1 /*
2  * Copyright (c) 2004-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/mmc/card.h>
19 #include <linux/mmc/mmc.h>
20 #include <linux/mmc/host.h>
21 #include <linux/mmc/sdio_func.h>
22 #include <linux/mmc/sdio_ids.h>
23 #include <linux/mmc/sdio.h>
24 #include <linux/mmc/sd.h>
25 #include "hif.h"
26 #include "hif-ops.h"
27 #include "target.h"
28 #include "debug.h"
29 #include "cfg80211.h"
30 
31 struct ath6kl_sdio {
32 	struct sdio_func *func;
33 
34 	spinlock_t lock;
35 
36 	/* free list */
37 	struct list_head bus_req_freeq;
38 
39 	/* available bus requests */
40 	struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
41 
42 	struct ath6kl *ar;
43 
44 	u8 *dma_buffer;
45 
46 	/* protects access to dma_buffer */
47 	struct mutex dma_buffer_mutex;
48 
49 	/* scatter request list head */
50 	struct list_head scat_req;
51 
52 	spinlock_t scat_lock;
53 	bool scatter_enabled;
54 
55 	bool is_disabled;
56 	atomic_t irq_handling;
57 	const struct sdio_device_id *id;
58 	struct work_struct wr_async_work;
59 	struct list_head wr_asyncq;
60 	spinlock_t wr_async_lock;
61 };
62 
63 #define CMD53_ARG_READ          0
64 #define CMD53_ARG_WRITE         1
65 #define CMD53_ARG_BLOCK_BASIS   1
66 #define CMD53_ARG_FIXED_ADDRESS 0
67 #define CMD53_ARG_INCR_ADDRESS  1
68 
69 static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
70 {
71 	return ar->hif_priv;
72 }
73 
74 /*
75  * Macro to check if DMA buffer is WORD-aligned and DMA-able.
76  * Most host controllers assume the buffer is DMA'able and will
77  * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
78  * check fails on stack memory.
79  */
80 static inline bool buf_needs_bounce(u8 *buf)
81 {
82 	return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
83 }
84 
85 static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
86 {
87 	struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
88 
89 	/* EP1 has an extended range */
90 	mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
91 	mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
92 	mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
93 	mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
94 	mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
95 	mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
96 }
97 
98 static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
99 					     u8 mode, u8 opcode, u32 addr,
100 					     u16 blksz)
101 {
102 	*arg = (((rw & 1) << 31) |
103 		((func & 0x7) << 28) |
104 		((mode & 1) << 27) |
105 		((opcode & 1) << 26) |
106 		((addr & 0x1FFFF) << 9) |
107 		(blksz & 0x1FF));
108 }
109 
110 static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
111 					     unsigned int address,
112 					     unsigned char val)
113 {
114 	const u8 func = 0;
115 
116 	*arg = ((write & 1) << 31) |
117 	       ((func & 0x7) << 28) |
118 	       ((raw & 1) << 27) |
119 	       (1 << 26) |
120 	       ((address & 0x1FFFF) << 9) |
121 	       (1 << 8) |
122 	       (val & 0xFF);
123 }
124 
125 static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
126 					   unsigned int address,
127 					   unsigned char byte)
128 {
129 	struct mmc_command io_cmd;
130 
131 	memset(&io_cmd, 0, sizeof(io_cmd));
132 	ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
133 	io_cmd.opcode = SD_IO_RW_DIRECT;
134 	io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
135 
136 	return mmc_wait_for_cmd(card->host, &io_cmd, 0);
137 }
138 
139 static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
140 			  u8 *buf, u32 len)
141 {
142 	int ret = 0;
143 
144 	sdio_claim_host(func);
145 
146 	if (request & HIF_WRITE) {
147 		/* FIXME: looks like ugly workaround for something */
148 		if (addr >= HIF_MBOX_BASE_ADDR &&
149 		    addr <= HIF_MBOX_END_ADDR)
150 			addr += (HIF_MBOX_WIDTH - len);
151 
152 		/* FIXME: this also looks like ugly workaround */
153 		if (addr == HIF_MBOX0_EXT_BASE_ADDR)
154 			addr += HIF_MBOX0_EXT_WIDTH - len;
155 
156 		if (request & HIF_FIXED_ADDRESS)
157 			ret = sdio_writesb(func, addr, buf, len);
158 		else
159 			ret = sdio_memcpy_toio(func, addr, buf, len);
160 	} else {
161 		if (request & HIF_FIXED_ADDRESS)
162 			ret = sdio_readsb(func, buf, addr, len);
163 		else
164 			ret = sdio_memcpy_fromio(func, buf, addr, len);
165 	}
166 
167 	sdio_release_host(func);
168 
169 	ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
170 		   request & HIF_WRITE ? "wr" : "rd", addr,
171 		   request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
172 	ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
173 
174 	return ret;
175 }
176 
177 static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
178 {
179 	struct bus_request *bus_req;
