1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include "hw.h" 18 #include "hw-ops.h" 19 #include "../regd.h" 20 #include "ar9002_phy.h" 21 22 /* All code below is for AR5008, AR9001, AR9002 */ 23 24 #define AR5008_OFDM_RATES 8 25 #define AR5008_HT_SS_RATES 8 26 #define AR5008_HT_DS_RATES 8 27 28 #define AR5008_HT20_SHIFT 16 29 #define AR5008_HT40_SHIFT 24 30 31 #define AR5008_11NA_OFDM_SHIFT 0 32 #define AR5008_11NA_HT_SS_SHIFT 8 33 #define AR5008_11NA_HT_DS_SHIFT 16 34 35 #define AR5008_11NG_OFDM_SHIFT 4 36 #define AR5008_11NG_HT_SS_SHIFT 12 37 #define AR5008_11NG_HT_DS_SHIFT 20 38 39 /* 40 * register values to turn OFDM weak signal detection OFF 41 */ 42 static const int m1ThreshLow_off = 127; 43 static const int m2ThreshLow_off = 127; 44 static const int m1Thresh_off = 127; 45 static const int m2Thresh_off = 127; 46 static const int m2CountThr_off = 31; 47 static const int m2CountThrLow_off = 63; 48 static const int m1ThreshLowExt_off = 127; 49 static const int m2ThreshLowExt_off = 127; 50 static const int m1ThreshExt_off = 127; 51 static const int m2ThreshExt_off = 127; 52 53 static const u32 ar5416Bank0[][2] = { 54 /* Addr allmodes */ 55 {0x000098b0, 0x1e5795e5}, 56 {0x000098e0, 0x02008020}, 57 }; 58 59 static const u32 ar5416Bank1[][2] = { 60 /* Addr allmodes */ 61 {0x000098b0, 0x02108421}, 62 {0x000098ec, 0x00000008}, 63 }; 64 65 static const u32 ar5416Bank2[][2] = { 66 /* Addr allmodes */ 67 {0x000098b0, 0x0e73ff17}, 68 {0x000098e0, 0x00000420}, 69 }; 70 71 static const u32 ar5416Bank3[][3] = { 72 /* Addr 5G 2G */ 73 {0x000098f0, 0x01400018, 0x01c00018}, 74 }; 75 76 static const u32 ar5416Bank7[][2] = { 77 /* Addr allmodes */ 78 {0x0000989c, 0x00000500}, 79 {0x0000989c, 0x00000800}, 80 {0x000098cc, 0x0000000e}, 81 }; 82 83 static const struct ar5416IniArray bank0 = STATIC_INI_ARRAY(ar5416Bank0); 84 static const struct ar5416IniArray bank1 = STATIC_INI_ARRAY(ar5416Bank1); 85 static const struct ar5416IniArray bank2 = STATIC_INI_ARRAY(ar5416Bank2); 86 static const struct ar5416IniArray bank3 = STATIC_INI_ARRAY(ar5416Bank3); 87 static const struct ar5416IniArray bank7 = STATIC_INI_ARRAY(ar5416Bank7); 88 89 static void ar5008_write_bank6(struct ath_hw *ah, unsigned int *writecnt) 90 { 91 struct ar5416IniArray *array = &ah->iniBank6; 92 u32 *data = ah->analogBank6Data; 93 int r; 94 95 ENABLE_REGWRITE_BUFFER(ah); 96 97 for (r = 0; r < array->ia_rows; r++) { 98 REG_WRITE(ah, INI_RA(array, r, 0), data[r]); 99 DO_DELAY(*writecnt); 100 } 101 102 REGWRITE_BUFFER_FLUSH(ah); 103 } 104 105 /* 106 * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters 107 * 108 * Performs analog "swizzling" of parameters into their location. 109 * Used on external AR2133/AR5133 radios. 110 */ 111 static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32, 112 u32 numBits, u32 firstBit, 113 u32 column) 114 { 115 u32 tmp32, mask, arrayEntry, lastBit; 116 int32_t bitPosition, bitsLeft; 117 118 tmp32 = ath9k_hw_reverse_bits(reg32, numBits); 119 arrayEntry = (firstBit - 1) / 8; 120 bitPosition = (firstBit - 1) % 8; 121 bitsLeft = numBits; 122 while (bitsLeft > 0) { 123 lastBit = (bitPosition + bitsLeft > 8) ? 124 8 : bitPosition + bitsLeft; 125 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) << 126 (column * 8); 127 rfBuf[arrayEntry] &= ~mask; 128 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) << 129 (column * 8)) & mask; 130 bitsLeft -= 8 - bitPosition; 131 tmp32 = tmp32 >> (8 - bitPosition); 132 bitPosition = 0; 133 arrayEntry++; 134 } 135 } 136 137 /* 138 * Fix on 2.4 GHz band for orientation sensitivity issue by increasing 139 * rf_pwd_icsyndiv. 140 * 141 * Theoretical Rules: 142 * if 2 GHz band 143 * if forceBiasAuto 144 * if synth_freq < 2412 145 * bias = 0 146 * else if 2412 <= synth_freq <= 2422 147 * bias = 1 148 * else // synth_freq > 2422 149 * bias = 2 150 * else if forceBias > 0 151 * bias = forceBias & 7 152 * else 153 * no change, use value from ini file 154 * else 155 * no change, invalid band 156 * 157 * 1st Mod: 158 * 2422 also uses value of 2 159 * <approved> 160 * 161 * 2nd Mod: 162 * Less than 2412 uses value of 0, 2412 and above uses value of 2 163 */ 164 static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq) 165 { 166 struct ath_common *common = ath9k_hw_common(ah); 167 u32 tmp_reg; 168 int reg_writes = 0; 169 u32 new_bias = 0; 170 171 if (!AR_SREV_5416(ah) || synth_freq >= 3000) 172 return; 173 174 BUG_ON(AR_SREV_9280_20_OR_LATER(ah)); 175 176 if (synth_freq < 2412) 177 new_bias = 0; 178 else if (synth_freq < 2422) 179 new_bias = 1; 180 else 181 new_bias = 2; 182 183 /* pre-reverse this field */ 184 tmp_reg = ath9k_hw_reverse_bits(new_bias, 3); 185 186 ath_dbg(common, CONFIG, "Force rf_pwd_icsyndiv to %1d on %4d\n", 187 new_bias, synth_freq); 188 189 /* swizzle rf_pwd_icsyndiv */ 190 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3); 191 192 /* write Bank 6 with new params */ 193 ar5008_write_bank6(ah, ®_writes); 194 } 195 196 /* 197 * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios 198 * 199 * For the external AR2133/AR5133 radios, takes the MHz channel value and set 200 * the channel value. Assumes writes enabled to analog bus and bank6 register 201 * cache in ah->analogBank6Data. 202 */ 203 static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan) 204 { 205 struct ath_common *common = ath9k_hw_common(ah); 206 u32 channelSel = 0; 207 u32 bModeSynth = 