1 /* 2 * Copyright (c) 2004-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/mmc/card.h> 20 #include <linux/mmc/mmc.h> 21 #include <linux/mmc/host.h> 22 #include <linux/mmc/sdio_func.h> 23 #include <linux/mmc/sdio_ids.h> 24 #include <linux/mmc/sdio.h> 25 #include <linux/mmc/sd.h> 26 #include "hif.h" 27 #include "hif-ops.h" 28 #include "target.h" 29 #include "debug.h" 30 #include "cfg80211.h" 31 #include "trace.h" 32 33 struct ath6kl_sdio { 34 struct sdio_func *func; 35 36 /* protects access to bus_req_freeq */ 37 spinlock_t lock; 38 39 /* free list */ 40 struct list_head bus_req_freeq; 41 42 /* available bus requests */ 43 struct bus_request bus_req[BUS_REQUEST_MAX_NUM]; 44 45 struct ath6kl *ar; 46 47 u8 *dma_buffer; 48 49 /* protects access to dma_buffer */ 50 struct mutex dma_buffer_mutex; 51 52 /* scatter request list head */ 53 struct list_head scat_req; 54 55 atomic_t irq_handling; 56 wait_queue_head_t irq_wq; 57 58 /* protects access to scat_req */ 59 spinlock_t scat_lock; 60 61 bool scatter_enabled; 62 63 bool is_disabled; 64 const struct sdio_device_id *id; 65 struct work_struct wr_async_work; 66 struct list_head wr_asyncq; 67 68 /* protects access to wr_asyncq */ 69 spinlock_t wr_async_lock; 70 }; 71 72 #define CMD53_ARG_READ 0 73 #define CMD53_ARG_WRITE 1 74 #define CMD53_ARG_BLOCK_BASIS 1 75 #define CMD53_ARG_FIXED_ADDRESS 0 76 #define CMD53_ARG_INCR_ADDRESS 1 77 78 static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar) 79 { 80 return ar->hif_priv; 81 } 82 83 /* 84 * Macro to check if DMA buffer is WORD-aligned and DMA-able. 85 * Most host controllers assume the buffer is DMA'able and will 86 * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid 87 * check fails on stack memory. 88 */ 89 static inline bool buf_needs_bounce(u8 *buf) 90 { 91 return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf); 92 } 93 94 static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar) 95 { 96 struct ath6kl_mbox_info *mbox_info = &ar->mbox_info; 97 98 /* EP1 has an extended range */ 99 mbox_info->htc_addr = HIF_MBOX_BASE_ADDR; 100 mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR; 101 mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH; 102 mbox_info->block_size = HIF_MBOX_BLOCK_SIZE; 103 mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR; 104 mbox_info->gmbox_sz = HIF_GMBOX_WIDTH; 105 } 106 107 static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func, 108 u8 mode, u8 opcode, u32 addr, 109 u16 blksz) 110 { 111 *arg = (((rw & 1) << 31) | 112 ((func & 0x7) << 28) | 113 ((mode & 1) << 27) | 114 ((opcode & 1) << 26) | 115 ((addr & 0x1FFFF) << 9) | 116 (blksz & 0x1FF)); 117 } 118 119 static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw, 120 unsigned int address, 121 unsigned char val) 122 { 123 const u8 func = 0; 124 125 *arg = ((write & 1) << 31) | 126 ((func & 0x7) << 28) | 127 ((raw & 1) << 27) | 128 (1 << 26) | 129 ((address & 0x1FFFF) << 9) | 130 (1 << 8) | 131 (val & 0xFF); 132 } 133 134 static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card, 135 unsigned int address, 136 unsigned char byte) 137 { 138 struct mmc_command io_cmd; 139 140 memset(&io_cmd, 0, sizeof(io_cmd)); 141 ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte); 142 io_cmd.opcode = SD_IO_RW_DIRECT; 143 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 144 145 return mmc_wait_for_cmd(card->host, &io_cmd, 0); 146 } 147 148 static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr, 149 u8 *buf, u32 len) 150 { 151 int ret = 0; 152 153 sdio_claim_host(func); 154 155 if (request & HIF_WRITE) { 156 /* FIXME: looks like ugly workaround for something */ 157 if (addr >= HIF_MBOX_BASE_ADDR && 158 addr <= HIF_MBOX_END_ADDR) 159 addr += (HIF_MBOX_WIDTH - len); 160 161 /* FIXME: this also looks like ugly workaround */ 162 if (addr == HIF_MBOX0_EXT_BASE_ADDR) 163 addr += HIF_MBOX0_EXT_WIDTH - len; 164 165 if (request & HIF_FIXED_ADDRESS) 166 ret = sdio_writesb(func, addr, buf, len); 167 else 168 ret = sdio_memcpy_toio(func, addr, buf, len); 169 } else { 170 if (request & HIF_FIXED_ADDRESS) 171 ret = sdio_readsb(func, buf, addr, len); 172 else 173 ret = sdio_memcpy_fromio(func, buf, addr, len); 174 } 175 176 sdio_release_host(func); 177 178 ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n", 179 request & HIF_WRITE ? "wr" : "rd", addr, 180 request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len); 181 ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len); 182 183 trace_ath6kl_sdio(addr, request, buf, len); 184 185 return ret; 186 } 187 188 static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio) 189 { 190 struct bus_request *bus_req; 191 192 spin_lock_bh(&ar_sdio->lock); 193 194 if (list_empty(&ar_sdio->bus_req_freeq)) { 195 spin_unlock_bh(&ar_sdio->lock); 196 return NULL; 197 } 198 199 bus_req = list_first_entry(&ar_sdio->bus_req_freeq, 200 struct bus_request, list); 201 list_del(&bus_req->list); 202 203 spin_unlock_bh(&ar_sdio->lock); 204 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n", 205 __func__, bus_req); 206 207 return bus_req; 208 } 209 210 