180 
181 	spin_lock_bh(&ar_sdio->lock);
182 
183 	if (list_empty(&ar_sdio->bus_req_freeq)) {
184 		spin_unlock_bh(&ar_sdio->lock);
185 		return NULL;
186 	}
187 
188 	bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
189 				   struct bus_request, list);
190 	list_del(&bus_req->list);
191 
192 	spin_unlock_bh(&ar_sdio->lock);
193 	ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
194 		   __func__, bus_req);
195 
196 	return bus_req;
197 }
198 
199 static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
200 				     struct bus_request *bus_req)
201 {
202 	ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
203 		   __func__, bus_req);
204 
205 	spin_lock_bh(&ar_sdio->lock);
206 	list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
207 	spin_unlock_bh(&ar_sdio->lock);
208 }
209 
210 static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
211 					struct mmc_data *data)
212 {
213 	struct scatterlist *sg;
214 	int i;
215 
216 	data->blksz = HIF_MBOX_BLOCK_SIZE;
217 	data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
218 
219 	ath6kl_dbg(ATH6KL_DBG_SCATTER,
220 		   "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
221 		   (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
222 		   data->blksz, data->blocks, scat_req->len,
223 		   scat_req->scat_entries);
224 
225 	data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
226 						    MMC_DATA_READ;
227 
228 	/* fill SG entries */
229 	sg = scat_req->sgentries;
230 	sg_init_table(sg, scat_req->scat_entries);
231 
232 	/* assemble SG list */
233 	for (i = 0; i < scat_req->scat_entries; i++, sg++) {
234 		ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
235 			   i, scat_req->scat_list[i].buf,
236 			   scat_req->scat_list[i].len);
237 
238 		sg_set_buf(sg, scat_req->scat_list[i].buf,
239 			   scat_req->scat_list[i].len);
240 	}
241 
242 	/* set scatter-gather table for request */
243 	data->sg = scat_req->sgentries;
244 	data->sg_len = scat_req->scat_entries;
245 }
246 
247 static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
248 			       struct bus_request *req)
249 {
250 	struct mmc_request mmc_req;
251 	struct mmc_command cmd;
252 	struct mmc_data data;
253 	struct hif_scatter_req *scat_req;
254 	u8 opcode, rw;
255 	int status, len;
256 
257 	scat_req = req->scat_req;
258 
259 	if (scat_req->virt_scat) {
260 		len = scat_req->len;
261 		if (scat_req->req & HIF_BLOCK_BASIS)
262 			len = round_down(len, HIF_MBOX_BLOCK_SIZE);
263 
264 		status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
265 					scat_req->addr, scat_req->virt_dma_buf,
266 					len);
267 		goto scat_complete;
268 	}
269 
270 	memset(&mmc_req, 0, sizeof(struct mmc_request));
271 	memset(&cmd, 0, sizeof(struct mmc_command));
272 	memset(&data, 0, sizeof(struct mmc_data));
273 
274 	ath6kl_sdio_setup_scat_data(scat_req, &data);
275 
276 	opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
277 		  CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
278 
279 	rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
280 
281 	/* Fixup the address so that the last byte will fall on MBOX EOM */
282 	if (scat_req->req & HIF_WRITE) {
283 		if (scat_req->addr == HIF_MBOX_BASE_ADDR)
284 			scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
285 		else
286 			/* Uses extended address range */
287 			scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
288 	}
289 
290 	/* set command argument */
291 	ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
292 				  CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
293 				  data.blocks);
294 
295 	cmd.opcode = SD_IO_RW_EXTENDED;
296 	cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
297 
298 	mmc_req.cmd = &cmd;
299 	mmc_req.data = &data;
300 
301 	sdio_claim_host(ar_sdio->func);
302 
303 	mmc_set_data_timeout(&data, ar_sdio->func->card);
304 	/* synchronous call to process request */
305 	mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
306 
307 	sdio_release_host(ar_sdio->func);
308 
309 	status = cmd.error ? cmd.error : data.error;
310 
311 scat_complete:
312 	scat_req->status = status;
313 
314 	if (scat_req->status)
315 		ath6kl_err("Scatter write request failed:%d\n",
316 			   scat_req->status);
317 
318 	if (scat_req->req & HIF_ASYNCHRONOUS)
319 		scat_req->complete(ar_sdio->ar->htc_target, scat_req);
320 
321 	return status;
322 }
323 
324 static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
325 					   int n_scat_entry, int n_scat_req,
326 					   bool virt_scat)
327 {
328 	struct hif_scatter_req *s_req;
329 	struct bus_request *bus_req;
330 	int i, scat_req_sz, scat_list_sz, sg_sz, buf_sz;
331 	u8 *virt_buf;
332 