0; 208 u32 aModeRefSel = 0; 209 u32 reg32 = 0; 210 u16 freq; 211 struct chan_centers centers; 212 213 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 214 freq = centers.synth_center; 215 216 if (freq < 4800) { 217 u32 txctl; 218 219 if (((freq - 2192) % 5) == 0) { 220 channelSel = ((freq - 672) * 2 - 3040) / 10; 221 bModeSynth = 0; 222 } else if (((freq - 2224) % 5) == 0) { 223 channelSel = ((freq - 704) * 2 - 3040) / 10; 224 bModeSynth = 1; 225 } else { 226 ath_err(common, "Invalid channel %u MHz\n", freq); 227 return -EINVAL; 228 } 229 230 channelSel = (channelSel << 2) & 0xff; 231 channelSel = ath9k_hw_reverse_bits(channelSel, 8); 232 233 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL); 234 if (freq == 2484) { 235 236 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 237 txctl | AR_PHY_CCK_TX_CTRL_JAPAN); 238 } else { 239 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 240 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN); 241 } 242 243 } else if ((freq % 20) == 0 && freq >= 5120) { 244 channelSel = 245 ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8); 246 aModeRefSel = ath9k_hw_reverse_bits(1, 2); 247 } else if ((freq % 10) == 0) { 248 channelSel = 249 ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8); 250 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah)) 251 aModeRefSel = ath9k_hw_reverse_bits(2, 2); 252 else 253 aModeRefSel = ath9k_hw_reverse_bits(1, 2); 254 } else if ((freq % 5) == 0) { 255 channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8); 256 aModeRefSel = ath9k_hw_reverse_bits(1, 2); 257 } else { 258 ath_err(common, "Invalid channel %u MHz\n", freq); 259 return -EINVAL; 260 } 261 262 ar5008_hw_force_bias(ah, freq); 263 264 reg32 = 265 (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) | 266 (1 << 5) | 0x1; 267 268 REG_WRITE(ah, AR_PHY(0x37), reg32); 269 270 ah->curchan = chan; 271 272 return 0; 273 } 274 275 void ar5008_hw_cmn_spur_mitigate(struct ath_hw *ah, 276 struct ath9k_channel *chan, int bin) 277 { 278 int cur_bin; 279 int upper, lower, cur_vit_mask; 280 int i; 281 int8_t mask_m[123] = {0}; 282 int8_t mask_p[123] = {0}; 283 int8_t mask_amt; 284 int tmp_mask; 285 static const int pilot_mask_reg[4] = { 286 AR_PHY_TIMING7, AR_PHY_TIMING8, 287 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 288 }; 289 static const int chan_mask_reg[4] = { 290 AR_PHY_TIMING9, AR_PHY_TIMING10, 291 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 292 }; 293 static const int inc[4] = { 0, 100, 0, 0 }; 294 295 cur_bin = -6000; 296 upper = bin + 100; 297 lower = bin - 100; 298 299 for (i = 0; i < 4; i++) { 300 int pilot_mask = 0; 301 int chan_mask = 0; 302 int bp = 0; 303 304 for (bp = 0; bp < 30; bp++) { 305 if ((cur_bin > lower) && (cur_bin < upper)) { 306 pilot_mask = pilot_mask | 0x1 << bp; 307 chan_mask = chan_mask | 0x1 << bp; 308 } 309 cur_bin += 100; 310 } 311 cur_bin += inc[i]; 312 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); 313 REG_WRITE(ah, chan_mask_reg[i], chan_mask); 314 } 315 316 cur_vit_mask = 6100; 317 upper = bin + 120; 318 lower = bin - 120; 319 320 for (i = 0; i < ARRAY_SIZE(mask_m); i++) { 321 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { 322 /* workaround for gcc bug #37014 */ 323 volatile int tmp_v = abs(cur_vit_mask - bin); 324 325 if (tmp_v < 75) 326 mask_amt = 1; 327 else 328 mask_amt = 0; 329 if (cur_vit_mask < 0) 330 mask_m[abs(cur_vit_mask / 100)] = mask_amt; 331 else 332 mask_p[cur_vit_mask / 100] = mask_amt; 333 } 334 cur_vit_mask -= 100; 335 } 336 337 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) 338 | (mask_m[48] << 26) | (mask_m[49] << 24) 339 | (mask_m[50] << 22) | (mask_m[51] << 20) 340 | (mask_m[52] << 18) | (mask_m[53] << 16) 341 | (mask_m[54] << 14) | (mask_m[55] << 12) 342 | (mask_m[56] << 10) | (mask_m[57] << 8) 343 | (mask_m[58] << 6) | (mask_m[59] << 4) 344 | (mask_m[60] << 2) | (mask_m[61] << 0); 345 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); 346 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); 347 348 tmp_mask = (mask_m[31] << 28) 349 | (mask_m[32] << 26) | (mask_m[33] << 24) 350 | (mask_m[34] << 22) | (mask_m[35] << 20) 351 | (mask_m[36] << 18) | (mask_m[37] << 16) 352 | (mask_m[48] << 14) | (mask_m[39] << 12) 353 | (mask_m[40] << 10) | (mask_m[41] << 8) 354 | (mask_m[42] << 6) | (mask_m[43] << 4) 355 | (mask_m[44] << 2) | (mask_m[45] << 0); 356 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); 357 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); 358 359 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) 360 | (mask_m[18] << 26) | (mask_m[18] << 24) 361 | (mask_m[20] << 22) | (mask_m[20] << 20) 362 | (mask_m[22] << 18) | (mask_m[22] << 16) 363 | (mask_m[24] << 14) | (mask_m[24] << 12) 364 | (mask_m[25] << 10) | (mask_m[26] << 8) 365 | (mask_m[27] << 6) | (mask_m[28] << 4) 366 | (mask_m[29] << 2) | (mask_m[30] << 0); 367 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); 368 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); 369 370 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) 371 | (mask_m[2] << 26) | (mask_m[3] << 24) 372 | (mask_m[4] << 22) | (mask_m[5] << 20) 373 | (mask_m[6] << 18) | (mask_m[7] << 16) 374 | (mask_m[8] << 14) | (mask_m[9] << 12) 375 | (mask_m[10] << 10) | (mask_m[11] << 8) 376 | (mask_m[12] << 6) | (mask_m[13] << 4) 377 | (mask_m[14] << 2) | (mask_m[15] << 0); 378 