1 /*
2  * Copyright (c) 2004-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "core.h"
18 #include "hif-ops.h"
19 #include "cfg80211.h"
20 #include "target.h"
21 #include "debug.h"
22 
23 struct ath6kl_sta *ath6kl_find_sta(struct ath6kl *ar, u8 *node_addr)
24 {
25 	struct ath6kl_sta *conn = NULL;
26 	u8 i, max_conn;
27 
28 	max_conn = (ar->nw_type == AP_NETWORK) ? AP_MAX_NUM_STA : 0;
29 
30 	for (i = 0; i < max_conn; i++) {
31 		if (memcmp(node_addr, ar->sta_list[i].mac, ETH_ALEN) == 0) {
32 			conn = &ar->sta_list[i];
33 			break;
34 		}
35 	}
36 
37 	return conn;
38 }
39 
40 struct ath6kl_sta *ath6kl_find_sta_by_aid(struct ath6kl *ar, u8 aid)
41 {
42 	struct ath6kl_sta *conn = NULL;
43 	u8 ctr;
44 
45 	for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
46 		if (ar->sta_list[ctr].aid == aid) {
47 			conn = &ar->sta_list[ctr];
48 			break;
49 		}
50 	}
51 	return conn;
52 }
53 
54 static void ath6kl_add_new_sta(struct ath6kl *ar, u8 *mac, u16 aid, u8 *wpaie,
55 			u8 ielen, u8 keymgmt, u8 ucipher, u8 auth)
56 {
57 	struct ath6kl_sta *sta;
58 	u8 free_slot;
59 
60 	free_slot = aid - 1;
61 
62 	sta = &ar->sta_list[free_slot];
63 	memcpy(sta->mac, mac, ETH_ALEN);
64 	memcpy(sta->wpa_ie, wpaie, ielen);
65 	sta->aid = aid;
66 	sta->keymgmt = keymgmt;
67 	sta->ucipher = ucipher;
68 	sta->auth = auth;
69 
70 	ar->sta_list_index = ar->sta_list_index | (1 << free_slot);
71 	ar->ap_stats.sta[free_slot].aid = cpu_to_le32(aid);
72 }
73 
74 static void ath6kl_sta_cleanup(struct ath6kl *ar, u8 i)
75 {
76 	struct ath6kl_sta *sta = &ar->sta_list[i];
77 
78 	/* empty the queued pkts in the PS queue if any */
79 	spin_lock_bh(&sta->psq_lock);
80 	skb_queue_purge(&sta->psq);
81 	spin_unlock_bh(&sta->psq_lock);
82 
83 	memset(&ar->ap_stats.sta[sta->aid - 1], 0,
84 	       sizeof(struct wmi_per_sta_stat));
85 	memset(sta->mac, 0, ETH_ALEN);
86 	memset(sta->wpa_ie, 0, ATH6KL_MAX_IE);
87 	sta->aid = 0;
88 	sta->sta_flags = 0;
89 
90 	ar->sta_list_index = ar->sta_list_index & ~(1 << i);
91 
92 }
93 
94 static u8 ath6kl_remove_sta(struct ath6kl *ar, u8 *mac, u16 reason)
95 {
96 	u8 i, removed = 0;
97 
98 	if (is_zero_ether_addr(mac))
99 		return removed;
100 
101 	if (is_broadcast_ether_addr(mac)) {
102 		ath6kl_dbg(ATH6KL_DBG_TRC, "deleting all station\n");
103 
104 		for (i = 0; i < AP_MAX_NUM_STA; i++) {
105 			if (!is_zero_ether_addr(ar->sta_list[i].mac)) {
106 				ath6kl_sta_cleanup(ar, i);
107 				removed = 1;
108 			}
109 		}
110 	} else {
111 		for (i = 0; i < AP_MAX_NUM_STA; i++) {
112 			if (memcmp(ar->sta_list[i].mac, mac, ETH_ALEN) == 0) {
113 				ath6kl_dbg(ATH6KL_DBG_TRC,
114 					   "deleting station %pM aid=%d reason=%d\n",
115 					   mac, ar->sta_list[i].aid, reason);
116 				ath6kl_sta_cleanup(ar, i);
117 				removed = 1;
118 				break;
119 			}
120 		}
121 	}
122 
123 	return removed;
124 }
125 
126 enum htc_endpoint_id ath6kl_ac2_endpoint_id(void *devt, u8 ac)
127 {
128 	struct ath6kl *ar = devt;
129 	return ar->ac2ep_map[ac];
130 }
131 
132 struct ath6kl_cookie *ath6kl_alloc_cookie(struct ath6kl *ar)
133 {
134 	struct ath6kl_cookie *cookie;
135 
136 	cookie = ar->cookie_list;
137 	if (cookie != NULL) {
