415 | (mask_m[4] << 22) | (mask_m[5] << 20) 416 | (mask_m[6] << 18) | (mask_m[7] << 16) 417 | (mask_m[8] << 14) | (mask_m[9] << 12) 418 | (mask_m[10] << 10) | (mask_m[11] << 8) 419 | (mask_m[12] << 6) | (mask_m[13] << 4) 420 | (mask_m[14] << 2) | (mask_m[15] << 0); 421 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); 422 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); 423 424 tmp_mask = (mask_p[15] << 28) 425 | (mask_p[14] << 26) | (mask_p[13] << 24) 426 | (mask_p[12] << 22) | (mask_p[11] << 20) 427 | (mask_p[10] << 18) | (mask_p[9] << 16) 428 | (mask_p[8] << 14) | (mask_p[7] << 12) 429 | (mask_p[6] << 10) | (mask_p[5] << 8) 430 | (mask_p[4] << 6) | (mask_p[3] << 4) 431 | (mask_p[2] << 2) | (mask_p[1] << 0); 432 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); 433 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); 434 435 tmp_mask = (mask_p[30] << 28) 436 | (mask_p[29] << 26) | (mask_p[28] << 24) 437 | (mask_p[27] << 22) | (mask_p[26] << 20) 438 | (mask_p[25] << 18) | (mask_p[24] << 16) 439 | (mask_p[23] << 14) | (mask_p[22] << 12) 440 | (mask_p[21] << 10) | (mask_p[20] << 8) 441 | (mask_p[19] << 6) | (mask_p[18] << 4) 442 | (mask_p[17] << 2) | (mask_p[16] << 0); 443 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); 444 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); 445 446 tmp_mask = (mask_p[45] << 28) 447 | (mask_p[44] << 26) | (mask_p[43] << 24) 448 | (mask_p[42] << 22) | (mask_p[41] << 20) 449 | (mask_p[40] << 18) | (mask_p[39] << 16) 450 | (mask_p[38] << 14) | (mask_p[37] << 12) 451 | (mask_p[36] << 10) | (mask_p[35] << 8) 452 | (mask_p[34] << 6) | (mask_p[33] << 4) 453 | (mask_p[32] << 2) | (mask_p[31] << 0); 454 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); 455 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); 456 457 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) 458 | (mask_p[59] << 26) | (mask_p[58] << 24) 459 | (mask_p[57] << 22) | (mask_p[56] << 20) 460 | (mask_p[55] << 18) | (mask_p[54] << 16) 461 | (mask_p[53] << 14) | (mask_p[52] << 12) 462 | (mask_p[51] << 10) | (mask_p[50] << 8) 463 | (mask_p[49] << 6) | (mask_p[48] << 4) 464 | (mask_p[47] << 2) | (mask_p[46] << 0); 465 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); 466 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); 467 } 468 469 /** 470 * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming 471 * @ah: atheros hardware structure 472 * 473 * Only required for older devices with external AR2133/AR5133 radios. 474 */ 475 static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah) 476 { 477 int size = ah->iniBank6.ia_rows * sizeof(u32); 478 479 if (AR_SREV_9280_20_OR_LATER(ah)) 480 return 0; 481 482 ah->analogBank6Data = devm_kzalloc(ah->dev, size, GFP_KERNEL); 483 if (!ah->analogBank6Data) 484 return -ENOMEM; 485 486 return 0; 487 } 488 489 490 /* * 491 * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM 492 * @ah: atheros hardware structure 493 * @chan: 494 * @modesIndex: 495 * 496 * Used for the external AR2133/AR5133 radios. 497 * 498 * Reads the EEPROM header info from the device structure and programs 499 * all rf registers. This routine requires access to the analog 500 * rf device. This is not required for single-chip devices. 