1 /*
2  * Copyright (c) 2004-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/mmc/card.h>
18 #include <linux/mmc/mmc.h>
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/sdio_func.h>
21 #include <linux/mmc/sdio_ids.h>
22 #include <linux/mmc/sdio.h>
23 #include <linux/mmc/sd.h>
24 #include "hif.h"
25 #include "hif-ops.h"
26 #include "target.h"
27 #include "debug.h"
28 #include "cfg80211.h"
29 
30 struct ath6kl_sdio {
31 	struct sdio_func *func;
32 
33 	spinlock_t lock;
34 
35 	/* free list */
36 	struct list_head bus_req_freeq;
37 
38 	/* available bus requests */
39 	struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
40 
41 	struct ath6kl *ar;
42 	u8 *dma_buffer;
43 
44 	/* scatter request list head */
45 	struct list_head scat_req;
46 
47 	spinlock_t scat_lock;
48 	bool scatter_enabled;
49 
50 	bool is_disabled;
51 	atomic_t irq_handling;
52 	const struct sdio_device_id *id;
53 	struct work_struct wr_async_work;
54 	struct list_head wr_asyncq;
55 	spinlock_t wr_async_lock;
56 };
57 
58 #define CMD53_ARG_READ          0
59 #define CMD53_ARG_WRITE         1
60 #define CMD53_ARG_BLOCK_BASIS   1
61 #define CMD53_ARG_FIXED_ADDRESS 0
62 #define CMD53_ARG_INCR_ADDRESS  1
63 
64 static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
65 {
66 	return ar->hif_priv;
67 }
68 
69 /*
70  * Macro to check if DMA buffer is WORD-aligned and DMA-able.
71  * Most host controllers assume the buffer is DMA'able and will
72  * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
73  * check fails on stack memory.
74  */
75 static inline bool buf_needs_bounce(u8 *buf)
76 {
77 	return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
78 }
79 
80 static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
81 {
82 	struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
83 
84 	/* EP1 has an extended range */
85 	mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
86 	mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
87 	mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
88 	mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
89 	mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
90 	mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
91 }
92 
93 static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
94 					     u8 mode, u8 opcode, u32 addr,
95 					     u16 blksz)
96 {
97 	*arg = (((rw & 1) << 31) |
98 		((func & 0x7) << 28) |
99 		((mode & 1) << 27) |
100 		((opcode & 1) << 26) |
101 		((addr & 0x1FFFF) << 9) |
102 		(blksz & 0x1FF));
103 }
104 
105 static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
106 					     unsigned int address,
107 					     unsigned char val)
108 {
109 	const u8 func = 0;
110 
111 	*arg = ((write & 1) << 31) |
112 	       ((func & 0x7) << 28) |
113 	       ((raw & 1) << 27) |
114 	       (1 << 26) |
115 	       ((address & 0x1FFFF) << 9) |
116 	       (1 << 8) |
117 	       (val & 0xFF);
118 }
119 
120 static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
121 					   unsigned int address,
122 					   unsigned char byte)
123 {
124 	struct mmc_command io_cmd;
125 
126 	memset(&io_cmd, 0, sizeof(io_cmd));
127 	ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
128 	io_cmd.opcode = SD_IO_RW_DIRECT;
129 	io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
130 
131 	return mmc_wait_for_cmd(card->host, &io_cmd, 0);
132 }
133 
134 static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
135 			  u8 *buf, u32 len)
136 {
137 	int ret = 0;
138 
139 	sdio_claim_host(func);
140 
141 	if (request & HIF_WRITE) {
142 		/* FIXME: looks like ugly workaround for something */
143 		if (addr >= HIF_MBOX_BASE_ADDR &&
144 		    addr <= HIF_MBOX_END_ADDR)
145 			addr += (HIF_MBOX_WIDTH - len);
146 
147 		/* FIXME: this also looks like ugly workaround */
148 		if (addr == HIF_MBOX0_EXT_BASE_ADDR)
149 			addr += HIF_MBOX0_EXT_WIDTH - len;
150 
151 		if (request & HIF_FIXED_ADDRESS)
152 			ret = sdio_writesb(func, addr, buf, len);
153 		else
154 			ret = sdio_memcpy_toio(func, addr, buf, len);
155 	} else {
156 		if (request & HIF_FIXED_ADDRESS)
157 			ret = sdio_readsb(func, buf, addr, len);
158 		else
159 			ret = sdio_memcpy_fromio(func, buf, addr, len);
160 	}
161 
162 	sdio_release_host(func);
163 
164 	ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
165 		   request & HIF_WRITE ? "wr" : "rd", addr,
166 		   request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
167 	ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
168 
169 	return ret;
170 }
171 
172 static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
173 {
174 	struct bus_request *bus_req;
175 