static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio, 211 struct bus_request *bus_req) 212 { 213 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n", 214 __func__, bus_req); 215 216 spin_lock_bh(&ar_sdio->lock); 217 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq); 218 spin_unlock_bh(&ar_sdio->lock); 219 } 220 221 static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req, 222 struct mmc_data *data) 223 { 224 struct scatterlist *sg; 225 int i; 226 227 data->blksz = HIF_MBOX_BLOCK_SIZE; 228 data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE; 229 230 ath6kl_dbg(ATH6KL_DBG_SCATTER, 231 "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n", 232 (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr, 233 data->blksz, data->blocks, scat_req->len, 234 scat_req->scat_entries); 235 236 data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE : 237 MMC_DATA_READ; 238 239 /* fill SG entries */ 240 sg = scat_req->sgentries; 241 sg_init_table(sg, scat_req->scat_entries); 242 243 /* assemble SG list */ 244 for (i = 0; i < scat_req->scat_entries; i++, sg++) { 245 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n", 246 i, scat_req->scat_list[i].buf, 247 scat_req->scat_list[i].len); 248 249 sg_set_buf(sg, scat_req->scat_list[i].buf, 250 scat_req->scat_list[i].len); 251 } 252 253 /* set scatter-gather table for request */ 254 data->sg = scat_req->sgentries; 255 data->sg_len = scat_req->scat_entries; 256 } 257 258 static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio, 259 struct bus_request *req) 260 { 261 struct mmc_request mmc_req; 262 struct mmc_command cmd; 263 struct mmc_data data; 264 struct hif_scatter_req *scat_req; 265 u8 opcode, rw; 266 int status, len; 267 268 scat_req = req->scat_req; 269 270 if (scat_req->virt_scat) { 271 len = scat_req->len; 272 if (scat_req->req & HIF_BLOCK_BASIS) 273 len = round_down(len, HIF_MBOX_BLOCK_SIZE); 274 275 status = ath6kl_sdio_io(ar_sdio->func, scat_req->req, 276 scat_req->addr, scat_req->virt_dma_buf, 277 len); 278 goto scat_complete; 279 } 280 281 memset(&mmc_req, 0, sizeof(struct mmc_request)); 282 memset(&cmd, 0, sizeof(struct mmc_command)); 283 memset(&data, 0, sizeof(struct mmc_data)); 284 285 ath6kl_sdio_setup_scat_data(scat_req, &data); 286 287 opcode = (scat_req->req & HIF_FIXED_ADDRESS) ? 288 CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS; 289 290 rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ; 291 292 /* Fixup the address so that the last byte will fall on MBOX EOM */ 293 if (scat_req->req & HIF_WRITE) { 294 if (scat_req->addr == HIF_MBOX_BASE_ADDR) 295 scat_req->addr += HIF_MBOX_WIDTH - scat_req->len; 296 else 297 /* Uses extended address range */ 298 scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len; 299 } 300 301 /* set command argument */ 302 ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num, 303 CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr, 304 data.blocks); 305 306 cmd.opcode = SD_IO_RW_EXTENDED; 307 cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC; 308 309 mmc_req.cmd = &cmd; 310 mmc_req.data = &data; 311 312 sdio_claim_host(ar_sdio->func); 313 314 mmc_set_data_timeout(&data, ar_sdio->func->card); 315 316 trace_ath6kl_sdio_scat(scat_req->addr, 317 scat_req->req, 318 scat_req->len, 319 scat_req->scat_entries, 320 scat_req->scat_list); 321 322 /* synchronous call to process request */ 323 mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req); 324 325 sdio_release_host(ar_sdio->func); 326 327 status = cmd.error ? cmd.error : data.error; 328 329 scat_complete: 330 scat_req->status = status; 331 332 if (scat_req->status) 333 ath6kl_err("Scatter write request failed:%d\n", 334 scat_req->status); 335 336 if (scat_req->req & HIF_ASYNCHRONOUS) 337 scat_req->complete(ar_sdio->ar->htc_target, scat_req); 338 339 return status; 340 } 341 342 static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio, 343 int n_scat_entry, int n_scat_req, 344 bool virt_scat) 345 { 346 struct hif_scatter_req *s_req; 347 struct bus_request *bus_req; 348 int i, scat_req_sz, scat_list_sz, size; 349 u8 *virt_buf; 350 351 scat_list_sz = n_scat_entry * sizeof(struct hif_scatter_item); 352 scat_req_sz = sizeof(*s_req) + scat_list_sz; 353 354 if (!virt_scat) 355 size = sizeof(struct scatterlist) * n_scat_entry; 356 else 357 size = 2 * L1_CACHE_BYTES + 358 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER; 359 360 for (i = 0; i < n_scat_req; i++) { 361 /* allocate the scatter request */ 362 s_req = kzalloc(scat_req_sz, GFP_KERNEL); 363 if (!s_req) 364 return -ENOMEM; 365 366 if (virt_scat) { 367 virt_buf = kzalloc(size, GFP_KERNEL); 368 if (!virt_buf) { 369 kfree(s_req); 370 return -ENOMEM; 371 } 372 373 s_req->virt_dma_buf = 374 (u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf); 375 } else { 376 /* allocate sglist */ 377 s_req->sgentries = kzalloc(size, GFP_KERNEL); 378 379 if (!s_req->sgentries) { 380 kfree(s_req); 381 return -ENOMEM; 382 } 383 } 384 385 /* allocate a bus request for this scatter request */ 386 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio); 387 if (!bus_req) { 