501 */ 502 static bool ar5008_hw_set_rf_regs(struct ath_hw *ah, 503 struct ath9k_channel *chan, 504 u16 modesIndex) 505 { 506 u32 eepMinorRev; 507 u32 ob5GHz = 0, db5GHz = 0; 508 u32 ob2GHz = 0, db2GHz = 0; 509 int regWrites = 0; 510 int i; 511 512 /* 513 * Software does not need to program bank data 514 * for single chip devices, that is AR9280 or anything 515 * after that. 516 */ 517 if (AR_SREV_9280_20_OR_LATER(ah)) 518 return true; 519 520 /* Setup rf parameters */ 521 eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV); 522 523 for (i = 0; i < ah->iniBank6.ia_rows; i++) 524 ah->analogBank6Data[i] = INI_RA(&ah->iniBank6, i, modesIndex); 525 526 /* Only the 5 or 2 GHz OB/DB need to be set for a mode */ 527 if (eepMinorRev >= 2) { 528 if (IS_CHAN_2GHZ(chan)) { 529 ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2); 530 db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2); 531 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, 532 ob2GHz, 3, 197, 0); 533 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, 534 db2GHz, 3, 194, 0); 535 } else { 536 ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5); 537 db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5); 538 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, 539 ob5GHz, 3, 203, 0); 540 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, 541 db5GHz, 3, 200, 0); 542 } 543 } 544 545 /* Write Analog registers */ 546 REG_WRITE_ARRAY(&bank0, 1, regWrites); 547 REG_WRITE_ARRAY(&bank1, 1, regWrites); 548 REG_WRITE_ARRAY(&bank2, 1, regWrites); 549 REG_WRITE_ARRAY(&bank3, modesIndex, regWrites); 550 ar5008_write_bank6(ah, ®Writes); 551 REG_WRITE_ARRAY(&bank7, 1, regWrites); 552 553 return true; 554 } 555 556 static void ar5008_hw_init_bb(struct ath_hw *ah, 557 struct ath9k_channel *chan) 558 { 559 u32 synthDelay; 560 561 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 562 563 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 564 565 ath9k_hw_synth_delay(ah, chan, synthDelay); 566 } 567 568 static void ar5008_hw_init_chain_masks(struct ath_hw *ah) 569 { 570 int rx_chainmask, tx_chainmask; 571 572 rx_chainmask = ah->rxchainmask; 573 tx_chainmask = ah->txchainmask; 574 575 576 switch (rx_chainmask) { 577 case 0x5: 578 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, 579 AR_PHY_SWAP_ALT_CHAIN); 580 case 0x3: 581 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) { 582 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7); 583 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7); 584 break; 585 } 586 case 0x1: 587 case 0x2: 588 case 0x7: 589 ENABLE_REGWRITE_BUFFER(ah); 590 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); 591 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); 592 break; 593 default: 594 ENABLE_REGWRITE_BUFFER(ah); 595 break; 596 } 597 598 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask); 599 600 REGWRITE_BUFFER_FLUSH(ah); 601 602 if (tx_chainmask == 0x5) { 603 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, 604 AR_PHY_SWAP_ALT_CHAIN); 605 } 606 if (AR_SREV_9100(ah)) 607 REG_WRITE(ah, AR_PHY_ANALOG_SWAP, 608 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001); 609 } 610 611 static void ar5008_hw_override_ini(struct ath_hw *ah, 612 struct ath9k_channel *chan) 613 { 614 u32 val; 615 616 /* 617 * Set the RX_ABORT and RX_DIS and clear if off only after 618 * RXE is set for MAC. This prevents frames with corrupted 619 * descriptor status. 620 */ 621 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); 622 623 if (AR_SREV_9280_20_OR_LATER(ah)) { 624 /* 625 * For AR9280 and above, there is a new feature that allows 626 * Multicast search based on both MAC Address and Key ID. 627 * By default, this feature is enabled. But since the driver 628 * is not using this feature, we switch it off; otherwise 629 * multicast search based on MAC addr only will fail. 630 */ 631 val = REG_READ(ah, AR_PCU_MISC_MODE2) & 632 (~AR_ADHOC_MCAST_KEYID_ENABLE); 633 634 if (!AR_SREV_9271(ah)) 635 val &= ~AR_PCU_MISC_MODE2_HWWAR1; 636 637 if (AR_SREV_9287_11_OR_LATER(ah)) 638 val = val & (~AR_PCU_MISC_MODE2_HWWAR2); 639 640 val |= AR_PCU_MISC_MODE2_CFP_IGNORE; 641 642 REG_WRITE(ah, AR_PCU_MISC_MODE2, val); 643 } 644 645 if (AR_SREV_9280_20_OR_LATER(ah)) 646 return; 647 /* 648 * Disable BB clock gating 649 * Necessary to avoid issues on AR5416 2.0 650 */ 651 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11); 652 653 /* 654 * Disable RIFS search on some chips to avoid baseband 655 * hang issues. 