333 	scat_list_sz = (n_scat_entry - 1) * sizeof(struct hif_scatter_item);
334 	scat_req_sz = sizeof(*s_req) + scat_list_sz;
335 
336 	if (!virt_scat)
337 		sg_sz = sizeof(struct scatterlist) * n_scat_entry;
338 	else
339 		buf_sz =  2 * L1_CACHE_BYTES +
340 			  ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
341 
342 	for (i = 0; i < n_scat_req; i++) {
343 		/* allocate the scatter request */
344 		s_req = kzalloc(scat_req_sz, GFP_KERNEL);
345 		if (!s_req)
346 			return -ENOMEM;
347 
348 		if (virt_scat) {
349 			virt_buf = kzalloc(buf_sz, GFP_KERNEL);
350 			if (!virt_buf) {
351 				kfree(s_req);
352 				return -ENOMEM;
353 			}
354 
355 			s_req->virt_dma_buf =
356 				(u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
357 		} else {
358 			/* allocate sglist */
359 			s_req->sgentries = kzalloc(sg_sz, GFP_KERNEL);
360 
361 			if (!s_req->sgentries) {
362 				kfree(s_req);
363 				return -ENOMEM;
364 			}
365 		}
366 
367 		/* allocate a bus request for this scatter request */
368 		bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
369 		if (!bus_req) {
370 			kfree(s_req->sgentries);
371 			kfree(s_req->virt_dma_buf);
372 			kfree(s_req);
373 			return -ENOMEM;
374 		}
375 
376 		/* assign the scatter request to this bus request */
377 		bus_req->scat_req = s_req;
378 		s_req->busrequest = bus_req;
379 
380 		s_req->virt_scat = virt_scat;
381 
382 		/* add it to the scatter pool */
383 		hif_scatter_req_add(ar_sdio->ar, s_req);
384 	}
385 
386 	return 0;
387 }
388 
389 static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
390 				       u32 len, u32 request)
391 {
392 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
393 	u8  *tbuf = NULL;
394 	int ret;
395 	bool bounced = false;
396 
397 	if (request & HIF_BLOCK_BASIS)
398 		len = round_down(len, HIF_MBOX_BLOCK_SIZE);
399 
400 	if (buf_needs_bounce(buf)) {
401 		if (!ar_sdio->dma_buffer)
402 			return -ENOMEM;
403 		mutex_lock(&ar_sdio->dma_buffer_mutex);
404 		tbuf = ar_sdio->dma_buffer;
405 		memcpy(tbuf, buf, len);
406 		bounced = true;
407 	} else
408 		tbuf = buf;
409 
410 	ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
411 	if ((request & HIF_READ) && bounced)
412 		memcpy(buf, tbuf, len);
413 
414 	if (bounced)
415 		mutex_unlock(&ar_sdio->dma_buffer_mutex);
416 
417 	return ret;
418 }
419 
420 static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
421 				      struct bus_request *req)
422 {
423 	if (req->scat_req)
424 		ath6kl_sdio_scat_rw(ar_sdio, req);
425 	else {
426 		void *context;
427 		int status;
428 
429 		status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
430 						     req->buffer, req->length,
431 						     req->request);
432 		context = req->packet;
433 		ath6kl_sdio_free_bus_req(ar_sdio, req);
434 		ath6kl_hif_rw_comp_handler(context, status);
435 	}
436 }
437 
438 static void ath6kl_sdio_write_async_work(struct work_struct *work)
439 {
440 	struct ath6kl_sdio *ar_sdio;
441 	struct bus_request *req, *tmp_req;
442 
443 	ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
444 
445 	spin_lock_bh(&ar_sdio->wr_async_lock);
446 	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
447 		list_del(&req->list);
448 		spin_unlock_bh(&ar_sdio->wr_async_lock);
449 		__ath6kl_sdio_write_async(ar_sdio, req);
450 		spin_lock_bh(&ar_sdio->wr_async_lock);
451 	}
452 	spin_unlock_bh(&ar_sdio->wr_async_lock);
453 }
454 
455 static void ath6kl_sdio_irq_handler(struct sdio_func *func)
456 {
457 	int status;
458 	struct ath6kl_sdio *ar_sdio;
459 
460 	ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
461 
462 	ar_sdio = sdio_get_drvdata(func);
463 	atomic_set(&ar_sdio->irq_handling, 1);
464 
465 	/*
466 	 * Release the host during interrups so we can pick it back up when
467 	 * we process commands.
468 	 */
469 	sdio_release_host(ar_sdio->func);
470 
471 	status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
472 	sdio_claim_host(ar_sdio->func);
473 	atomic_set(&ar_sdio->irq_handling, 0);
474 	WARN_ON(status && status != -ECANCELED);
475 }
476 
477 static int ath6kl_sdio_power_on(struct ath6kl *ar)
478 {
479 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
480 	struct sdio_func *func = ar_sdio->func;
481 	int ret = 0;
482 
483 	if (!ar_sdio->is_disabled)
484 		return 0;
485 
486 	ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
487 
488 	sdio_claim_host(func);
489 
490 	ret = sdio_enable_func(func);
491 	if (ret) {
492 		ath6kl_err("Unable to enable sdio func: %d)\n", ret);
493 		sdio_release_host(func);
494 		return ret;
495 	}
496 
497 	sdio_release_host(func);
498 
499 	/*
500 	 * Wait for hardware to initialise. It should take a lot less than
501 	 * 10 ms but let's be conservative here.