388 kfree(s_req->sgentries); 389 kfree(s_req->virt_dma_buf); 390 kfree(s_req); 391 return -ENOMEM; 392 } 393 394 /* assign the scatter request to this bus request */ 395 bus_req->scat_req = s_req; 396 s_req->busrequest = bus_req; 397 398 s_req->virt_scat = virt_scat; 399 400 /* add it to the scatter pool */ 401 hif_scatter_req_add(ar_sdio->ar, s_req); 402 } 403 404 return 0; 405 } 406 407 static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf, 408 u32 len, u32 request) 409 { 410 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 411 u8 *tbuf = NULL; 412 int ret; 413 bool bounced = false; 414 415 if (request & HIF_BLOCK_BASIS) 416 len = round_down(len, HIF_MBOX_BLOCK_SIZE); 417 418 if (buf_needs_bounce(buf)) { 419 if (!ar_sdio->dma_buffer) 420 return -ENOMEM; 421 mutex_lock(&ar_sdio->dma_buffer_mutex); 422 tbuf = ar_sdio->dma_buffer; 423 424 if (request & HIF_WRITE) 425 memcpy(tbuf, buf, len); 426 427 bounced = true; 428 } else { 429 tbuf = buf; 430 } 431 432 ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len); 433 if ((request & HIF_READ) && bounced) 434 memcpy(buf, tbuf, len); 435 436 if (bounced) 437 mutex_unlock(&ar_sdio->dma_buffer_mutex); 438 439 return ret; 440 } 441 442 static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio, 443 struct bus_request *req) 444 { 445 if (req->scat_req) { 446 ath6kl_sdio_scat_rw(ar_sdio, req); 447 } else { 448 void *context; 449 int status; 450 451 status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address, 452 req->buffer, req->length, 453 req->request); 454 context = req->packet; 455 ath6kl_sdio_free_bus_req(ar_sdio, req); 456 ath6kl_hif_rw_comp_handler(context, status); 457 } 458 } 459 460 static void ath6kl_sdio_write_async_work(struct work_struct *work) 461 { 462 struct ath6kl_sdio *ar_sdio; 463 struct bus_request *req, *tmp_req; 464 465 ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work); 466 467 spin_lock_bh(&ar_sdio->wr_async_lock); 468 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 469 list_del(&req->list); 470 spin_unlock_bh(&ar_sdio->wr_async_lock); 471 __ath6kl_sdio_write_async(ar_sdio, req); 472 spin_lock_bh(&ar_sdio->wr_async_lock); 473 } 474 spin_unlock_bh(&ar_sdio->wr_async_lock); 475 } 476 477 static void ath6kl_sdio_irq_handler(struct sdio_func *func) 478 { 479 int status; 480 struct ath6kl_sdio *ar_sdio; 481 482 ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n"); 483 484 ar_sdio = sdio_get_drvdata(func); 485 atomic_set(&ar_sdio->irq_handling, 1); 486 /* 487 * Release the host during interrups so we can pick it back up when 488 * we process commands. 489 */ 490 sdio_release_host(ar_sdio->func); 491 492 status = ath6kl_hif_intr_bh_handler(ar_sdio->ar); 493 sdio_claim_host(ar_sdio->func); 494 495 atomic_set(&ar_sdio->irq_handling, 0); 496 wake_up(&ar_sdio->irq_wq); 497 498 WARN_ON(status && status != -ECANCELED); 499 } 500 501 static int ath6kl_sdio_power_on(struct ath6kl *ar) 502 { 503 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 504 struct sdio_func *func = ar_sdio->func; 505 int ret = 0; 506 507 if (!ar_sdio->is_disabled) 508 return 0; 509 510 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n"); 511 512 sdio_claim_host(func); 513 514 ret = sdio_enable_func(func); 515 if (ret) { 516 ath6kl_err("Unable to enable sdio func: %d)\n", ret); 517 sdio_release_host(func); 518 return ret; 519 } 520 521 sdio_release_host(func); 522 523 /* 524 * Wait for hardware to initialise. It should take a lot less than 525 * 10 ms but let's be conservative here. 526 */ 527 msleep(10); 528 529 ar_sdio->is_disabled = false; 530 531 return ret; 532 } 533 534 static int ath6kl_sdio_power_off(struct ath6kl *ar) 535 { 536 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 537 int ret; 538 539 if (ar_sdio->is_disabled) 540 return 0; 541 542 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n"); 543 544 /* Disable the card */ 545 sdio_claim_host(ar_sdio->func); 546 ret = sdio_disable_func(ar_sdio->func); 547 sdio_release_host(ar_sdio->func); 548 549 if (ret) 550 return ret; 551 552 ar_sdio->is_disabled = true; 553 554 return ret; 555 } 556 557 static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer, 558 u32 length, u32 request, 559 struct htc_packet *packet) 560 { 561 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 562 struct bus_request *bus_req; 563 564 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio); 565 566 if (WARN_ON_ONCE(!bus_req)) 567 return -ENOMEM; 568 569 bus_req->address = address; 570 bus_req->buffer = buffer; 571 bus_req->length = length; 572 bus_req->request = request; 573 bus_req->packet = packet; 574 575 spin_lock_bh(&ar_sdio->wr_async_lock); 576 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq); 577 spin_unlock_bh(&ar_sdio->wr_async_lock); 578 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work); 579 580 return 0; 581 } 582 583 static void ath6kl_sdio_irq_enable(struct ath6kl *ar) 584 { 585 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 586 int ret; 587 588 sdio_claim_host(ar_sdio->func); 589 590 /* Register the isr */ 591 ret = sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler); 592 if (ret) 593 ath6kl_err("Failed to claim sdio irq: %d\n", ret); 594 595 sdio_release_host(ar_sdio->func); 596 } 597 598 static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar) 599 { 600 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 601 602 return !atomic_read(&ar_sdio->irq_handling); 603 } 604 605 static void ath6kl_sdio_irq_disable(struct ath6kl *ar) 606 { 607 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 608 int ret; 609 610 sdio_claim_host(ar_sdio->func); 611 612 if (atomic_read(&ar_sdio->irq_handling)) { 613 sdio_release_host(ar_sdio->func); 614 615 ret = wait_event_interruptible(ar_sdio->irq_wq, 616 ath6kl_sdio_is_on_irq(ar)); 617 if (ret) 618 return; 619 620 sdio_claim_host(ar_sdio->func); 621 } 622 623 ret = sdio_release_irq(ar_sdio->func); 624 if (ret) 625 ath6kl_err("Failed to release sdio irq: %d\n", ret); 626 627 sdio_release_host(ar_sdio->func); 628 } 629 630 static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar) 631 { 632 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 633 struct hif_scatter_req *node = NULL; 634 635 spin_lock_bh(&ar_sdio->scat_lock); 636 637 if (!list_empty(&ar_sdio->scat_req)) { 638 node = list_first_entry(&ar_sdio->scat_req, 639 struct hif_scatter_req, list); 640 list_del(&node->list); 641 642 node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req); 643 } 644 645 spin_unlock_bh(&ar_sdio->scat_lock); 646 647 return node; 648 } 649 650 static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar, 651 struct hif_scatter_req *s_req) 652 { 653 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 654 655 spin_lock_bh(&ar_sdio->scat_lock); 656 657 list_add_tail(&s_req->list, &ar_sdio->scat_req); 658 659 spin_unlock_bh(&ar_sdio->scat_lock); 660 } 661 662 /* scatter gather read write request */ 663 static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar, 664 struct hif_scatter_req *scat_req) 665 { 666 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 667 u32 request = scat_req->req; 668 int status = 0; 669 670 if (!scat_req->len) 671 return -EINVAL; 672 673 ath6kl_dbg(ATH6KL_DBG_SCATTER, 674 "hif-scatter: total len: %d scatter entries: %d\n", 675 scat_req->len, scat_req->scat_entries); 676 677 if (request & HIF_SYNCHRONOUS) { 678 status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest); 679 } else { 680 spin_lock_bh(&ar_sdio->wr_async_lock); 681 list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq); 682 spin_unlock_bh(&ar_sdio->wr_async_lock); 683 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work); 684 } 685 686 return status; 687 } 688 689 /* clean up scatter support */ 690 static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar) 691 { 692 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 693 struct hif_scatter_req *s_req, *tmp_req; 694 695 /* empty the free list */ 696 spin_lock_bh(&ar_sdio->scat_lock); 697 list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) { 698 list_del(&s_req->list); 699 spin_unlock_bh(&ar_sdio->scat_lock); 700 701 /* 702 * FIXME: should we also call completion handler with 703 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so 704 * that the packet is properly freed? 705 */ 706 if (s_req->busrequest) 707 ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest); 708 kfree(s_req->virt_dma_buf); 709 kfree(s_req->sgentries); 710 kfree(s_req); 711 712 spin_lock_bh(&ar_sdio->scat_lock); 713 } 714 spin_unlock_bh(&ar_sdio->scat_lock); 715 } 716 717 /* setup of HIF scatter resources */ 718 static int ath6kl_sdio_enable_scatter(struct ath6kl *ar) 719 { 720 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 721 struct htc_target *target = ar->htc_target; 722 int ret = 0; 723 bool virt_scat = false; 724 725 if (ar_sdio->scatter_enabled) 726 return 0; 727 728 ar_sdio->scatter_enabled = true; 729 730 /* check if host supports scatter and it meets our requirements */ 731 if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) { 732 ath6kl_err("host only supports scatter of :%d entries, need: %d\n", 733 ar_sdio->func->card->host->max_segs, 734 MAX_SCATTER_ENTRIES_PER_REQ); 735 virt_scat = true; 736 } 737 738 if (!virt_scat) { 739 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio, 740 MAX_SCATTER_ENTRIES_PER_REQ, 741 MAX_SCATTER_REQUESTS, virt_scat); 742 743 if (!ret) { 744 ath6kl_dbg(ATH6KL_DBG_BOOT, 745 "hif-scatter enabled requests %d entries %d\n", 746 MAX_SCATTER_REQUESTS, 747 MAX_SCATTER_ENTRIES_PER_REQ); 748 749 target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ; 750 target->max_xfer_szper_scatreq = 751 MAX_SCATTER_REQ_TRANSFER_SIZE; 752 } else { 753 ath6kl_sdio_cleanup_scatter(ar); 754 ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n"); 755 } 756 } 757 758 if (virt_scat || ret) { 759 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio, 760 ATH6KL_SCATTER_ENTRIES_PER_REQ, 761 ATH6KL_SCATTER_REQS, virt_scat); 762 763 if (ret) { 764 ath6kl_err("failed to alloc virtual scatter resources !