1 /*
2  * Copyright (c) 2004-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "core.h"
18 #include "hif-ops.h"
19 #include "cfg80211.h"
20 #include "target.h"
21 #include "debug.h"
22 
23 struct ath6kl_sta *ath6kl_find_sta(struct ath6kl *ar, u8 *node_addr)
24 {
25 	struct ath6kl_sta *conn = NULL;
26 	u8 i, max_conn;
27 
28 	max_conn = (ar->nw_type == AP_NETWORK) ? AP_MAX_NUM_STA : 0;
29 
30 	for (i = 0; i < max_conn; i++) {
31 		if (memcmp(node_addr, ar->sta_list[i].mac, ETH_ALEN) == 0) {
32 			conn = &ar->sta_list[i];
33 			break;
34 		}
35 	}
36 
37 	return conn;
38 }
39 
40 struct ath6kl_sta *ath6kl_find_sta_by_aid(struct ath6kl *ar, u8 aid)
41 {
42 	struct ath6kl_sta *conn = NULL;
43 	u8 ctr;
44 
45 	for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
46 		if (ar->sta_list[ctr].aid == aid) {
47 			conn = &ar->sta_list[ctr];
48 			break;
49 		}
50 	}
51 	return conn;
52 }
53 
54 static void ath6kl_add_new_sta(struct ath6kl *ar, u8 *mac, u16 aid, u8 *wpaie,
55 			u8 ielen, u8 keymgmt, u8 ucipher, u8 auth)
56 {
57 	struct ath6kl_sta *sta;
58 	u8 free_slot;
59 
60 	free_slot = aid - 1;
61 
62 	sta = &ar->sta_list[free_slot];
63 	memcpy(sta->mac, mac, ETH_ALEN);
64 	if (ielen <= ATH6KL_MAX_IE)
65 		memcpy(sta->wpa_ie, wpaie, ielen);
66 	sta->aid = aid;
67 	sta->keymgmt = keymgmt;
68 	sta->ucipher = ucipher;
69 	sta->auth = auth;
70 
71 	ar->sta_list_index = ar->sta_list_index | (1 << free_slot);
72 	ar->ap_stats.sta[free_slot].aid = cpu_to_le32(aid);
73 }
74 
75 static void ath6kl_sta_cleanup(struct ath6kl *ar, u8 i)
76 {
77 	struct ath6kl_sta *sta = &ar->sta_list[i];
78 
79 	/* empty the queued pkts in the PS queue if any */
80 	spin_lock_bh(&sta->psq_lock);
81 	skb_queue_purge(&sta->psq);
82 	spin_unlock_bh(&sta->psq_lock);
83 
84 	memset(&ar->ap_stats.sta[sta->aid - 1], 0,
85 	       sizeof(struct wmi_per_sta_stat));
86 	memset(sta->mac, 0, ETH_ALEN);
87 	memset(sta->wpa_ie, 0, ATH6KL_MAX_IE);
88 	sta->aid = 0;
89 	sta->sta_flags = 0;
90 
91 	ar->sta_list_index = ar->sta_list_index & ~(1 << i);
92 
93 }
94 
95 static u8 ath6kl_remove_sta(struct ath6kl *ar, u8 *mac, u16 reason)
96 {
97 	u8 i, removed = 0;
98 
99 	if (is_zero_ether_addr(mac))
100 		return removed;
101 
102 	if (is_broadcast_ether_addr(mac)) {
103 		ath6kl_dbg(ATH6KL_DBG_TRC, "deleting all station\n");
104 
105 		for (i = 0; i < AP_MAX_NUM_STA; i++) {
106 			if (!is_zero_ether_addr(ar->sta_list[i].mac)) {
107 				ath6kl_sta_cleanup(ar, i);
108 				removed = 1;
109 			}
110 		}
111 	} else {
112 		for (i = 0; i < AP_MAX_NUM_STA; i++) {
113 			if (memcmp(ar->sta_list[i].mac, mac, ETH_ALEN) == 0) {
114 				ath6kl_dbg(ATH6KL_DBG_TRC,
115 					   "deleting station %pM aid=%d reason=%d\n",
116 					   mac, ar->sta_list[i].aid, reason);
117 				ath6kl_sta_cleanup(ar, i);
118 				removed = 1;
119 				break;
120 			}
121 		}
122 	}
123 
124 	return removed;
125 }
126 
127 enum htc_endpoint_id ath6kl_ac2_endpoint_id(void *devt, u8 ac)
128 {
129 	struct ath6kl *ar = devt;
130 	return ar->ac2ep_map[ac];
131 }
132 
133 struct ath6kl_cookie *ath6kl_alloc_cookie(struct ath6kl *ar)
134 {
135 	struct ath6kl_cookie *cookie;
136 
137 	cookie = ar->cookie_list;
138 	if (cookie != NULL) {
139 		ar->cookie_list = cookie->arc_list_next;
140 		ar->cookie_count--;
141 	}
142 
143 	return cookie;
144 }
145 
146 void ath6kl_cookie_init(struct ath6kl *ar)
147 {
148 	u32 i;
149 
150 	ar->cookie_list = NULL;
151 	ar->cookie_count = 0;
152 
153 	memset(ar->cookie_mem, 0, sizeof(ar->cookie_mem));
154 
155 	for (i = 0; i < MAX_COOKIE_NUM; i++)
156 		ath6kl_free_cookie(ar, &ar->cookie_mem[i]);
157 }
158 
159 void ath6kl_cookie_cleanup(struct ath6kl *ar)
160 {
161 	ar->cookie_list = NULL;
162 	ar->cookie_count = 0;
163 }
164 
165 void ath6kl_free_cookie(struct ath6kl *ar, struct ath6kl_cookie *cookie)
166 {
167 	/* Insert first */
168 
169 	if (!ar || !cookie)
170 		return;
171 
172 	cookie->arc_list_next = ar->cookie_list;
173 	ar->cookie_list = cookie;
174 	ar->cookie_count++;
175 }
176 
177 /* set the window address register (using 4-byte register access ). */
178 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
179 {
180 	int status;
181 	u8 addr_val[4];
182 	s32 i;
183 
184 	/*
185 	 * Write bytes 1,2,3 of the register to set the upper address bytes,
186 	 * the LSB is written last to initiate the access cycle
187 	 */
188 
189 	for (i = 1; i <= 3; i++) {
190 		/*
191 		 * Fill the buffer with the address byte value we want to
192 		 * hit 4 times.
193 		 */
194 		memset(addr_val, ((u8 *)&addr)[i], 4);
195 
196 		/*
197 		 * Hit each byte of the register address with a 4-byte
198 		 * write operation to the same address, this is a harmless
199 		 * operation.
200 		 */
201 		status = hif_read_write_sync(ar, reg_addr + i, addr_val,
202 					     4, HIF_WR_SYNC_BYTE_FIX);
203 		if (status)
204 			break;
205 	}
206 
207 	if (status) {
208 		ath6kl_err("failed to write initial bytes of 0x%x to window reg: 0x%X\n",
209 			   addr, reg_addr);
210 		return status;
211 	}
212 
213 	/*
214 	 * Write the address register again, this time write the whole
215 	 * 4-byte value. The effect here is that the LSB write causes the
216 	 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
217 	 * effect since we are writing the same values again
218 	 */
219 	status = hif_read_write_sync(ar, reg_addr, (u8 *)(&addr),
220 				     4, HIF_WR_SYNC_BYTE_INC);
221 
222 	if (status) {
223 		ath6kl_err("failed to write 0x%x to window reg: 0x%X\n",
224 			   addr, reg_addr);
225 		return status;
226 	}
227 
228 	return 0;
229 }
230 
231 /*
232  * Read from the ATH6KL through its diagnostic window. No cooperation from
233  * the Target is required for this.