138 		ar->cookie_list = cookie->arc_list_next;
139 		ar->cookie_count--;
140 	}
141 
142 	return cookie;
143 }
144 
145 void ath6kl_cookie_init(struct ath6kl *ar)
146 {
147 	u32 i;
148 
149 	ar->cookie_list = NULL;
150 	ar->cookie_count = 0;
151 
152 	memset(ar->cookie_mem, 0, sizeof(ar->cookie_mem));
153 
154 	for (i = 0; i < MAX_COOKIE_NUM; i++)
155 		ath6kl_free_cookie(ar, &ar->cookie_mem[i]);
156 }
157 
158 void ath6kl_cookie_cleanup(struct ath6kl *ar)
159 {
160 	ar->cookie_list = NULL;
161 	ar->cookie_count = 0;
162 }
163 
164 void ath6kl_free_cookie(struct ath6kl *ar, struct ath6kl_cookie *cookie)
165 {
166 	/* Insert first */
167 
168 	if (!ar || !cookie)
169 		return;
170 
171 	cookie->arc_list_next = ar->cookie_list;
172 	ar->cookie_list = cookie;
173 	ar->cookie_count++;
174 }
175 
176 /* set the window address register (using 4-byte register access ). */
177 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
178 {
179 	int status;
180 	u8 addr_val[4];
181 	s32 i;
182 
183 	/*
184 	 * Write bytes 1,2,3 of the register to set the upper address bytes,
185 	 * the LSB is written last to initiate the access cycle
186 	 */
187 
188 	for (i = 1; i <= 3; i++) {
189 		/*
190 		 * Fill the buffer with the address byte value we want to
191 		 * hit 4 times.
192 		 */
193 		memset(addr_val, ((u8 *)&addr)[i], 4);
194 
195 		/*
196 		 * Hit each byte of the register address with a 4-byte
197 		 * write operation to the same address, this is a harmless
198 		 * operation.
199 		 */
200 		status = hif_read_write_sync(ar, reg_addr + i, addr_val,
201 					     4, HIF_WR_SYNC_BYTE_FIX);
202 		if (status)
203 			break;
204 	}
205 
206 	if (status) {
207 		ath6kl_err("failed to write initial bytes of 0x%x to window reg: 0x%X\n",
208 			   addr, reg_addr);
209 		return status;
210 	}
211 
212 	/*
213 	 * Write the address register again, this time write the whole
214 	 * 4-byte value. The effect here is that the LSB write causes the
215 	 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
216 	 * effect since we are writing the same values again
217 	 */
218 	status = hif_read_write_sync(ar, reg_addr, (u8 *)(&addr),
219 				     4, HIF_WR_SYNC_BYTE_INC);
220 
221 	if (status) {
222 		ath6kl_err("failed to write 0x%x to window reg: 0x%X\n",
223 			   addr, reg_addr);
224 		return status;
225 	}
226 
227 	return 0;
228 }
229 
230 /*
231  * Read from the ATH6KL through its diagnostic window. No cooperation from
232  * the Target is required for this.
233  */
234 int ath6kl_read_reg_diag(struct ath6kl *ar, u32 *address, u32 *data)
235 {
236 	int status;
237 
238 	/* set window register to start read cycle */
239 	status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
240 					*address);
241 
242 	if (status)
243 		return status;
244 
245 	/* read the data */
246 	status = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *)data,
247 				     sizeof(u32), HIF_RD_SYNC_BYTE_INC);
248 	if (status) {
249 		ath6kl_err("failed to read from window data addr\n");
250 		return status;
251 	}
252 
253 	return status;
254 }
255 
256 
257 /*
258  * Write to the ATH6KL through its diagnostic window. No cooperation from
259  * the Target is required for this.