\n"); 765 ath6kl_sdio_cleanup_scatter(ar); 766 return ret; 767 } 768 769 ath6kl_dbg(ATH6KL_DBG_BOOT, 770 "virtual scatter enabled requests %d entries %d\n", 771 ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ); 772 773 target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ; 774 target->max_xfer_szper_scatreq = 775 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER; 776 } 777 778 return 0; 779 } 780 781 static int ath6kl_sdio_config(struct ath6kl *ar) 782 { 783 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 784 struct sdio_func *func = ar_sdio->func; 785 int ret; 786 787 sdio_claim_host(func); 788 789 if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >= 790 MANUFACTURER_ID_AR6003_BASE) { 791 /* enable 4-bit ASYNC interrupt on AR6003 or later */ 792 ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card, 793 CCCR_SDIO_IRQ_MODE_REG, 794 SDIO_IRQ_MODE_ASYNC_4BIT_IRQ); 795 if (ret) { 796 ath6kl_err("Failed to enable 4-bit async irq mode %d\n", 797 ret); 798 goto out; 799 } 800 801 ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n"); 802 } 803 804 /* give us some time to enable, in ms */ 805 func->enable_timeout = 100; 806 807 ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE); 808 if (ret) { 809 ath6kl_err("Set sdio block size %d failed: %d)\n", 810 HIF_MBOX_BLOCK_SIZE, ret); 811 goto out; 812 } 813 814 out: 815 sdio_release_host(func); 816 817 return ret; 818 } 819 820 static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar) 821 { 822 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 823 struct sdio_func *func = ar_sdio->func; 824 mmc_pm_flag_t flags; 825 int ret; 826 827 flags = sdio_get_host_pm_caps(func); 828 829 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags); 830 831 if (!(flags & MMC_PM_WAKE_SDIO_IRQ) || 832 !(flags & MMC_PM_KEEP_POWER)) 833 return -EINVAL; 834 835 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER); 836 if (ret) { 837 ath6kl_err("set sdio keep pwr flag failed: %d\n", ret); 838 return ret; 839 } 840 841 /* sdio irq wakes up host */ 842 ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ); 843 if (ret) 844 ath6kl_err("set sdio wake irq flag failed: %d\n", ret); 845 846 return ret; 847 } 848 849 static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow) 850 { 851 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 852 struct sdio_func *func = ar_sdio->func; 853 mmc_pm_flag_t flags; 854 bool try_deepsleep = false; 855 int ret; 856 857 if (ar->suspend_mode == WLAN_POWER_STATE_WOW || 858 (!ar->suspend_mode && wow)) { 859 ret = ath6kl_set_sdio_pm_caps(ar); 860 if (ret) 861 goto cut_pwr; 862 863 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow); 864 if (ret && ret != -ENOTCONN) 865 ath6kl_err("wow suspend failed: %d\n", ret); 866 867 if (ret && 868 (!ar->wow_suspend_mode || 869 ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP)) 870 try_deepsleep = true; 871 else if (ret && 872 ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR) 873 goto cut_pwr; 874 if (!ret) 875 return 0; 876 } 877 878 if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP || 879 !ar->suspend_mode || try_deepsleep) { 880 flags = sdio_get_host_pm_caps(func); 881 if (!(flags & MMC_PM_KEEP_POWER)) 882 goto cut_pwr; 883 884 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER); 885 if (ret) 886 goto cut_pwr; 887 888 /* 889 * Workaround to support Deep Sleep with MSM, set the host pm 890 * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable 891 * the sdc2_clock and internally allows MSM to enter 892 * TCXO shutdown properly. 893 */ 894 if ((flags & MMC_PM_WAKE_SDIO_IRQ)) { 895 ret = sdio_set_host_pm_flags(func, 896 MMC_PM_WAKE_SDIO_IRQ); 897 if (ret) 898 goto cut_pwr; 899 } 900 901 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP, 902 NULL); 903 if (ret) 904 goto cut_pwr; 905 906 return 0; 907 } 908 909 cut_pwr: 910 if (func->card && func->card->host) 911 func->card->host->pm_flags &= ~MMC_PM_KEEP_POWER; 912 913 return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL); 914 } 915 916 static int ath6kl_sdio_resume(struct ath6kl *ar) 917 { 918 switch (ar->state) { 919 case ATH6KL_STATE_OFF: 920 case ATH6KL_STATE_CUTPOWER: 921 ath6kl_dbg(ATH6KL_DBG_SUSPEND, 922 "sdio resume configuring sdio\n"); 923 924 /* need to set sdio settings after power is cut from sdio */ 925 ath6kl_sdio_config(ar); 926 break; 927 928 case ATH6KL_STATE_ON: 929 break; 930 931 case ATH6KL_STATE_DEEPSLEEP: 932 break; 933 934 case ATH6KL_STATE_WOW: 935 break; 936 937 case ATH6KL_STATE_SUSPENDING: 938 break; 939 940 case ATH6KL_STATE_RESUMING: 941 break; 942 943 case ATH6KL_STATE_RECOVERY: 944 break; 945 } 946 947 ath6kl_cfg80211_resume(ar); 948 949 return 0; 950 } 951 952 /* set the window address register (using 4-byte register access ). */ 953 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr) 954 { 955 int status; 956 u8 addr_val[4]; 957 s32 i; 958 959 /* 960 * Write bytes 1,2,3 of the register to set the upper address bytes, 961 * the LSB is written last to initiate the access cycle 962 */ 963 964 for (i = 1; i <= 3; i++) { 965 /* 966 * Fill the buffer with the address byte value we want to 967 * hit 4 times. 