176 	spin_lock_bh(&ar_sdio->lock);
177 
178 	if (list_empty(&ar_sdio->bus_req_freeq)) {
179 		spin_unlock_bh(&ar_sdio->lock);
180 		return NULL;
181 	}
182 
183 	bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
184 				   struct bus_request, list);
185 	list_del(&bus_req->list);
186 
187 	spin_unlock_bh(&ar_sdio->lock);
188 	ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
189 		   __func__, bus_req);
190 
191 	return bus_req;
192 }
193 
194 static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
195 				     struct bus_request *bus_req)
196 {
197 	ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
198 		   __func__, bus_req);
199 
200 	spin_lock_bh(&ar_sdio->lock);
201 	list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
202 	spin_unlock_bh(&ar_sdio->lock);
203 }
204 
205 static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
206 					struct mmc_data *data)
207 {
208 	struct scatterlist *sg;
209 	int i;
210 
211 	data->blksz = HIF_MBOX_BLOCK_SIZE;
212 	data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
213 
214 	ath6kl_dbg(ATH6KL_DBG_SCATTER,
215 		   "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
216 		   (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
217 		   data->blksz, data->blocks, scat_req->len,
218 		   scat_req->scat_entries);
219 
220 	data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
221 						    MMC_DATA_READ;
222 
223 	/* fill SG entries */
224 	sg = scat_req->sgentries;
225 	sg_init_table(sg, scat_req->scat_entries);
226 
227 	/* assemble SG list */
228 	for (i = 0; i < scat_req->scat_entries; i++, sg++) {
229 		ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
230 			   i, scat_req->scat_list[i].buf,
231 			   scat_req->scat_list[i].len);
232 
233 		sg_set_buf(sg, scat_req->scat_list[i].buf,
234 			   scat_req->scat_list[i].len);
235 	}
236 
237 	/* set scatter-gather table for request */
238 	data->sg = scat_req->sgentries;
239 	data->sg_len = scat_req->scat_entries;
240 }
241 
242 static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
243 			       struct bus_request *req)
244 {
245 	struct mmc_request mmc_req;
246 	struct mmc_command cmd;
247 	struct mmc_data data;
248 	struct hif_scatter_req *scat_req;
249 	u8 opcode, rw;
250 	int status, len;
251 
252 	scat_req = req->scat_req;
253 
254 	if (scat_req->virt_scat) {
255 		len = scat_req->len;
256 		if (scat_req->req & HIF_BLOCK_BASIS)
257 			len = round_down(len, HIF_MBOX_BLOCK_SIZE);
258 
259 		status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
260 					scat_req->addr, scat_req->virt_dma_buf,
261 					len);
262 		goto scat_complete;
263 	}
264 
265 	memset(&mmc_req, 0, sizeof(struct mmc_request));
266 	memset(&cmd, 0, sizeof(struct mmc_command));
267 	memset(&data, 0, sizeof(struct mmc_data));
268 
269 	ath6kl_sdio_setup_scat_data(scat_req, &data);
270 
271 	opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
272 		  CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
273 
274 	rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
275 
276 	/* Fixup the address so that the last byte will fall on MBOX EOM */
277 	if (scat_req->req & HIF_WRITE) {
278 		if (scat_req->addr == HIF_MBOX_BASE_ADDR)
279 			scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
280 		else
281 			/* Uses extended address range */
282 			scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
283 	}
284 
285 	/* set command argument */
286 	ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
287 				  CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
288 				  data.blocks);
289 
290 	cmd.opcode = SD_IO_RW_EXTENDED;
291 	cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
292 
293 	mmc_req.cmd = &cmd;
294 	mmc_req.data = &data;
295 
296 	sdio_claim_host(ar_sdio->func);
297 
298 	mmc_set_data_timeout(&data, ar_sdio->func->card);
299 	/* synchronous call to process request */
300 	mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
301 
302 	sdio_release_host(ar_sdio->func);
303 
304 	status = cmd.error ? cmd.error : data.error;
305 
306 scat_complete:
307 	scat_req->status = status;
308 
309 	if (scat_req->status)
310 		ath6kl_err("Scatter write request failed:%d\n",
311 			   scat_req->status);
312 
313 	if (scat_req->req & HIF_ASYNCHRONOUS)
314 		scat_req->complete(ar_sdio->ar->htc_target, scat_req);
315 
316 	return status;
317 }
318 
319 static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
320 					   int n_scat_entry, int n_scat_req,
321 					   bool virt_scat)
322 {
323 	struct hif_scatter_req *s_req;
324 	struct bus_request *bus_req;
325 	int i, scat_req_sz, scat_list_sz, sg_sz, buf_sz;