260  */
261 static int ath6kl_write_reg_diag(struct ath6kl *ar, u32 *address, u32 *data)
262 {
263 	int status;
264 
265 	/* set write data */
266 	status = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *)data,
267 				     sizeof(u32), HIF_WR_SYNC_BYTE_INC);
268 	if (status) {
269 		ath6kl_err("failed to write 0x%x to window data addr\n", *data);
270 		return status;
271 	}
272 
273 	/* set window register, which starts the write cycle */
274 	return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
275 				      *address);
276 }
277 
278 int ath6kl_access_datadiag(struct ath6kl *ar, u32 address,
279 			   u8 *data, u32 length, bool read)
280 {
281 	u32 count;
282 	int status = 0;
283 
284 	for (count = 0; count < length; count += 4, address += 4) {
285 		if (read) {
286 			status = ath6kl_read_reg_diag(ar, &address,
287 						      (u32 *) &data[count]);
288 			if (status)
289 				break;
290 		} else {
291 			status = ath6kl_write_reg_diag(ar, &address,
292 						       (u32 *) &data[count]);
293 			if (status)
294 				break;
295 		}
296 	}
297 
298 	return status;
299 }
300 
301 /* FIXME: move to a better place, target.h? */
302 #define AR6003_RESET_CONTROL_ADDRESS 0x00004000
303 #define AR6004_RESET_CONTROL_ADDRESS 0x00004000
304 
305 static void ath6kl_reset_device(struct ath6kl *ar, u32 target_type,
306 				bool wait_fot_compltn, bool cold_reset)
307 {
308 	int status = 0;
309 	u32 address;
310 	u32 data;
311 
312 	if (target_type != TARGET_TYPE_AR6003 &&
313 		target_type != TARGET_TYPE_AR6004)
314 		return;
315 
316 	data = cold_reset ? RESET_CONTROL_COLD_RST : RESET_CONTROL_MBOX_RST;
317 
318 	switch (target_type) {
319 	case TARGET_TYPE_AR6003:
320 		address = AR6003_RESET_CONTROL_ADDRESS;
321 		break;
322 	case TARGET_TYPE_AR6004:
323 		address = AR6004_RESET_CONTROL_ADDRESS;
324 		break;
325 	default:
326 		address = AR6003_RESET_CONTROL_ADDRESS;
327 		break;
328 	}
329 
330 	status = ath6kl_write_reg_diag(ar, &address, &data);
331 
332 	if (status)
333 		ath6kl_err("failed to reset target\n");
334 }
335 
336 void ath6kl_stop_endpoint(struct net_device *dev, bool keep_profile,
337 			  bool get_dbglogs)
338 {
339 	struct ath6kl *ar = ath6kl_priv(dev);
340 	static u8 bcast_mac[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
341 	bool discon_issued;
342 
343 	netif_stop_queue(dev);
344 
345 	/* disable the target and the interrupts associated with it */
346 	if (test_bit(WMI_READY, &ar->flag)) {
347 		discon_issued = (test_bit(CONNECTED, &ar->flag) ||
348 				 test_bit(CONNECT_PEND, &ar->flag));
349 		ath6kl_disconnect(ar);
350 		if (!keep_profile)
351 			ath6kl_init_profile_info(ar);
352 
353 		del_timer(&ar->disconnect_timer);
354 
355 		clear_bit(WMI_READY, &ar->flag);
356 		ath6kl_wmi_shutdown(ar->wmi);
357 		clear_bit(WMI_ENABLED, &ar->flag);
358 		ar->wmi = NULL;
359 
360 		/*
361 		 * After wmi_shudown all WMI events will be dropped. We
362 		 * need to cleanup the buffers allocated in AP mode and
363 		 * give disconnect notification to stack, which usually
364 		 * happens in the disconnect_event. Simulate the disconnect
365 		 * event by calling the function directly. Sometimes
366 		 * disconnect_event will be received when the debug logs
367 		 * are collected.
368 		 */
369 		if (discon_issued)
370 			ath6kl_disconnect_event(ar, DISCONNECT_CMD,
371 						(ar->nw_type & AP_NETWORK) ?
372 						bcast_mac : ar->bssid,
373 						0, NULL, 0);
374 
375 		ar->user_key_ctrl = 0;
376 
377 	} else {
378 		ath6kl_dbg(ATH6KL_DBG_TRC,
379 			   "%s: wmi is not ready 0x%p 0x%p\n",
380 			   __func__, ar, ar->wmi);
381 
382 		/* Shut down WMI if we have started it */
383 		if (test_bit(WMI_ENABLED, &ar->flag)) {
384 			ath6kl_dbg(ATH6KL_DBG_TRC,
385 				   "%s: shut down wmi\n", __func__);
386 			ath6kl_wmi_shutdown(ar->wmi);
387 			clear_bit(WMI_ENABLED, &ar->flag);
388 			ar->wmi = NULL;
389 		}
390 	}
391 
392 	if (ar->htc_target) {
393 		ath6kl_dbg(ATH6KL_DBG_TRC, "%s: shut down htc\n", __func__);
394 		ath6kl_htc_stop(ar->htc_target);
395 	}
396 
397 	/*
398 	 * Try to reset the device if we can. The driver may have been
399 	 * configure NOT to reset the target during a debug session.
