1 /* 2 * Copyright (c) 2004-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/mmc/card.h> 20 #include <linux/mmc/mmc.h> 21 #include <linux/mmc/host.h> 22 #include <linux/mmc/sdio_func.h> 23 #include <linux/mmc/sdio_ids.h> 24 #include <linux/mmc/sdio.h> 25 #include <linux/mmc/sd.h> 26 #include "hif.h" 27 #include "hif-ops.h" 28 #include "target.h" 29 #include "debug.h" 30 #include "cfg80211.h" 31 32 struct ath6kl_sdio { 33 struct sdio_func *func; 34 35 /* protects access to bus_req_freeq */ 36 spinlock_t lock; 37 38 /* free list */ 39 struct list_head bus_req_freeq; 40 41 /* available bus requests */ 42 struct bus_request bus_req[BUS_REQUEST_MAX_NUM]; 43 44 struct ath6kl *ar; 45 46 u8 *dma_buffer; 47 48 /* protects access to dma_buffer */ 49 struct mutex dma_buffer_mutex; 50 51 /* scatter request list head */ 52 struct list_head scat_req; 53 54 atomic_t irq_handling; 55 wait_queue_head_t irq_wq; 56 57 /* protects access to scat_req */ 58 spinlock_t scat_lock; 59 60 bool scatter_enabled; 61 62 bool is_disabled; 63 const struct sdio_device_id *id; 64 struct work_struct wr_async_work; 65 struct list_head wr_asyncq; 66 67 /* protects access to wr_asyncq */ 68 spinlock_t wr_async_lock; 69 }; 70 71 #define CMD53_ARG_READ 0 72 #define CMD53_ARG_WRITE 1 73 #define CMD53_ARG_BLOCK_BASIS 1 74 #define CMD53_ARG_FIXED_ADDRESS 0 75 #define CMD53_ARG_INCR_ADDRESS 1 76 77 static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar) 78 { 79 return ar->hif_priv; 80 } 81 82 /* 83 * Macro to check if DMA buffer is WORD-aligned and DMA-able. 84 * Most host controllers assume the buffer is DMA'able and will 85 * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid 86 * check fails on stack memory. 87 */ 88 static inline bool buf_needs_bounce(u8 *buf) 89 { 90 return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf); 91 } 92 93 static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar) 94 { 95 struct ath6kl_mbox_info *mbox_info = &ar->mbox_info; 96 97 /* EP1 has an extended range */ 98 mbox_info->htc_addr = HIF_MBOX_BASE_ADDR; 99 mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR; 100 mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH; 101 mbox_info->block_size = HIF_MBOX_BLOCK_SIZE; 102 mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR; 103 mbox_info->gmbox_sz = HIF_GMBOX_WIDTH; 104 } 105 106 static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func, 107 u8 mode, u8 opcode, u32 addr, 108 u16 blksz) 109 { 110 *arg = (((rw & 1) << 31) | 111 ((func & 0x7) << 28) | 112 ((mode & 1) << 27) | 113 ((opcode & 1) << 26) | 114 ((addr & 0x1FFFF) << 9) | 115 (blksz & 0x1FF)); 116 } 117 118 static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw, 119 unsigned int address, 120 unsigned char val) 121 { 122 const u8 func = 0; 123 124 *arg = ((write & 1) << 31) | 125 ((func & 0x7) << 28) | 126 ((raw & 1) << 27) | 127 (1 << 26) | 128 ((address & 0x1FFFF) << 9) | 129 (1 << 8) | 130 (val & 0xFF); 131 } 132 133 static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card, 134 unsigned int address, 135 unsigned char byte) 136 { 137 struct mmc_command io_cmd; 138 139 memset(&io_cmd, 0, sizeof(io_cmd)); 140 ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte); 141 io_cmd.opcode = SD_IO_RW_DIRECT; 142 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 143 144 return mmc_wait_for_cmd(card->host, &io_cmd, 0); 145 } 146 147 static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr, 148 u8 *buf, u32 len) 149 { 150 int ret = 0; 151 152 sdio_claim_host(func); 153 154 if (request & HIF_WRITE) { 155 /* FIXME: looks like ugly workaround for something */ 156 if (addr >= HIF_MBOX_BASE_ADDR && 157 addr <= HIF_MBOX_END_ADDR) 158 addr += (HIF_MBOX_WIDTH - len); 159 160 /* FIXME: this also looks like ugly workaround */ 161 if (addr == HIF_MBOX0_EXT_BASE_ADDR) 162 addr += HIF_MBOX0_EXT_WIDTH - len; 163 164 if (request & HIF_FIXED_ADDRESS) 165 ret = sdio_writesb(func, addr, buf, len); 166 else 167 ret = sdio_memcpy_toio(func, addr, buf, len); 168 } else { 169 if (request & HIF_FIXED_ADDRESS) 170 ret = sdio_readsb(func, buf, addr, len); 171 else 172 ret = sdio_memcpy_fromio(func, buf, addr, len); 173 } 174 175 sdio_release_host(func); 176 177 ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n", 178 request & HIF_WRITE ? "wr" : "rd", addr, 179 request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len); 180 ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len); 181 182 return ret; 183 } 184 185 static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio) 186 { 187 struct bus_request *bus_req; 188 189 spin_lock_bh(&ar_sdio->lock); 190 191 if (list_empty(&ar_sdio->bus_req_freeq)) { 192 spin_unlock_bh(&ar_sdio->lock); 193 return NULL; 194 } 195 196 bus_req = list_first_entry(&ar_sdio->bus_req_freeq, 197 struct bus_request, list); 198 list_del(&bus_req->list); 199 200 spin_unlock_bh(&ar_sdio->lock); 201 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n", 202 __func__, bus_req); 203 204 return bus_req; 205 } 206 207 