656 */ 657 if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) { 658 val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS); 659 val &= ~AR_PHY_RIFS_INIT_DELAY; 660 REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val); 661 } 662 } 663 664 static void ar5008_hw_set_channel_regs(struct ath_hw *ah, 665 struct ath9k_channel *chan) 666 { 667 u32 phymode; 668 u32 enableDacFifo = 0; 669 670 if (AR_SREV_9285_12_OR_LATER(ah)) 671 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) & 672 AR_PHY_FC_ENABLE_DAC_FIFO); 673 674 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 675 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo; 676 677 if (IS_CHAN_HT40(chan)) { 678 phymode |= AR_PHY_FC_DYN2040_EN; 679 680 if (IS_CHAN_HT40PLUS(chan)) 681 phymode |= AR_PHY_FC_DYN2040_PRI_CH; 682 683 } 684 ENABLE_REGWRITE_BUFFER(ah); 685 REG_WRITE(ah, AR_PHY_TURBO, phymode); 686 687 /* This function do only REG_WRITE, so 688 * we can include it to REGWRITE_BUFFER. */ 689 ath9k_hw_set11nmac2040(ah, chan); 690 691 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S); 692 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); 693 694 REGWRITE_BUFFER_FLUSH(ah); 695 } 696 697 698 static int ar5008_hw_process_ini(struct ath_hw *ah, 699 struct ath9k_channel *chan) 700 { 701 struct ath_common *common = ath9k_hw_common(ah); 702 int i, regWrites = 0; 703 u32 modesIndex, freqIndex; 704 705 if (IS_CHAN_5GHZ(chan)) { 706 freqIndex = 1; 707 modesIndex = IS_CHAN_HT40(chan) ? 2 : 1; 708 } else { 709 freqIndex = 2; 710 modesIndex = IS_CHAN_HT40(chan) ? 3 : 4; 711 } 712 713 /* 714 * Set correct baseband to analog shift setting to 715 * access analog chips. 716 */ 717 REG_WRITE(ah, AR_PHY(0), 0x00000007); 718 719 /* Write ADDAC shifts */ 720 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO); 721 if (ah->eep_ops->set_addac) 722 ah->eep_ops->set_addac(ah, chan); 723 724 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites); 725 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC); 726 727 ENABLE_REGWRITE_BUFFER(ah); 728 729 for (i = 0; i < ah->iniModes.ia_rows; i++) { 730 u32 reg = INI_RA(&ah->iniModes, i, 0); 731 u32 val = INI_RA(&ah->iniModes, i, modesIndex); 732 733 if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup) 734 val &= ~AR_AN_TOP2_PWDCLKIND; 735 736 REG_WRITE(ah, reg, val); 737 738 if (reg >= 0x7800 && reg < 0x78a0 739 && ah->config.analog_shiftreg 740 && (common->bus_ops->ath_bus_type != ATH_USB)) { 741 udelay(100); 742 } 743 744 DO_DELAY(regWrites); 745 } 746 747 REGWRITE_BUFFER_FLUSH(ah); 748 749 if (AR_SREV_9280(ah) || AR_SREV_9287_11_OR_LATER(ah)) 750 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites); 751 752 if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) || 753 AR_SREV_9287_11_OR_LATER(ah)) 754 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites); 755 756 if (AR_SREV_9271_10(ah)) { 757 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENA); 758 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_ADC_ON, 0xa); 759 } 760 761 ENABLE_REGWRITE_BUFFER(ah); 762 763 /* Write common array parameters */ 764 for (i = 0; i < ah->iniCommon.ia_rows; i++) { 765 u32 reg = INI_RA(&ah->iniCommon, i, 0); 766 u32 val = INI_RA(&ah->iniCommon, i, 1); 767 768 REG_WRITE(ah, reg, val); 769 770 if (reg >= 0x7800 && reg < 0x78a0 771 && ah->config.analog_shiftreg 772 && (common->bus_ops->ath_bus_type != ATH_USB)) { 773 udelay(100); 774 } 775 776 DO_DELAY(regWrites); 777 } 778 779 REGWRITE_BUFFER_FLUSH(ah); 780 781 REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites); 782 783 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 784 REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex, 785 regWrites); 786 