502 	 */
503 	msleep(10);
504 
505 	ar_sdio->is_disabled = false;
506 
507 	return ret;
508 }
509 
510 static int ath6kl_sdio_power_off(struct ath6kl *ar)
511 {
512 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
513 	int ret;
514 
515 	if (ar_sdio->is_disabled)
516 		return 0;
517 
518 	ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
519 
520 	/* Disable the card */
521 	sdio_claim_host(ar_sdio->func);
522 	ret = sdio_disable_func(ar_sdio->func);
523 	sdio_release_host(ar_sdio->func);
524 
525 	if (ret)
526 		return ret;
527 
528 	ar_sdio->is_disabled = true;
529 
530 	return ret;
531 }
532 
533 static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
534 				   u32 length, u32 request,
535 				   struct htc_packet *packet)
536 {
537 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
538 	struct bus_request *bus_req;
539 
540 	bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
541 
542 	if (!bus_req)
543 		return -ENOMEM;
544 
545 	bus_req->address = address;
546 	bus_req->buffer = buffer;
547 	bus_req->length = length;
548 	bus_req->request = request;
549 	bus_req->packet = packet;
550 
551 	spin_lock_bh(&ar_sdio->wr_async_lock);
552 	list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
553 	spin_unlock_bh(&ar_sdio->wr_async_lock);
554 	queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
555 
556 	return 0;
557 }
558 
559 static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
560 {
561 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
562 	int ret;
563 
564 	sdio_claim_host(ar_sdio->func);
565 
566 	/* Register the isr */
567 	ret =  sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
568 	if (ret)
569 		ath6kl_err("Failed to claim sdio irq: %d\n", ret);
570 
571 	sdio_release_host(ar_sdio->func);
572 }
573 
574 static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
575 {
576 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
577 	int ret;
578 
579 	sdio_claim_host(ar_sdio->func);
580 
581 	/* Mask our function IRQ */
582 	while (atomic_read(&ar_sdio->irq_handling)) {
583 		sdio_release_host(ar_sdio->func);
584 		schedule_timeout(HZ / 10);
585 		sdio_claim_host(ar_sdio->func);
586 	}
587 
588 	ret = sdio_release_irq(ar_sdio->func);
589 	if (ret)
590 		ath6kl_err("Failed to release sdio irq: %d\n", ret);
591 
592 	sdio_release_host(ar_sdio->func);
593 }
594 
595 static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
596 {
597 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
598 	struct hif_scatter_req *node = NULL;
599 
600 	spin_lock_bh(&ar_sdio->scat_lock);
601 
602 	if (!list_empty(&ar_sdio->scat_req)) {
603 		node = list_first_entry(&ar_sdio->scat_req,
604 					struct hif_scatter_req, list);
605 		list_del(&node->list);
606 	}
607 
608 	spin_unlock_bh(&ar_sdio->scat_lock);
609 
610 	return node;
611 }
612 
613 static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
614 					struct hif_scatter_req *s_req)
615 {
616 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
617 
618 	spin_lock_bh(&ar_sdio->scat_lock);
619 
620 	list_add_tail(&s_req->list, &ar_sdio->scat_req);
621 
622 	spin_unlock_bh(&ar_sdio->scat_lock);
623 
624 }
625 
626 /* scatter gather read write request */
627 static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
628 					struct hif_scatter_req *scat_req)
629 {
630 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
631 	u32 request = scat_req->req;
632 	int status = 0;
633 
634 	if (!scat_req->len)
635 		return -EINVAL;
636 
637 	ath6kl_dbg(ATH6KL_DBG_SCATTER,
638 		"hif-scatter: total len: %d scatter entries: %d\n",
639 		scat_req->len, scat_req->scat_entries);
640 
641 	if (request & HIF_SYNCHRONOUS)
642 		status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
643 	else {
644 		spin_lock_bh(&ar_sdio->wr_async_lock);
645 		list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
646 		spin_unlock_bh(&ar_sdio->wr_async_lock);
647 		queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
648 	}
649 
650 	return status;
651 }
652 
653 /* clean up scatter support */
654 static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
655 {
656 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
657 	struct hif_scatter_req *s_req, *tmp_req;
658 
659 	/* empty the free list */
660 	spin_lock_bh(&ar_sdio->scat_lock);
661 	list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
662 		list_del(&s_req->list);
663 		spin_unlock_bh(&ar_sdio->scat_lock);
664 
665 		/*
666 		 * FIXME: should we also call completion handler with
667 		 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
668 		 * that the packet is properly freed?
669 		 */
670 		if (s_req->busrequest)
671 			ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
672 		kfree(s_req->virt_dma_buf);
673 		kfree(s_req->sgentries);
674 		kfree(s_req);
675 
676 		spin_lock_bh(&ar_sdio->scat_lock);
677 	}
678 	spin_unlock_bh(&ar_sdio->scat_lock);
679 }
680 
681 /* setup of HIF scatter resources */
682 static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
683 {
684 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
685 	struct htc_target *target = ar->htc_target;
686 	int ret;
687 	bool virt_scat = false;
688 
689 	if (ar_sdio->scatter_enabled)
690 		return 0;
691 
692 	ar_sdio->scatter_enabled = true;
693 
694 	/* check if host supports scatter and it meets our requirements */
695 	if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
696 		ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
697 			   ar_sdio->func->card->host->max_segs,
698 			   MAX_SCATTER_ENTRIES_PER_REQ);
699 		virt_scat = true;
700 	}
701 
702 	if (!virt_scat) {