static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio, 208 struct bus_request *bus_req) 209 { 210 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n", 211 __func__, bus_req); 212 213 spin_lock_bh(&ar_sdio->lock); 214 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq); 215 spin_unlock_bh(&ar_sdio->lock); 216 } 217 218 static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req, 219 struct mmc_data *data) 220 { 221 struct scatterlist *sg; 222 int i; 223 224 data->blksz = HIF_MBOX_BLOCK_SIZE; 225 data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE; 226 227 ath6kl_dbg(ATH6KL_DBG_SCATTER, 228 "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n", 229 (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr, 230 data->blksz, data->blocks, scat_req->len, 231 scat_req->scat_entries); 232 233 data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE : 234 MMC_DATA_READ; 235 236 /* fill SG entries */ 237 sg = scat_req->sgentries; 238 sg_init_table(sg, scat_req->scat_entries); 239 240 /* assemble SG list */ 241 for (i = 0; i < scat_req->scat_entries; i++, sg++) { 242 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n", 243 i, scat_req->scat_list[i].buf, 244 scat_req->scat_list[i].len); 245 246 sg_set_buf(sg, scat_req->scat_list[i].buf, 247 scat_req->scat_list[i].len); 248 } 249 250 /* set scatter-gather table for request */ 251 data->sg = scat_req->sgentries; 252 data->sg_len = scat_req->scat_entries; 253 } 254 255 static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio, 256 struct bus_request *req) 257 { 258 struct mmc_request mmc_req; 259 struct mmc_command cmd; 260 struct mmc_data data; 261 struct hif_scatter_req *scat_req; 262 u8 opcode, rw; 263 int status, len; 264 265 scat_req = req->scat_req; 266 267 if (scat_req->virt_scat) { 268 len = scat_req->len; 269 if (scat_req->req & HIF_BLOCK_BASIS) 270 len = round_down(len, HIF_MBOX_BLOCK_SIZE); 271 272 status = ath6kl_sdio_io(ar_sdio->func, scat_req->req, 273 scat_req->addr, scat_req->virt_dma_buf, 274 len); 275 goto scat_complete; 276 } 277 278 memset(&mmc_req, 0, sizeof(struct mmc_request)); 279 memset(&cmd, 0, sizeof(struct mmc_command)); 280 memset(&data, 0, sizeof(struct mmc_data)); 281 282 ath6kl_sdio_setup_scat_data(scat_req, &data); 283 284 opcode = (scat_req->req & HIF_FIXED_ADDRESS) ? 285 CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS; 286 287 rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ; 288 289 /* Fixup the address so that the last byte will fall on MBOX EOM */ 290 if (scat_req->req & HIF_WRITE) { 291 if (scat_req->addr == HIF_MBOX_BASE_ADDR) 292 scat_req->addr += HIF_MBOX_WIDTH - scat_req->len; 293 else 294 /* Uses extended address range */ 295 scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len; 296 } 297 298 /* set command argument */ 299 ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num, 300 CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr, 301 data.blocks); 302 303 cmd.opcode = SD_IO_RW_EXTENDED; 304 cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC; 305 306 mmc_req.cmd = &cmd; 307 mmc_req.data = &data; 308 309 sdio_claim_host(ar_sdio->func); 310 311 mmc_set_data_timeout(&data, ar_sdio->func->card); 312 /* synchronous call to process request */ 313 mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req); 314 315 sdio_release_host(ar_sdio->func); 316 317 status = cmd.error ? cmd.error : data.error; 318 319 scat_complete: 320 scat_req->status = status; 321 322 if (scat_req->status) 323 ath6kl_err("Scatter write request failed:%d\n", 324 scat_req->status); 325 326 if (scat_req->req & HIF_ASYNCHRONOUS) 327 scat_req->complete(ar_sdio->ar->htc_target, scat_req); 328 329 return status; 330 } 331 332 static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio, 333 int n_scat_entry, int n_scat_req, 334 bool virt_scat) 335 { 336 struct hif_scatter_req *s_req; 337 struct bus_request *bus_req; 338 int i, scat_req_sz, scat_list_sz, sg_sz, buf_sz; 339 u8 *virt_buf; 340 341 scat_list_sz = (n_scat_entry - 1) * sizeof(struct hif_scatter_item); 342 scat_req_sz = sizeof(*s_req) + scat_list_sz; 343 344 if (!virt_scat) 345 sg_sz = sizeof(struct scatterlist) * n_scat_entry; 346 else 347 buf_sz = 2 * L1_CACHE_BYTES + 348 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER; 349 350 for (i = 0; i < n_scat_req; i++) { 351 /* allocate the scatter request */ 352 s_req = kzalloc(scat_req_sz, GFP_KERNEL); 353 if (!s_req) 354 return -ENOMEM; 355 356 if (virt_scat) { 357 virt_buf = kzalloc(buf_sz, GFP_KERNEL); 358 if (!virt_buf) { 359 kfree(s_req); 360 return -ENOMEM; 361 } 362 363 s_req->virt_dma_buf = 364 (u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf); 365 } else { 366 /* allocate sglist */ 367 s_req->sgentries = kzalloc(sg_sz, GFP_KERNEL); 368 369 if (!s_req->sgentries) { 370 kfree(s_req); 371 return -ENOMEM; 372 } 373 } 374 375 /* allocate a bus request for this scatter request */ 376 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio); 377 if (!bus_req) { 378 kfree(s_req->sgentries); 379 kfree(s_req->virt_dma_buf); 380 kfree(s_req); 381 return -ENOMEM; 382 } 383 384 /* assign the scatter request to this bus request */ 385 bus_req->scat_req = s_req; 386 s_req->busrequest = bus_req; 387 388 s_req->virt_scat = virt_scat; 389 390 /* add it to the scatter pool */ 391 hif_scatter_req_add(ar_sdio->ar, s_req); 392 } 393 394 return 0; 395 } 396 397 static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf, 398 u32 len, u32 request) 399 { 400 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 401 u8 *tbuf = NULL; 402 int ret; 403 bool bounced = false; 404 405 if (request & HIF_BLOCK_BASIS) 406 len = round_down(len, HIF_MBOX_BLOCK_SIZE); 407 408 if (buf_needs_bounce(buf)) { 409 if (!ar_sdio->dma_buffer) 410 return -ENOMEM; 411 mutex_lock(&ar_sdio->dma_buffer_mutex); 412 tbuf = ar_sdio->dma_buffer; 413 414 if (request & HIF_WRITE) 415 memcpy(tbuf, buf, len); 416 417 bounced = true; 418 } else 419 tbuf = buf; 420 421 ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len); 422 if ((request & HIF_READ) && bounced) 423 memcpy(buf, tbuf, len); 424 425 if (bounced) 426 mutex_unlock(&ar_sdio->dma_buffer_mutex); 427 428 return ret; 429 } 430 431 static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio, 432 struct bus_request *req) 433 { 434 if (req->scat_req) 435 ath6kl_sdio_scat_rw(ar_sdio, req); 436 else { 437 void *context; 438 int status; 439 440 status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address, 441 req->buffer, req->length, 442 req->request); 443 context = req->packet; 444 ath6kl_sdio_free_bus_req(ar_sdio, req); 445 ath6kl_hif_rw_comp_handler(context, status); 446 } 447 } 448 449 static void ath6kl_sdio_write_async_work(struct work_struct *work) 450 { 451 struct ath6kl_sdio *ar_sdio; 452 struct bus_request *req, *tmp_req; 453 454 ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work); 455 456 spin_lock_bh(&ar_sdio->wr_async_lock); 457 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 458 list_del(&req->list); 459 spin_unlock_bh(&ar_sdio->wr_async_lock); 460 __ath6kl_sdio_write_async(ar_sdio, req); 461 spin_lock_bh(&ar_sdio->wr_async_lock); 462 } 463 spin_unlock_bh(&ar_sdio->wr_async_lock); 464 } 465 466 static void ath6kl_sdio_irq_handler(struct sdio_func *func) 467 { 468 int status; 469 struct ath6kl_sdio *ar_sdio; 470 471 ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n"); 472 473 ar_sdio = sdio_get_drvdata(func); 474 atomic_set(&ar_sdio->irq_handling, 1); 475 /* 476 * Release the host during interrups so we can pick it back up when 477 * we process commands. 478 */ 479 sdio_release_host(ar_sdio->func); 480 481 status = ath6kl_hif_intr_bh_handler(ar_sdio->ar); 482 sdio_claim_host(ar_sdio->func); 483 484 atomic_set(&ar_sdio->irq_handling, 0); 485 wake_up(&ar_sdio->irq_wq); 486 487 WARN_ON(status && status != -ECANCELED); 488 } 489 490 static int ath6kl_sdio_power_on(struct ath6kl *ar) 491 { 492 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 493 struct sdio_func *func = ar_sdio->func; 494 int ret = 0; 495 496 if (!ar_sdio->is_disabled) 497 return 0; 498 499 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n"); 500 501 sdio_claim_host(func); 502 503 ret = sdio_enable_func(func); 504 if (ret) { 505 ath6kl_err("Unable to enable sdio func: %d)\n", ret); 506 sdio_release_host(func); 507 return ret; 508 } 509 510 sdio_release_host(func); 511 512 /* 513 * Wait for hardware to initialise. It should take a lot less than 514 * 10 ms but let's be conservative here. 515 */ 516 msleep(10); 517 518 ar_sdio->is_disabled = false; 519 520 return ret; 521 } 522 523 static int ath6kl_sdio_power_off(struct ath6kl *ar) 524 { 525 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 526 int ret; 527 528 if (ar_sdio->is_disabled) 529 return 0; 530 531 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n"); 532 533 /* Disable the card */ 534 sdio_claim_host(ar_sdio->func); 535 ret = sdio_disable_func(ar_sdio->func); 536 sdio_release_host(ar_sdio->func); 537 538 if (ret) 539 return ret; 540 541 ar_sdio->is_disabled = true; 542 543 return ret; 544 } 545 546 static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer, 547 u32 length, u32 request, 548 struct htc_packet *packet) 549 { 550 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 551 struct bus_request *bus_req; 552 553 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio); 554 555 if (!bus_req) 556 return -ENOMEM; 557 558 bus_req->address = address; 559 bus_req->buffer = buffer; 560 bus_req->length = length; 561 bus_req->request = request; 562 bus_req->packet = packet; 563 564 spin_lock_bh(&ar_sdio->wr_async_lock); 565 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq); 566 spin_unlock_bh(&ar_sdio->wr_async_lock); 567 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work); 568 569 return 0; 570 } 571 572 static void ath6kl_sdio_irq_enable(struct ath6kl *ar) 573 { 574 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 575 int ret; 576 577 sdio_claim_host(ar_sdio->func); 578 579 /* Register the isr */ 580 ret = sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler); 581 if (ret) 582 