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); 379 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); 380 381 tmp_mask = (mask_p[15] << 28) 382 | (mask_p[14] << 26) | (mask_p[13] << 24) 383 | (mask_p[12] << 22) | (mask_p[11] << 20) 384 | (mask_p[10] << 18) | (mask_p[9] << 16) 385 | (mask_p[8] << 14) | (mask_p[7] << 12) 386 | (mask_p[6] << 10) | (mask_p[5] << 8) 387 | (mask_p[4] << 6) | (mask_p[3] << 4) 388 | (mask_p[2] << 2) | (mask_p[1] << 0); 389 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); 390 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); 391 392 tmp_mask = (mask_p[30] << 28) 393 | (mask_p[29] << 26) | (mask_p[28] << 24) 394 | (mask_p[27] << 22) | (mask_p[26] << 20) 395 | (mask_p[25] << 18) | (mask_p[24] << 16) 396 | (mask_p[23] << 14) | (mask_p[22] << 12) 397 | (mask_p[21] << 10) | (mask_p[20] << 8) 398 | (mask_p[19] << 6) | (mask_p[18] << 4) 399 | (mask_p[17] << 2) | (mask_p[16] << 0); 400 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); 401 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); 402 403 tmp_mask = (mask_p[45] << 28) 404 | (mask_p[44] << 26) | (mask_p[43] << 24) 405 | (mask_p[42] << 22) | (mask_p[41] << 20) 406 | (mask_p[40] << 18) | (mask_p[39] << 16) 407 | (mask_p[38] << 14) | (mask_p[37] << 12) 408 | (mask_p[36] << 10) | (mask_p[35] << 8) 409 | (mask_p[34] << 6) | (mask_p[33] << 4) 410 | (mask_p[32] << 2) | (mask_p[31] << 0); 411 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); 412 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); 413 414 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) 415 | (mask_p[59] << 26) | (mask_p[58] << 24) 416 | (mask_p[57] << 22) | (mask_p[56] << 20) 417 | (mask_p[55] << 18) | (mask_p[54] << 16) 418 | (mask_p[53] << 14) | (mask_p[52] << 12) 419 | (mask_p[51] << 10) | (mask_p[50] << 8) 420 | (mask_p[49] << 6) | (mask_p[48] << 4) 421 | (mask_p[47] << 2) | (mask_p[46] << 0); 422 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); 423 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); 424 } 425 426 /* 427 * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios 428 * 429 * For non single-chip solutions. Converts to baseband spur frequency given the 430 * input channel frequency and compute register settings below. 431 */ 432 static void ar5008_hw_spur_mitigate(struct ath_hw *ah, 433 struct ath9k_channel *chan) 434 { 435 int bb_spur = AR_NO_SPUR; 436 int bin; 437 int spur_freq_sd; 438 int spur_delta_phase; 439 int denominator; 440 int tmp, new; 441 int i; 442 443 int cur_bb_spur; 444 bool is2GHz = IS_CHAN_2GHZ(chan); 445 446 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 447 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz); 448 if (AR_NO_SPUR == cur_bb_spur) 449 break; 450 cur_bb_spur = cur_bb_spur - (chan->channel * 10); 451 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) { 452 bb_spur = cur_bb_spur; 453 break; 454 } 455 } 456 457 if (AR_NO_SPUR == bb_spur) 458 return; 459 460 bin = bb_spur * 32; 461 462 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0)); 463 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | 464 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | 465 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | 466 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); 467 468 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new); 469 470 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | 471 AR_PHY_SPUR_REG_ENABLE_MASK_PPM | 472 AR_PHY_SPUR_REG_MASK_RATE_SELECT | 473 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | 474 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); 475 REG_WRITE(ah, AR_PHY_SPUR_REG, new); 476 477 spur_delta_phase = ((bb_spur * 524288) / 100) & 478 AR_PHY_TIMING11_SPUR_DELTA_PHASE; 479 480 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400; 481 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff; 482 483 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | 484 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | 485 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); 486 REG_WRITE(ah, AR_PHY_TIMING11, new); 487 488 ar5008_hw_cmn_spur_mitigate(ah, chan, bin); 489 } 490 491 /** 492 * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming 493 * @ah: atheros hardware structure 494 * 495 * Only required for older devices with external AR2133/AR5133 radios. 496 */ 497 static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah) 498 { 499 int size = ah->iniBank6.ia_rows * sizeof(u32); 500 501 if (AR_SREV_9280_20_OR_LATER(ah)) 502 return 0; 503 504 ah->analogBank6Data = devm_kzalloc(ah->dev, size, GFP_KERNEL); 505 if (!ah->analogBank6Data) 506 return -ENOMEM; 507 508 return 0; 509 } 510 511 512 /* * 513 * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM 514 * @ah: atheros hardware structure 515 * @chan: 516 * @modesIndex: 517 * 518 * Used for the external AR2133/AR5133 radios. 519 * 520 * Reads the EEPROM header info from the device structure and programs 521 * all rf registers. This routine requires access to the analog 522 * rf device. This is not required for single-chip devices. 