968 */ 969 memset(addr_val, ((u8 *)&addr)[i], 4); 970 971 /* 972 * Hit each byte of the register address with a 4-byte 973 * write operation to the same address, this is a harmless 974 * operation. 975 */ 976 status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val, 977 4, HIF_WR_SYNC_BYTE_FIX); 978 if (status) 979 break; 980 } 981 982 if (status) { 983 ath6kl_err("%s: failed to write initial bytes of 0x%x to window reg: 0x%X\n", 984 __func__, addr, reg_addr); 985 return status; 986 } 987 988 /* 989 * Write the address register again, this time write the whole 990 * 4-byte value. The effect here is that the LSB write causes the 991 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no 992 * effect since we are writing the same values again 993 */ 994 status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr), 995 4, HIF_WR_SYNC_BYTE_INC); 996 997 if (status) { 998 ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n", 999 __func__, addr, reg_addr); 1000 return status; 1001 } 1002 1003 return 0; 1004 } 1005 1006 static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data) 1007 { 1008 int status; 1009 1010 /* set window register to start read cycle */ 1011 status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS, 1012 address); 1013 1014 if (status) 1015 return status; 1016 1017 /* read the data */ 1018 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS, 1019 (u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC); 1020 if (status) { 1021 ath6kl_err("%s: failed to read from window data addr\n", 1022 __func__); 1023 return status; 1024 } 1025 1026 return status; 1027 } 1028 1029 static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address, 1030 __le32 data) 1031 { 1032 int status; 1033 u32 val = (__force u32) data; 1034 1035 /* set write data */ 1036 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS, 1037 (u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC); 1038 if (status) { 1039 ath6kl_err("%s: failed to write 0x%x to window data addr\n", 1040 __func__, data); 1041 return status; 1042 } 1043 1044 /* set window register, which starts the write cycle */ 1045 return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS, 1046 address); 1047 } 1048 1049 static int ath6kl_sdio_bmi_credits(struct ath6kl *ar) 1050 { 1051 u32 addr; 1052 unsigned long timeout; 1053 int ret; 1054 1055 ar->bmi.cmd_credits = 0; 1056 1057 /* Read the counter register to get the command credits */ 1058 addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4; 1059 1060 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT); 1061 while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) { 1062 /* 1063 * Hit the credit counter with a 4-byte access, the first byte 1064 * read will hit the counter and cause a decrement, while the 1065 * remaining 3 bytes has no effect. The rationale behind this 1066 * is to make all HIF accesses 4-byte aligned. 1067 */ 1068 ret = ath6kl_sdio_read_write_sync(ar, addr, 1069 (u8 *)&ar->bmi.cmd_credits, 4, 1070 HIF_RD_SYNC_BYTE_INC); 1071 if (ret) { 1072 ath6kl_err("Unable to decrement the command credit count register: %d\n", 1073 ret); 1074 return ret; 1075 } 1076 1077 /* The counter is only 8 bits. 1078 * Ignore anything in the upper 3 bytes 1079 */ 1080 ar->bmi.cmd_credits &= 0xFF; 1081 } 1082 1083 if (!ar->bmi.cmd_credits) { 1084 ath6kl_err("bmi communication timeout\n"); 1085 return -ETIMEDOUT; 1086 } 1087 1088 return 0; 1089 } 1090 1091 static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar) 1092 { 1093 unsigned long timeout; 1094 u32 rx_word = 0; 1095 int ret = 0; 1096 1097 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT); 1098 while ((time_before(jiffies, timeout)) && !rx_word) { 1099 ret = ath6kl_sdio_read_write_sync(ar, 1100 RX_LOOKAHEAD_VALID_ADDRESS, 1101 (u8 *)&rx_word, sizeof(rx_word), 1102 HIF_RD_SYNC_BYTE_INC); 1103 if (ret) { 1104 ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n"); 1105 return ret; 1106 } 1107 1108 /* all we really want is one bit */ 1109 rx_word &= (1 << ENDPOINT1); 1110 } 1111 1112 if (!rx_word) { 1113 ath6kl_err("bmi_recv_buf FIFO empty\n"); 1114 return -EINVAL; 1115 } 1116 1117 return ret; 1118 } 1119 1120 static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len) 1121 { 1122 int ret; 1123 u32 addr; 1124 1125 ret = ath6kl_sdio_bmi_credits(ar); 1126 if (ret) 1127 return ret; 1128 1129 addr = ar->mbox_info.htc_addr; 1130 1131 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len, 1132 HIF_WR_SYNC_BYTE_INC); 1133 if (ret) { 1134 ath6kl_err("unable to send the bmi data to the device\n"); 1135 return ret; 1136 } 1137 1138 return 0; 1139 } 1140 1141 static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len) 1142 { 1143 int ret; 1144 u32 addr; 1145 1146 /* 1147 * During normal bootup, small reads may be required. 1148 * Rather than issue an HIF Read and then wait as the Target 1149 * adds successive bytes to the FIFO, we wait here until 1150 * we know that response data is available. 1151 * 1152 * This allows us to cleanly timeout on an unexpected 1153 * Target failure rather than risk problems at the HIF level. 