ath6kl_err("Failed to claim sdio irq: %d\n", ret); 583 584 sdio_release_host(ar_sdio->func); 585 } 586 587 static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar) 588 { 589 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 590 591 return !atomic_read(&ar_sdio->irq_handling); 592 } 593 594 static void ath6kl_sdio_irq_disable(struct ath6kl *ar) 595 { 596 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 597 int ret; 598 599 sdio_claim_host(ar_sdio->func); 600 601 if (atomic_read(&ar_sdio->irq_handling)) { 602 sdio_release_host(ar_sdio->func); 603 604 ret = wait_event_interruptible(ar_sdio->irq_wq, 605 ath6kl_sdio_is_on_irq(ar)); 606 if (ret) 607 return; 608 609 sdio_claim_host(ar_sdio->func); 610 } 611 612 ret = sdio_release_irq(ar_sdio->func); 613 if (ret) 614 ath6kl_err("Failed to release sdio irq: %d\n", ret); 615 616 sdio_release_host(ar_sdio->func); 617 } 618 619 static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar) 620 { 621 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 622 struct hif_scatter_req *node = NULL; 623 624 spin_lock_bh(&ar_sdio->scat_lock); 625 626 if (!list_empty(&ar_sdio->scat_req)) { 627 node = list_first_entry(&ar_sdio->scat_req, 628 struct hif_scatter_req, list); 629 list_del(&node->list); 630 631 node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req); 632 } 633 634 spin_unlock_bh(&ar_sdio->scat_lock); 635 636 return node; 637 } 638 639 static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar, 640 struct hif_scatter_req *s_req) 641 { 642 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 643 644 spin_lock_bh(&ar_sdio->scat_lock); 645 646 list_add_tail(&s_req->list, &ar_sdio->scat_req); 647 648 spin_unlock_bh(&ar_sdio->scat_lock); 649 650 } 651 652 /* scatter gather read write request */ 653 static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar, 654 struct hif_scatter_req *scat_req) 655 { 656 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 657 u32 request = scat_req->req; 658 int status = 0; 659 660 if (!scat_req->len) 661 return -EINVAL; 662 663 ath6kl_dbg(ATH6KL_DBG_SCATTER, 664 "hif-scatter: total len: %d scatter entries: %d\n", 665 scat_req->len, scat_req->scat_entries); 666 667 if (request & HIF_SYNCHRONOUS) 668 status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest); 669 else { 670 spin_lock_bh(&ar_sdio->wr_async_lock); 671 list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq); 672 spin_unlock_bh(&ar_sdio->wr_async_lock); 673 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work); 674 } 675 676 return status; 677 } 678 679 /* clean up scatter support */ 680 static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar) 681 { 682 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 683 struct hif_scatter_req *s_req, *tmp_req; 684 685 /* empty the free list */ 686 spin_lock_bh(&ar_sdio->scat_lock); 687 list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) { 688 list_del(&s_req->list); 689 spin_unlock_bh(&ar_sdio->scat_lock); 690 691 /* 692 * FIXME: should we also call completion handler with 693 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so 694 * that the packet is properly freed? 695 */ 696 if (s_req->busrequest) 697 ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest); 698 kfree(s_req->virt_dma_buf); 699 kfree(s_req->sgentries); 700 kfree(s_req); 701 702 spin_lock_bh(&ar_sdio->scat_lock); 703 } 704 spin_unlock_bh(&ar_sdio->scat_lock); 705 } 706 707 /* setup of HIF scatter resources */ 708 static int ath6kl_sdio_enable_scatter(struct ath6kl *ar) 709 { 710 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 711 struct htc_target *target = ar->htc_target; 712 int ret; 713 bool virt_scat = false; 714 715 if (ar_sdio->scatter_enabled) 716 return 0; 717 718 ar_sdio->scatter_enabled = true; 719 720 /* check if host supports scatter and it meets our requirements */ 721 if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) { 722 ath6kl_err("host only supports scatter of :%d entries, need: %d\n", 723 ar_sdio->func->card->host->max_segs, 724 MAX_SCATTER_ENTRIES_PER_REQ); 725 virt_scat = true; 726 } 727 728 if (!virt_scat) { 729 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio, 730 MAX_SCATTER_ENTRIES_PER_REQ, 731 MAX_SCATTER_REQUESTS, virt_scat); 732 733 if (!ret) { 734 ath6kl_dbg(ATH6KL_DBG_BOOT, 735 "hif-scatter enabled requests %d entries %d\n", 736 MAX_SCATTER_REQUESTS, 737 MAX_SCATTER_ENTRIES_PER_REQ); 738 739 target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ; 740 target->max_xfer_szper_scatreq = 741 MAX_SCATTER_REQ_TRANSFER_SIZE; 742 } else { 743 ath6kl_sdio_cleanup_scatter(ar); 744 ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n"); 745 } 746 } 747 748 if (virt_scat || ret) { 749 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio, 750 ATH6KL_SCATTER_ENTRIES_PER_REQ, 751 ATH6KL_SCATTER_REQS, virt_scat); 752 753 if (ret) { 754 ath6kl_err("failed to alloc virtual scatter resources !