234  */
235 int ath6kl_read_reg_diag(struct ath6kl *ar, u32 *address, u32 *data)
236 {
237 	int status;
238 
239 	/* set window register to start read cycle */
240 	status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
241 					*address);
242 
243 	if (status)
244 		return status;
245 
246 	/* read the data */
247 	status = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *)data,
248 				     sizeof(u32), HIF_RD_SYNC_BYTE_INC);
249 	if (status) {
250 		ath6kl_err("failed to read from window data addr\n");
251 		return status;
252 	}
253 
254 	return status;
255 }
256 
257 
258 /*
259  * Write to the ATH6KL through its diagnostic window. No cooperation from
260  * the Target is required for this.
261  */
262 static int ath6kl_write_reg_diag(struct ath6kl *ar, u32 *address, u32 *data)
263 {
264 	int status;
265 
266 	/* set write data */
267 	status = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *)data,
268 				     sizeof(u32), HIF_WR_SYNC_BYTE_INC);
269 	if (status) {
270 		ath6kl_err("failed to write 0x%x to window data addr\n", *data);
271 		return status;
272 	}
273 
274 	/* set window register, which starts the write cycle */
275 	return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
276 				      *address);
277 }
278 
279 int ath6kl_access_datadiag(struct ath6kl *ar, u32 address,
280 			   u8 *data, u32 length, bool read)
281 {
282 	u32 count;
283 	int status = 0;
284 
285 	for (count = 0; count < length; count += 4, address += 4) {
286 		if (read) {
287 			status = ath6kl_read_reg_diag(ar, &address,
288 						      (u32 *) &data[count]);
289 			if (status)
290 				break;
291 		} else {
292 			status = ath6kl_write_reg_diag(ar, &address,
293 						       (u32 *) &data[count]);
294 			if (status)
295 				break;
296 		}
297 	}
298 
299 	return status;
300 }
301 
302 /* FIXME: move to a better place, target.h? */
303 #define AR6003_RESET_CONTROL_ADDRESS 0x00004000
304 #define AR6004_RESET_CONTROL_ADDRESS 0x00004000
305 
306 static void ath6kl_reset_device(struct ath6kl *ar, u32 target_type,
307 				bool wait_fot_compltn, bool cold_reset)
308 {
309 	int status = 0;
310 	u32 address;
311 	u32 data;
312 
313 	if (target_type != TARGET_TYPE_AR6003 &&
314 		target_type != TARGET_TYPE_AR6004)
315 		return;
316 
317 	data = cold_reset ? RESET_CONTROL_COLD_RST : RESET_CONTROL_MBOX_RST;
318 
319 	switch (target_type) {
320 	case TARGET_TYPE_AR6003:
321 		address = AR6003_RESET_CONTROL_ADDRESS;
322 		break;
323 	case TARGET_TYPE_AR6004:
324 		address = AR6004_RESET_CONTROL_ADDRESS;
325 		break;
326 	default:
327 		address = AR6003_RESET_CONTROL_ADDRESS;
328 		break;
329 	}
330 
331 	status = ath6kl_write_reg_diag(ar, &address, &data);
332 
333 	if (status)
334 		ath6kl_err("failed to reset target\n");
335 }
336 
337 void ath6kl_stop_endpoint(struct net_device *dev, bool keep_profile,
338 			  bool get_dbglogs)
339 {
340 	struct ath6kl *ar = ath6kl_priv(dev);
341 	static u8 bcast_mac[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
342 	bool discon_issued;
343 
344 	netif_stop_queue(dev);
345 
346 	/* disable the target and the interrupts associated with it */
347 	if (test_bit(WMI_READY, &ar->flag)) {
348 		discon_issued = (test_bit(CONNECTED, &ar->flag) ||
349 				 test_bit(CONNECT_PEND, &ar->flag));
350 		ath6kl_disconnect(ar);
351 		if (!keep_profile)
352 			ath6kl_init_profile_info(ar);
353 
354 		del_timer(&ar->disconnect_timer);
355 
356 		clear_bit(WMI_READY, &ar->flag);
357 		ath6kl_wmi_shutdown(ar->wmi);
358 		clear_bit(WMI_ENABLED, &ar->flag);
359 		ar->wmi = NULL;
360 
361 		/*
362 		 * After wmi_shudown all WMI events will be dropped. We
363 		 * need to cleanup the buffers allocated in AP mode and
364 		 * give disconnect notification to stack, which usually
365 		 * happens in the disconnect_event. Simulate the disconnect
366 		 * event by calling the function directly. Sometimes
367 		 * disconnect_event will be received when the debug logs
368 		 * are collected.
369 		 */
370 		if (discon_issued)
371 			ath6kl_disconnect_event(ar, DISCONNECT_CMD,
372 						(ar->nw_type & AP_NETWORK) ?
373 						bcast_mac : ar->bssid,
374 						0, NULL, 0);
375 
376 		ar->user_key_ctrl = 0;
377 
378 	} else {
379 		ath6kl_dbg(ATH6KL_DBG_TRC,
380 			   "%s: wmi is not ready 0x%p 0x%p\n",
381 			   __func__, ar, ar->wmi);
382 
383 		/* Shut down WMI if we have started it */
384 		if (test_bit(WMI_ENABLED, &ar->flag)) {
385 			ath6kl_dbg(ATH6KL_DBG_TRC,
386 				   "%s: shut down wmi\n", __func__);
387 			ath6kl_wmi_shutdown(ar->wmi);
388 			clear_bit(WMI_ENABLED, &ar->flag);
389 			ar->wmi = NULL;
390 		}
391 	}
392 
393 	if (ar->htc_target) {
394 		ath6kl_dbg(ATH6KL_DBG_TRC, "%s: shut down htc\n", __func__);
395 		ath6kl_htc_stop(ar->htc_target);
396 	}
397 
398 	/*
399 	 * Try to reset the device if we can. The driver may have been
400 	 * configure NOT to reset the target during a debug session.