400 	 */
401 	ath6kl_dbg(ATH6KL_DBG_TRC,
402 		   "attempting to reset target on instance destroy\n");
403 	ath6kl_reset_device(ar, ar->target_type, true, true);
404 }
405 
406 static void ath6kl_install_static_wep_keys(struct ath6kl *ar)
407 {
408 	u8 index;
409 	u8 keyusage;
410 
411 	for (index = WMI_MIN_KEY_INDEX; index <= WMI_MAX_KEY_INDEX; index++) {
412 		if (ar->wep_key_list[index].key_len) {
413 			keyusage = GROUP_USAGE;
414 			if (index == ar->def_txkey_index)
415 				keyusage |= TX_USAGE;
416 
417 			ath6kl_wmi_addkey_cmd(ar->wmi,
418 					      index,
419 					      WEP_CRYPT,
420 					      keyusage,
421 					      ar->wep_key_list[index].key_len,
422 					      NULL,
423 					      ar->wep_key_list[index].key,
424 					      KEY_OP_INIT_VAL, NULL,
425 					      NO_SYNC_WMIFLAG);
426 		}
427 	}
428 }
429 
430 static void ath6kl_connect_ap_mode(struct ath6kl *ar, u16 channel, u8 *bssid,
431 				   u16 listen_int, u16 beacon_int,
432 				   u8 assoc_resp_len, u8 *assoc_info)
433 {
434 	struct net_device *dev = ar->net_dev;
435 	struct station_info sinfo;
436 	struct ath6kl_req_key *ik;
437 	enum crypto_type keyType = NONE_CRYPT;
438 
439 	if (memcmp(dev->dev_addr, bssid, ETH_ALEN) == 0) {
440 		ik = &ar->ap_mode_bkey;
441 
442 		switch (ar->auth_mode) {
443 		case NONE_AUTH:
444 			if (ar->prwise_crypto == WEP_CRYPT)
445 				ath6kl_install_static_wep_keys(ar);
446 			break;
447 		case WPA_PSK_AUTH:
448 		case WPA2_PSK_AUTH:
449 		case (WPA_PSK_AUTH|WPA2_PSK_AUTH):
450 			switch (ik->ik_type) {
451 			case ATH6KL_CIPHER_TKIP:
452 				keyType = TKIP_CRYPT;
453 				break;
454 			case ATH6KL_CIPHER_AES_CCM:
455 				keyType = AES_CRYPT;
456 				break;
457 			default:
458 				goto skip_key;
459 			}
460 			ath6kl_wmi_addkey_cmd(ar->wmi, ik->ik_keyix, keyType,
461 					      GROUP_USAGE, ik->ik_keylen,
462 					      (u8 *)&ik->ik_keyrsc,
463 					      ik->ik_keydata,
464 					      KEY_OP_INIT_VAL, ik->ik_macaddr,
465 					      SYNC_BOTH_WMIFLAG);
466 			break;
467 		}
468 skip_key:
469 		set_bit(CONNECTED, &ar->flag);
470 		return;
471 	}
472 
473 	ath6kl_dbg(ATH6KL_DBG_TRC, "new station %pM aid=%d\n",
474 		   bssid, channel);
475 
476 	ath6kl_add_new_sta(ar, bssid, channel, assoc_info, assoc_resp_len,
477 			   listen_int & 0xFF, beacon_int,
478 			   (listen_int >> 8) & 0xFF);
479 
480 	/* send event to application */
481 	memset(&sinfo, 0, sizeof(sinfo));
482 
483 	/* TODO: sinfo.generation */
484 	/* TODO: need to deliver (Re)AssocReq IEs somehow.. change in
485 	 * cfg80211 needed, e.g., by adding those into sinfo
486 	 */
487 	cfg80211_new_sta(ar->net_dev, bssid, &sinfo, GFP_KERNEL);
488 
489 	netif_wake_queue(ar->net_dev);
490 
491 	return;
492 }
493 
494 /* Functions for Tx credit handling */
495 void ath6k_credit_init(struct htc_credit_state_info *cred_info,
496 		       struct list_head *ep_list,
497 		       int tot_credits)
498 {
499 	struct htc_endpoint_credit_dist *cur_ep_dist;
500 	int count;
501 
502 	cred_info->cur_free_credits = tot_credits;
503 	cred_info->total_avail_credits = tot_credits;
504 
505 	list_for_each_entry(cur_ep_dist, ep_list, list) {
506 		if (cur_ep_dist->endpoint == ENDPOINT_0)
507 			continue;
508 
509 		cur_ep_dist->cred_min = cur_ep_dist->cred_per_msg;
510 
511 		if (tot_credits > 4)
512 			if ((cur_ep_dist->svc_id == WMI_DATA_BK_SVC) ||
513 			    (cur_ep_dist->svc_id == WMI_DATA_BE_SVC)) {
514 				ath6kl_deposit_credit_to_ep(cred_info,
515 						cur_ep_dist,
516 						cur_ep_dist->cred_min);
517 				cur_ep_dist->dist_flags |= HTC_EP_ACTIVE;
518 			}
519 
520 		if (cur_ep_dist->svc_id == WMI_CONTROL_SVC) {
521 			ath6kl_deposit_credit_to_ep(cred_info, cur_ep_dist,
522 						    cur_ep_dist->cred_min);
523 			/*
524 			 * Control service is always marked active, it
525 			 * never goes inactive EVER.
526 			 */
527 			cur_ep_dist->dist_flags |= HTC_EP_ACTIVE;
528 		} else if (cur_ep_dist->svc_id == WMI_DATA_BK_SVC)
529 			/* this is the lowest priority data endpoint */
530 			cred_info->lowestpri_ep_dist = cur_ep_dist->list;
531 
532 		/*
533 		 * Streams have to be created (explicit | implicit) for all
534 		 * kinds of traffic. BE endpoints are also inactive in the
535 		 * beginning. When BE traffic starts it creates implicit
536 		 * streams that redistributes credits.