\n"); 755 ath6kl_sdio_cleanup_scatter(ar); 756 return ret; 757 } 758 759 ath6kl_dbg(ATH6KL_DBG_BOOT, 760 "virtual scatter enabled requests %d entries %d\n", 761 ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ); 762 763 target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ; 764 target->max_xfer_szper_scatreq = 765 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER; 766 } 767 768 return 0; 769 } 770 771 static int ath6kl_sdio_config(struct ath6kl *ar) 772 { 773 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 774 struct sdio_func *func = ar_sdio->func; 775 int ret; 776 777 sdio_claim_host(func); 778 779 if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >= 780 MANUFACTURER_ID_AR6003_BASE) { 781 /* enable 4-bit ASYNC interrupt on AR6003 or later */ 782 ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card, 783 CCCR_SDIO_IRQ_MODE_REG, 784 SDIO_IRQ_MODE_ASYNC_4BIT_IRQ); 785 if (ret) { 786 ath6kl_err("Failed to enable 4-bit async irq mode %d\n", 787 ret); 788 goto out; 789 } 790 791 ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n"); 792 } 793 794 /* give us some time to enable, in ms */ 795 func->enable_timeout = 100; 796 797 ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE); 798 if (ret) { 799 ath6kl_err("Set sdio block size %d failed: %d)\n", 800 HIF_MBOX_BLOCK_SIZE, ret); 801 goto out; 802 } 803 804 out: 805 sdio_release_host(func); 806 807 return ret; 808 } 809 810 static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar) 811 { 812 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 813 struct sdio_func *func = ar_sdio->func; 814 mmc_pm_flag_t flags; 815 int ret; 816 817 flags = sdio_get_host_pm_caps(func); 818 819 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags); 820 821 if (!(flags & MMC_PM_WAKE_SDIO_IRQ) || 822 !(flags & MMC_PM_KEEP_POWER)) 823 return -EINVAL; 824 825 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER); 826 if (ret) { 827 ath6kl_err("set sdio keep pwr flag failed: %d\n", ret); 828 return ret; 829 } 830 831 /* sdio irq wakes up host */ 832 ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ); 833 if (ret) 834 ath6kl_err("set sdio wake irq flag failed: %d\n", ret); 835 836 return ret; 837 } 838 839 static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow) 840 { 841 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 842 struct sdio_func *func = ar_sdio->func; 843 mmc_pm_flag_t flags; 844 bool try_deepsleep = false; 845 int ret; 846 847 if (ar->state == ATH6KL_STATE_SCHED_SCAN) { 848 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sched scan is in progress\n"); 849 850 ret = ath6kl_set_sdio_pm_caps(ar); 851 if (ret) 852 goto cut_pwr; 853 854 ret = ath6kl_cfg80211_suspend(ar, 855 ATH6KL_CFG_SUSPEND_SCHED_SCAN, 856 NULL); 857 if (ret) 858 goto cut_pwr; 859 860 return 0; 861 } 862 863 if (ar->suspend_mode == WLAN_POWER_STATE_WOW || 864 (!ar->suspend_mode && wow)) { 865 866 ret = ath6kl_set_sdio_pm_caps(ar); 867 if (ret) 868 goto cut_pwr; 869 870 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow); 871 if (ret && ret != -ENOTCONN) 872 ath6kl_err("wow suspend failed: %d\n", ret); 873 874 if (ret && 875 (!ar->wow_suspend_mode || 876 ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP)) 877 try_deepsleep = true; 878 else if (ret && 879 ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR) 880 goto cut_pwr; 881 if (!ret) 882 return 0; 883 } 884 885 if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP || 886 !ar->suspend_mode || try_deepsleep) { 887 888 flags = sdio_get_host_pm_caps(func); 889 if (!(flags & MMC_PM_KEEP_POWER)) 890 goto cut_pwr; 891 892 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER); 893 if (ret) 894 goto cut_pwr; 895 896 /* 897 * Workaround to support Deep Sleep with MSM, set the host pm 898 * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable 899 * the sdc2_clock and internally allows MSM to enter 900 * TCXO shutdown properly. 901 */ 902 if ((flags & MMC_PM_WAKE_SDIO_IRQ)) { 903 ret = sdio_set_host_pm_flags(func, 904 MMC_PM_WAKE_SDIO_IRQ); 905 if (ret) 906 goto cut_pwr; 907 } 908 909 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP, 910 NULL); 911 if (ret) 912 goto cut_pwr; 913 914 return 0; 915 } 916 917 cut_pwr: 918 return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL); 919 } 920 921 static int ath6kl_sdio_resume(struct ath6kl *ar) 922 { 923 switch (ar->state) { 924 case ATH6KL_STATE_OFF: 925 case ATH6KL_STATE_CUTPOWER: 926 ath6kl_dbg(ATH6KL_DBG_SUSPEND, 927 "sdio resume configuring sdio\n"); 928 929 /* need to set sdio settings after power is cut from sdio */ 930 ath6kl_sdio_config(ar); 931 break; 932 933 case ATH6KL_STATE_ON: 934 break; 935 936 case ATH6KL_STATE_DEEPSLEEP: 937 break; 938 939 case ATH6KL_STATE_WOW: 940 break; 941 942 case ATH6KL_STATE_SCHED_SCAN: 943 break; 944 945 case ATH6KL_STATE_SUSPENDING: 946 break; 947 948 case ATH6KL_STATE_RESUMING: 949 break; 950 } 951 952 ath6kl_cfg80211_resume(ar); 953 954 return 0; 955 } 956 957 /* set the window address register (using 4-byte register access ). */ 958 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr) 959 { 960 int status; 961 u8 addr_val[4]; 962 s32 i; 963 964 /* 965 * Write bytes 1,2,3 of the register to set the upper address bytes, 966 * the LSB is written last to initiate the access cycle 967 */ 968 969 for (i = 1; i <= 3; i++) { 970 /* 971 * Fill the buffer with the address byte value we want to 972 * hit 4 times. 