401 	 */
402 	ath6kl_dbg(ATH6KL_DBG_TRC,
403 		   "attempting to reset target on instance destroy\n");
404 	ath6kl_reset_device(ar, ar->target_type, true, true);
405 }
406 
407 static void ath6kl_install_static_wep_keys(struct ath6kl *ar)
408 {
409 	u8 index;
410 	u8 keyusage;
411 
412 	for (index = WMI_MIN_KEY_INDEX; index <= WMI_MAX_KEY_INDEX; index++) {
413 		if (ar->wep_key_list[index].key_len) {
414 			keyusage = GROUP_USAGE;
415 			if (index == ar->def_txkey_index)
416 				keyusage |= TX_USAGE;
417 
418 			ath6kl_wmi_addkey_cmd(ar->wmi,
419 					      index,
420 					      WEP_CRYPT,
421 					      keyusage,
422 					      ar->wep_key_list[index].key_len,
423 					      NULL,
424 					      ar->wep_key_list[index].key,
425 					      KEY_OP_INIT_VAL, NULL,
426 					      NO_SYNC_WMIFLAG);
427 		}
428 	}
429 }
430 
431 static void ath6kl_connect_ap_mode(struct ath6kl *ar, u16 channel, u8 *bssid,
432 				   u16 listen_int, u16 beacon_int,
433 				   u8 assoc_req_len, u8 *assoc_info)
434 {
435 	struct net_device *dev = ar->net_dev;
436 	u8 *ies = NULL, *wpa_ie = NULL, *pos;
437 	size_t ies_len = 0;
438 	struct station_info sinfo;
439 	struct ath6kl_req_key *ik;
440 	enum crypto_type keyType = NONE_CRYPT;
441 
442 	if (memcmp(dev->dev_addr, bssid, ETH_ALEN) == 0) {
443 		ik = &ar->ap_mode_bkey;
444 
445 		switch (ar->auth_mode) {
446 		case NONE_AUTH:
447 			if (ar->prwise_crypto == WEP_CRYPT)
448 				ath6kl_install_static_wep_keys(ar);
449 			break;
450 		case WPA_PSK_AUTH:
451 		case WPA2_PSK_AUTH:
452 		case (WPA_PSK_AUTH|WPA2_PSK_AUTH):
453 			switch (ik->ik_type) {
454 			case ATH6KL_CIPHER_TKIP:
455 				keyType = TKIP_CRYPT;
456 				break;
457 			case ATH6KL_CIPHER_AES_CCM:
458 				keyType = AES_CRYPT;
459 				break;
460 			default:
461 				goto skip_key;
462 			}
463 			ath6kl_wmi_addkey_cmd(ar->wmi, ik->ik_keyix, keyType,
464 					      GROUP_USAGE, ik->ik_keylen,
465 					      (u8 *)&ik->ik_keyrsc,
466 					      ik->ik_keydata,
467 					      KEY_OP_INIT_VAL, ik->ik_macaddr,
468 					      SYNC_BOTH_WMIFLAG);
469 			break;
470 		}
471 skip_key:
472 		set_bit(CONNECTED, &ar->flag);
473 		return;
474 	}
475 
476 	ath6kl_dbg(ATH6KL_DBG_TRC, "new station %pM aid=%d\n",
477 		   bssid, channel);
478 
479 	if (assoc_req_len > sizeof(struct ieee80211_hdr_3addr)) {
480 		struct ieee80211_mgmt *mgmt =
481 			(struct ieee80211_mgmt *) assoc_info;
482 		if (ieee80211_is_assoc_req(mgmt->frame_control) &&
483 		    assoc_req_len >= sizeof(struct ieee80211_hdr_3addr) +
484 		    sizeof(mgmt->u.assoc_req)) {
485 			ies = mgmt->u.assoc_req.variable;
486 			ies_len = assoc_info + assoc_req_len - ies;
487 		} else if (ieee80211_is_reassoc_req(mgmt->frame_control) &&
488 			   assoc_req_len >= sizeof(struct ieee80211_hdr_3addr)
489 			   + sizeof(mgmt->u.reassoc_req)) {
490 			ies = mgmt->u.reassoc_req.variable;
491 			ies_len = assoc_info + assoc_req_len - ies;
492 		}
493 	}
494 
495 	pos = ies;
496 	while (pos && pos + 1 < ies + ies_len) {
497 		if (pos + 2 + pos[1] > ies + ies_len)
498 			break;
499 		if (pos[0] == WLAN_EID_RSN)
500 			wpa_ie = pos; /* RSN IE */
501 		else if (pos[0] == WLAN_EID_VENDOR_SPECIFIC &&
502 			 pos[1] >= 4 &&
503 			 pos[2] == 0x00 && pos[3] == 0x50 && pos[4] == 0xf2) {
504 			if (pos[5] == 0x01)
505 				wpa_ie = pos; /* WPA IE */
506 			else if (pos[5] == 0x04) {
507 				wpa_ie = pos; /* WPS IE */
508 				break; /* overrides WPA/RSN IE */
509 			}
510 		}
511 		pos += 2 + pos[1];
512 	}
513 
514 	ath6kl_add_new_sta(ar, bssid, channel, wpa_ie,
515 			   wpa_ie ? 2 + wpa_ie[1] : 0,
516 			   listen_int & 0xFF, beacon_int,
517 			   (listen_int >> 8) & 0xFF);
518 
519 	/* send event to application */
520 	memset(&sinfo, 0, sizeof(sinfo));
521 
522 	/* TODO: sinfo.generation */
523 
524 	sinfo.assoc_req_ies = ies;
525 	sinfo.assoc_req_ies_len = ies_len;
526 	sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
527 
528 	cfg80211_new_sta(ar->net_dev, bssid, &sinfo, GFP_KERNEL);
529 
530 	netif_wake_queue(ar->net_dev);
531 
532 	return;
533 }
534 
535 /* Functions for Tx credit handling */
536 void ath6k_credit_init(struct htc_credit_state_info *cred_info,
537 		       struct list_head *ep_list,
538 		       int tot_credits)
539 {
540 	struct htc_endpoint_credit_dist *cur_ep_dist;
541 	int count;
542 
543 	cred_info->cur_free_credits = tot_credits;
544 	cred_info->total_avail_credits = tot_credits;
545 
546 	list_for_each_entry(cur_ep_dist, ep_list, list) {
547 		if (cur_ep_dist->endpoint == ENDPOINT_0)
548 			continue;
549 
550 		cur_ep_dist->cred_min = cur_ep_dist->cred_per_msg;
551 
552 		if (tot_credits > 4)
553 			if ((cur_ep_dist->svc_id == WMI_DATA_BK_SVC) ||
554 			    (cur_ep_dist->svc_id == WMI_DATA_BE_SVC)) {
555 				ath6kl_deposit_credit_to_ep(cred_info,
556 						cur_ep_dist,
557 						cur_ep_dist->cred_min);
558 				cur_ep_dist->dist_flags |= HTC_EP_ACTIVE;
559 			}
560 
561 		if (cur_ep_dist->svc_id == WMI_CONTROL_SVC) {
562 			ath6kl_deposit_credit_to_ep(cred_info, cur_ep_dist,
563 						    cur_ep_dist->cred_min);
564 			/*
565 			 * Control service is always marked active, it
566 			 * never goes inactive EVER.
567 			 */
568 			cur_ep_dist->dist_flags |= HTC_EP_ACTIVE;
569 		} else if (cur_ep_dist->svc_id == WMI_DATA_BK_SVC)
570 			/* this is the lowest priority data endpoint */
571 			cred_info->lowestpri_ep_dist = cur_ep_dist->list;
572 
573 		/*
574 		 * Streams have to be created (explicit | implicit) for all
575 		 * kinds of traffic. BE endpoints are also inactive in the
576 		 * beginning. When BE traffic starts it creates implicit
577 		 * streams that redistributes credits.
578 		 *
579 		 * Note: all other endpoints have minimums set but are
580 		 * initially given NO credits. credits will be distributed
581 		 * as traffic activity demands
582 		 */
583 	}
584 
585 	WARN_ON(cred_info->cur_free_credits <= 0);
586 
587 	list_for_each_entry(cur_ep_dist, ep_list, list) {
588 		if (cur_ep_dist->endpoint == ENDPOINT_0)
589 			continue;
590 
591 		if (cur_ep_dist->svc_id == WMI_CONTROL_SVC)
592 			cur_ep_dist->cred_norm = cur_ep_dist->cred_per_msg;
593 		else {
594 			/*
595 			 * For the remaining data endpoints, we assume that
596 			 * each cred_per_msg are the same. We use a simple
597 			 * calculation here, we take the remaining credits
598 			 * and determine how many max messages this can
599 			 * cover and then set each endpoint's normal value
600 			 * equal to 3/4 this amount.