537 		 *
538 		 * Note: all other endpoints have minimums set but are
539 		 * initially given NO credits. credits will be distributed
540 		 * as traffic activity demands
541 		 */
542 	}
543 
544 	WARN_ON(cred_info->cur_free_credits <= 0);
545 
546 	list_for_each_entry(cur_ep_dist, ep_list, list) {
547 		if (cur_ep_dist->endpoint == ENDPOINT_0)
548 			continue;
549 
550 		if (cur_ep_dist->svc_id == WMI_CONTROL_SVC)
551 			cur_ep_dist->cred_norm = cur_ep_dist->cred_per_msg;
552 		else {
553 			/*
554 			 * For the remaining data endpoints, we assume that
555 			 * each cred_per_msg are the same. We use a simple
556 			 * calculation here, we take the remaining credits
557 			 * and determine how many max messages this can
558 			 * cover and then set each endpoint's normal value
559 			 * equal to 3/4 this amount.
560 			 */
561 			count = (cred_info->cur_free_credits /
562 				 cur_ep_dist->cred_per_msg)
563 				* cur_ep_dist->cred_per_msg;
564 			count = (count * 3) >> 2;
565 			count = max(count, cur_ep_dist->cred_per_msg);
566 			cur_ep_dist->cred_norm = count;
567 
568 		}
569 	}
570 }
571 
572 /* initialize and setup credit distribution */
573 int ath6k_setup_credit_dist(void *htc_handle,
574 			    struct htc_credit_state_info *cred_info)
575 {
576 	u16 servicepriority[5];
577 
578 	memset(cred_info, 0, sizeof(struct htc_credit_state_info));
579 
580 	servicepriority[0] = WMI_CONTROL_SVC;  /* highest */
581 	servicepriority[1] = WMI_DATA_VO_SVC;
582 	servicepriority[2] = WMI_DATA_VI_SVC;
583 	servicepriority[3] = WMI_DATA_BE_SVC;
584 	servicepriority[4] = WMI_DATA_BK_SVC; /* lowest */
585 
586 	/* set priority list */
587 	ath6kl_htc_set_credit_dist(htc_handle, cred_info, servicepriority, 5);
588 
589 	return 0;
590 }
591 
592 /* reduce an ep's credits back to a set limit */
593 static void ath6k_reduce_credits(struct htc_credit_state_info *cred_info,
594 				 struct htc_endpoint_credit_dist  *ep_dist,
595 				 int limit)
596 {
597 	int credits;
598 
599 	ep_dist->cred_assngd = limit;
600 
601 	if (ep_dist->credits <= limit)
602 		return;
603 
604 	credits = ep_dist->credits - limit;
605 	ep_dist->credits -= credits;
606 	cred_info->cur_free_credits += credits;
607 }
608 
609 static void ath6k_credit_update(struct htc_credit_state_info *cred_info,
610 				struct list_head *epdist_list)
611 {
612 	struct htc_endpoint_credit_dist *cur_dist_list;
613 
614 	list_for_each_entry(cur_dist_list, epdist_list, list) {
615 		if (cur_dist_list->endpoint == ENDPOINT_0)
616 			continue;
617 
618 		if (cur_dist_list->cred_to_dist > 0) {
619 			cur_dist_list->credits +=
620 					cur_dist_list->cred_to_dist;
621 			cur_dist_list->cred_to_dist = 0;
622 			if (cur_dist_list->credits >
623 			    cur_dist_list->cred_assngd)
624 				ath6k_reduce_credits(cred_info,
625 						cur_dist_list,
626 						cur_dist_list->cred_assngd);
627 
628 			if (cur_dist_list->credits >
629 			    cur_dist_list->cred_norm)
630 				ath6k_reduce_credits(cred_info, cur_dist_list,
631 						     cur_dist_list->cred_norm);
632 
633 			if (!(cur_dist_list->dist_flags & HTC_EP_ACTIVE)) {
634 				if (cur_dist_list->txq_depth == 0)
635 					ath6k_reduce_credits(cred_info,
636 							     cur_dist_list, 0);
637 			}
638 		}
639 	}
640 }
641 
642 /*
643  * HTC has an endpoint that needs credits, ep_dist is the endpoint in
644  * question.
645  */
646 void ath6k_seek_credits(struct htc_credit_state_info *cred_info,
647 			struct htc_endpoint_credit_dist *ep_dist)
648 {
649 	struct htc_endpoint_credit_dist *curdist_list;
650 	int credits = 0;
651 	int need;
652 
653 	if (ep_dist->svc_id == WMI_CONTROL_SVC)
654 		goto out;
655 
656 	if ((ep_dist->svc_id == WMI_DATA_VI_SVC) ||
657 	    (ep_dist->svc_id == WMI_DATA_VO_SVC))
658 		if ((ep_dist->cred_assngd >= ep_dist->cred_norm))
659 			goto out;
660 
661 	/*
662 	 * For all other services, we follow a simple algorithm of:
663 	 *
664 	 * 1. checking the free pool for credits
665 	 * 2. checking lower priority endpoints for credits to take
666 	 */
667 
668 	credits = min(cred_info->cur_free_credits, ep_dist->seek_cred);
669 
670 	if (credits >= ep_dist->seek_cred)
671 		goto out;
672 
673 	/*
674 	 * We don't have enough in the free pool, try taking away from
675 	 * lower priority services The rule for taking away credits:
676 	 *
677 	 *   1. Only take from lower priority endpoints
678 	 *   2. Only take what is allocated above the minimum (never
679 	 *      starve an endpoint completely)
680 	 *   3. Only take what you need.