973 */ 974 memset(addr_val, ((u8 *)&addr)[i], 4); 975 976 /* 977 * Hit each byte of the register address with a 4-byte 978 * write operation to the same address, this is a harmless 979 * operation. 980 */ 981 status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val, 982 4, HIF_WR_SYNC_BYTE_FIX); 983 if (status) 984 break; 985 } 986 987 if (status) { 988 ath6kl_err("%s: failed to write initial bytes of 0x%x " 989 "to window reg: 0x%X\n", __func__, 990 addr, reg_addr); 991 return status; 992 } 993 994 /* 995 * Write the address register again, this time write the whole 996 * 4-byte value. The effect here is that the LSB write causes the 997 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no 998 * effect since we are writing the same values again 999 */ 1000 status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr), 1001 4, HIF_WR_SYNC_BYTE_INC); 1002 1003 if (status) { 1004 ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n", 1005 __func__, addr, reg_addr); 1006 return status; 1007 } 1008 1009 return 0; 1010 } 1011 1012 static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data) 1013 { 1014 int status; 1015 1016 /* set window register to start read cycle */ 1017 status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS, 1018 address); 1019 1020 if (status) 1021 return status; 1022 1023 /* read the data */ 1024 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS, 1025 (u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC); 1026 if (status) { 1027 ath6kl_err("%s: failed to read from window data addr\n", 1028 __func__); 1029 return status; 1030 } 1031 1032 return status; 1033 } 1034 1035 static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address, 1036 __le32 data) 1037 { 1038 int status; 1039 u32 val = (__force u32) data; 1040 1041 /* set write data */ 1042 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS, 1043 (u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC); 1044 if (status) { 1045 ath6kl_err("%s: failed to write 0x%x to window data addr\n", 1046 __func__, data); 1047 return status; 1048 } 1049 1050 /* set window register, which starts the write cycle */ 1051 return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS, 1052 address); 1053 } 1054 1055 static int ath6kl_sdio_bmi_credits(struct ath6kl *ar) 1056 { 1057 u32 addr; 1058 unsigned long timeout; 1059 int ret; 1060 1061 ar->bmi.cmd_credits = 0; 1062 1063 /* Read the counter register to get the command credits */ 1064 addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4; 1065 1066 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT); 1067 while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) { 1068 1069 /* 1070 * Hit the credit counter with a 4-byte access, the first byte 1071 * read will hit the counter and cause a decrement, while the 1072 * remaining 3 bytes has no effect. The rationale behind this 1073 * is to make all HIF accesses 4-byte aligned. 1074 */ 1075 ret = ath6kl_sdio_read_write_sync(ar, addr, 1076 (u8 *)&ar->bmi.cmd_credits, 4, 1077 HIF_RD_SYNC_BYTE_INC); 1078 if (ret) { 1079 ath6kl_err("Unable to decrement the command credit " 1080 "count register: %d\n", ret); 1081 return ret; 1082 } 1083 1084 /* The counter is only 8 bits. 1085 * Ignore anything in the upper 3 bytes 1086 */ 1087 ar->bmi.cmd_credits &= 0xFF; 1088 } 1089 1090 if (!ar->bmi.cmd_credits) { 1091 ath6kl_err("bmi communication timeout\n"); 1092 return -ETIMEDOUT; 1093 } 1094 1095 return 0; 1096 } 1097 1098 static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar) 1099 { 1100 unsigned long timeout; 1101 u32 rx_word = 0; 1102 int ret = 0; 1103 1104 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT); 1105 while ((time_before(jiffies, timeout)) && !rx_word) { 1106 ret = ath6kl_sdio_read_write_sync(ar, 1107 RX_LOOKAHEAD_VALID_ADDRESS, 1108 (u8 *)&rx_word, sizeof(rx_word), 1109 HIF_RD_SYNC_BYTE_INC); 1110 if (ret) { 1111 ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n"); 1112 return ret; 1113 } 1114 1115 /* all we really want is one bit */ 1116 rx_word &= (1 << ENDPOINT1); 1117 } 1118 1119 if (!rx_word) { 1120 ath6kl_err("bmi_recv_buf FIFO empty\n"); 1121 return -EINVAL; 1122 } 1123 1124 return ret; 1125 } 1126 1127 static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len) 1128 { 1129 int ret; 1130 u32 addr; 1131 1132 ret = ath6kl_sdio_bmi_credits(ar); 1133 if (ret) 1134 return ret; 1135 1136 addr = ar->mbox_info.htc_addr; 1137 1138 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len, 1139 HIF_WR_SYNC_BYTE_INC); 1140 if (ret) 1141 ath6kl_err("unable to send the bmi data to the device\n"); 1142 1143 return ret; 1144 } 1145 1146 static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len) 1147 { 1148 int ret; 1149 u32 addr; 1150 1151 /* 1152 * During normal bootup, small reads may be required. 