601 			 */
602 			count = (cred_info->cur_free_credits /
603 				 cur_ep_dist->cred_per_msg)
604 				* cur_ep_dist->cred_per_msg;
605 			count = (count * 3) >> 2;
606 			count = max(count, cur_ep_dist->cred_per_msg);
607 			cur_ep_dist->cred_norm = count;
608 
609 		}
610 	}
611 }
612 
613 /* initialize and setup credit distribution */
614 int ath6k_setup_credit_dist(void *htc_handle,
615 			    struct htc_credit_state_info *cred_info)
616 {
617 	u16 servicepriority[5];
618 
619 	memset(cred_info, 0, sizeof(struct htc_credit_state_info));
620 
621 	servicepriority[0] = WMI_CONTROL_SVC;  /* highest */
622 	servicepriority[1] = WMI_DATA_VO_SVC;
623 	servicepriority[2] = WMI_DATA_VI_SVC;
624 	servicepriority[3] = WMI_DATA_BE_SVC;
625 	servicepriority[4] = WMI_DATA_BK_SVC; /* lowest */
626 
627 	/* set priority list */
628 	ath6kl_htc_set_credit_dist(htc_handle, cred_info, servicepriority, 5);
629 
630 	return 0;
631 }
632 
633 /* reduce an ep's credits back to a set limit */
634 static void ath6k_reduce_credits(struct htc_credit_state_info *cred_info,
635 				 struct htc_endpoint_credit_dist  *ep_dist,
636 				 int limit)
637 {
638 	int credits;
639 
640 	ep_dist->cred_assngd = limit;
641 
642 	if (ep_dist->credits <= limit)
643 		return;
644 
645 	credits = ep_dist->credits - limit;
646 	ep_dist->credits -= credits;
647 	cred_info->cur_free_credits += credits;
648 }
649 
650 static void ath6k_credit_update(struct htc_credit_state_info *cred_info,
651 				struct list_head *epdist_list)
652 {
653 	struct htc_endpoint_credit_dist *cur_dist_list;
654 
655 	list_for_each_entry(cur_dist_list, epdist_list, list) {
656 		if (cur_dist_list->endpoint == ENDPOINT_0)
657 			continue;
658 
659 		if (cur_dist_list->cred_to_dist > 0) {
660 			cur_dist_list->credits +=
661 					cur_dist_list->cred_to_dist;
662 			cur_dist_list->cred_to_dist = 0;
663 			if (cur_dist_list->credits >
664 			    cur_dist_list->cred_assngd)
665 				ath6k_reduce_credits(cred_info,
666 						cur_dist_list,
667 						cur_dist_list->cred_assngd);
668 
669 			if (cur_dist_list->credits >
670 			    cur_dist_list->cred_norm)
671 				ath6k_reduce_credits(cred_info, cur_dist_list,
672 						     cur_dist_list->cred_norm);
673 
674 			if (!(cur_dist_list->dist_flags & HTC_EP_ACTIVE)) {
675 				if (cur_dist_list->txq_depth == 0)
676 					ath6k_reduce_credits(cred_info,
677 							     cur_dist_list, 0);
678 			}
679 		}
680 	}
681 }
682 
683 /*
684  * HTC has an endpoint that needs credits, ep_dist is the endpoint in
685  * question.
686  */
687 void ath6k_seek_credits(struct htc_credit_state_info *cred_info,
688 			struct htc_endpoint_credit_dist *ep_dist)
689 {
690 	struct htc_endpoint_credit_dist *curdist_list;
691 	int credits = 0;
692 	int need;
693 
694 	if (ep_dist->svc_id == WMI_CONTROL_SVC)
695 		goto out;
696 
697 	if ((ep_dist->svc_id == WMI_DATA_VI_SVC) ||
698 	    (ep_dist->svc_id == WMI_DATA_VO_SVC))
699 		if ((ep_dist->cred_assngd >= ep_dist->cred_norm))
700 			goto out;
701 
702 	/*
703 	 * For all other services, we follow a simple algorithm of:
704 	 *
705 	 * 1. checking the free pool for credits
706 	 * 2. checking lower priority endpoints for credits to take
707 	 */
708 
709 	credits = min(cred_info->cur_free_credits, ep_dist->seek_cred);
710 
711 	if (credits >= ep_dist->seek_cred)
712 		goto out;
713 
714 	/*
715 	 * We don't have enough in the free pool, try taking away from
716 	 * lower priority services The rule for taking away credits:
717 	 *
718 	 *   1. Only take from lower priority endpoints
719 	 *   2. Only take what is allocated above the minimum (never
720 	 *      starve an endpoint completely)
721 	 *   3. Only take what you need.
722 	 */
723 
724 	list_for_each_entry_reverse(curdist_list,
725 				    &cred_info->lowestpri_ep_dist,
726 				    list) {
727 		if (curdist_list == ep_dist)
728 			break;
729 
730 		need = ep_dist->seek_cred - cred_info->cur_free_credits;
731 
732 		if ((curdist_list->cred_assngd - need) >=
733 		     curdist_list->cred_min) {
734 			/*
735 			 * The current one has been allocated more than
736 			 * it's minimum and it has enough credits assigned
737 			 * above it's minimum to fulfill our need try to
738 			 * take away just enough to fulfill our need.
739 			 */
740 			ath6k_reduce_credits(cred_info, curdist_list,
741 					curdist_list->cred_assngd - need);
742 
743 			if (cred_info->cur_free_credits >=
744 			    ep_dist->seek_cred)
745 				break;
746 		}
747 
748 		if (curdist_list->endpoint == ENDPOINT_0)
749 			break;
750 	}
751 
752 	credits = min(cred_info->cur_free_credits, ep_dist->seek_cred);
753 
754 out:
755 	/* did we find some credits? */
756 	if (credits)
757 		ath6kl_deposit_credit_to_ep(cred_info, ep_dist, credits);
758 
759 	ep_dist->seek_cred = 0;
760 }
761 
762 /* redistribute credits based on activity change */
763 static void ath6k_redistribute_credits(struct htc_credit_state_info *info,
764 				       struct list_head *ep_dist_list)
765 {
766 	struct htc_endpoint_credit_dist *curdist_list;
767 
768 	list_for_each_entry(curdist_list, ep_dist_list, list) {
769 		if (curdist_list->endpoint == ENDPOINT_0)
770 			continue;
771 
772 		if ((curdist_list->svc_id == WMI_DATA_BK_SVC)  ||
773 		    (curdist_list->svc_id == WMI_DATA_BE_SVC))
774 			curdist_list->dist_flags |= HTC_EP_ACTIVE;
775 
776 		if ((curdist_list->svc_id != WMI_CONTROL_SVC) &&
777 		    !(curdist_list->dist_flags & HTC_EP_ACTIVE)) {
778 			if (curdist_list->txq_depth == 0)
779 				ath6k_reduce_credits(info,
780 						curdist_list, 0);
781 			else
782 				ath6k_reduce_credits(info,
783 						curdist_list,
784 						curdist_list->cred_min);
785 		}
786 	}
787 }
788 
789 /*
790  *
791  * This function is invoked whenever endpoints require credit
792  * distributions. A lock is held while this function is invoked, this
793  * function shall NOT block. The ep_dist_list is a list of distribution
794  * structures in prioritized order as defined by the call to the
795  * htc_set_credit_dist() api.