787 ar5008_hw_override_ini(ah, chan); 788 ar5008_hw_set_channel_regs(ah, chan); 789 ar5008_hw_init_chain_masks(ah); 790 ath9k_olc_init(ah); 791 ath9k_hw_apply_txpower(ah, chan, false); 792 793 /* Write analog registers */ 794 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) { 795 ath_err(ath9k_hw_common(ah), "ar5416SetRfRegs failed\n"); 796 return -EIO; 797 } 798 799 return 0; 800 } 801 802 static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan) 803 { 804 u32 rfMode = 0; 805 806 if (chan == NULL) 807 return; 808 809 if (IS_CHAN_2GHZ(chan)) 810 rfMode |= AR_PHY_MODE_DYNAMIC; 811 else 812 rfMode |= AR_PHY_MODE_OFDM; 813 814 if (!AR_SREV_9280_20_OR_LATER(ah)) 815 rfMode |= (IS_CHAN_5GHZ(chan)) ? 816 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ; 817 818 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 819 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE); 820 821 REG_WRITE(ah, AR_PHY_MODE, rfMode); 822 } 823 824 static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah) 825 { 826 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); 827 } 828 829 static void ar5008_hw_set_delta_slope(struct ath_hw *ah, 830 struct ath9k_channel *chan) 831 { 832 u32 coef_scaled, ds_coef_exp, ds_coef_man; 833 u32 clockMhzScaled = 0x64000000; 834 struct chan_centers centers; 835 836 if (IS_CHAN_HALF_RATE(chan)) 837 clockMhzScaled = clockMhzScaled >> 1; 838 else if (IS_CHAN_QUARTER_RATE(chan)) 839 clockMhzScaled = clockMhzScaled >> 2; 840 841 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 842 coef_scaled = clockMhzScaled / centers.synth_center; 843 844 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, 845 &ds_coef_exp); 846 847 REG_RMW_FIELD(ah, AR_PHY_TIMING3, 848 AR_PHY_TIMING3_DSC_MAN, ds_coef_man); 849 REG_RMW_FIELD(ah, AR_PHY_TIMING3, 850 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); 851 852 coef_scaled = (9 * coef_scaled) / 10; 853 854 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, 855 &ds_coef_exp); 856 857 REG_RMW_FIELD(ah, AR_PHY_HALFGI, 858 AR_PHY_HALFGI_DSC_MAN, ds_coef_man); 859 REG_RMW_FIELD(ah, AR_PHY_HALFGI, 860 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp); 861 } 862 863 static bool ar5008_hw_rfbus_req(struct ath_hw *ah) 864 { 865 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); 866 return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN, 867 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT); 868 } 869 870 static void ar5008_hw_rfbus_done(struct ath_hw *ah) 871 { 872 u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 873 874 ath9k_hw_synth_delay(ah, ah->curchan, synthDelay); 875 876 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); 877 } 878 879 static void ar5008_restore_chainmask(struct ath_hw *ah) 880 { 881 int rx_chainmask = ah->rxchainmask; 882 883 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) { 884 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); 885 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); 886 } 887 } 888 889 static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah, 890 struct ath9k_channel *chan) 891 { 892 u32 pll; 893 894 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV); 895 896 if (chan && IS_CHAN_HALF_RATE(chan)) 897 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); 898 else if (chan && IS_CHAN_QUARTER_RATE(chan)) 899 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); 900 901 if (chan && IS_CHAN_5GHZ(chan)) 902 pll |= SM(0x50, AR_RTC_9160_PLL_DIV); 903 else 904 pll |= SM(0x58, AR_RTC_9160_PLL_DIV); 905 906 return pll; 907 } 908 909 static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah, 910 struct ath9k_channel *chan) 911 { 912 u32 pll; 913 914 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2; 915 916 if (chan && IS_CHAN_HALF_RATE(chan)) 917 pll |= SM(0x1, AR_RTC_PLL_CLKSEL); 