523 */ 524 static bool ar5008_hw_set_rf_regs(struct ath_hw *ah, 525 struct ath9k_channel *chan, 526 u16 modesIndex) 527 { 528 u32 eepMinorRev; 529 u32 ob5GHz = 0, db5GHz = 0; 530 u32 ob2GHz = 0, db2GHz = 0; 531 int regWrites = 0; 532 int i; 533 534 /* 535 * Software does not need to program bank data 536 * for single chip devices, that is AR9280 or anything 537 * after that. 538 */ 539 if (AR_SREV_9280_20_OR_LATER(ah)) 540 return true; 541 542 /* Setup rf parameters */ 543 eepMinorRev = ah->eep_ops->get_eeprom_rev(ah); 544 545 for (i = 0; i < ah->iniBank6.ia_rows; i++) 546 ah->analogBank6Data[i] = INI_RA(&ah->iniBank6, i, modesIndex); 547 548 /* Only the 5 or 2 GHz OB/DB need to be set for a mode */ 549 if (eepMinorRev >= 2) { 550 if (IS_CHAN_2GHZ(chan)) { 551 ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2); 552 db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2); 553 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, 554 ob2GHz, 3, 197, 0); 555 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, 556 db2GHz, 3, 194, 0); 557 } else { 558 ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5); 559 db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5); 560 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, 561 ob5GHz, 3, 203, 0); 562 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, 563 db5GHz, 3, 200, 0); 564 } 565 } 566 567 /* Write Analog registers */ 568 REG_WRITE_ARRAY(&bank0, 1, regWrites); 569 REG_WRITE_ARRAY(&bank1, 1, regWrites); 570 REG_WRITE_ARRAY(&bank2, 1, regWrites); 571 REG_WRITE_ARRAY(&bank3, modesIndex, regWrites); 572 ar5008_write_bank6(ah, ®Writes); 573 REG_WRITE_ARRAY(&bank7, 1, regWrites); 574 575 return true; 576 } 577 578 static void ar5008_hw_init_bb(struct ath_hw *ah, 579 struct ath9k_channel *chan) 580 { 581 u32 synthDelay; 582 583 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 584 585 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 586 587 ath9k_hw_synth_delay(ah, chan, synthDelay); 588 } 589 590 static void ar5008_hw_init_chain_masks(struct ath_hw *ah) 591 { 592 int rx_chainmask, tx_chainmask; 593 594 rx_chainmask = ah->rxchainmask; 595 tx_chainmask = ah->txchainmask; 596 597 598 switch (rx_chainmask) { 599 case 0x5: 600 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, 601 AR_PHY_SWAP_ALT_CHAIN); 602 fallthrough; 603 case 0x3: 604 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) { 605 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7); 606 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7); 607 break; 608 } 609 fallthrough; 610 case 0x1: 611 case 0x2: 612 case 0x7: 613 ENABLE_REGWRITE_BUFFER(ah); 614 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); 615 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); 616 break; 617 default: 618 ENABLE_REGWRITE_BUFFER(ah); 619 break; 620 } 621 622 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask); 623 624 REGWRITE_BUFFER_FLUSH(ah); 625 626 if (tx_chainmask == 0x5) { 627 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, 628 AR_PHY_SWAP_ALT_CHAIN); 629 } 630 if (AR_SREV_9100(ah)) 631 REG_WRITE(ah, AR_PHY_ANALOG_SWAP, 632 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001); 633 } 634 635 static void ar5008_hw_override_ini(struct ath_hw *ah, 636 struct ath9k_channel *chan) 637 { 638 u32 val; 639 640 /* 641 * Set the RX_ABORT and RX_DIS and clear if off only after 642 * RXE is set for MAC. This prevents frames with corrupted 643 * descriptor status. 644 */ 645 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); 646 647 if (AR_SREV_9280_20_OR_LATER(ah)) { 648 /* 649 * For AR9280 and above, there is a new feature that allows 650 * Multicast search based on both MAC Address and Key ID. 651 * By default, this feature is enabled. But since the driver 652 * is not using this feature, we switch it off; otherwise 653 * multicast search based on MAC addr only will fail. 654 */ 655 val = REG_READ(ah, AR_PCU_MISC_MODE2) & 656 (~AR_ADHOC_MCAST_KEYID_ENABLE); 657 658 if (!AR_SREV_9271(ah)) 659 val &= ~AR_PCU_MISC_MODE2_HWWAR1; 660 661 if (AR_SREV_9287_11_OR_LATER(ah)) 662 val = val & (~AR_PCU_MISC_MODE2_HWWAR2); 663 664 val |= AR_PCU_MISC_MODE2_CFP_IGNORE; 665 666 REG_WRITE(ah, AR_PCU_MISC_MODE2, val); 667 } 668 669 if (AR_SREV_9280_20_OR_LATER(ah)) 670 return; 671 /* 672 * Disable BB clock gating 673 * Necessary to avoid issues on AR5416 2.0 674 */ 675 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11); 676 677 /* 678 * Disable RIFS search on some chips to avoid baseband 679 * hang issues. 680 */ 681 if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) { 682 val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS); 683 val &= ~AR_PHY_RIFS_INIT_DELAY; 684 REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val); 685 } 686 } 687 688 static void ar5008_hw_set_channel_regs(struct ath_hw *ah, 689 struct ath9k_channel *chan) 690 { 691 u32 phymode; 692 u32 enableDacFifo = 0; 693 694 if (AR_SREV_9285_12_OR_LATER(ah)) 695 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) & 696 AR_PHY_FC_ENABLE_DAC_FIFO); 697 698 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 699 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo; 700 701 if (IS_CHAN_HT40(chan)) { 702 phymode |= AR_PHY_FC_DYN2040_EN; 703 704 if (IS_CHAN_HT40PLUS(chan)) 705 phymode |= AR_PHY_FC_DYN2040_PRI_CH; 706 707 } 708 ENABLE_REGWRITE_BUFFER(ah); 709 REG_WRITE(ah, AR_PHY_TURBO, phymode); 710 711 /* This function do only REG_WRITE, so 712 * we can include it to REGWRITE_BUFFER. */ 713 ath9k_hw_set11nmac2040(ah, chan); 714 715 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S); 716 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); 717 718 REGWRITE_BUFFER_FLUSH(ah); 719 } 720 721 722 static int ar5008_hw_process_ini(struct ath_hw *ah, 723 struct ath9k_channel *chan) 724 { 725 struct ath_common *common = ath9k_hw_common(ah); 726 int i, regWrites = 0; 727 u32 modesIndex, freqIndex; 728 729 if (IS_CHAN_5GHZ(chan)) { 730 freqIndex = 1; 731 modesIndex = IS_CHAN_HT40(chan) ? 