326 	u8 *virt_buf;
327 
328 	scat_list_sz = (n_scat_entry - 1) * sizeof(struct hif_scatter_item);
329 	scat_req_sz = sizeof(*s_req) + scat_list_sz;
330 
331 	if (!virt_scat)
332 		sg_sz = sizeof(struct scatterlist) * n_scat_entry;
333 	else
334 		buf_sz =  2 * L1_CACHE_BYTES +
335 			  ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
336 
337 	for (i = 0; i < n_scat_req; i++) {
338 		/* allocate the scatter request */
339 		s_req = kzalloc(scat_req_sz, GFP_KERNEL);
340 		if (!s_req)
341 			return -ENOMEM;
342 
343 		if (virt_scat) {
344 			virt_buf = kzalloc(buf_sz, GFP_KERNEL);
345 			if (!virt_buf) {
346 				kfree(s_req);
347 				return -ENOMEM;
348 			}
349 
350 			s_req->virt_dma_buf =
351 				(u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
352 		} else {
353 			/* allocate sglist */
354 			s_req->sgentries = kzalloc(sg_sz, GFP_KERNEL);
355 
356 			if (!s_req->sgentries) {
357 				kfree(s_req);
358 				return -ENOMEM;
359 			}
360 		}
361 
362 		/* allocate a bus request for this scatter request */
363 		bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
364 		if (!bus_req) {
365 			kfree(s_req->sgentries);
366 			kfree(s_req->virt_dma_buf);
367 			kfree(s_req);
368 			return -ENOMEM;
369 		}
370 
371 		/* assign the scatter request to this bus request */
372 		bus_req->scat_req = s_req;
373 		s_req->busrequest = bus_req;
374 
375 		s_req->virt_scat = virt_scat;
376 
377 		/* add it to the scatter pool */
378 		hif_scatter_req_add(ar_sdio->ar, s_req);
379 	}
380 
381 	return 0;
382 }
383 
384 static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
385 				       u32 len, u32 request)
386 {
387 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
388 	u8  *tbuf = NULL;
389 	int ret;
390 	bool bounced = false;
391 
392 	if (request & HIF_BLOCK_BASIS)
393 		len = round_down(len, HIF_MBOX_BLOCK_SIZE);
394 
395 	if (buf_needs_bounce(buf)) {
396 		if (!ar_sdio->dma_buffer)
397 			return -ENOMEM;
398 		tbuf = ar_sdio->dma_buffer;
399 		memcpy(tbuf, buf, len);
400 		bounced = true;
401 	} else
402 		tbuf = buf;
403 
404 	ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
405 	if ((request & HIF_READ) && bounced)
406 		memcpy(buf, tbuf, len);
407 
408 	return ret;
409 }
410 
411 static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
412 				      struct bus_request *req)
413 {
414 	if (req->scat_req)
415 		ath6kl_sdio_scat_rw(ar_sdio, req);
416 	else {
417 		void *context;
418 		int status;
419 
420 		status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
421 						     req->buffer, req->length,
422 						     req->request);
423 		context = req->packet;
424 		ath6kl_sdio_free_bus_req(ar_sdio, req);
425 		ath6kl_hif_rw_comp_handler(context, status);
426 	}
427 }
428 
429 static void ath6kl_sdio_write_async_work(struct work_struct *work)
430 {
431 	struct ath6kl_sdio *ar_sdio;
432 	struct bus_request *req, *tmp_req;
433 
434 	ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
435 
436 	spin_lock_bh(&ar_sdio->wr_async_lock);
437 	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
438 		list_del(&req->list);
439 		spin_unlock_bh(&ar_sdio->wr_async_lock);
440 		__ath6kl_sdio_write_async(ar_sdio, req);
441 		spin_lock_bh(&ar_sdio->wr_async_lock);
442 	}
443 	spin_unlock_bh(&ar_sdio->wr_async_lock);
444 }
445 
446 static void ath6kl_sdio_irq_handler(struct sdio_func *func)
447 {
448 	int status;
449 	struct ath6kl_sdio *ar_sdio;
450 
451 	ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
452 
453 	ar_sdio = sdio_get_drvdata(func);
454 	atomic_set(&ar_sdio->irq_handling, 1);
455 
456 	/*
457 	 * Release the host during interrups so we can pick it back up when
458 	 * we process commands.
459 	 */
460 	sdio_release_host(ar_sdio->func);
461 
462 	status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
463 	sdio_claim_host(ar_sdio->func);
464 	atomic_set(&ar_sdio->irq_handling, 0);
465 	WARN_ON(status && status != -ECANCELED);
466 }
467 
468 static int ath6kl_sdio_power_on(struct ath6kl *ar)
469 {
470 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
471 	struct sdio_func *func = ar_sdio->func;
472 	int ret = 0;
473 
474 	if (!ar_sdio->is_disabled)
475 		return 0;
476 
477 	ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
478 
479 	sdio_claim_host(func);
480 
481 	ret = sdio_enable_func(func);
482 	if (ret) {
483 		ath6kl_err("Unable to enable sdio func: %d)\n", ret);
484 		sdio_release_host(func);
485 		return ret;
486 	}
487 
488 	sdio_release_host(func);
489 
490 	/*
491 	 * Wait for hardware to initialise. It should take a lot less than
492 	 * 10 ms but let's be conservative here.