681 	 */
682 
683 	list_for_each_entry_reverse(curdist_list,
684 				    &cred_info->lowestpri_ep_dist,
685 				    list) {
686 		if (curdist_list == ep_dist)
687 			break;
688 
689 		need = ep_dist->seek_cred - cred_info->cur_free_credits;
690 
691 		if ((curdist_list->cred_assngd - need) >=
692 		     curdist_list->cred_min) {
693 			/*
694 			 * The current one has been allocated more than
695 			 * it's minimum and it has enough credits assigned
696 			 * above it's minimum to fulfill our need try to
697 			 * take away just enough to fulfill our need.
698 			 */
699 			ath6k_reduce_credits(cred_info, curdist_list,
700 					curdist_list->cred_assngd - need);
701 
702 			if (cred_info->cur_free_credits >=
703 			    ep_dist->seek_cred)
704 				break;
705 		}
706 
707 		if (curdist_list->endpoint == ENDPOINT_0)
708 			break;
709 	}
710 
711 	credits = min(cred_info->cur_free_credits, ep_dist->seek_cred);
712 
713 out:
714 	/* did we find some credits? */
715 	if (credits)
716 		ath6kl_deposit_credit_to_ep(cred_info, ep_dist, credits);
717 
718 	ep_dist->seek_cred = 0;
719 }
720 
721 /* redistribute credits based on activity change */
722 static void ath6k_redistribute_credits(struct htc_credit_state_info *info,
723 				       struct list_head *ep_dist_list)
724 {
725 	struct htc_endpoint_credit_dist *curdist_list;
726 
727 	list_for_each_entry(curdist_list, ep_dist_list, list) {
728 		if (curdist_list->endpoint == ENDPOINT_0)
729 			continue;
730 
731 		if ((curdist_list->svc_id == WMI_DATA_BK_SVC)  ||
732 		    (curdist_list->svc_id == WMI_DATA_BE_SVC))
733 			curdist_list->dist_flags |= HTC_EP_ACTIVE;
734 
735 		if ((curdist_list->svc_id != WMI_CONTROL_SVC) &&
736 		    !(curdist_list->dist_flags & HTC_EP_ACTIVE)) {
737 			if (curdist_list->txq_depth == 0)
738 				ath6k_reduce_credits(info,
739 						curdist_list, 0);
740 			else
741 				ath6k_reduce_credits(info,
742 						curdist_list,
743 						curdist_list->cred_min);
744 		}
745 	}
746 }
747 
748 /*
749  *
750  * This function is invoked whenever endpoints require credit
751  * distributions. A lock is held while this function is invoked, this
752  * function shall NOT block. The ep_dist_list is a list of distribution
753  * structures in prioritized order as defined by the call to the
754  * htc_set_credit_dist() api.
755  */
756 void ath6k_credit_distribute(struct htc_credit_state_info *cred_info,
757 			     struct list_head *ep_dist_list,
758 			     enum htc_credit_dist_reason reason)
759 {
760 	switch (reason) {
761 	case HTC_CREDIT_DIST_SEND_COMPLETE:
762 		ath6k_credit_update(cred_info, ep_dist_list);
763 		break;
764 	case HTC_CREDIT_DIST_ACTIVITY_CHANGE:
765 		ath6k_redistribute_credits(cred_info, ep_dist_list);
766 		break;
767 	default:
768 		break;
769 	}
770 
771 	WARN_ON(cred_info->cur_free_credits > cred_info->total_avail_credits);
772 	WARN_ON(cred_info->cur_free_credits < 0);
773 }
774 
775 void disconnect_timer_handler(unsigned long ptr)
776 {
777 	struct net_device *dev = (struct net_device *)ptr;
778 	struct ath6kl *ar = ath6kl_priv(dev);
779 
780 	ath6kl_init_profile_info(ar);
781 	ath6kl_disconnect(ar);
782 }
783 
784 void ath6kl_disconnect(struct ath6kl *ar)
785 {
786 	if (test_bit(CONNECTED, &ar->flag) ||
787 	    test_bit(CONNECT_PEND, &ar->flag)) {
788 		ath6kl_wmi_disconnect_cmd(ar->wmi);
789 		/*
790 		 * Disconnect command is issued, clear the connect pending
791 		 * flag. The connected flag will be cleared in
792 		 * disconnect event notification.