703 		ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
704 				MAX_SCATTER_ENTRIES_PER_REQ,
705 				MAX_SCATTER_REQUESTS, virt_scat);
706 
707 		if (!ret) {
708 			ath6kl_dbg(ATH6KL_DBG_BOOT,
709 				   "hif-scatter enabled requests %d entries %d\n",
710 				   MAX_SCATTER_REQUESTS,
711 				   MAX_SCATTER_ENTRIES_PER_REQ);
712 
713 			target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
714 			target->max_xfer_szper_scatreq =
715 						MAX_SCATTER_REQ_TRANSFER_SIZE;
716 		} else {
717 			ath6kl_sdio_cleanup_scatter(ar);
718 			ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
719 		}
720 	}
721 
722 	if (virt_scat || ret) {
723 		ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
724 				ATH6KL_SCATTER_ENTRIES_PER_REQ,
725 				ATH6KL_SCATTER_REQS, virt_scat);
726 
727 		if (ret) {
728 			ath6kl_err("failed to alloc virtual scatter resources !\n");
729 			ath6kl_sdio_cleanup_scatter(ar);
730 			return ret;
731 		}
732 
733 		ath6kl_dbg(ATH6KL_DBG_BOOT,
734 			   "virtual scatter enabled requests %d entries %d\n",
735 			   ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
736 
737 		target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
738 		target->max_xfer_szper_scatreq =
739 					ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
740 	}
741 
742 	return 0;
743 }
744 
745 static int ath6kl_sdio_config(struct ath6kl *ar)
746 {
747 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
748 	struct sdio_func *func = ar_sdio->func;
749 	int ret;
750 
751 	sdio_claim_host(func);
752 
753 	if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
754 	    MANUFACTURER_ID_AR6003_BASE) {
755 		/* enable 4-bit ASYNC interrupt on AR6003 or later */
756 		ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
757 						CCCR_SDIO_IRQ_MODE_REG,
758 						SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
759 		if (ret) {
760 			ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
761 				   ret);
762 			goto out;
763 		}
764 
765 		ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
766 	}
767 
768 	/* give us some time to enable, in ms */
769 	func->enable_timeout = 100;
770 
771 	ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
772 	if (ret) {
773 		ath6kl_err("Set sdio block size %d failed: %d)\n",
774 			   HIF_MBOX_BLOCK_SIZE, ret);
775 		sdio_release_host(func);
776 		goto out;
777 	}
778 
779 out:
780 	sdio_release_host(func);
781 
782 	return ret;
783 }
784 
785 static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
786 {
787 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
788 	struct sdio_func *func = ar_sdio->func;
789 	mmc_pm_flag_t flags;
790 	int ret;
791 
792 	flags = sdio_get_host_pm_caps(func);
793 
794 	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
795 
796 	if (!(flags & MMC_PM_KEEP_POWER) ||
797 	    (ar->conf_flags & ATH6KL_CONF_SUSPEND_CUTPOWER)) {
798 		/* as host doesn't support keep power we need to cut power */
799 		return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER,
800 					       NULL);
801 	}
802 
803 	ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
804 	if (ret) {
805 		printk(KERN_ERR "ath6kl: set sdio pm flags failed: %d\n",
806 		       ret);
807 		return ret;
808 	}
809 
810 	if (!(flags & MMC_PM_WAKE_SDIO_IRQ))
811 		goto deepsleep;
812 
813 	/* sdio irq wakes up host */
814 
815 	if (ar->state == ATH6KL_STATE_SCHED_SCAN) {
816 		ret =  ath6kl_cfg80211_suspend(ar,
817 					       ATH6KL_CFG_SUSPEND_SCHED_SCAN,
818 					       NULL);
819 		if (ret) {
820 			ath6kl_warn("Schedule scan suspend failed: %d", ret);
821 			return ret;
822 		}
823 
824 		ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
825 		if (ret)
826 			ath6kl_warn("set sdio wake irq flag failed: %d\n", ret);
827 
828 		return ret;
829 	}
830 
831 	if (wow) {
832 		/*
833 		 * The host sdio controller is capable of keep power and
834 		 * sdio irq wake up at this point. It's fine to continue
835 		 * wow suspend operation.
836 		 */
837 		ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
838 		if (ret)
839 			return ret;
840 
841 		ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
842 		if (ret)
843 			ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
844 
845 		return ret;
846 	}
847 
848 deepsleep:
849 	return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP, NULL);
850 }
851 
852 static int ath6kl_sdio_resume(struct ath6kl *ar)
853 {
854 	switch (ar->state) {
855 	case ATH6KL_STATE_OFF:
856 	case ATH6KL_STATE_CUTPOWER:
857 		ath6kl_dbg(ATH6KL_DBG_SUSPEND,
858 			   "sdio resume configuring sdio\n");
859 
860 		/* need to set sdio settings after power is cut from sdio */
861 		ath6kl_sdio_config(ar);
862 		break;
863 
864 	case ATH6KL_STATE_ON:
865 		break;
866 
867 	case ATH6KL_STATE_DEEPSLEEP:
868 		break;
869 
870 	case ATH6KL_STATE_WOW:
871 		break;
872 	case ATH6KL_STATE_SCHED_SCAN:
873 		break;
874 	}
875 
876 	ath6kl_cfg80211_resume(ar);
877 
878 	return 0;
879 }
880 
881 /* set the window address register (using 4-byte register access ). */
882 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
883 {
884 	int status;
885 	u8 addr_val[4];
886 	s32 i;
887 
888 	/*
889 	 * Write bytes 1,2,3 of the register to set the upper address bytes,
890 	 * the LSB is written last to initiate the access cycle
891 	 */
892 
893 	for (i = 1; i <= 3; i++) {
894 		/*
895 		 * Fill the buffer with the address byte value we want to
896 		 * hit 4 times.
897 		 */
898 		memset(addr_val, ((u8 *)&addr)[i], 4);
899 
900 		/*
901 		 * Hit each byte of the register address with a 4-byte
902 		 * write operation to the same address, this is a harmless
903 		 * operation.