1154 * In particular, this avoids SDIO timeouts and possibly garbage 1155 * data on some host controllers. And on an interconnect 1156 * such as Compact Flash (as well as some SDIO masters) which 1157 * does not provide any indication on data timeout, it avoids 1158 * a potential hang or garbage response. 1159 * 1160 * Synchronization is more difficult for reads larger than the 1161 * size of the MBOX FIFO (128B), because the Target is unable 1162 * to push the 129th byte of data until AFTER the Host posts an 1163 * HIF Read and removes some FIFO data. So for large reads the 1164 * Host proceeds to post an HIF Read BEFORE all the data is 1165 * actually available to read. Fortunately, large BMI reads do 1166 * not occur in practice -- they're supported for debug/development. 1167 * 1168 * So Host/Target BMI synchronization is divided into these cases: 1169 * CASE 1: length < 4 1170 * Should not happen 1171 * 1172 * CASE 2: 4 <= length <= 128 1173 * Wait for first 4 bytes to be in FIFO 1174 * If CONSERVATIVE_BMI_READ is enabled, also wait for 1175 * a BMI command credit, which indicates that the ENTIRE 1176 * response is available in the the FIFO 1177 * 1178 * CASE 3: length > 128 1179 * Wait for the first 4 bytes to be in FIFO 1180 * 1181 * For most uses, a small timeout should be sufficient and we will 1182 * usually see a response quickly; but there may be some unusual 1183 * (debug) cases of BMI_EXECUTE where we want an larger timeout. 1184 * For now, we use an unbounded busy loop while waiting for 1185 * BMI_EXECUTE. 1186 * 1187 * If BMI_EXECUTE ever needs to support longer-latency execution, 1188 * especially in production, this code needs to be enhanced to sleep 1189 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently 1190 * a function of Host processor speed. 1191 */ 1192 if (len >= 4) { /* NB: Currently, always true */ 1193 ret = ath6kl_bmi_get_rx_lkahd(ar); 1194 if (ret) 1195 return ret; 1196 } 1197 1198 addr = ar->mbox_info.htc_addr; 1199 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len, 1200 HIF_RD_SYNC_BYTE_INC); 1201 if (ret) { 1202 ath6kl_err("Unable to read the bmi data from the device: %d\n", 1203 ret); 1204 return ret; 1205 } 1206 1207 return 0; 1208 } 1209 1210 static void ath6kl_sdio_stop(struct ath6kl *ar) 1211 { 1212 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 1213 struct bus_request *req, *tmp_req; 1214 void *context; 1215 1216 /* FIXME: make sure that wq is not queued again */ 1217 1218 cancel_work_sync(&ar_sdio->wr_async_work); 1219 1220 spin_lock_bh(&ar_sdio->wr_async_lock); 1221 1222 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1223 list_del(&req->list); 1224 1225 if (req->scat_req) { 1226 /* this is a scatter gather request */ 1227 req->scat_req->status = -ECANCELED; 1228 req->scat_req->complete(ar_sdio->ar->htc_target, 1229 req->scat_req); 1230 } else { 1231 context = req->packet; 1232 ath6kl_sdio_free_bus_req(ar_sdio, req); 1233 ath6kl_hif_rw_comp_handler(context, -ECANCELED); 1234 } 1235 } 1236 1237 spin_unlock_bh(&ar_sdio->wr_async_lock); 1238 1239 WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4); 1240 } 1241 1242 static const struct ath6kl_hif_ops ath6kl_sdio_ops = { 1243 .read_write_sync = ath6kl_sdio_read_write_sync, 1244 .write_async = ath6kl_sdio_write_async, 1245 .irq_enable = ath6kl_sdio_irq_enable, 1246 .irq_disable = ath6kl_sdio_irq_disable, 1247 .scatter_req_get = ath6kl_sdio_scatter_req_get, 1248 .scatter_req_add = ath6kl_sdio_scatter_req_add, 1249 .enable_scatter = ath6kl_sdio_enable_scatter, 1250 .scat_req_rw = ath6kl_sdio_async_rw_scatter, 1251 .cleanup_scatter = ath6kl_sdio_cleanup_scatter, 1252 .suspend = ath6kl_sdio_suspend, 1253 .resume = ath6kl_sdio_resume, 1254 .diag_read32 = ath6kl_sdio_diag_read32, 1255 .diag_write32 = ath6kl_sdio_diag_write32, 1256 .bmi_read = ath6kl_sdio_bmi_read, 1257 .bmi_write = ath6kl_sdio_bmi_write, 1258 .power_on = ath6kl_sdio_power_on, 1259 .power_off = ath6kl_sdio_power_off, 1260 .stop = ath6kl_sdio_stop, 1261 }; 1262 1263 #ifdef CONFIG_PM_SLEEP 1264 1265 /* 1266 * Empty handlers so that mmc subsystem doesn't remove us entirely during 1267 * suspend. We instead follow cfg80211 suspend/resume handlers. 1268 */ 1269 static int ath6kl_sdio_pm_suspend(struct device *device) 1270 { 1271 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n"); 1272 1273 return 0; 1274 } 1275 1276 static int ath6kl_sdio_pm_resume(struct device *device) 1277 { 1278 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n"); 1279 1280 return 0; 1281 } 1282 1283 static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend, 1284 ath6kl_sdio_pm_resume); 1285 1286 #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops) 1287 1288 #else 1289 1290 #define ATH6KL_SDIO_PM_OPS NULL 1291 1292 #endif /* CONFIG_PM_SLEEP */ 1293 1294 static int ath6kl_sdio_probe(struct sdio_func *func, 1295 const struct sdio_device_id *id) 1296 { 1297 int ret; 1298 struct ath6kl_sdio *ar_sdio; 1299 struct ath6kl *ar; 1300 int count; 1301 1302 ath6kl_dbg(ATH6KL_DBG_BOOT, 1303 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n", 1304 func->num, func->vendor, func->device, 