796  */
797 void ath6k_credit_distribute(struct htc_credit_state_info *cred_info,
798 			     struct list_head *ep_dist_list,
799 			     enum htc_credit_dist_reason reason)
800 {
801 	switch (reason) {
802 	case HTC_CREDIT_DIST_SEND_COMPLETE:
803 		ath6k_credit_update(cred_info, ep_dist_list);
804 		break;
805 	case HTC_CREDIT_DIST_ACTIVITY_CHANGE:
806 		ath6k_redistribute_credits(cred_info, ep_dist_list);
807 		break;
808 	default:
809 		break;
810 	}
811 
812 	WARN_ON(cred_info->cur_free_credits > cred_info->total_avail_credits);
813 	WARN_ON(cred_info->cur_free_credits < 0);
814 }
815 
816 void disconnect_timer_handler(unsigned long ptr)
817 {
818 	struct net_device *dev = (struct net_device *)ptr;
819 	struct ath6kl *ar = ath6kl_priv(dev);
820 
821 	ath6kl_init_profile_info(ar);
822 	ath6kl_disconnect(ar);
823 }
824 
825 void ath6kl_disconnect(struct ath6kl *ar)
826 {
827 	if (test_bit(CONNECTED, &ar->flag) ||
828 	    test_bit(CONNECT_PEND, &ar->flag)) {
829 		ath6kl_wmi_disconnect_cmd(ar->wmi);
830 		/*
831 		 * Disconnect command is issued, clear the connect pending
832 		 * flag. The connected flag will be cleared in
833 		 * disconnect event notification.
834 		 */
835 		clear_bit(CONNECT_PEND, &ar->flag);
836 	}
837 }
838 
839 void ath6kl_deep_sleep_enable(struct ath6kl *ar)
840 {
841 	switch (ar->sme_state) {
842 	case SME_CONNECTING:
843 		cfg80211_connect_result(ar->net_dev, ar->bssid, NULL, 0,
844 					NULL, 0,
845 					WLAN_STATUS_UNSPECIFIED_FAILURE,
846 					GFP_KERNEL);
847 		break;
848 	case SME_CONNECTED:
849 	default:
850 		/*
851 		 * FIXME: oddly enough smeState is in DISCONNECTED during
852 		 * suspend, why? Need to send disconnected event in that
853 		 * state.
854 		 */
855 		cfg80211_disconnected(ar->net_dev, 0, NULL, 0, GFP_KERNEL);
856 		break;
857 	}
858 
859 	if (test_bit(CONNECTED, &ar->flag) ||
860 	    test_bit(CONNECT_PEND, &ar->flag))
861 		ath6kl_wmi_disconnect_cmd(ar->wmi);
862 
863 	ar->sme_state = SME_DISCONNECTED;
864 
865 	/* disable scanning */
866 	if (ath6kl_wmi_scanparams_cmd(ar->wmi, 0xFFFF, 0, 0, 0, 0, 0, 0, 0,
867 				      0, 0) != 0)
868 		printk(KERN_WARNING "ath6kl: failed to disable scan "
869 		       "during suspend\n");
870 
871 	ath6kl_cfg80211_scan_complete_event(ar, -ECANCELED);
872 }
873 
874 /* WMI Event handlers */
875 
876 static const char *get_hw_id_string(u32 id)
877 {
878 	switch (id) {
879 	case AR6003_REV1_VERSION:
880 		return "1.0";
881 	case AR6003_REV2_VERSION:
882 		return "2.0";
883 	case AR6003_REV3_VERSION:
884 		return "2.1.1";
885 	default:
886 		return "unknown";
887 	}
888 }
889 
890 void ath6kl_ready_event(void *devt, u8 *datap, u32 sw_ver, u32 abi_ver)
891 {
892 	struct ath6kl *ar = devt;
893 	struct net_device *dev = ar->net_dev;
894 
895 	memcpy(dev->dev_addr, datap, ETH_ALEN);
896 	ath6kl_dbg(ATH6KL_DBG_TRC, "%s: mac addr = %pM\n",
897 		   __func__, dev->dev_addr);
898 
899 	ar->version.wlan_ver = sw_ver;
900 	ar->version.abi_ver = abi_ver;
901 
902 	snprintf(ar->wdev->wiphy->fw_version,
903 		 sizeof(ar->wdev->wiphy->fw_version),
904 		 "%u.%u.%u.%u",
905 		 (ar->version.wlan_ver & 0xf0000000) >> 28,
906 		 (ar->version.wlan_ver & 0x0f000000) >> 24,
907 		 (ar->version.wlan_ver & 0x00ff0000) >> 16,
908 		 (ar->version.wlan_ver & 0x0000ffff));
909 
910 	/* indicate to the waiting thread that the ready event was received */
911 	set_bit(WMI_READY, &ar->flag);
912 	wake_up(&ar->event_wq);
913 
914 	ath6kl_info("hw %s fw %s\n",
915 		    get_hw_id_string(ar->wdev->wiphy->hw_version),
916 		    ar->wdev->wiphy->fw_version);
917 }
918 
919 void ath6kl_scan_complete_evt(struct ath6kl *ar, int status)
920 {
921 	ath6kl_cfg80211_scan_complete_event(ar, status);
922 
923 	if (!ar->usr_bss_filter)
924 		ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
925 
926 	ath6kl_dbg(ATH6KL_DBG_WLAN_SCAN, "scan complete: %d\n", status);
927 }
928 
929 void ath6kl_connect_event(struct ath6kl *ar, u16 channel, u8 *bssid,
930 			  u16 listen_int, u16 beacon_int,
931 			  enum network_type net_type, u8 beacon_ie_len,
932 			  u8 assoc_req_len, u8 assoc_resp_len,
933 			  u8 *assoc_info)
934 {
935 	unsigned long flags;
936 
937 	if (ar->nw_type == AP_NETWORK) {
938 		ath6kl_connect_ap_mode(ar, channel, bssid, listen_int,
939 				       beacon_int, assoc_req_len,
940 				       assoc_info + beacon_ie_len);
941 		return;
942 	}
943 
944 	ath6kl_cfg80211_connect_event(ar, channel, bssid,
945 				      listen_int, beacon_int,
946 				      net_type, beacon_ie_len,
947 				      assoc_req_len, assoc_resp_len,
948 				      assoc_info);
949 
950 	memcpy(ar->bssid, bssid, sizeof(ar->bssid));
951 	ar->bss_ch = channel;
952 
953 	if ((ar->nw_type == INFRA_NETWORK))
954 		ath6kl_wmi_listeninterval_cmd(ar->wmi, ar->listen_intvl_t,
955 					      ar->listen_intvl_b);
956 
957 	netif_wake_queue(ar->net_dev);
958 
959 	/* Update connect & link status atomically */
960 	spin_lock_irqsave(&ar->lock, flags);
961 	set_bit(CONNECTED, &ar->flag);
962 	clear_bit(CONNECT_PEND, &ar->flag);
963 	netif_carrier_on(ar->net_dev);
964 	spin_unlock_irqrestore(&ar->lock, flags);
965 
966 	aggr_reset_state(ar->aggr_cntxt);
967 	ar->reconnect_flag = 0;
968 
969 	if ((ar->nw_type == ADHOC_NETWORK) && ar->ibss_ps_enable) {
970 		memset(ar->node_map, 0, sizeof(ar->node_map));
971 		ar->node_num = 0;
972 		ar->next_ep_id = ENDPOINT_2;
973 	}
974 
975 	if (!ar->usr_bss_filter)
976 		ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
977 }
978 
979 void ath6kl_tkip_micerr_event(struct ath6kl *ar, u8 keyid, bool ismcast)
980 {
981 	struct ath6kl_sta *sta;
982 	u8 tsc[6];
983 	/*
984 	 * For AP case, keyid will have aid of STA which sent pkt with
985 	 * MIC error. Use this aid to get MAC & send it to hostapd.