793 		 */
794 		clear_bit(CONNECT_PEND, &ar->flag);
795 	}
796 }
797 
798 /* WMI Event handlers */
799 
800 static const char *get_hw_id_string(u32 id)
801 {
802 	switch (id) {
803 	case AR6003_REV1_VERSION:
804 		return "1.0";
805 	case AR6003_REV2_VERSION:
806 		return "2.0";
807 	case AR6003_REV3_VERSION:
808 		return "2.1.1";
809 	default:
810 		return "unknown";
811 	}
812 }
813 
814 void ath6kl_ready_event(void *devt, u8 *datap, u32 sw_ver, u32 abi_ver)
815 {
816 	struct ath6kl *ar = devt;
817 	struct net_device *dev = ar->net_dev;
818 
819 	memcpy(dev->dev_addr, datap, ETH_ALEN);
820 	ath6kl_dbg(ATH6KL_DBG_TRC, "%s: mac addr = %pM\n",
821 		   __func__, dev->dev_addr);
822 
823 	ar->version.wlan_ver = sw_ver;
824 	ar->version.abi_ver = abi_ver;
825 
826 	snprintf(ar->wdev->wiphy->fw_version,
827 		 sizeof(ar->wdev->wiphy->fw_version),
828 		 "%u.%u.%u.%u",
829 		 (ar->version.wlan_ver & 0xf0000000) >> 28,
830 		 (ar->version.wlan_ver & 0x0f000000) >> 24,
831 		 (ar->version.wlan_ver & 0x00ff0000) >> 16,
832 		 (ar->version.wlan_ver & 0x0000ffff));
833 
834 	/* indicate to the waiting thread that the ready event was received */
835 	set_bit(WMI_READY, &ar->flag);
836 	wake_up(&ar->event_wq);
837 
838 	ath6kl_info("hw %s fw %s\n",
839 		    get_hw_id_string(ar->wdev->wiphy->hw_version),
840 		    ar->wdev->wiphy->fw_version);
841 }
842 
843 void ath6kl_scan_complete_evt(struct ath6kl *ar, int status)
844 {
845 	ath6kl_cfg80211_scan_complete_event(ar, status);
846 
847 	if (!ar->usr_bss_filter)
848 		ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
849 
850 	ath6kl_dbg(ATH6KL_DBG_WLAN_SCAN, "scan complete: %d\n", status);
851 }
852 
853 void ath6kl_connect_event(struct ath6kl *ar, u16 channel, u8 *bssid,
854 			  u16 listen_int, u16 beacon_int,
855 			  enum network_type net_type, u8 beacon_ie_len,
856 			  u8 assoc_req_len, u8 assoc_resp_len,
857 			  u8 *assoc_info)
858 {
859 	unsigned long flags;
860 
861 	if (ar->nw_type == AP_NETWORK) {
862 		ath6kl_connect_ap_mode(ar, channel, bssid, listen_int,
863 				       beacon_int, assoc_resp_len,
864 				       assoc_info);
865 		return;
866 	}
867 
868 	ath6kl_cfg80211_connect_event(ar, channel, bssid,
869 				      listen_int, beacon_int,
870 				      net_type, beacon_ie_len,
871 				      assoc_req_len, assoc_resp_len,
872 				      assoc_info);
873 
874 	memcpy(ar->bssid, bssid, sizeof(ar->bssid));
875 	ar->bss_ch = channel;
876 
877 	if ((ar->nw_type == INFRA_NETWORK))
878 		ath6kl_wmi_listeninterval_cmd(ar->wmi, ar->listen_intvl_t,
879 					      ar->listen_intvl_b);
880 
881 	netif_wake_queue(ar->net_dev);
882 
883 	/* Update connect & link status atomically */
884 	spin_lock_irqsave(&ar->lock, flags);
885 	set_bit(CONNECTED, &ar->flag);
886 	clear_bit(CONNECT_PEND, &ar->flag);
887 	netif_carrier_on(ar->net_dev);
888 	spin_unlock_irqrestore(&ar->lock, flags);
889 
890 	aggr_reset_state(ar->aggr_cntxt);
891 	ar->reconnect_flag = 0;
892 
893 	if ((ar->nw_type == ADHOC_NETWORK) && ar->ibss_ps_enable) {
894 		memset(ar->node_map, 0, sizeof(ar->node_map));
895 		ar->node_num = 0;
896 		ar->next_ep_id = ENDPOINT_2;
897 	}
898 
899 	if (!ar->usr_bss_filter)
900 		ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
901 }
902 
903 void ath6kl_tkip_micerr_event(struct ath6kl *ar, u8 keyid, bool ismcast)
904 {
905 	struct ath6kl_sta *sta;
906 	u8 tsc[6];
907 	/*
908 	 * For AP case, keyid will have aid of STA which sent pkt with
909 	 * MIC error. Use this aid to get MAC & send it to hostapd.