1305 func->max_blksize, func->cur_blksize); 1306 1307 ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL); 1308 if (!ar_sdio) 1309 return -ENOMEM; 1310 1311 ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL); 1312 if (!ar_sdio->dma_buffer) { 1313 ret = -ENOMEM; 1314 goto err_hif; 1315 } 1316 1317 ar_sdio->func = func; 1318 sdio_set_drvdata(func, ar_sdio); 1319 1320 ar_sdio->id = id; 1321 ar_sdio->is_disabled = true; 1322 1323 spin_lock_init(&ar_sdio->lock); 1324 spin_lock_init(&ar_sdio->scat_lock); 1325 spin_lock_init(&ar_sdio->wr_async_lock); 1326 mutex_init(&ar_sdio->dma_buffer_mutex); 1327 1328 INIT_LIST_HEAD(&ar_sdio->scat_req); 1329 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq); 1330 INIT_LIST_HEAD(&ar_sdio->wr_asyncq); 1331 1332 INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work); 1333 1334 init_waitqueue_head(&ar_sdio->irq_wq); 1335 1336 for (count = 0; count < BUS_REQUEST_MAX_NUM; count++) 1337 ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]); 1338 1339 ar = ath6kl_core_create(&ar_sdio->func->dev); 1340 if (!ar) { 1341 ath6kl_err("Failed to alloc ath6kl core\n"); 1342 ret = -ENOMEM; 1343 goto err_dma; 1344 } 1345 1346 ar_sdio->ar = ar; 1347 ar->hif_type = ATH6KL_HIF_TYPE_SDIO; 1348 ar->hif_priv = ar_sdio; 1349 ar->hif_ops = &ath6kl_sdio_ops; 1350 ar->bmi.max_data_size = 256; 1351 1352 ath6kl_sdio_set_mbox_info(ar); 1353 1354 ret = ath6kl_sdio_config(ar); 1355 if (ret) { 1356 ath6kl_err("Failed to config sdio: %d\n", ret); 1357 goto err_core_alloc; 1358 } 1359 1360 ret = ath6kl_core_init(ar, ATH6KL_HTC_TYPE_MBOX); 1361 if (ret) { 1362 ath6kl_err("Failed to init ath6kl core\n"); 1363 goto err_core_alloc; 1364 } 1365 1366 return ret; 1367 1368 err_core_alloc: 1369 ath6kl_core_destroy(ar_sdio->ar); 1370 err_dma: 1371 kfree(ar_sdio->dma_buffer); 1372 err_hif: 1373 kfree(ar_sdio); 1374 1375 return ret; 1376 } 1377 1378 static void ath6kl_sdio_remove(struct sdio_func *func) 1379 { 1380 struct ath6kl_sdio *ar_sdio; 1381 1382 ath6kl_dbg(ATH6KL_DBG_BOOT, 1383 "sdio removed func %d vendor 0x%x device 0x%x\n", 1384 func->num, func->vendor, func->device); 1385 1386 ar_sdio = sdio_get_drvdata(func); 1387 1388 ath6kl_stop_txrx(ar_sdio->ar); 1389 cancel_work_sync(&ar_sdio->wr_async_work); 1390 1391 ath6kl_core_cleanup(ar_sdio->ar); 1392 ath6kl_core_destroy(ar_sdio->ar); 1393 1394 kfree(ar_sdio->dma_buffer); 1395 kfree(ar_sdio); 1396 } 1397 1398 static const struct sdio_device_id ath6kl_sdio_devices[] = { 1399 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))}, 1400 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))}, 1401 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))}, 1402 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))}, 1403 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x2))}, 1404 {}, 1405 }; 1406 1407 MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices); 1408 1409 static struct sdio_driver ath6kl_sdio_driver = { 1410 .name = "ath6kl_sdio", 1411 .id_table = ath6kl_sdio_devices, 1412 .probe = ath6kl_sdio_probe, 1413 .remove = ath6kl_sdio_remove, 1414 .drv.pm = ATH6KL_SDIO_PM_OPS, 1415 }; 1416 1417 static int __init ath6kl_sdio_init(void) 1418 { 1419 int ret; 1420 1421 ret = sdio_register_driver(&ath6kl_sdio_driver); 1422 if (ret) 1423 ath6kl_err("sdio driver registration failed: %d\n", ret); 1424 1425 return ret; 1426 } 1427 1428 static void __exit ath6kl_sdio_exit(void) 1429 { 1430 sdio_unregister_driver(&ath6kl_sdio_driver); 1431 } 1432 1433 module_init(ath6kl_sdio_init); 1434 module_exit(ath6kl_sdio_exit); 1435 1436 MODULE_AUTHOR("Atheros Communications, Inc."); 1437 MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices"); 1438 MODULE_LICENSE("Dual BSD/GPL"); 1439 1440 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE); 1441 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE); 1442 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE); 1443 MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE); 1444 MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE); 1445 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE); 1446 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE); 1447 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE); 1448 MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE); 1449 MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE); 1450 MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE); 1451 MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE); 1452 MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE); 1453 MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE); 1454 MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE); 1455 MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE); 1456 MODULE_FIRMWARE(AR6004_HW_1_2_FW_DIR "/" AR6004_HW_1_2_FIRMWARE_FILE); 1457 MODULE_FIRMWARE(AR6004_HW_1_2_BOARD_DATA_FILE); 1458 MODULE_FIRMWARE(AR6004_HW_1_2_DEFAULT_BOARD_DATA_FILE); 1459 MODULE_FIRMWARE(AR6004_HW_1_3_FW_DIR "/" AR6004_HW_1_3_FIRMWARE_FILE); 1460 MODULE_FIRMWARE(AR6004_HW_1_3_BOARD_DATA_FILE); 1461 MODULE_FIRMWARE(AR6004_HW_1_3_DEFAULT_BOARD_DATA_FILE); 1462