493 	 */
494 	msleep(10);
495 
496 	ar_sdio->is_disabled = false;
497 
498 	return ret;
499 }
500 
501 static int ath6kl_sdio_power_off(struct ath6kl *ar)
502 {
503 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
504 	int ret;
505 
506 	if (ar_sdio->is_disabled)
507 		return 0;
508 
509 	ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
510 
511 	/* Disable the card */
512 	sdio_claim_host(ar_sdio->func);
513 	ret = sdio_disable_func(ar_sdio->func);
514 	sdio_release_host(ar_sdio->func);
515 
516 	if (ret)
517 		return ret;
518 
519 	ar_sdio->is_disabled = true;
520 
521 	return ret;
522 }
523 
524 static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
525 				   u32 length, u32 request,
526 				   struct htc_packet *packet)
527 {
528 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
529 	struct bus_request *bus_req;
530 
531 	bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
532 
533 	if (!bus_req)
534 		return -ENOMEM;
535 
536 	bus_req->address = address;
537 	bus_req->buffer = buffer;
538 	bus_req->length = length;
539 	bus_req->request = request;
540 	bus_req->packet = packet;
541 
542 	spin_lock_bh(&ar_sdio->wr_async_lock);
543 	list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
544 	spin_unlock_bh(&ar_sdio->wr_async_lock);
545 	queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
546 
547 	return 0;
548 }
549 
550 static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
551 {
552 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
553 	int ret;
554 
555 	sdio_claim_host(ar_sdio->func);
556 
557 	/* Register the isr */
558 	ret =  sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
559 	if (ret)
560 		ath6kl_err("Failed to claim sdio irq: %d\n", ret);
561 
562 	sdio_release_host(ar_sdio->func);
563 }
564 
565 static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
566 {
567 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
568 	int ret;
569 
570 	sdio_claim_host(ar_sdio->func);
571 
572 	/* Mask our function IRQ */
573 	while (atomic_read(&ar_sdio->irq_handling)) {
574 		sdio_release_host(ar_sdio->func);
575 		schedule_timeout(HZ / 10);
576 		sdio_claim_host(ar_sdio->func);
577 	}
578 
579 	ret = sdio_release_irq(ar_sdio->func);
580 	if (ret)
581 		ath6kl_err("Failed to release sdio irq: %d\n", ret);
582 
583 	sdio_release_host(ar_sdio->func);
584 }
585 
586 static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
587 {
588 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
589 	struct hif_scatter_req *node = NULL;
590 
591 	spin_lock_bh(&ar_sdio->scat_lock);
592 
593 	if (!list_empty(&ar_sdio->scat_req)) {
594 		node = list_first_entry(&ar_sdio->scat_req,
595 					struct hif_scatter_req, list);
596 		list_del(&node->list);
597 	}
598 
599 	spin_unlock_bh(&ar_sdio->scat_lock);
600 
601 	return node;
602 }
603 
604 static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
605 					struct hif_scatter_req *s_req)
606 {
607 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
608 
609 	spin_lock_bh(&ar_sdio->scat_lock);
610 
611 	list_add_tail(&s_req->list, &ar_sdio->scat_req);
612 
613 	spin_unlock_bh(&ar_sdio->scat_lock);
614 
615 }
616 
617 /* scatter gather read write request */
618 static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
619 					struct hif_scatter_req *scat_req)
620 {
621 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
622 	u32 request = scat_req->req;
623 	int status = 0;
624 
625 	if (!scat_req->len)
626 		return -EINVAL;
627 
628 	ath6kl_dbg(ATH6KL_DBG_SCATTER,
629 		"hif-scatter: total len: %d scatter entries: %d\n",
630 		scat_req->len, scat_req->scat_entries);
631 
632 	if (request & HIF_SYNCHRONOUS)
633 		status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
634 	else {
635 		spin_lock_bh(&ar_sdio->wr_async_lock);
636 		list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
637 		spin_unlock_bh(&ar_sdio->wr_async_lock);
638 		queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
639 	}
640 
641 	return status;
642 }
643 
644 /* clean up scatter support */
645 static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
646 {
647 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
648 	struct hif_scatter_req *s_req, *tmp_req;
649 
650 	/* empty the free list */
651 	spin_lock_bh(&ar_sdio->scat_lock);
652 	list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
653 		list_del(&s_req->list);
654 		spin_unlock_bh(&ar_sdio->scat_lock);
655 
656 		/*
657 		 * FIXME: should we also call completion handler with
658 		 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
659 		 * that the packet is properly freed?
660 		 */
661 		if (s_req->busrequest)
662 			ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
663 		kfree(s_req->virt_dma_buf);
664 		kfree(s_req->sgentries);
665 		kfree(s_req);
666 
667 		spin_lock_bh(&ar_sdio->scat_lock);
668 	}
669 	spin_unlock_bh(&ar_sdio->scat_lock);
670 }
671 
672 /* setup of HIF scatter resources */
673 static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
674 {
675 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
676 	struct htc_target *target = ar->htc_target;
677 	int ret;
678 	bool virt_scat = false;
679 
680 	if (ar_sdio->scatter_enabled)
681 		return 0;
682 
683 	ar_sdio->scatter_enabled = true;
684 
685 	/* check if host supports scatter and it meets our requirements */