918 else if (chan && IS_CHAN_QUARTER_RATE(chan)) 919 pll |= SM(0x2, AR_RTC_PLL_CLKSEL); 920 921 if (chan && IS_CHAN_5GHZ(chan)) 922 pll |= SM(0xa, AR_RTC_PLL_DIV); 923 else 924 pll |= SM(0xb, AR_RTC_PLL_DIV); 925 926 return pll; 927 } 928 929 static bool ar5008_hw_ani_control_new(struct ath_hw *ah, 930 enum ath9k_ani_cmd cmd, 931 int param) 932 { 933 struct ath_common *common = ath9k_hw_common(ah); 934 struct ath9k_channel *chan = ah->curchan; 935 struct ar5416AniState *aniState = &ah->ani; 936 s32 value; 937 938 switch (cmd & ah->ani_function) { 939 case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{ 940 /* 941 * on == 1 means ofdm weak signal detection is ON 942 * on == 1 is the default, for less noise immunity 943 * 944 * on == 0 means ofdm weak signal detection is OFF 945 * on == 0 means more noise imm 946 */ 947 u32 on = param ? 1 : 0; 948 /* 949 * make register setting for default 950 * (weak sig detect ON) come from INI file 951 */ 952 int m1ThreshLow = on ? 953 aniState->iniDef.m1ThreshLow : m1ThreshLow_off; 954 int m2ThreshLow = on ? 955 aniState->iniDef.m2ThreshLow : m2ThreshLow_off; 956 int m1Thresh = on ? 957 aniState->iniDef.m1Thresh : m1Thresh_off; 958 int m2Thresh = on ? 959 aniState->iniDef.m2Thresh : m2Thresh_off; 960 int m2CountThr = on ? 961 aniState->iniDef.m2CountThr : m2CountThr_off; 962 int m2CountThrLow = on ? 963 aniState->iniDef.m2CountThrLow : m2CountThrLow_off; 964 int m1ThreshLowExt = on ? 965 aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off; 966 int m2ThreshLowExt = on ? 967 aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off; 968 int m1ThreshExt = on ? 969 aniState->iniDef.m1ThreshExt : m1ThreshExt_off; 970 int m2ThreshExt = on ? 971 aniState->iniDef.m2ThreshExt : m2ThreshExt_off; 972 973 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, 974 AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 975 m1ThreshLow); 976 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, 977 AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 978 m2ThreshLow); 979 REG_RMW_FIELD(ah, AR_PHY_SFCORR, 980 AR_PHY_SFCORR_M1_THRESH, m1Thresh); 981 REG_RMW_FIELD(ah, AR_PHY_SFCORR, 982 AR_PHY_SFCORR_M2_THRESH, m2Thresh); 983 REG_RMW_FIELD(ah, AR_PHY_SFCORR, 984 AR_PHY_SFCORR_M2COUNT_THR, m2CountThr); 985 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, 986 AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 987 m2CountThrLow); 988 989 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 990 AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt); 991 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 992 AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt); 993 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 994 AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt); 995 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 996 AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt); 997 998 if (on) 999 REG_SET_BIT(ah, AR_PHY_SFCORR_LOW, 1000 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); 1001 else 1002 REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW, 1003 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); 1004 1005 if (on != aniState->ofdmWeakSigDetect) { 1006 ath_dbg(common, ANI, 1007 "** ch %d: ofdm weak signal: %s=>%s\n", 1008 chan->channel, 1009 aniState->ofdmWeakSigDetect ? 