1153 * Rather than issue an HIF Read and then wait as the Target 1154 * adds successive bytes to the FIFO, we wait here until 1155 * we know that response data is available. 1156 * 1157 * This allows us to cleanly timeout on an unexpected 1158 * Target failure rather than risk problems at the HIF level. 1159 * In particular, this avoids SDIO timeouts and possibly garbage 1160 * data on some host controllers. And on an interconnect 1161 * such as Compact Flash (as well as some SDIO masters) which 1162 * does not provide any indication on data timeout, it avoids 1163 * a potential hang or garbage response. 1164 * 1165 * Synchronization is more difficult for reads larger than the 1166 * size of the MBOX FIFO (128B), because the Target is unable 1167 * to push the 129th byte of data until AFTER the Host posts an 1168 * HIF Read and removes some FIFO data. So for large reads the 1169 * Host proceeds to post an HIF Read BEFORE all the data is 1170 * actually available to read. Fortunately, large BMI reads do 1171 * not occur in practice -- they're supported for debug/development. 1172 * 1173 * So Host/Target BMI synchronization is divided into these cases: 1174 * CASE 1: length < 4 1175 * Should not happen 1176 * 1177 * CASE 2: 4 <= length <= 128 1178 * Wait for first 4 bytes to be in FIFO 1179 * If CONSERVATIVE_BMI_READ is enabled, also wait for 1180 * a BMI command credit, which indicates that the ENTIRE 1181 * response is available in the the FIFO 1182 * 1183 * CASE 3: length > 128 1184 * Wait for the first 4 bytes to be in FIFO 1185 * 1186 * For most uses, a small timeout should be sufficient and we will 1187 * usually see a response quickly; but there may be some unusual 1188 * (debug) cases of BMI_EXECUTE where we want an larger timeout. 1189 * For now, we use an unbounded busy loop while waiting for 1190 * BMI_EXECUTE. 1191 * 1192 * If BMI_EXECUTE ever needs to support longer-latency execution, 1193 * especially in production, this code needs to be enhanced to sleep 1194 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently 1195 * a function of Host processor speed. 1196 */ 1197 if (len >= 4) { /* NB: Currently, always true */ 1198 ret = ath6kl_bmi_get_rx_lkahd(ar); 1199 if (ret) 1200 return ret; 1201 } 1202 1203 addr = ar->mbox_info.htc_addr; 1204 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len, 1205 HIF_RD_SYNC_BYTE_INC); 1206 if (ret) { 1207 ath6kl_err("Unable to read the bmi data from the device: %d\n", 1208 ret); 1209 return ret; 1210 } 1211 1212 return 0; 1213 } 1214 1215 static void ath6kl_sdio_stop(struct ath6kl *ar) 1216 { 1217 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 1218 struct bus_request *req, *tmp_req; 1219 void *context; 1220 1221 /* FIXME: make sure that wq is not queued again */ 1222 1223 cancel_work_sync(&ar_sdio->wr_async_work); 1224 1225 spin_lock_bh(&ar_sdio->wr_async_lock); 1226 1227 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1228 list_del(&req->list); 1229 1230 if (req->scat_req) { 1231 /* this is a scatter gather request */ 1232 req->scat_req->status = -ECANCELED; 1233 req->scat_req->complete(ar_sdio->ar->htc_target, 1234 req->scat_req); 1235 } else { 1236 context = req->packet; 1237 ath6kl_sdio_free_bus_req(ar_sdio, req); 1238 ath6kl_hif_rw_comp_handler(context, -ECANCELED); 1239 } 1240 } 1241 1242 spin_unlock_bh(&ar_sdio->wr_async_lock); 1243 1244 WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4); 1245 } 1246 1247 static const struct ath6kl_hif_ops ath6kl_sdio_ops = { 1248 .read_write_sync = ath6kl_sdio_read_write_sync, 1249 .write_async = ath6kl_sdio_write_async, 1250 .irq_enable = ath6kl_sdio_irq_enable, 1251 .irq_disable = ath6kl_sdio_irq_disable, 1252 .scatter_req_get = ath6kl_sdio_scatter_req_get, 1253 .scatter_req_add = ath6kl_sdio_scatter_req_add, 1254 .enable_scatter = ath6kl_sdio_enable_scatter, 1255 .scat_req_rw = ath6kl_sdio_async_rw_scatter, 1256 .cleanup_scatter = ath6kl_sdio_cleanup_scatter, 1257 .suspend = ath6kl_sdio_suspend, 1258 .resume = ath6kl_sdio_resume, 1259 .diag_read32 = ath6kl_sdio_diag_read32, 1260 .diag_write32 = ath6kl_sdio_diag_write32, 1261 .bmi_read = ath6kl_sdio_bmi_read, 1262 .bmi_write = ath6kl_sdio_bmi_write, 1263 .power_on = ath6kl_sdio_power_on, 1264 .power_off = ath6kl_sdio_power_off, 1265 .stop = ath6kl_sdio_stop, 1266 }; 1267 1268 #ifdef CONFIG_PM_SLEEP 1269 1270 /* 1271 * Empty handlers so that mmc subsystem doesn't remove us entirely during 1272 * suspend. We instead follow cfg80211 suspend/resume handlers. 