686 	if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
687 		ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
688 			   ar_sdio->func->card->host->max_segs,
689 			   MAX_SCATTER_ENTRIES_PER_REQ);
690 		virt_scat = true;
691 	}
692 
693 	if (!virt_scat) {
694 		ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
695 				MAX_SCATTER_ENTRIES_PER_REQ,
696 				MAX_SCATTER_REQUESTS, virt_scat);
697 
698 		if (!ret) {
699 			ath6kl_dbg(ATH6KL_DBG_BOOT,
700 				   "hif-scatter enabled requests %d entries %d\n",
701 				   MAX_SCATTER_REQUESTS,
702 				   MAX_SCATTER_ENTRIES_PER_REQ);
703 
704 			target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
705 			target->max_xfer_szper_scatreq =
706 						MAX_SCATTER_REQ_TRANSFER_SIZE;
707 		} else {
708 			ath6kl_sdio_cleanup_scatter(ar);
709 			ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
710 		}
711 	}
712 
713 	if (virt_scat || ret) {
714 		ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
715 				ATH6KL_SCATTER_ENTRIES_PER_REQ,
716 				ATH6KL_SCATTER_REQS, virt_scat);
717 
718 		if (ret) {
719 			ath6kl_err("failed to alloc virtual scatter resources !\n");
720 			ath6kl_sdio_cleanup_scatter(ar);
721 			return ret;
722 		}
723 
724 		ath6kl_dbg(ATH6KL_DBG_BOOT,
725 			   "virtual scatter enabled requests %d entries %d\n",
726 			   ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
727 
728 		target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
729 		target->max_xfer_szper_scatreq =
730 					ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
731 	}
732 
733 	return 0;
734 }
735 
736 static int ath6kl_sdio_config(struct ath6kl *ar)
737 {
738 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
739 	struct sdio_func *func = ar_sdio->func;
740 	int ret;
741 
742 	sdio_claim_host(func);
743 
744 	if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
745 	    MANUFACTURER_ID_AR6003_BASE) {
746 		/* enable 4-bit ASYNC interrupt on AR6003 or later */
747 		ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
748 						CCCR_SDIO_IRQ_MODE_REG,
749 						SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
750 		if (ret) {
751 			ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
752 				   ret);
753 			goto out;
754 		}
755 
756 		ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
757 	}
758 
759 	/* give us some time to enable, in ms */
760 	func->enable_timeout = 100;
761 
762 	ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
763 	if (ret) {
764 		ath6kl_err("Set sdio block size %d failed: %d)\n",
765 			   HIF_MBOX_BLOCK_SIZE, ret);
766 		sdio_release_host(func);
767 		goto out;
768 	}
769 
770 out:
771 	sdio_release_host(func);
772 
773 	return ret;
774 }
775 
776 static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
777 {
778 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
779 	struct sdio_func *func = ar_sdio->func;
780 	mmc_pm_flag_t flags;
781 	int ret;
782 
783 	flags = sdio_get_host_pm_caps(func);
784 
785 	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
786 
787 	if (!(flags & MMC_PM_KEEP_POWER) ||
788 	    (ar->conf_flags & ATH6KL_CONF_SUSPEND_CUTPOWER)) {
789 		/* as host doesn't support keep power we need to cut power */
790 		return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER,
791 					       NULL);
792 	}
793 
794 	ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
795 	if (ret) {
796 		printk(KERN_ERR "ath6kl: set sdio pm flags failed: %d\n",
797 		       ret);
798 		return ret;
799 	}
800 
801 	if ((flags & MMC_PM_WAKE_SDIO_IRQ) && wow) {
802 		/*
803 		 * The host sdio controller is capable of keep power and
804 		 * sdio irq wake up at this point. It's fine to continue
805 		 * wow suspend operation.
806 		 */
807 		ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
808 		if (ret)
809 			return ret;
810 
811 		ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
812 		if (ret)
813 			ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
814 
815 		return ret;
816 	}
817 
818 	return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP, NULL);
819 }
820 
821 static int ath6kl_sdio_resume(struct ath6kl *ar)
822 {
823 	switch (ar->state) {
824 	case ATH6KL_STATE_OFF:
825 	case ATH6KL_STATE_CUTPOWER:
826 		ath6kl_dbg(ATH6KL_DBG_SUSPEND,
827 			   "sdio resume configuring sdio\n");
828 
829 		/* need to set sdio settings after power is cut from sdio */
830 		ath6kl_sdio_config(ar);
831 		break;
832 
833 	case ATH6KL_STATE_ON:
834 		break;
835 
836 	case ATH6KL_STATE_DEEPSLEEP:
837 		break;
838 
839 	case ATH6KL_STATE_WOW:
840 		break;
841 	}
842 
843 	ath6kl_cfg80211_resume(ar);
844 
845 	return 0;
846 }
847 
848 /* set the window address register (using 4-byte register access ). */
849 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
850 {
851 	int status;
852 	u8 addr_val[4];
853 	s32 i;
854 
855 	/*
856 	 * Write bytes 1,2,3 of the register to set the upper address bytes,
857 	 * the LSB is written last to initiate the access cycle
858 	 */
859 
860 	for (i = 1; i <= 3; i++) {
861 		/*
862 		 * Fill the buffer with the address byte value we want to
863 		 * hit 4 times.
864 		 */
865 		memset(addr_val, ((u8 *)&addr)[i], 4);
866 
867 		/*
868 		 * Hit each byte of the register address with a 4-byte
869 		 * write operation to the same address, this is a harmless
870 		 * operation.