1010 "on" : "off", 1011 on ? "on" : "off"); 1012 if (on) 1013 ah->stats.ast_ani_ofdmon++; 1014 else 1015 ah->stats.ast_ani_ofdmoff++; 1016 aniState->ofdmWeakSigDetect = on; 1017 } 1018 break; 1019 } 1020 case ATH9K_ANI_FIRSTEP_LEVEL:{ 1021 u32 level = param; 1022 1023 value = level * 2; 1024 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, 1025 AR_PHY_FIND_SIG_FIRSTEP, value); 1026 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW, 1027 AR_PHY_FIND_SIG_FIRSTEP_LOW, value); 1028 1029 if (level != aniState->firstepLevel) { 1030 ath_dbg(common, ANI, 1031 "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n", 1032 chan->channel, 1033 aniState->firstepLevel, 1034 level, 1035 ATH9K_ANI_FIRSTEP_LVL, 1036 value, 1037 aniState->iniDef.firstep); 1038 ath_dbg(common, ANI, 1039 "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n", 1040 chan->channel, 1041 aniState->firstepLevel, 1042 level, 1043 ATH9K_ANI_FIRSTEP_LVL, 1044 value, 1045 aniState->iniDef.firstepLow); 1046 if (level > aniState->firstepLevel) 1047 ah->stats.ast_ani_stepup++; 1048 else if (level < aniState->firstepLevel) 1049 ah->stats.ast_ani_stepdown++; 1050 aniState->firstepLevel = level; 1051 } 1052 break; 1053 } 1054 case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{ 1055 u32 level = param; 1056 1057 value = (level + 1) * 2; 1058 REG_RMW_FIELD(ah, AR_PHY_TIMING5, 1059 AR_PHY_TIMING5_CYCPWR_THR1, value); 1060 1061 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, 1062 AR_PHY_EXT_TIMING5_CYCPWR_THR1, value - 1); 1063 1064 if (level != aniState->spurImmunityLevel) { 1065 ath_dbg(common, ANI, 1066 "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n", 1067 chan->channel, 1068 aniState->spurImmunityLevel, 1069 level, 1070 ATH9K_ANI_SPUR_IMMUNE_LVL, 1071 value, 1072 aniState->iniDef.cycpwrThr1); 1073 ath_dbg(common, ANI, 1074 "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n", 1075 chan->channel, 1076 aniState->spurImmunityLevel, 1077 level, 1078 ATH9K_ANI_SPUR_IMMUNE_LVL, 1079 value, 1080 aniState->iniDef.cycpwrThr1Ext); 1081 if (level > aniState->spurImmunityLevel) 1082 ah->stats.ast_ani_spurup++; 1083 else if (level < aniState->spurImmunityLevel) 1084 ah->stats.ast_ani_spurdown++; 1085 aniState->spurImmunityLevel = level; 1086 } 1087 break; 1088 } 1089 case ATH9K_ANI_MRC_CCK: 1090 /* 1091 * You should not see this as AR5008, AR9001, AR9002 1092 * does not have hardware support for MRC CCK. 1093 */ 1094 WARN_ON(1); 1095 break; 1096 default: 1097 ath_dbg(common, ANI, "invalid cmd %u\n", cmd); 1098 return false; 1099 } 1100 1101 ath_dbg(common, ANI, 1102 "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n", 1103 aniState->spurImmunityLevel, 1104 aniState->ofdmWeakSigDetect ? "on" : "off", 1105 aniState->firstepLevel, 1106 aniState->mrcCCK ? "on" : "off", 1107 aniState->listenTime, 1108 aniState->ofdmPhyErrCount, 1109 aniState->cckPhyErrCount); 1110 return true; 1111 } 1112 1113 static void ar5008_hw_do_getnf(struct ath_hw *ah, 1114 int16_t nfarray[NUM_NF_READINGS]) 1115 { 1116 int16_t nf; 1117 1118 nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR); 1119 nfarray[0] = sign_extend32(nf, 8); 1120 1121 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR); 1122 nfarray[1] = sign_extend32(nf, 8); 1123 1124 nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR); 1125 nfarray[2] = sign_extend32(nf, 8); 1126 1127 if (!IS_CHAN_HT40(ah->curchan)) 1128 return; 1129 1130 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR); 1131 nfarray[3] = sign_extend32(nf, 8); 1132 1133 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR); 1134 nfarray[4] = sign_extend32(nf, 8); 1135 1136 nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR); 1137 nfarray[5] = sign_extend32(nf, 8); 1138 } 1139 1140 /* 1141 * Initialize the ANI register values with default (ini) values. 