904 		 */
905 		status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
906 					     4, HIF_WR_SYNC_BYTE_FIX);
907 		if (status)
908 			break;
909 	}
910 
911 	if (status) {
912 		ath6kl_err("%s: failed to write initial bytes of 0x%x "
913 			   "to window reg: 0x%X\n", __func__,
914 			   addr, reg_addr);
915 		return status;
916 	}
917 
918 	/*
919 	 * Write the address register again, this time write the whole
920 	 * 4-byte value. The effect here is that the LSB write causes the
921 	 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
922 	 * effect since we are writing the same values again
923 	 */
924 	status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
925 				     4, HIF_WR_SYNC_BYTE_INC);
926 
927 	if (status) {
928 		ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
929 			   __func__, addr, reg_addr);
930 		return status;
931 	}
932 
933 	return 0;
934 }
935 
936 static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
937 {
938 	int status;
939 
940 	/* set window register to start read cycle */
941 	status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
942 					address);
943 
944 	if (status)
945 		return status;
946 
947 	/* read the data */
948 	status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
949 				(u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
950 	if (status) {
951 		ath6kl_err("%s: failed to read from window data addr\n",
952 			__func__);
953 		return status;
954 	}
955 
956 	return status;
957 }
958 
959 static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
960 				    __le32 data)
961 {
962 	int status;
963 	u32 val = (__force u32) data;
964 
965 	/* set write data */
966 	status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
967 				(u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
968 	if (status) {
969 		ath6kl_err("%s: failed to write 0x%x to window data addr\n",
970 			   __func__, data);
971 		return status;
972 	}
973 
974 	/* set window register, which starts the write cycle */
975 	return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
976 				      address);
977 }
978 
979 static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
980 {
981 	u32 addr;
982 	unsigned long timeout;
983 	int ret;
984 
985 	ar->bmi.cmd_credits = 0;
986 
987 	/* Read the counter register to get the command credits */
988 	addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
989 
990 	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
991 	while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
992 
993 		/*
994 		 * Hit the credit counter with a 4-byte access, the first byte
995 		 * read will hit the counter and cause a decrement, while the
996 		 * remaining 3 bytes has no effect. The rationale behind this
997 		 * is to make all HIF accesses 4-byte aligned.
998 		 */
999 		ret = ath6kl_sdio_read_write_sync(ar, addr,
1000 					 (u8 *)&ar->bmi.cmd_credits, 4,
1001 					 HIF_RD_SYNC_BYTE_INC);
1002 		if (ret) {
1003 			ath6kl_err("Unable to decrement the command credit "
1004 						"count register: %d\n", ret);
1005 			return ret;
1006 		}
1007 
1008 		/* The counter is only 8 bits.
1009 		 * Ignore anything in the upper 3 bytes
1010 		 */
1011 		ar->bmi.cmd_credits &= 0xFF;
1012 	}
1013 
1014 	if (!ar->bmi.cmd_credits) {
1015 		ath6kl_err("bmi communication timeout\n");
1016 		return -ETIMEDOUT;
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1023 {
1024 	unsigned long timeout;
1025 	u32 rx_word = 0;
1026 	int ret = 0;
1027 
1028 	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1029 	while ((time_before(jiffies, timeout)) && !rx_word) {
1030 		ret = ath6kl_sdio_read_write_sync(ar,
1031 					RX_LOOKAHEAD_VALID_ADDRESS,
1032 					(u8 *)&rx_word, sizeof(rx_word),
1033 					HIF_RD_SYNC_BYTE_INC);
1034 		if (ret) {
1035 			ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1036 			return ret;
1037 		}
1038 
1039 		 /* all we really want is one bit */
1040 		rx_word &= (1 << ENDPOINT1);
1041 	}
1042 
1043 	if (!rx_word) {
1044 		ath6kl_err("bmi_recv_buf FIFO empty\n");
1045 		return -EINVAL;
1046 	}
1047 
1048 	return ret;
1049 }
1050 
1051 static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1052 {
1053 	int ret;
1054 	u32 addr;
1055 
1056 	ret = ath6kl_sdio_bmi_credits(ar);
1057 	if (ret)
1058 		return ret;
1059 
1060 	addr = ar->mbox_info.htc_addr;
1061 
1062 	ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1063 					  HIF_WR_SYNC_BYTE_INC);
1064 	if (ret)
1065 		ath6kl_err("unable to send the bmi data to the device\n");
1066 
1067 	return ret;
1068 }
1069 
1070 static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1071 {
1072 	int ret;
1073 	u32 addr;
1074 
1075 	/*
1076 	 * During normal bootup, small reads may be required.
1077 	 * Rather than issue an HIF Read and then wait as the Target
1078 	 * adds successive bytes to the FIFO, we wait here until
1079 	 * we know that response data is available.
1080 	 *
1081 	 * This allows us to cleanly timeout on an unexpected
1082 	 * Target failure rather than risk problems at the HIF level.
1083 	 * In particular, this avoids SDIO timeouts and possibly garbage
1084 	 * data on some host controllers.  And on an interconnect
1085 	 * such as Compact Flash (as well as some SDIO masters) which
1086 	 * does not provide any indication on data timeout, it avoids
1087 	 * a potential hang or garbage response.
1088 	 *
1089 	 * Synchronization is more difficult for reads larger than the
1090 	 * size of the MBOX FIFO (128B), because the Target is unable
1091 	 * to push the 129th byte of data until AFTER the Host posts an
1092 	 * HIF Read and removes some FIFO data.  So for large reads the
1093 	 * Host proceeds to post an HIF Read BEFORE all the data is
1094 	 * actually available to read.  Fortunately, large BMI reads do
1095 	 * not occur in practice -- they're supported for debug/development.