871 		 */
872 		status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
873 					     4, HIF_WR_SYNC_BYTE_FIX);
874 		if (status)
875 			break;
876 	}
877 
878 	if (status) {
879 		ath6kl_err("%s: failed to write initial bytes of 0x%x "
880 			   "to window reg: 0x%X\n", __func__,
881 			   addr, reg_addr);
882 		return status;
883 	}
884 
885 	/*
886 	 * Write the address register again, this time write the whole
887 	 * 4-byte value. The effect here is that the LSB write causes the
888 	 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
889 	 * effect since we are writing the same values again
890 	 */
891 	status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
892 				     4, HIF_WR_SYNC_BYTE_INC);
893 
894 	if (status) {
895 		ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
896 			   __func__, addr, reg_addr);
897 		return status;
898 	}
899 
900 	return 0;
901 }
902 
903 static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
904 {
905 	int status;
906 
907 	/* set window register to start read cycle */
908 	status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
909 					address);
910 
911 	if (status)
912 		return status;
913 
914 	/* read the data */
915 	status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
916 				(u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
917 	if (status) {
918 		ath6kl_err("%s: failed to read from window data addr\n",
919 			__func__);
920 		return status;
921 	}
922 
923 	return status;
924 }
925 
926 static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
927 				    __le32 data)
928 {
929 	int status;
930 	u32 val = (__force u32) data;
931 
932 	/* set write data */
933 	status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
934 				(u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
935 	if (status) {
936 		ath6kl_err("%s: failed to write 0x%x to window data addr\n",
937 			   __func__, data);
938 		return status;
939 	}
940 
941 	/* set window register, which starts the write cycle */
942 	return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
943 				      address);
944 }
945 
946 static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
947 {
948 	u32 addr;
949 	unsigned long timeout;
950 	int ret;
951 
952 	ar->bmi.cmd_credits = 0;
953 
954 	/* Read the counter register to get the command credits */
955 	addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
956 
957 	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
958 	while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
959 
960 		/*
961 		 * Hit the credit counter with a 4-byte access, the first byte
962 		 * read will hit the counter and cause a decrement, while the
963 		 * remaining 3 bytes has no effect. The rationale behind this
964 		 * is to make all HIF accesses 4-byte aligned.
965 		 */
966 		ret = ath6kl_sdio_read_write_sync(ar, addr,
967 					 (u8 *)&ar->bmi.cmd_credits, 4,
968 					 HIF_RD_SYNC_BYTE_INC);
969 		if (ret) {
970 			ath6kl_err("Unable to decrement the command credit "
971 						"count register: %d\n", ret);
972 			return ret;
973 		}
974 
975 		/* The counter is only 8 bits.
976 		 * Ignore anything in the upper 3 bytes
977 		 */
978 		ar->bmi.cmd_credits &= 0xFF;
979 	}
980 
981 	if (!ar->bmi.cmd_credits) {
982 		ath6kl_err("bmi communication timeout\n");
983 		return -ETIMEDOUT;
984 	}
985 
986 	return 0;
987 }
988 
989 static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
990 {
991 	unsigned long timeout;
992 	u32 rx_word = 0;
993 	int ret = 0;
994 
995 	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
996 	while ((time_before(jiffies, timeout)) && !rx_word) {
997 		ret = ath6kl_sdio_read_write_sync(ar,
998 					RX_LOOKAHEAD_VALID_ADDRESS,
999 					(u8 *)&rx_word, sizeof(rx_word),
1000 					HIF_RD_SYNC_BYTE_INC);
1001 		if (ret) {
1002 			ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1003 			return ret;
1004 		}
1005 
1006 		 /* all we really want is one bit */
1007 		rx_word &= (1 << ENDPOINT1);
1008 	}
1009 
1010 	if (!rx_word) {
1011 		ath6kl_err("bmi_recv_buf FIFO empty\n");
1012 		return -EINVAL;
1013 	}
1014 
1015 	return ret;
1016 }
1017 
1018 static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1019 {
1020 	int ret;
1021 	u32 addr;
1022 
1023 	ret = ath6kl_sdio_bmi_credits(ar);
1024 	if (ret)
1025 		return ret;
1026 
1027 	addr = ar->mbox_info.htc_addr;
1028 
1029 	ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1030 					  HIF_WR_SYNC_BYTE_INC);
1031 	if (ret)
1032 		ath6kl_err("unable to send the bmi data to the device\n");
1033 
1034 	return ret;
1035 }
1036 
1037 static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1038 {
1039 	int ret;
1040 	u32 addr;
1041 
1042 	/*
1043 	 * During normal bootup, small reads may be required.
1044 	 * Rather than issue an HIF Read and then wait as the Target
1045 	 * adds successive bytes to the FIFO, we wait here until
1046 	 * we know that response data is available.
1047 	 *
1048 	 * This allows us to cleanly timeout on an unexpected
1049 	 * Target failure rather than risk problems at the HIF level.
1050 	 * In particular, this avoids SDIO timeouts and possibly garbage
1051 	 * data on some host controllers.  And on an interconnect
1052 	 * such as Compact Flash (as well as some SDIO masters) which
1053 	 * does not provide any indication on data timeout, it avoids
1054 	 * a potential hang or garbage response.
1055 	 *
1056 	 * Synchronization is more difficult for reads larger than the
1057 	 * size of the MBOX FIFO (128B), because the Target is unable
1058 	 * to push the 129th byte of data until AFTER the Host posts an
1059 	 * HIF Read and removes some FIFO data.  So for large reads the
1060 	 * Host proceeds to post an HIF Read BEFORE all the data is
1061 	 * actually available to read.  Fortunately, large BMI reads do
1062 	 * not occur in practice -- they're supported for debug/development.