986 	 */
987 	if (ar->nw_type == AP_NETWORK) {
988 		sta = ath6kl_find_sta_by_aid(ar, (keyid >> 2));
989 		if (!sta)
990 			return;
991 
992 		ath6kl_dbg(ATH6KL_DBG_TRC,
993 			   "ap tkip mic error received from aid=%d\n", keyid);
994 
995 		memset(tsc, 0, sizeof(tsc)); /* FIX: get correct TSC */
996 		cfg80211_michael_mic_failure(ar->net_dev, sta->mac,
997 					     NL80211_KEYTYPE_PAIRWISE, keyid,
998 					     tsc, GFP_KERNEL);
999 	} else
1000 		ath6kl_cfg80211_tkip_micerr_event(ar, keyid, ismcast);
1001 
1002 }
1003 
1004 static void ath6kl_update_target_stats(struct ath6kl *ar, u8 *ptr, u32 len)
1005 {
1006 	struct wmi_target_stats *tgt_stats =
1007 		(struct wmi_target_stats *) ptr;
1008 	struct target_stats *stats = &ar->target_stats;
1009 	struct tkip_ccmp_stats *ccmp_stats;
1010 	struct bss *conn_bss = NULL;
1011 	struct cserv_stats *c_stats;
1012 	u8 ac;
1013 
1014 	if (len < sizeof(*tgt_stats))
1015 		return;
1016 
1017 	/* update the RSSI of the connected bss */
1018 	if (test_bit(CONNECTED, &ar->flag)) {
1019 		conn_bss = ath6kl_wmi_find_node(ar->wmi, ar->bssid);
1020 		if (conn_bss) {
1021 			c_stats = &tgt_stats->cserv_stats;
1022 			conn_bss->ni_rssi =
1023 				a_sle16_to_cpu(c_stats->cs_ave_beacon_rssi);
1024 			conn_bss->ni_snr =
1025 				tgt_stats->cserv_stats.cs_ave_beacon_snr;
1026 			ath6kl_wmi_node_return(ar->wmi, conn_bss);
1027 		}
1028 	}
1029 
1030 	ath6kl_dbg(ATH6KL_DBG_TRC, "updating target stats\n");
1031 
1032 	stats->tx_pkt += le32_to_cpu(tgt_stats->stats.tx.pkt);
1033 	stats->tx_byte += le32_to_cpu(tgt_stats->stats.tx.byte);
1034 	stats->tx_ucast_pkt += le32_to_cpu(tgt_stats->stats.tx.ucast_pkt);
1035 	stats->tx_ucast_byte += le32_to_cpu(tgt_stats->stats.tx.ucast_byte);
1036 	stats->tx_mcast_pkt += le32_to_cpu(tgt_stats->stats.tx.mcast_pkt);
1037 	stats->tx_mcast_byte += le32_to_cpu(tgt_stats->stats.tx.mcast_byte);
1038 	stats->tx_bcast_pkt  += le32_to_cpu(tgt_stats->stats.tx.bcast_pkt);
1039 	stats->tx_bcast_byte += le32_to_cpu(tgt_stats->stats.tx.bcast_byte);
1040 	stats->tx_rts_success_cnt +=
1041 		le32_to_cpu(tgt_stats->stats.tx.rts_success_cnt);
1042 
1043 	for (ac = 0; ac < WMM_NUM_AC; ac++)
1044 		stats->tx_pkt_per_ac[ac] +=
1045 			le32_to_cpu(tgt_stats->stats.tx.pkt_per_ac[ac]);
1046 
1047 	stats->tx_err += le32_to_cpu(tgt_stats->stats.tx.err);
1048 	stats->tx_fail_cnt += le32_to_cpu(tgt_stats->stats.tx.fail_cnt);
1049 	stats->tx_retry_cnt += le32_to_cpu(tgt_stats->stats.tx.retry_cnt);
1050 	stats->tx_mult_retry_cnt +=
1051 		le32_to_cpu(tgt_stats->stats.tx.mult_retry_cnt);
1052 	stats->tx_rts_fail_cnt +=
1053 		le32_to_cpu(tgt_stats->stats.tx.rts_fail_cnt);
1054 	stats->tx_ucast_rate =
1055 	    ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.tx.ucast_rate));
1056 
1057 	stats->rx_pkt += le32_to_cpu(tgt_stats->stats.rx.pkt);
1058 	stats->rx_byte += le32_to_cpu(tgt_stats->stats.rx.byte);
1059 	stats->rx_ucast_pkt += le32_to_cpu(tgt_stats->stats.rx.ucast_pkt);
1060 	stats->rx_ucast_byte += le32_to_cpu(tgt_stats->stats.rx.ucast_byte);
1061 	stats->rx_mcast_pkt += le32_to_cpu(tgt_stats->stats.rx.mcast_pkt);
1062 	stats->rx_mcast_byte += le32_to_cpu(tgt_stats->stats.rx.mcast_byte);
1063 	stats->rx_bcast_pkt += le32_to_cpu(tgt_stats->stats.rx.bcast_pkt);
1064 	stats->rx_bcast_byte += le32_to_cpu(tgt_stats->stats.rx.bcast_byte);
1065 	stats->rx_frgment_pkt += le32_to_cpu(tgt_stats->stats.rx.frgment_pkt);
1066 	stats->rx_err += le32_to_cpu(tgt_stats->stats.rx.err);
1067 	stats->rx_crc_err += le32_to_cpu(tgt_stats->stats.rx.crc_err);
1068 	stats->rx_key_cache_miss +=
1069 		le32_to_cpu(tgt_stats->stats.rx.key_cache_miss);
1070 	stats->rx_decrypt_err += le32_to_cpu(tgt_stats->stats.rx.decrypt_err);
1071 	stats->rx_dupl_frame += le32_to_cpu(tgt_stats->stats.rx.dupl_frame);
1072 	stats->rx_ucast_rate =
1073 	    ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.rx.ucast_rate));
1074 
1075 	ccmp_stats = &tgt_stats->stats.tkip_ccmp_stats;
1076 
1077 	stats->tkip_local_mic_fail +=
1078 		le32_to_cpu(ccmp_stats->tkip_local_mic_fail);
1079 	stats->tkip_cnter_measures_invoked +=
1080 		le32_to_cpu(ccmp_stats->tkip_cnter_measures_invoked);
1081 	stats->tkip_fmt_err += le32_to_cpu(ccmp_stats->tkip_fmt_err);
1082 
1083 	stats->ccmp_fmt_err += le32_to_cpu(ccmp_stats->ccmp_fmt_err);
1084 	stats->ccmp_replays += le32_to_cpu(ccmp_stats->ccmp_replays);
1085 
1086 	stats->pwr_save_fail_cnt +=
1087 		le32_to_cpu(tgt_stats->pm_stats.pwr_save_failure_cnt);
1088 	stats->noise_floor_calib =