2 : 1; 732 } else { 733 freqIndex = 2; 734 modesIndex = IS_CHAN_HT40(chan) ? 3 : 4; 735 } 736 737 /* 738 * Set correct baseband to analog shift setting to 739 * access analog chips. 740 */ 741 REG_WRITE(ah, AR_PHY(0), 0x00000007); 742 743 /* Write ADDAC shifts */ 744 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO); 745 if (ah->eep_ops->set_addac) 746 ah->eep_ops->set_addac(ah, chan); 747 748 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites); 749 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC); 750 751 ENABLE_REGWRITE_BUFFER(ah); 752 753 for (i = 0; i < ah->iniModes.ia_rows; i++) { 754 u32 reg = INI_RA(&ah->iniModes, i, 0); 755 u32 val = INI_RA(&ah->iniModes, i, modesIndex); 756 757 if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup) 758 val &= ~AR_AN_TOP2_PWDCLKIND; 759 760 REG_WRITE(ah, reg, val); 761 762 if (reg >= 0x7800 && reg < 0x78a0 763 && ah->config.analog_shiftreg 764 && (common->bus_ops->ath_bus_type != ATH_USB)) { 765 udelay(100); 766 } 767 768 DO_DELAY(regWrites); 769 } 770 771 REGWRITE_BUFFER_FLUSH(ah); 772 773 if (AR_SREV_9280(ah) || AR_SREV_9287_11_OR_LATER(ah)) 774 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites); 775 776 if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) || 777 AR_SREV_9287_11_OR_LATER(ah)) 778 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites); 779 780 if (AR_SREV_9271_10(ah)) { 781 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENA); 782 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_ADC_ON, 0xa); 783 } 784 785 ENABLE_REGWRITE_BUFFER(ah); 786 787 /* Write common array parameters */ 788 for (i = 0; i < ah->iniCommon.ia_rows; i++) { 789 u32 reg = INI_RA(&ah->iniCommon, i, 0); 790 u32 val = INI_RA(&ah->iniCommon, i, 1); 791 792 REG_WRITE(ah, reg, val); 793 794 if (reg >= 0x7800 && reg < 0x78a0 795 && ah->config.analog_shiftreg 796 && (common->bus_ops->ath_bus_type != ATH_USB)) { 797 udelay(100); 798 } 799 800 DO_DELAY(regWrites); 801 } 802 803 REGWRITE_BUFFER_FLUSH(ah); 804 805 REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites); 806 807 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 808 REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex, 809 regWrites); 810 811 ar5008_hw_override_ini(ah, chan); 812 ar5008_hw_set_channel_regs(ah, chan); 813 ar5008_hw_init_chain_masks(ah); 814 ath9k_olc_init(ah); 815 ath9k_hw_apply_txpower(ah, chan, false); 816 817 /* Write analog registers */ 818 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) { 819 ath_err(ath9k_hw_common(ah), "ar5416SetRfRegs failed\n"); 820 return -EIO; 821 } 822 823 return 0; 824 } 825 826 static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan) 827 { 828 u32 rfMode = 0; 829 830 if (chan == NULL) 831 return; 832 833 if (IS_CHAN_2GHZ(chan)) 834 rfMode |= AR_PHY_MODE_DYNAMIC; 835 else 836 rfMode |= AR_PHY_MODE_OFDM; 837 838 if (!AR_SREV_9280_20_OR_LATER(ah)) 839 rfMode |= (IS_CHAN_5GHZ(chan)) ? 840 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ; 841 842 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 843 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE); 844 845 REG_WRITE(ah, AR_PHY_MODE, rfMode); 846 } 847 848 static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah) 849 { 850 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); 851 } 852 853 static void ar5008_hw_set_delta_slope(struct ath_hw *ah, 854 struct ath9k_channel *chan) 855 { 856 u32 coef_scaled, ds_coef_exp, ds_coef_man; 857 u32 clockMhzScaled = 0x64000000; 858 struct chan_centers centers; 859 860 if (IS_CHAN_HALF_RATE(chan)) 861 clockMhzScaled = clockMhzScaled >> 1; 862 else if (IS_CHAN_QUARTER_RATE(chan)) 863 clockMhzScaled = clockMhzScaled >> 2; 864 865 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 866 coef_scaled = clockMhzScaled / centers.synth_center; 867 868 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, 869 &ds_coef_exp); 870 871 REG_RMW_FIELD(ah, AR_PHY_TIMING3, 872 AR_PHY_TIMING3_DSC_MAN, ds_coef_man); 873 REG_RMW_FIELD(ah, AR_PHY_TIMING3, 874 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); 875 876 coef_scaled = (9 * coef_scaled) / 10; 877 878 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, 879 &ds_coef_exp); 880 881 REG_RMW_FIELD(ah, AR_PHY_HALFGI, 882 AR_PHY_HALFGI_DSC_MAN, ds_coef_man); 883 REG_RMW_FIELD(ah, AR_PHY_HALFGI, 884 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp); 885 } 886 887 static bool ar5008_hw_rfbus_req(struct ath_hw *ah) 888 { 889 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); 890 return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN, 891 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT); 892 } 893 894 static void ar5008_hw_rfbus_done(struct ath_hw *ah) 895 { 896 u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 897 898 ath9k_hw_synth_delay(ah, ah->curchan, synthDelay); 899 900 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); 901 } 902 903 static void ar5008_restore_chainmask(struct ath_hw *ah) 904 { 905 int rx_chainmask = ah->rxchainmask; 906 907 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) { 908 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); 