1142 * This routine is called during a (full) hardware reset after 1143 * all the registers are initialised from the INI. 1144 */ 1145 static void ar5008_hw_ani_cache_ini_regs(struct ath_hw *ah) 1146 { 1147 struct ath_common *common = ath9k_hw_common(ah); 1148 struct ath9k_channel *chan = ah->curchan; 1149 struct ar5416AniState *aniState = &ah->ani; 1150 struct ath9k_ani_default *iniDef; 1151 u32 val; 1152 1153 iniDef = &aniState->iniDef; 1154 1155 ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz\n", 1156 ah->hw_version.macVersion, 1157 ah->hw_version.macRev, 1158 ah->opmode, 1159 chan->channel); 1160 1161 val = REG_READ(ah, AR_PHY_SFCORR); 1162 iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH); 1163 iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH); 1164 iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR); 1165 1166 val = REG_READ(ah, AR_PHY_SFCORR_LOW); 1167 iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW); 1168 iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW); 1169 iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW); 1170 1171 val = REG_READ(ah, AR_PHY_SFCORR_EXT); 1172 iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH); 1173 iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH); 1174 iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW); 1175 iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW); 1176 iniDef->firstep = REG_READ_FIELD(ah, 1177 AR_PHY_FIND_SIG, 1178 AR_PHY_FIND_SIG_FIRSTEP); 1179 iniDef->firstepLow = REG_READ_FIELD(ah, 1180 AR_PHY_FIND_SIG_LOW, 1181 AR_PHY_FIND_SIG_FIRSTEP_LOW); 1182 iniDef->cycpwrThr1 = REG_READ_FIELD(ah, 1183 AR_PHY_TIMING5, 1184 AR_PHY_TIMING5_CYCPWR_THR1); 1185 iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah, 1186 AR_PHY_EXT_CCA, 1187 AR_PHY_EXT_TIMING5_CYCPWR_THR1); 1188 1189 /* these levels just got reset to defaults by the INI */ 1190 aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL; 1191 aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL; 1192 aniState->ofdmWeakSigDetect = true; 1193 aniState->mrcCCK = false; /* not available on pre AR9003 */ 1194 } 1195 1196 static void ar5008_hw_set_nf_limits(struct ath_hw *ah) 1197 { 1198 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ; 1199 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ; 1200 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ; 1201 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ; 1202 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ; 1203 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ; 1204 } 1205 1206 static void ar5008_hw_set_radar_params(struct ath_hw *ah, 1207 struct ath_hw_radar_conf *conf) 1208 { 1209 u32 radar_0 = 0, radar_1; 1210 1211 if (!conf) { 1212 REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA); 1213 return; 1214 } 1215 1216 radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA; 1217 radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR); 1218 radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI); 1219 radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT); 1220 radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI); 1221 radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND); 1222 1223 radar_1 = REG_READ(ah, AR_PHY_RADAR_1); 1224 radar_1 &= ~(AR_PHY_RADAR_1_MAXLEN | AR_PHY_RADAR_1_RELSTEP_THRESH | 1225 AR_PHY_RADAR_1_RELPWR_THRESH); 1226 radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI; 1227 radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK; 1228 radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN); 1229 radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH); 1230 radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH); 1231 1232 REG_WRITE(ah, AR_PHY_RADAR_0, radar_0); 1233 REG_WRITE(ah, AR_PHY_RADAR_1, radar_1); 1234 if (conf->ext_channel) 1235 REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA); 1236 else 1237 REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA); 1238 } 1239 1240 static void ar5008_hw_set_radar_conf(struct ath_hw *ah) 1241 { 1242 struct ath_hw_radar_conf *conf = &ah->radar_conf; 1243 1244 conf->fir_power = -33; 1245 conf->radar_rssi = 20; 1246 conf->pulse_height = 10; 1247 conf->pulse_rssi = 15; 1248 conf->pulse_inband = 15; 1249 conf->pulse_maxlen = 255; 1250 conf->pulse_inband_step = 12; 1251 conf->radar_inband = 8; 1252 } 1253 1254 static void ar5008_hw_init_txpower_cck(struct ath_hw *ah, int16_t *rate_array) 1255 { 1256 #define CCK_DELTA(x) ((OLC_FOR_AR9280_20_LATER) ? max((x) - 2, 0) : (x)) 1257 ah->tx_power[0] = CCK_DELTA(rate_array[rate1l]); 1258 ah->tx_power[1] = CCK_DELTA(min(rate_array[rate2l], 1259 rate_array[rate2s])); 1260 ah->tx_power[2] = CCK_DELTA(min(rate_array[rate5_5l], 1261 rate_array[rate5_5s])); 1262 ah->tx_power[3] = CCK_DELTA(min(rate_array[rate11l], 1263 rate_array[rate11s])); 1264 #undef CCK_DELTA 1265 } 1266 1267 static void ar5008_hw_init_txpower_ofdm(struct ath_hw *ah, int16_t *rate_array, 1268 int offset) 1269 { 1270 int i, idx = 0; 1271 1272 for (i = offset; i < offset + AR5008_OFDM_RATES; i++) { 1273 ah->tx_power[i] = rate_array[idx]; 1274 idx++; 1275 } 1276 } 1277 1278 static void ar5008_hw_init_txpower_ht(struct ath_hw *ah, int16_t *rate_array, 1279 int ss_offset, int ds_offset, 1280 bool is_40, int ht40_delta) 1281 { 1282 int i, mcs_idx = (is_40) ? AR5008_HT40_SHIFT : AR5008_HT20_SHIFT; 1283 1284 for (i = ss_offset; i < ss_offset + AR5008_HT_SS_RATES; i++) { 1285 ah->tx_power[i] = rate_array[mcs_idx] + ht40_delta; 1286 mcs_idx++; 1287 } 1288 memcpy(&ah->tx_power[ds_offset], &ah->tx_power[ss_offset], 1289 AR5008_HT_SS_RATES); 1290 } 1291 1292 void ar5008_hw_init_rate_txpower(struct ath_hw *ah, int16_t *rate_array, 1293 struct ath9k_channel *chan, int ht40_delta) 1294 { 1295 if (IS_CHAN_5GHZ(chan)) { 1296 ar5008_hw_init_txpower_ofdm(ah, rate_array, 1297 AR5008_11NA_OFDM_SHIFT); 1298 if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) { 1299 ar5008_hw_init_txpower_ht(ah, rate_array, 1300 AR5008_11NA_HT_SS_SHIFT, 1301 AR5008_11NA_HT_DS_SHIFT, 1302 IS_CHAN_HT40(chan), 1303 ht40_delta); 1304 } 1305 } else { 1306 ar5008_hw_init_txpower_cck(ah, rate_array); 1307 ar5008_hw_init_txpower_ofdm(ah, rate_array, 1308 AR5008_11NG_OFDM_SHIFT); 1309 if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) { 1310 ar5008_hw_init_txpower_ht(ah, rate_array, 1311 AR5008_11NG_HT_SS_SHIFT, 1312 AR5008_11NG_HT_DS_SHIFT, 1313 IS_CHAN_HT40(chan), 1314 ht40_delta); 1315 } 1316 } 1317 } 1318 1319 int ar5008_hw_attach_phy_ops(struct ath_hw *ah) 1320 { 1321 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah); 1322 static const u32 ar5416_cca_regs[6] = { 1323 AR_PHY_CCA, 1324 AR_PHY_CH1_CCA, 1325 AR_PHY_CH2_CCA, 1326 AR_PHY_EXT_CCA, 1327 AR_PHY_CH1_EXT_CCA, 1328 AR_PHY_CH2_EXT_CCA 1329 }; 1330 int ret; 1331 1332 ret = ar5008_hw_rf_alloc_ext_banks(ah); 1333 if (ret) 1334 return ret; 1335 1336 priv_ops->rf_set_freq = ar5008_hw_set_channel; 1337 priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate; 1338 1339 priv_ops->set_rf_regs = ar5008_hw_set_rf_regs; 1340 priv_ops->set_channel_regs = ar5008_hw_set_channel_regs; 1341 priv_ops->init_bb = ar5008_hw_init_bb; 1342 priv_ops->process_ini = ar5008_hw_process_ini; 1343 priv_ops->set_rfmode = ar5008_hw_set_rfmode; 1344 priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive; 1345 priv_ops->set_delta_slope = ar5008_hw_set_delta_slope; 1346 priv_ops->rfbus_req = ar5008_hw_rfbus_req; 1347 priv_ops->rfbus_done = ar5008_hw_rfbus_done; 1348 priv_ops->restore_chainmask = ar5008_restore_chainmask; 1349 priv_ops->do_getnf = ar5008_hw_do_getnf; 1350 priv_ops->set_radar_params = ar5008_hw_set_radar_params; 1351 1352 priv_ops->ani_control = ar5008_hw_ani_control_new; 1353 priv_ops->ani_cache_ini_regs = ar5008_hw_ani_cache_ini_regs; 1354 1355 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah)) 1356 priv_ops->compute_pll_control = ar9160_hw_compute_pll_control; 1357 else 1358 priv_ops->compute_pll_control = ar5008_hw_compute_pll_control; 1359 1360 ar5008_hw_set_nf_limits(ah); 1361 ar5008_hw_set_radar_conf(ah); 1362 memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs)); 1363 return 0; 1364 } 1365