1089 		a_sle32_to_cpu(tgt_stats->noise_floor_calib);
1090 
1091 	stats->cs_bmiss_cnt +=
1092 		le32_to_cpu(tgt_stats->cserv_stats.cs_bmiss_cnt);
1093 	stats->cs_low_rssi_cnt +=
1094 		le32_to_cpu(tgt_stats->cserv_stats.cs_low_rssi_cnt);
1095 	stats->cs_connect_cnt +=
1096 		le16_to_cpu(tgt_stats->cserv_stats.cs_connect_cnt);
1097 	stats->cs_discon_cnt +=
1098 		le16_to_cpu(tgt_stats->cserv_stats.cs_discon_cnt);
1099 
1100 	stats->cs_ave_beacon_rssi =
1101 		a_sle16_to_cpu(tgt_stats->cserv_stats.cs_ave_beacon_rssi);
1102 
1103 	stats->cs_last_roam_msec =
1104 		tgt_stats->cserv_stats.cs_last_roam_msec;
1105 	stats->cs_snr = tgt_stats->cserv_stats.cs_snr;
1106 	stats->cs_rssi = a_sle16_to_cpu(tgt_stats->cserv_stats.cs_rssi);
1107 
1108 	stats->lq_val = le32_to_cpu(tgt_stats->lq_val);
1109 
1110 	stats->wow_pkt_dropped +=
1111 		le32_to_cpu(tgt_stats->wow_stats.wow_pkt_dropped);
1112 	stats->wow_host_pkt_wakeups +=
1113 		tgt_stats->wow_stats.wow_host_pkt_wakeups;
1114 	stats->wow_host_evt_wakeups +=
1115 		tgt_stats->wow_stats.wow_host_evt_wakeups;
1116 	stats->wow_evt_discarded +=
1117 		le16_to_cpu(tgt_stats->wow_stats.wow_evt_discarded);
1118 
1119 	if (test_bit(STATS_UPDATE_PEND, &ar->flag)) {
1120 		clear_bit(STATS_UPDATE_PEND, &ar->flag);
1121 		wake_up(&ar->event_wq);
1122 	}
1123 }
1124 
1125 static void ath6kl_add_le32(__le32 *var, __le32 val)
1126 {
1127 	*var = cpu_to_le32(le32_to_cpu(*var) + le32_to_cpu(val));
1128 }
1129 
1130 void ath6kl_tgt_stats_event(struct ath6kl *ar, u8 *ptr, u32 len)
1131 {
1132 	struct wmi_ap_mode_stat *p = (struct wmi_ap_mode_stat *) ptr;
1133 	struct wmi_ap_mode_stat *ap = &ar->ap_stats;
1134 	struct wmi_per_sta_stat *st_ap, *st_p;
1135 	u8 ac;
1136 
1137 	if (ar->nw_type == AP_NETWORK) {
1138 		if (len < sizeof(*p))
1139 			return;
1140 
1141 		for (ac = 0; ac < AP_MAX_NUM_STA; ac++) {
1142 			st_ap = &ap->sta[ac];
1143 			st_p = &p->sta[ac];
1144 
1145 			ath6kl_add_le32(&st_ap->tx_bytes, st_p->tx_bytes);
1146 			ath6kl_add_le32(&st_ap->tx_pkts, st_p->tx_pkts);
1147 			ath6kl_add_le32(&st_ap->tx_error, st_p->tx_error);
1148 			ath6kl_add_le32(&st_ap->tx_discard, st_p->tx_discard);
1149 			ath6kl_add_le32(&st_ap->rx_bytes, st_p->rx_bytes);
1150 			ath6kl_add_le32(&st_ap->rx_pkts, st_p->rx_pkts);
1151 			ath6kl_add_le32(&st_ap->rx_error, st_p->rx_error);
1152 			ath6kl_add_le32(&st_ap->rx_discard, st_p->rx_discard);
1153 		}
1154 
1155 	} else {
1156 		ath6kl_update_target_stats(ar, ptr, len);
1157 	}
1158 }
1159 
1160 void ath6kl_wakeup_event(void *dev)
1161 {
1162 	struct ath6kl *ar = (struct ath6kl *) dev;
1163 
1164 	wake_up(&ar->event_wq);
1165 }
1166 
1167 void ath6kl_txpwr_rx_evt(void *devt, u8 tx_pwr)
1168 {
1169 	struct ath6kl *ar = (struct ath6kl *) devt;
1170 
1171 	ar->tx_pwr = tx_pwr;
1172 	wake_up(&ar->event_wq);
1173 }
1174 
1175 void ath6kl_pspoll_event(struct ath6kl *ar, u8 aid)
1176 {
1177 	struct ath6kl_sta *conn;
1178 	struct sk_buff *skb;
1179 	bool psq_empty = false;
1180 
1181 	conn = ath6kl_find_sta_by_aid(ar, aid);
1182 
1183 	if (!conn)
1184 		return;
1185 	/*
1186 	 * Send out a packet queued on ps queue. When the ps queue
1187 	 * becomes empty update the PVB for this station.
1188 	 */
1189 	spin_lock_bh(&conn->psq_lock);
1190 	psq_empty  = skb_queue_empty(&conn->psq);
1191 	spin_unlock_bh(&conn->psq_lock);
1192 
1193 	if (psq_empty)
1194 		/* TODO: Send out a NULL data frame */
1195 		return;
1196 
1197 	spin_lock_bh(&conn->psq_lock);
1198 	skb = skb_dequeue(&conn->psq);
1199 	spin_unlock_bh(&conn->psq_lock);
1200 
1201 	conn->sta_flags |= STA_PS_POLLED;
1202 	ath6kl_data_tx(skb, ar->net_dev);
1203 	conn->sta_flags &= ~STA_PS_POLLED;
1204 
1205 	spin_lock_bh(&conn->psq_lock);
1206 	psq_empty  = skb_queue_empty(&conn->psq);
1207 	spin_unlock_bh(&conn->psq_lock);
1208 
1209 	if (psq_empty)
1210 		ath6kl_wmi_set_pvb_cmd(ar->wmi, conn->aid, 0);
1211 }
1212 
1213 void ath6kl_dtimexpiry_event(struct ath6kl *ar)
1214 {
1215 	bool mcastq_empty = false;
1216 	struct sk_buff *skb;
1217 
1218 	/*
1219 	 * If there are no associated STAs, ignore the DTIM expiry event.
1220 	 * There can be potential race conditions where the last associated
1221 	 * STA may disconnect & before the host could clear the 'Indicate
1222 	 * DTIM' request to the firmware, the firmware would have just
1223 	 * indicated a DTIM expiry event. The race is between 'clear DTIM
1224 	 * expiry cmd' going from the host to the firmware & the DTIM
1225 	 * expiry event happening from the firmware to the host.