909 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); 910 } 911 } 912 913 static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah, 914 struct ath9k_channel *chan) 915 { 916 u32 pll; 917 918 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV); 919 920 if (chan && IS_CHAN_HALF_RATE(chan)) 921 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); 922 else if (chan && IS_CHAN_QUARTER_RATE(chan)) 923 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); 924 925 if (chan && IS_CHAN_5GHZ(chan)) 926 pll |= SM(0x50, AR_RTC_9160_PLL_DIV); 927 else 928 pll |= SM(0x58, AR_RTC_9160_PLL_DIV); 929 930 return pll; 931 } 932 933 static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah, 934 struct ath9k_channel *chan) 935 { 936 u32 pll; 937 938 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2; 939 940 if (chan && IS_CHAN_HALF_RATE(chan)) 941 pll |= SM(0x1, AR_RTC_PLL_CLKSEL); 942 else if (chan && IS_CHAN_QUARTER_RATE(chan)) 943 pll |= SM(0x2, AR_RTC_PLL_CLKSEL); 944 945 if (chan && IS_CHAN_5GHZ(chan)) 946 pll |= SM(0xa, AR_RTC_PLL_DIV); 947 else 948 pll |= SM(0xb, AR_RTC_PLL_DIV); 949 950 return pll; 951 } 952 953 static bool ar5008_hw_ani_control_new(struct ath_hw *ah, 954 enum ath9k_ani_cmd cmd, 955 int param) 956 { 957 struct ath_common *common = ath9k_hw_common(ah); 958 struct ath9k_channel *chan = ah->curchan; 959 struct ar5416AniState *aniState = &ah->ani; 960 s32 value; 961 962 switch (cmd & ah->ani_function) { 963 case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{ 964 /* 965 * on == 1 means ofdm weak signal detection is ON 966 * on == 1 is the default, for less noise immunity 967 * 968 * on == 0 means ofdm weak signal detection is OFF 969 * on == 0 means more noise imm 970 */ 971 u32 on = param ? 1 : 0; 972 /* 973 * make register setting for default 974 * (weak sig detect ON) come from INI file 975 */ 976 int m1ThreshLow = on ? 977 aniState->iniDef.m1ThreshLow : m1ThreshLow_off; 978 int m2ThreshLow = on ? 979 aniState->iniDef.m2ThreshLow : m2ThreshLow_off; 980 int m1Thresh = on ? 981 aniState->iniDef.m1Thresh : m1Thresh_off; 982 int m2Thresh = on ? 983 aniState->iniDef.m2Thresh : m2Thresh_off; 984 int m2CountThr = on ? 985 aniState->iniDef.m2CountThr : m2CountThr_off; 986 int m2CountThrLow = on ? 987 aniState->iniDef.m2CountThrLow : m2CountThrLow_off; 988 int m1ThreshLowExt = on ? 989 aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off; 990 int m2ThreshLowExt = on ? 991 aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off; 992 int m1ThreshExt = on ? 993 aniState->iniDef.m1ThreshExt : m1ThreshExt_off; 994 int m2ThreshExt = on ? 995 aniState->iniDef.m2ThreshExt : m2ThreshExt_off; 996 997 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, 998 AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 999 m1ThreshLow); 1000 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, 1001 AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 1002 m2ThreshLow); 1003 REG_RMW_FIELD(ah, AR_PHY_SFCORR, 1004 AR_PHY_SFCORR_M1_THRESH, m1Thresh); 1005 REG_RMW_FIELD(ah, AR_PHY_SFCORR, 1006 AR_PHY_SFCORR_M2_THRESH, m2Thresh); 1007 REG_RMW_FIELD(ah, AR_PHY_SFCORR, 1008 AR_PHY_SFCORR_M2COUNT_THR, m2CountThr); 1009 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, 1010 AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 1011 m2CountThrLow); 1012 1013 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 1014 AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt); 1015 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 1016 AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt); 1017 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 1018 AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt); 1019 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, 1020 AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt); 1021 1022 if (on) 1023 REG_SET_BIT(ah, AR_PHY_SFCORR_LOW, 1024 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); 1025 else 1026 REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW, 1027 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); 1028 1029 if (on != aniState->ofdmWeakSigDetect) { 1030 ath_dbg(common, ANI, 1031 "** ch %d: ofdm weak signal: %s=>%s\n", 1032 chan->channel, 1033 aniState->ofdmWeakSigDetect ? 1034 "on" : "off", 1035 on ? "on" : "off"); 1036 if (on) 1037 ah->stats.ast_ani_ofdmon++; 1038 else 1039 ah->stats.ast_ani_ofdmoff++; 1040 aniState->ofdmWeakSigDetect = on; 1041 } 1042 break; 1043 } 1044 case ATH9K_ANI_FIRSTEP_LEVEL:{ 1045 u32 level = param; 1046 1047 value = level * 2; 1048 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, 1049 AR_PHY_FIND_SIG_FIRSTEP, value); 1050 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW, 1051 AR_PHY_FIND_SIG_FIRSTEP_LOW, value); 1052 1053 if (level != aniState->firstepLevel) { 1054 ath_dbg(common, ANI, 1055 "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n", 1056 chan->channel, 1057 aniState->firstepLevel, 1058 level, 1059 ATH9K_ANI_FIRSTEP_LVL, 1060 value, 1061 aniState->iniDef.firstep); 1062 ath_dbg(common, ANI, 1063 "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n", 1064 chan->channel, 1065 aniState->firstepLevel, 1066 level, 1067 ATH9K_ANI_FIRSTEP_LVL, 1068 value, 1069 aniState->iniDef.firstepLow); 1070 if (level > aniState->firstepLevel) 1071 ah->stats.ast_ani_stepup++; 1072 else if (level < aniState->firstepLevel) 1073 ah->stats.ast_ani_stepdown++; 1074 