1063 	 *
1064 	 * So Host/Target BMI synchronization is divided into these cases:
1065 	 *  CASE 1: length < 4
1066 	 *        Should not happen
1067 	 *
1068 	 *  CASE 2: 4 <= length <= 128
1069 	 *        Wait for first 4 bytes to be in FIFO
1070 	 *        If CONSERVATIVE_BMI_READ is enabled, also wait for
1071 	 *        a BMI command credit, which indicates that the ENTIRE
1072 	 *        response is available in the the FIFO
1073 	 *
1074 	 *  CASE 3: length > 128
1075 	 *        Wait for the first 4 bytes to be in FIFO
1076 	 *
1077 	 * For most uses, a small timeout should be sufficient and we will
1078 	 * usually see a response quickly; but there may be some unusual
1079 	 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1080 	 * For now, we use an unbounded busy loop while waiting for
1081 	 * BMI_EXECUTE.
1082 	 *
1083 	 * If BMI_EXECUTE ever needs to support longer-latency execution,
1084 	 * especially in production, this code needs to be enhanced to sleep
1085 	 * and yield.  Also note that BMI_COMMUNICATION_TIMEOUT is currently
1086 	 * a function of Host processor speed.
1087 	 */
1088 	if (len >= 4) { /* NB: Currently, always true */
1089 		ret = ath6kl_bmi_get_rx_lkahd(ar);
1090 		if (ret)
1091 			return ret;
1092 	}
1093 
1094 	addr = ar->mbox_info.htc_addr;
1095 	ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1096 				  HIF_RD_SYNC_BYTE_INC);
1097 	if (ret) {
1098 		ath6kl_err("Unable to read the bmi data from the device: %d\n",
1099 			   ret);
1100 		return ret;
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 static void ath6kl_sdio_stop(struct ath6kl *ar)
1107 {
1108 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1109 	struct bus_request *req, *tmp_req;
1110 	void *context;
1111 
1112 	/* FIXME: make sure that wq is not queued again */
1113 
1114 	cancel_work_sync(&ar_sdio->wr_async_work);
1115 
1116 	spin_lock_bh(&ar_sdio->wr_async_lock);
1117 
1118 	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1119 		list_del(&req->list);
1120 
1121 		if (req->scat_req) {
1122 			/* this is a scatter gather request */
1123 			req->scat_req->status = -ECANCELED;
1124 			req->scat_req->complete(ar_sdio->ar->htc_target,
1125 						req->scat_req);
1126 		} else {
1127 			context = req->packet;
1128 			ath6kl_sdio_free_bus_req(ar_sdio, req);
1129 			ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1130 		}
1131 	}
1132 
1133 	spin_unlock_bh(&ar_sdio->wr_async_lock);
1134 
1135 	WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1136 }
1137 
1138 static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1139 	.read_write_sync = ath6kl_sdio_read_write_sync,
1140 	.write_async = ath6kl_sdio_write_async,
1141 	.irq_enable = ath6kl_sdio_irq_enable,
1142 	.irq_disable = ath6kl_sdio_irq_disable,
1143 	.scatter_req_get = ath6kl_sdio_scatter_req_get,
1144 	.scatter_req_add = ath6kl_sdio_scatter_req_add,
1145 	.enable_scatter = ath6kl_sdio_enable_scatter,
1146 	.scat_req_rw = ath6kl_sdio_async_rw_scatter,
1147 	.cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1148 	.suspend = ath6kl_sdio_suspend,
1149 	.resume = ath6kl_sdio_resume,
1150 	.diag_read32 = ath6kl_sdio_diag_read32,
1151 	.diag_write32 = ath6kl_sdio_diag_write32,
1152 	.bmi_read = ath6kl_sdio_bmi_read,
1153 	.bmi_write = ath6kl_sdio_bmi_write,
1154 	.power_on = ath6kl_sdio_power_on,
1155 	.power_off = ath6kl_sdio_power_off,
1156 	.stop = ath6kl_sdio_stop,
1157 };
1158 
1159 #ifdef CONFIG_PM_SLEEP
1160 
1161 /*
1162  * Empty handlers so that mmc subsystem doesn't remove us entirely during
1163  * suspend. We instead follow cfg80211 suspend/resume handlers.