1096 	 *
1097 	 * So Host/Target BMI synchronization is divided into these cases:
1098 	 *  CASE 1: length < 4
1099 	 *        Should not happen
1100 	 *
1101 	 *  CASE 2: 4 <= length <= 128
1102 	 *        Wait for first 4 bytes to be in FIFO
1103 	 *        If CONSERVATIVE_BMI_READ is enabled, also wait for
1104 	 *        a BMI command credit, which indicates that the ENTIRE
1105 	 *        response is available in the the FIFO
1106 	 *
1107 	 *  CASE 3: length > 128
1108 	 *        Wait for the first 4 bytes to be in FIFO
1109 	 *
1110 	 * For most uses, a small timeout should be sufficient and we will
1111 	 * usually see a response quickly; but there may be some unusual
1112 	 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1113 	 * For now, we use an unbounded busy loop while waiting for
1114 	 * BMI_EXECUTE.
1115 	 *
1116 	 * If BMI_EXECUTE ever needs to support longer-latency execution,
1117 	 * especially in production, this code needs to be enhanced to sleep
1118 	 * and yield.  Also note that BMI_COMMUNICATION_TIMEOUT is currently
1119 	 * a function of Host processor speed.
1120 	 */
1121 	if (len >= 4) { /* NB: Currently, always true */
1122 		ret = ath6kl_bmi_get_rx_lkahd(ar);
1123 		if (ret)
1124 			return ret;
1125 	}
1126 
1127 	addr = ar->mbox_info.htc_addr;
1128 	ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1129 				  HIF_RD_SYNC_BYTE_INC);
1130 	if (ret) {
1131 		ath6kl_err("Unable to read the bmi data from the device: %d\n",
1132 			   ret);
1133 		return ret;
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 static void ath6kl_sdio_stop(struct ath6kl *ar)
1140 {
1141 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1142 	struct bus_request *req, *tmp_req;
1143 	void *context;
1144 
1145 	/* FIXME: make sure that wq is not queued again */
1146 
1147 	cancel_work_sync(&ar_sdio->wr_async_work);
1148 
1149 	spin_lock_bh(&ar_sdio->wr_async_lock);
1150 
1151 	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1152 		list_del(&req->list);
1153 
1154 		if (req->scat_req) {
1155 			/* this is a scatter gather request */
1156 			req->scat_req->status = -ECANCELED;
1157 			req->scat_req->complete(ar_sdio->ar->htc_target,
1158 						req->scat_req);
1159 		} else {
1160 			context = req->packet;
1161 			ath6kl_sdio_free_bus_req(ar_sdio, req);
1162 			ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1163 		}
1164 	}
1165 
1166 	spin_unlock_bh(&ar_sdio->wr_async_lock);
1167 
1168 	WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1169 }
1170 
1171 static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1172 	.read_write_sync = ath6kl_sdio_read_write_sync,
1173 	.write_async = ath6kl_sdio_write_async,
1174 	.irq_enable = ath6kl_sdio_irq_enable,
1175 	.irq_disable = ath6kl_sdio_irq_disable,
1176 	.scatter_req_get = ath6kl_sdio_scatter_req_get,
1177 	.scatter_req_add = ath6kl_sdio_scatter_req_add,
1178 	.enable_scatter = ath6kl_sdio_enable_scatter,
1179 	.scat_req_rw = ath6kl_sdio_async_rw_scatter,
1180 	.cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1181 	.suspend = ath6kl_sdio_suspend,
1182 	.resume = ath6kl_sdio_resume,
1183 	.diag_read32 = ath6kl_sdio_diag_read32,
1184 	.diag_write32 = ath6kl_sdio_diag_write32,
1185 	.bmi_read = ath6kl_sdio_bmi_read,
1186 	.bmi_write = ath6kl_sdio_bmi_write,
1187 	.power_on = ath6kl_sdio_power_on,
1188 	.power_off = ath6kl_sdio_power_off,
1189 	.stop = ath6kl_sdio_stop,
1190 };
1191 
1192 #ifdef CONFIG_PM_SLEEP
1193 
1194 /*
1195  * Empty handlers so that mmc subsystem doesn't remove us entirely during
1196  * suspend. We instead follow cfg80211 suspend/resume handlers.