aniState->firstepLevel = level; 1075 } 1076 break; 1077 } 1078 case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{ 1079 u32 level = param; 1080 1081 value = (level + 1) * 2; 1082 REG_RMW_FIELD(ah, AR_PHY_TIMING5, 1083 AR_PHY_TIMING5_CYCPWR_THR1, value); 1084 1085 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, 1086 AR_PHY_EXT_TIMING5_CYCPWR_THR1, value - 1); 1087 1088 if (level != aniState->spurImmunityLevel) { 1089 ath_dbg(common, ANI, 1090 "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n", 1091 chan->channel, 1092 aniState->spurImmunityLevel, 1093 level, 1094 ATH9K_ANI_SPUR_IMMUNE_LVL, 1095 value, 1096 aniState->iniDef.cycpwrThr1); 1097 ath_dbg(common, ANI, 1098 "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n", 1099 chan->channel, 1100 aniState->spurImmunityLevel, 1101 level, 1102 ATH9K_ANI_SPUR_IMMUNE_LVL, 1103 value, 1104 aniState->iniDef.cycpwrThr1Ext); 1105 if (level > aniState->spurImmunityLevel) 1106 ah->stats.ast_ani_spurup++; 1107 else if (level < aniState->spurImmunityLevel) 1108 ah->stats.ast_ani_spurdown++; 1109 aniState->spurImmunityLevel = level; 1110 } 1111 break; 1112 } 1113 case ATH9K_ANI_MRC_CCK: 1114 /* 1115 * You should not see this as AR5008, AR9001, AR9002 1116 * does not have hardware support for MRC CCK. 1117 */ 1118 WARN_ON(1); 1119 break; 1120 default: 1121 ath_dbg(common, ANI, "invalid cmd %u\n", cmd); 1122 return false; 1123 } 1124 1125 ath_dbg(common, ANI, 1126 "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n", 1127 aniState->spurImmunityLevel, 1128 aniState->ofdmWeakSigDetect ? "on" : "off", 1129 aniState->firstepLevel, 1130 aniState->mrcCCK ? "on" : "off", 1131 aniState->listenTime, 1132 aniState->ofdmPhyErrCount, 1133 aniState->cckPhyErrCount); 1134 return true; 1135 } 1136 1137 static void ar5008_hw_do_getnf(struct ath_hw *ah, 1138 int16_t nfarray[NUM_NF_READINGS]) 1139 { 1140 int16_t nf; 1141 1142 nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR); 1143 nfarray[0] = sign_extend32(nf, 8); 1144 1145 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR); 1146 nfarray[1] = sign_extend32(nf, 8); 1147 1148 nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR); 1149 nfarray[2] = sign_extend32(nf, 8); 1150 1151 if (!IS_CHAN_HT40(ah->curchan)) 1152 return; 1153 1154 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR); 1155 nfarray[3] = sign_extend32(nf, 8); 1156 1157 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR); 1158 nfarray[4] = sign_extend32(nf, 8); 1159 1160 nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR); 1161 nfarray[5] = sign_extend32(nf, 8); 1162 } 1163 1164 /* 1165 * Initialize the ANI register values with default (ini) values. 1166 * This routine is called during a (full) hardware reset after 1167 * all the registers are initialised from the INI. 1168 */ 1169 static void ar5008_hw_ani_cache_ini_regs(struct ath_hw *ah) 1170 { 1171 struct ath_common *common = ath9k_hw_common(ah); 1172 struct ath9k_channel *chan = ah->curchan; 1173 struct ar5416AniState *aniState = &ah->ani; 1174 struct ath9k_ani_default *iniDef; 1175 u32 val; 1176 1177 iniDef = &aniState->iniDef; 1178 1179 ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz\n", 1180 ah->hw_version.macVersion, 1181 ah->hw_version.macRev, 1182 ah->opmode, 1183 chan->channel); 1184 1185 val = REG_READ(ah, AR_PHY_SFCORR); 1186 iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH); 1187 iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH); 1188 iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR); 1189 1190 val = REG_READ(ah, AR_PHY_SFCORR_LOW); 1191 iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW); 1192 iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW); 1193 iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW); 1194 1195 val = REG_READ(ah, AR_PHY_SFCORR_EXT); 1196 iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH); 1197 iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH); 1198 iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW); 1199 iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW); 1200 iniDef->firstep = REG_READ_FIELD(ah, 1201 AR_PHY_FIND_SIG, 1202 AR_PHY_FIND_SIG_FIRSTEP); 1203 iniDef->firstepLow = REG_READ_FIELD(ah, 1204 AR_PHY_FIND_SIG_LOW, 1205 AR_PHY_FIND_SIG_FIRSTEP_LOW); 1206 iniDef->cycpwrThr1 = REG_READ_FIELD(ah, 1207 AR_PHY_TIMING5, 1208 AR_PHY_TIMING5_CYCPWR_THR1); 1209 iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah, 1210 AR_PHY_EXT_CCA, 1211 AR_PHY_EXT_TIMING5_CYCPWR_THR1); 1212 1213 /* these levels just got reset to defaults by the INI */ 1214 aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL; 1215 aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL; 1216 aniState->ofdmWeakSigDetect = true; 1217 aniState->mrcCCK = false; /* not available on pre AR9003 */ 1218 } 1219 1220 static void ar5008_hw_set_nf_limits(struct ath_hw *ah) 1221 { 1222 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ; 1223 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ; 1224 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ; 1225 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ; 1226 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ; 1227 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ; 1228 } 1229 1230 static void ar5008_hw_set_radar_params(struct ath_hw *ah, 1231 struct ath_hw_radar_conf *conf) 1232 { 1233 u32 radar_0 = 0, radar_1; 1234 1235 if (!conf) { 1236 REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA); 1237 return; 1238 } 1239 1240 radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA; 1241 radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR); 1242 radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI); 1243 radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT); 1244 radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI); 1245 radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND); 1246 1247 radar_1 = REG_READ(ah, AR_PHY_RADAR_1); 1248 radar_1 &= ~(AR_PHY_RADAR_1_MAXLEN | AR_PHY_RADAR_1_RELSTEP_THRESH | 1249 AR_PHY_RADAR_1_RELPWR_THRESH); 1250 radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI; 1251 radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK; 1252 radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN); 1253 radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH); 1254 radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH); 1255 1256 REG_WRITE(ah, AR_PHY_RADAR_0, radar_0); 1257 REG_WRITE(ah, AR_PHY_RADAR_1, radar_1); 1258 if (conf->ext_channel) 1259 REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA); 1260 else 1261 REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA); 1262 } 1263 1264 static void ar5008_hw_set_radar_conf(struct ath_hw *ah) 1265 { 1266 struct ath_hw_radar_conf *conf = &ah->radar_conf; 1267 1268 conf->fir_power = -33; 1269 conf->radar_rssi = 20; 1270 conf->pulse_height = 10; 1271 conf->pulse_rssi = 15; 1272 conf->pulse_inband = 15; 1273 conf->pulse_maxlen = 255; 1274 conf->pulse_inband_step = 12; 1275 conf->radar_inband = 8; 1276 } 1277 1278 static void ar5008_hw_init_txpower_cck(struct ath_hw *ah, int16_t *rate_array) 1279 { 1280 #define CCK_DELTA(x) ((OLC_FOR_AR9280_20_LATER) ? max((x) - 2, 0) : (x)) 1281 ah->tx_power[0] = CCK_DELTA(rate_array[rate1l]); 1282 ah->tx_power[1] = CCK_DELTA(min(rate_array[rate2l], 1283 rate_array[rate2s])); 1284 ah->tx_power[2] = CCK_DELTA(min(rate_array[rate5_5l], 1285 rate_array[rate5_5s])); 1286 ah->tx_power[3] = CCK_DELTA(min(rate_array[rate11l], 1287 rate_array[rate11s])); 1288 #undef CCK_DELTA 1289 } 1290 1291 static void ar5008_hw_init_txpower_ofdm(struct ath_hw *ah, int16_t *rate_array, 1292 int offset) 1293 { 1294 int i, idx = 0; 1295 1296 for (i = offset; i < offset + AR5008_OFDM_RATES; i++) { 1297 ah->tx_power[i] = rate_array[idx]; 1298 idx++; 1299 } 1300 } 1301 1302 static void ar5008_hw_init_txpower_ht(struct ath_hw *ah, int16_t *rate_array, 1303 int ss_offset, int ds_offset, 1304 bool is_40, int ht40_delta) 1305 { 1306 int i, mcs_idx = (is_40) ? AR5008_HT40_SHIFT : AR5008_HT20_SHIFT; 1307 1308 for (i = ss_offset; i < ss_offset + AR5008_HT_SS_RATES; i++) { 1309 ah->tx_power[i] = rate_array[mcs_idx] + ht40_delta; 1310 mcs_idx++; 1311 } 1312 memcpy(&ah->tx_power[ds_offset], &ah->tx_power[ss_offset], 1313 AR5008_HT_SS_RATES); 1314 } 1315 1316 void ar5008_hw_init_rate_txpower(struct ath_hw *ah, int16_t *rate_array, 1317 struct ath9k_channel *chan, int ht40_delta) 1318 { 1319 if (IS_CHAN_5GHZ(chan)) { 1320 ar5008_hw_init_txpower_ofdm(ah, rate_array, 1321 AR5008_11NA_OFDM_SHIFT); 1322 if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) { 1323 ar5008_hw_init_txpower_ht(ah, rate_array, 1324 AR5008_11NA_HT_SS_SHIFT, 1325 AR5008_11NA_HT_DS_SHIFT, 1326 IS_CHAN_HT40(chan), 1327 ht40_delta); 1328 } 1329 } else { 1330 ar5008_hw_init_txpower_cck(ah, rate_array); 1331 ar5008_hw_init_txpower_ofdm(ah, rate_array, 1332 AR5008_11NG_OFDM_SHIFT); 1333 if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) { 1334 ar5008_hw_init_txpower_ht(ah, rate_array, 1335 AR5008_11NG_HT_SS_SHIFT, 1336 AR5008_11NG_HT_DS_SHIFT, 1337 IS_CHAN_HT40(chan), 1338 ht40_delta); 1339 } 1340 } 1341 } 1342 1343 int ar5008_hw_attach_phy_ops(struct ath_hw *ah) 1344 { 1345 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah); 1346 static const u32 ar5416_cca_regs[6] = { 1347 AR_PHY_CCA, 1348 AR_PHY_CH1_CCA, 1349 AR_PHY_CH2_CCA, 1350 AR_PHY_EXT_CCA, 1351 AR_PHY_CH1_EXT_CCA, 1352 AR_PHY_CH2_EXT_CCA 1353 }; 1354 int ret; 1355 1356 ret = ar5008_hw_rf_alloc_ext_banks(ah); 1357 if (ret) 1358 return ret; 1359 1360 priv_ops->rf_set_freq = ar5008_hw_set_channel; 1361 priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate; 1362 1363 priv_ops->set_rf_regs = ar5008_hw_set_rf_regs; 1364 priv_ops->set_channel_regs = ar5008_hw_set_channel_regs; 1365 priv_ops->init_bb = ar5008_hw_init_bb; 1366 priv_ops->process_ini = ar5008_hw_process_ini; 1367 priv_ops->set_rfmode = ar5008_hw_set_rfmode; 1368 priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive; 1369 priv_ops->set_delta_slope = ar5008_hw_set_delta_slope; 1370 priv_ops->rfbus_req = ar5008_hw_rfbus_req; 1371 priv_ops->rfbus_done = ar5008_hw_rfbus_done; 1372 priv_ops->restore_chainmask = ar5008_restore_chainmask; 1373 priv_ops->do_getnf = ar5008_hw_do_getnf; 1374 priv_ops->set_radar_params = ar5008_hw_set_radar_params; 1375 1376 priv_ops->ani_control = ar5008_hw_ani_control_new; 1377 priv_ops->ani_cache_ini_regs = ar5008_hw_ani_cache_ini_regs; 1378 1379 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah)) 1380 priv_ops->compute_pll_control = ar9160_hw_compute_pll_control; 1381 else 1382 priv_ops->compute_pll_control = ar5008_hw_compute_pll_control; 1383 1384 ar5008_hw_set_nf_limits(ah); 1385 ar5008_hw_set_radar_conf(ah); 1386 memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs)); 1387 return 0; 1388 } 1389