1164  */
1165 static int ath6kl_sdio_pm_suspend(struct device *device)
1166 {
1167 	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1168 
1169 	return 0;
1170 }
1171 
1172 static int ath6kl_sdio_pm_resume(struct device *device)
1173 {
1174 	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1175 
1176 	return 0;
1177 }
1178 
1179 static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1180 			 ath6kl_sdio_pm_resume);
1181 
1182 #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1183 
1184 #else
1185 
1186 #define ATH6KL_SDIO_PM_OPS NULL
1187 
1188 #endif /* CONFIG_PM_SLEEP */
1189 
1190 static int ath6kl_sdio_probe(struct sdio_func *func,
1191 			     const struct sdio_device_id *id)
1192 {
1193 	int ret;
1194 	struct ath6kl_sdio *ar_sdio;
1195 	struct ath6kl *ar;
1196 	int count;
1197 
1198 	ath6kl_dbg(ATH6KL_DBG_BOOT,
1199 		   "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1200 		   func->num, func->vendor, func->device,
1201 		   func->max_blksize, func->cur_blksize);
1202 
1203 	ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1204 	if (!ar_sdio)
1205 		return -ENOMEM;
1206 
1207 	ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1208 	if (!ar_sdio->dma_buffer) {
1209 		ret = -ENOMEM;
1210 		goto err_hif;
1211 	}
1212 
1213 	ar_sdio->func = func;
1214 	sdio_set_drvdata(func, ar_sdio);
1215 
1216 	ar_sdio->id = id;
1217 	ar_sdio->is_disabled = true;
1218 
1219 	spin_lock_init(&ar_sdio->lock);
1220 	spin_lock_init(&ar_sdio->scat_lock);
1221 	spin_lock_init(&ar_sdio->wr_async_lock);
1222 
1223 	INIT_LIST_HEAD(&ar_sdio->scat_req);
1224 	INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1225 	INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1226 
1227 	INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1228 
1229 	for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1230 		ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1231 
1232 	ar = ath6kl_core_alloc(&ar_sdio->func->dev);
1233 	if (!ar) {
1234 		ath6kl_err("Failed to alloc ath6kl core\n");
1235 		ret = -ENOMEM;
1236 		goto err_dma;
1237 	}
1238 
1239 	ar_sdio->ar = ar;
1240 	ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1241 	ar->hif_priv = ar_sdio;
1242 	ar->hif_ops = &ath6kl_sdio_ops;
1243 	ar->bmi.max_data_size = 256;
1244 
1245 	ath6kl_sdio_set_mbox_info(ar);
1246 
1247 	ret = ath6kl_sdio_config(ar);
1248 	if (ret) {
1249 		ath6kl_err("Failed to config sdio: %d\n", ret);
1250 		goto err_core_alloc;
1251 	}
1252 
1253 	ret = ath6kl_core_init(ar);
1254 	if (ret) {
1255 		ath6kl_err("Failed to init ath6kl core\n");
1256 		goto err_core_alloc;
1257 	}
1258 
1259 	return ret;
1260 
1261 err_core_alloc:
1262 	ath6kl_core_free(ar_sdio->ar);
1263 err_dma:
1264 	kfree(ar_sdio->dma_buffer);
1265 err_hif:
1266 	kfree(ar_sdio);
1267 
1268 	return ret;
1269 }
1270 
1271 static void ath6kl_sdio_remove(struct sdio_func *func)
1272 {
1273 	struct ath6kl_sdio *ar_sdio;
1274 
1275 	ath6kl_dbg(ATH6KL_DBG_BOOT,
1276 		   "sdio removed func %d vendor 0x%x device 0x%x\n",
1277 		   func->num, func->vendor, func->device);
1278 
1279 	ar_sdio = sdio_get_drvdata(func);
1280 
1281 	ath6kl_stop_txrx(ar_sdio->ar);
1282 	cancel_work_sync(&ar_sdio->wr_async_work);
1283 
1284 	ath6kl_core_cleanup(ar_sdio->ar);
1285 
1286 	kfree(ar_sdio->dma_buffer);
1287 	kfree(ar_sdio);
1288 }
1289 
1290 static const struct sdio_device_id ath6kl_sdio_devices[] = {
1291 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
1292 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
1293 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
1294 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
1295 	{},
1296 };
1297 
1298 MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1299 
1300 static struct sdio_driver ath6kl_sdio_driver = {
1301 	.name = "ath6kl",
1302 	.id_table = ath6kl_sdio_devices,
1303 	.probe = ath6kl_sdio_probe,
1304 	.remove = ath6kl_sdio_remove,
1305 	.drv.pm = ATH6KL_SDIO_PM_OPS,
1306 };
1307 
1308 static int __init ath6kl_sdio_init(void)
1309 {
1310 	int ret;
1311 
1312 	ret = sdio_register_driver(&ath6kl_sdio_driver);
1313 	if (ret)
1314 		ath6kl_err("sdio driver registration failed: %d\n", ret);
1315 
1316 	return ret;
1317 }
1318 
1319 static void __exit ath6kl_sdio_exit(void)
1320 {
1321 	sdio_unregister_driver(&ath6kl_sdio_driver);
1322 }
1323 
1324 module_init(ath6kl_sdio_init);
1325 module_exit(ath6kl_sdio_exit);
1326 
1327 MODULE_AUTHOR("Atheros Communications, Inc.");
1328 MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1329 MODULE_LICENSE("Dual BSD/GPL");
1330 
1331 MODULE_FIRMWARE(AR6003_REV2_OTP_FILE);
1332 MODULE_FIRMWARE(AR6003_REV2_FIRMWARE_FILE);
1333 MODULE_FIRMWARE(AR6003_REV2_PATCH_FILE);
1334 MODULE_FIRMWARE(AR6003_REV2_BOARD_DATA_FILE);
1335 MODULE_FIRMWARE(AR6003_REV2_DEFAULT_BOARD_DATA_FILE);
1336 MODULE_FIRMWARE(AR6003_REV3_OTP_FILE);
1337 MODULE_FIRMWARE(AR6003_REV3_FIRMWARE_FILE);
1338 MODULE_FIRMWARE(AR6003_REV3_PATCH_FILE);
1339 MODULE_FIRMWARE(AR6003_REV3_BOARD_DATA_FILE);
1340 MODULE_FIRMWARE(AR6003_REV3_DEFAULT_BOARD_DATA_FILE);
1341