1226 	 */
1227 	if (!ar->sta_list_index)
1228 		return;
1229 
1230 	spin_lock_bh(&ar->mcastpsq_lock);
1231 	mcastq_empty = skb_queue_empty(&ar->mcastpsq);
1232 	spin_unlock_bh(&ar->mcastpsq_lock);
1233 
1234 	if (mcastq_empty)
1235 		return;
1236 
1237 	/* set the STA flag to dtim_expired for the frame to go out */
1238 	set_bit(DTIM_EXPIRED, &ar->flag);
1239 
1240 	spin_lock_bh(&ar->mcastpsq_lock);
1241 	while ((skb = skb_dequeue(&ar->mcastpsq)) != NULL) {
1242 		spin_unlock_bh(&ar->mcastpsq_lock);
1243 
1244 		ath6kl_data_tx(skb, ar->net_dev);
1245 
1246 		spin_lock_bh(&ar->mcastpsq_lock);
1247 	}
1248 	spin_unlock_bh(&ar->mcastpsq_lock);
1249 
1250 	clear_bit(DTIM_EXPIRED, &ar->flag);
1251 
1252 	/* clear the LSB of the BitMapCtl field of the TIM IE */
1253 	ath6kl_wmi_set_pvb_cmd(ar->wmi, MCAST_AID, 0);
1254 }
1255 
1256 void ath6kl_disconnect_event(struct ath6kl *ar, u8 reason, u8 *bssid,
1257 			     u8 assoc_resp_len, u8 *assoc_info,
1258 			     u16 prot_reason_status)
1259 {
1260 	struct bss *wmi_ssid_node = NULL;
1261 	unsigned long flags;
1262 
1263 	if (ar->nw_type == AP_NETWORK) {
1264 		if (!ath6kl_remove_sta(ar, bssid, prot_reason_status))
1265 			return;
1266 
1267 		/* if no more associated STAs, empty the mcast PS q */
1268 		if (ar->sta_list_index == 0) {
1269 			spin_lock_bh(&ar->mcastpsq_lock);
1270 			skb_queue_purge(&ar->mcastpsq);
1271 			spin_unlock_bh(&ar->mcastpsq_lock);
1272 
1273 			/* clear the LSB of the TIM IE's BitMapCtl field */
1274 			if (test_bit(WMI_READY, &ar->flag))
1275 				ath6kl_wmi_set_pvb_cmd(ar->wmi, MCAST_AID, 0);
1276 		}
1277 
1278 		if (!is_broadcast_ether_addr(bssid)) {
1279 			/* send event to application */
1280 			cfg80211_del_sta(ar->net_dev, bssid, GFP_KERNEL);
1281 		}
1282 
1283 		clear_bit(CONNECTED, &ar->flag);
1284 		return;
1285 	}
1286 
1287 	ath6kl_cfg80211_disconnect_event(ar, reason, bssid,
1288 				       assoc_resp_len, assoc_info,
1289 				       prot_reason_status);
1290 
1291 	aggr_reset_state(ar->aggr_cntxt);
1292 
1293 	del_timer(&ar->disconnect_timer);
1294 
1295 	ath6kl_dbg(ATH6KL_DBG_WLAN_CONNECT,
1296 		   "disconnect reason is %d\n", reason);
1297 
1298 	/*
1299 	 * If the event is due to disconnect cmd from the host, only they
1300 	 * the target would stop trying to connect. Under any other
1301 	 * condition, target would keep trying to connect.
1302 	 */
1303 	if (reason == DISCONNECT_CMD) {
1304 		if (!ar->usr_bss_filter && test_bit(WMI_READY, &ar->flag))
1305 			ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
1306 	} else {
1307 		set_bit(CONNECT_PEND, &ar->flag);
1308 		if (((reason == ASSOC_FAILED) &&
1309 		    (prot_reason_status == 0x11)) ||
1310 		    ((reason == ASSOC_FAILED) && (prot_reason_status == 0x0)
1311 		     && (ar->reconnect_flag == 1))) {
1312 			set_bit(CONNECTED, &ar->flag);
1313 			return;
1314 		}
1315 	}
1316 
1317 	if ((reason == NO_NETWORK_AVAIL) && test_bit(WMI_READY, &ar->flag))  {
1318 		ath6kl_wmi_node_free(ar->wmi, bssid);
1319 
1320 		/*
1321 		 * In case any other same SSID nodes are present remove it,
1322 		 * since those nodes also not available now.
1323 		 */
1324 		do {
1325 			/*
1326 			 * Find the nodes based on SSID and remove it
1327 			 *
1328 			 * Note: This case will not work out for
1329 			 * Hidden-SSID
1330 			 */
1331 			wmi_ssid_node = ath6kl_wmi_find_ssid_node(ar->wmi,
1332 								  ar->ssid,
1333 								  ar->ssid_len,
1334 								  false,
1335 								  true);
1336 
1337 			if (wmi_ssid_node)
1338 				ath6kl_wmi_node_free(ar->wmi,
1339 						     wmi_ssid_node->ni_macaddr);
1340 
1341 		} while (wmi_ssid_node);
1342 	}
1343 
1344 	/* update connect & link status atomically */
1345 	spin_lock_irqsave(&ar->lock, flags);
1346 	clear_bit(CONNECTED, &ar->flag);
1347 	netif_carrier_off(ar->net_dev);
1348 	spin_unlock_irqrestore(&ar->lock, flags);
1349 
1350 	if ((reason != CSERV_DISCONNECT) || (ar->reconnect_flag != 1))
1351 		ar->reconnect_flag = 0;
1352 
1353 	if (reason != CSERV_DISCONNECT)
1354 		ar->user_key_ctrl = 0;
1355 
1356 	netif_stop_queue(ar->net_dev);
1357 	memset(ar->bssid, 0, sizeof(ar->bssid));
1358 	ar->bss_ch = 0;
1359 
1360 	ath6kl_tx_data_cleanup(ar);
1361 }
1362 
1363 static int ath6kl_open(struct net_device *dev)
1364 {
1365 	struct ath6kl *ar = ath6kl_priv(dev);
1366 	unsigned long flags;
1367 
1368 	spin_lock_irqsave(&ar->lock, flags);
1369 
1370 	set_bit(WLAN_ENABLED, &ar->flag);
1371 
1372 	if (test_bit(CONNECTED, &ar->flag)) {
1373 		netif_carrier_on(dev);
1374 		netif_wake_queue(dev);
1375 	} else
1376 		netif_carrier_off(dev);
1377 
1378 	spin_unlock_irqrestore(&ar->lock, flags);
1379 
1380 	return 0;
1381 }
1382 
1383 static int ath6kl_close(struct net_device *dev)
1384 {
1385 	struct ath6kl *ar = ath6kl_priv(dev);
1386 
1387 	netif_stop_queue(dev);
1388 
1389 	ath6kl_disconnect(ar);
1390 
1391 	if (test_bit(WMI_READY, &ar->flag)) {
1392 		if (ath6kl_wmi_scanparams_cmd(ar->wmi, 0xFFFF, 0, 0, 0, 0, 0, 0,
1393 					      0, 0, 0))
1394 			return -EIO;
1395 
1396 		clear_bit(WLAN_ENABLED, &ar->flag);
1397 	}
1398 
1399 	ath6kl_cfg80211_scan_complete_event(ar, -ECANCELED);
1400 
1401 	return 0;
1402 }
1403 
1404 static struct net_device_stats *ath6kl_get_stats(struct net_device *dev)
1405 {
1406 	struct ath6kl *ar = ath6kl_priv(dev);
1407 
1408 	return &ar->net_stats;
1409 }
1410 
1411 static struct net_device_ops ath6kl_netdev_ops = {
1412 	.ndo_open               = ath6kl_open,
1413 	.ndo_stop               = ath6kl_close,
1414 	.ndo_start_xmit         = ath6kl_data_tx,
1415 	.ndo_get_stats          = ath6kl_get_stats,
1416 };
1417 
1418 void init_netdev(struct net_device *dev)
1419 {
1420 	dev->netdev_ops = &ath6kl_netdev_ops;
1421 	dev->watchdog_timeo = ATH6KL_TX_TIMEOUT;
1422 
1423 	dev->needed_headroom = ETH_HLEN;
1424 	dev->needed_headroom += sizeof(struct ath6kl_llc_snap_hdr) +
1425 				sizeof(struct wmi_data_hdr) + HTC_HDR_LENGTH
1426 				+ WMI_MAX_TX_META_SZ + ATH6KL_HTC_ALIGN_BYTES;
1427 
1428 	return;
1429 }
1430