1197  */
1198 static int ath6kl_sdio_pm_suspend(struct device *device)
1199 {
1200 	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1201 
1202 	return 0;
1203 }
1204 
1205 static int ath6kl_sdio_pm_resume(struct device *device)
1206 {
1207 	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1208 
1209 	return 0;
1210 }
1211 
1212 static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1213 			 ath6kl_sdio_pm_resume);
1214 
1215 #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1216 
1217 #else
1218 
1219 #define ATH6KL_SDIO_PM_OPS NULL
1220 
1221 #endif /* CONFIG_PM_SLEEP */
1222 
1223 static int ath6kl_sdio_probe(struct sdio_func *func,
1224 			     const struct sdio_device_id *id)
1225 {
1226 	int ret;
1227 	struct ath6kl_sdio *ar_sdio;
1228 	struct ath6kl *ar;
1229 	int count;
1230 
1231 	ath6kl_dbg(ATH6KL_DBG_BOOT,
1232 		   "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1233 		   func->num, func->vendor, func->device,
1234 		   func->max_blksize, func->cur_blksize);
1235 
1236 	ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1237 	if (!ar_sdio)
1238 		return -ENOMEM;
1239 
1240 	ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1241 	if (!ar_sdio->dma_buffer) {
1242 		ret = -ENOMEM;
1243 		goto err_hif;
1244 	}
1245 
1246 	ar_sdio->func = func;
1247 	sdio_set_drvdata(func, ar_sdio);
1248 
1249 	ar_sdio->id = id;
1250 	ar_sdio->is_disabled = true;
1251 
1252 	spin_lock_init(&ar_sdio->lock);
1253 	spin_lock_init(&ar_sdio->scat_lock);
1254 	spin_lock_init(&ar_sdio->wr_async_lock);
1255 	mutex_init(&ar_sdio->dma_buffer_mutex);
1256 
1257 	INIT_LIST_HEAD(&ar_sdio->scat_req);
1258 	INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1259 	INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1260 
1261 	INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1262 
1263 	for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1264 		ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1265 
1266 	ar = ath6kl_core_alloc(&ar_sdio->func->dev);
1267 	if (!ar) {
1268 		ath6kl_err("Failed to alloc ath6kl core\n");
1269 		ret = -ENOMEM;
1270 		goto err_dma;
1271 	}
1272 
1273 	ar_sdio->ar = ar;
1274 	ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1275 	ar->hif_priv = ar_sdio;
1276 	ar->hif_ops = &ath6kl_sdio_ops;
1277 	ar->bmi.max_data_size = 256;
1278 
1279 	ath6kl_sdio_set_mbox_info(ar);
1280 
1281 	ret = ath6kl_sdio_config(ar);
1282 	if (ret) {
1283 		ath6kl_err("Failed to config sdio: %d\n", ret);
1284 		goto err_core_alloc;
1285 	}
1286 
1287 	ret = ath6kl_core_init(ar);
1288 	if (ret) {
1289 		ath6kl_err("Failed to init ath6kl core\n");
1290 		goto err_core_alloc;
1291 	}
1292 
1293 	return ret;
1294 
1295 err_core_alloc:
1296 	ath6kl_core_free(ar_sdio->ar);
1297 err_dma:
1298 	kfree(ar_sdio->dma_buffer);
1299 err_hif:
1300 	kfree(ar_sdio);
1301 
1302 	return ret;
1303 }
1304 
1305 static void ath6kl_sdio_remove(struct sdio_func *func)
1306 {
1307 	struct ath6kl_sdio *ar_sdio;
1308 
1309 	ath6kl_dbg(ATH6KL_DBG_BOOT,
1310 		   "sdio removed func %d vendor 0x%x device 0x%x\n",
1311 		   func->num, func->vendor, func->device);
1312 
1313 	ar_sdio = sdio_get_drvdata(func);
1314 
1315 	ath6kl_stop_txrx(ar_sdio->ar);
1316 	cancel_work_sync(&ar_sdio->wr_async_work);
1317 
1318 	ath6kl_core_cleanup(ar_sdio->ar);
1319 
1320 	kfree(ar_sdio->dma_buffer);
1321 	kfree(ar_sdio);
1322 }
1323 
1324 static const struct sdio_device_id ath6kl_sdio_devices[] = {
1325 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
1326 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
1327 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
1328 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
1329 	{},
1330 };
1331 
1332 MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1333 
1334 static struct sdio_driver ath6kl_sdio_driver = {
1335 	.name = "ath6kl",
1336 	.id_table = ath6kl_sdio_devices,
1337 	.probe = ath6kl_sdio_probe,
1338 	.remove = ath6kl_sdio_remove,
1339 	.drv.pm = ATH6KL_SDIO_PM_OPS,
1340 };
1341 
1342 static int __init ath6kl_sdio_init(void)
1343 {
1344 	int ret;
1345 
1346 	ret = sdio_register_driver(&ath6kl_sdio_driver);
1347 	if (ret)
1348 		ath6kl_err("sdio driver registration failed: %d\n", ret);
1349 
1350 	return ret;
1351 }
1352 
1353 static void __exit ath6kl_sdio_exit(void)
1354 {
1355 	sdio_unregister_driver(&ath6kl_sdio_driver);
1356 }
1357 
1358 module_init(ath6kl_sdio_init);
1359 module_exit(ath6kl_sdio_exit);
1360 
1361 MODULE_AUTHOR("Atheros Communications, Inc.");
1362 MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1363 MODULE_LICENSE("Dual BSD/GPL");
1364 
1365 MODULE_FIRMWARE(AR6003_HW_2_0_OTP_FILE);
1366 MODULE_FIRMWARE(AR6003_HW_2_0_FIRMWARE_FILE);
1367 MODULE_FIRMWARE(AR6003_HW_2_0_PATCH_FILE);
1368 MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1369 MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
1370 MODULE_FIRMWARE(AR6003_HW_2_1_1_OTP_FILE);
1371 MODULE_FIRMWARE(AR6003_HW_2_1_1_FIRMWARE_FILE);
1372 MODULE_FIRMWARE(AR6003_HW_2_1_1_PATCH_FILE);
1373 MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1374 MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
1375 MODULE_FIRMWARE(AR6004_HW_1_0_FIRMWARE_FILE);
1376 MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1377 MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
1378 MODULE_FIRMWARE(AR6004_HW_1_1_FIRMWARE_FILE);
1379 MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1380 MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
1381