1273 */ 1274 static int ath6kl_sdio_pm_suspend(struct device *device) 1275 { 1276 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n"); 1277 1278 return 0; 1279 } 1280 1281 static int ath6kl_sdio_pm_resume(struct device *device) 1282 { 1283 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n"); 1284 1285 return 0; 1286 } 1287 1288 static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend, 1289 ath6kl_sdio_pm_resume); 1290 1291 #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops) 1292 1293 #else 1294 1295 #define ATH6KL_SDIO_PM_OPS NULL 1296 1297 #endif /* CONFIG_PM_SLEEP */ 1298 1299 static int ath6kl_sdio_probe(struct sdio_func *func, 1300 const struct sdio_device_id *id) 1301 { 1302 int ret; 1303 struct ath6kl_sdio *ar_sdio; 1304 struct ath6kl *ar; 1305 int count; 1306 1307 ath6kl_dbg(ATH6KL_DBG_BOOT, 1308 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n", 1309 func->num, func->vendor, func->device, 1310 func->max_blksize, func->cur_blksize); 1311 1312 ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL); 1313 if (!ar_sdio) 1314 return -ENOMEM; 1315 1316 ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL); 1317 if (!ar_sdio->dma_buffer) { 1318 ret = -ENOMEM; 1319 goto err_hif; 1320 } 1321 1322 ar_sdio->func = func; 1323 sdio_set_drvdata(func, ar_sdio); 1324 1325 ar_sdio->id = id; 1326 ar_sdio->is_disabled = true; 1327 1328 spin_lock_init(&ar_sdio->lock); 1329 spin_lock_init(&ar_sdio->scat_lock); 1330 spin_lock_init(&ar_sdio->wr_async_lock); 1331 mutex_init(&ar_sdio->dma_buffer_mutex); 1332 1333 INIT_LIST_HEAD(&ar_sdio->scat_req); 1334 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq); 1335 INIT_LIST_HEAD(&ar_sdio->wr_asyncq); 1336 1337 INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work); 1338 1339 init_waitqueue_head(&ar_sdio->irq_wq); 1340 1341 for (count = 0; count < BUS_REQUEST_MAX_NUM; count++) 1342 ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]); 1343 1344 ar = ath6kl_core_create(&ar_sdio->func->dev); 1345 if (!ar) { 1346 ath6kl_err("Failed to alloc ath6kl core\n"); 1347 ret = -ENOMEM; 1348 goto err_dma; 1349 } 1350 1351 ar_sdio->ar = ar; 1352 ar->hif_type = ATH6KL_HIF_TYPE_SDIO; 1353 ar->hif_priv = ar_sdio; 1354 ar->hif_ops = &ath6kl_sdio_ops; 1355 ar->bmi.max_data_size = 256; 1356 1357 ath6kl_sdio_set_mbox_info(ar); 1358 1359 ret = ath6kl_sdio_config(ar); 1360 if (ret) { 1361 ath6kl_err("Failed to config sdio: %d\n", ret); 1362 goto err_core_alloc; 1363 } 1364 1365 ret = ath6kl_core_init(ar); 1366 if (ret) { 1367 ath6kl_err("Failed to init ath6kl core\n"); 1368 goto err_core_alloc; 1369 } 1370 1371 return ret; 1372 1373 err_core_alloc: 1374 ath6kl_core_destroy(ar_sdio->ar); 1375 err_dma: 1376 kfree(ar_sdio->dma_buffer); 1377 err_hif: 1378 kfree(ar_sdio); 1379 1380 return ret; 1381 } 1382 1383 static void ath6kl_sdio_remove(struct sdio_func *func) 1384 { 1385 struct ath6kl_sdio *ar_sdio; 1386 1387 ath6kl_dbg(ATH6KL_DBG_BOOT, 1388 "sdio removed func %d vendor 0x%x device 0x%x\n", 1389 func->num, func->vendor, func->device); 1390 1391 ar_sdio = sdio_get_drvdata(func); 1392 1393 ath6kl_stop_txrx(ar_sdio->ar); 1394 cancel_work_sync(&ar_sdio->wr_async_work); 1395 1396 ath6kl_core_cleanup(ar_sdio->ar); 1397 ath6kl_core_destroy(ar_sdio->ar); 1398 1399 kfree(ar_sdio->dma_buffer); 1400 kfree(ar_sdio); 1401 } 1402 1403 static const struct sdio_device_id ath6kl_sdio_devices[] = { 1404 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))}, 1405 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))}, 1406 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))}, 1407 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))}, 1408 {}, 1409 }; 1410 1411 MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices); 1412 1413 static struct sdio_driver ath6kl_sdio_driver = { 1414 .name = "ath6kl_sdio", 1415 .id_table = ath6kl_sdio_devices, 1416 .probe = ath6kl_sdio_probe, 1417 .remove = ath6kl_sdio_remove, 1418 .drv.pm = ATH6KL_SDIO_PM_OPS, 1419 }; 1420 1421 static int __init ath6kl_sdio_init(void) 1422 { 1423 int ret; 1424 1425 ret = sdio_register_driver(&ath6kl_sdio_driver); 1426 if (ret) 1427 ath6kl_err("sdio driver registration failed: %d\n", ret); 1428 1429 return ret; 1430 } 1431 1432 static void __exit ath6kl_sdio_exit(void) 1433 { 1434 sdio_unregister_driver(&ath6kl_sdio_driver); 1435 } 1436 1437 module_init(ath6kl_sdio_init); 1438 module_exit(ath6kl_sdio_exit); 1439 1440 MODULE_AUTHOR("Atheros Communications, Inc."); 1441 MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices"); 1442 MODULE_LICENSE("Dual BSD/GPL"); 1443 1444 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE); 1445 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE); 1446 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE); 1447 MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE); 1448 MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE); 1449 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE); 1450 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE); 1451 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE); 1452 MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE); 1453 MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE); 1454 MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE); 1455 MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE); 1456 MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE); 1457 MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE); 1458 MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE); 1459 MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE); 1460