910 	 */
911 	if (ar->nw_type == AP_NETWORK) {
912 		sta = ath6kl_find_sta_by_aid(ar, (keyid >> 2));
913 		if (!sta)
914 			return;
915 
916 		ath6kl_dbg(ATH6KL_DBG_TRC,
917 			   "ap tkip mic error received from aid=%d\n", keyid);
918 
919 		memset(tsc, 0, sizeof(tsc)); /* FIX: get correct TSC */
920 		cfg80211_michael_mic_failure(ar->net_dev, sta->mac,
921 					     NL80211_KEYTYPE_PAIRWISE, keyid,
922 					     tsc, GFP_KERNEL);
923 	} else
924 		ath6kl_cfg80211_tkip_micerr_event(ar, keyid, ismcast);
925 
926 }
927 
928 static void ath6kl_update_target_stats(struct ath6kl *ar, u8 *ptr, u32 len)
929 {
930 	struct wmi_target_stats *tgt_stats =
931 		(struct wmi_target_stats *) ptr;
932 	struct target_stats *stats = &ar->target_stats;
933 	struct tkip_ccmp_stats *ccmp_stats;
934 	struct bss *conn_bss = NULL;
935 	struct cserv_stats *c_stats;
936 	u8 ac;
937 
938 	if (len < sizeof(*tgt_stats))
939 		return;
940 
941 	/* update the RSSI of the connected bss */
942 	if (test_bit(CONNECTED, &ar->flag)) {
943 		conn_bss = ath6kl_wmi_find_node(ar->wmi, ar->bssid);
944 		if (conn_bss) {
945 			c_stats = &tgt_stats->cserv_stats;
946 			conn_bss->ni_rssi =
947 				a_sle16_to_cpu(c_stats->cs_ave_beacon_rssi);
948 			conn_bss->ni_snr =
949 				tgt_stats->cserv_stats.cs_ave_beacon_snr;
950 			ath6kl_wmi_node_return(ar->wmi, conn_bss);
951 		}
952 	}
953 
954 	ath6kl_dbg(ATH6KL_DBG_TRC, "updating target stats\n");
955 
956 	stats->tx_pkt += le32_to_cpu(tgt_stats->stats.tx.pkt);
957 	stats->tx_byte += le32_to_cpu(tgt_stats->stats.tx.byte);
958 	stats->tx_ucast_pkt += le32_to_cpu(tgt_stats->stats.tx.ucast_pkt);
959 	stats->tx_ucast_byte += le32_to_cpu(tgt_stats->stats.tx.ucast_byte);
960 	stats->tx_mcast_pkt += le32_to_cpu(tgt_stats->stats.tx.mcast_pkt);
961 	stats->tx_mcast_byte += le32_to_cpu(tgt_stats->stats.tx.mcast_byte);
962 	stats->tx_bcast_pkt  += le32_to_cpu(tgt_stats->stats.tx.bcast_pkt);
963 	stats->tx_bcast_byte += le32_to_cpu(tgt_stats->stats.tx.bcast_byte);
964 	stats->tx_rts_success_cnt +=
965 		le32_to_cpu(tgt_stats->stats.tx.rts_success_cnt);
966 
967 	for (ac = 0; ac < WMM_NUM_AC; ac++)
968 		stats->tx_pkt_per_ac[ac] +=
969 			le32_to_cpu(tgt_stats->stats.tx.pkt_per_ac[ac]);
970 
971 	stats->tx_err += le32_to_cpu(tgt_stats->stats.tx.err);
972 	stats->tx_fail_cnt += le32_to_cpu(tgt_stats->stats.tx.fail_cnt);
973 	stats->tx_retry_cnt += le32_to_cpu(tgt_stats->stats.tx.retry_cnt);
974 	stats->tx_mult_retry_cnt +=
975 		le32_to_cpu(tgt_stats->stats.tx.mult_retry_cnt);
976 	stats->tx_rts_fail_cnt +=
977 		le32_to_cpu(tgt_stats->stats.tx.rts_fail_cnt);
978 	stats->tx_ucast_rate =
979 	    ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.tx.ucast_rate));
980 
981 	stats->rx_pkt += le32_to_cpu(tgt_stats->stats.rx.pkt);
982 	stats->rx_byte += le32_to_cpu(tgt_stats->stats.rx.byte);
983 	stats->rx_ucast_pkt += le32_to_cpu(tgt_stats->stats.rx.ucast_pkt);
984 	stats->rx_ucast_byte += le32_to_cpu(tgt_stats->stats.rx.ucast_byte);
985 	stats->rx_mcast_pkt += le32_to_cpu(tgt_stats->stats.rx.mcast_pkt);
986 	stats->rx_mcast_byte += le32_to_cpu(tgt_stats->stats.rx.mcast_byte);
987 	stats->rx_bcast_pkt += le32_to_cpu(tgt_stats->stats.rx.bcast_pkt);
988 	stats->rx_bcast_byte += le32_to_cpu(tgt_stats->stats.rx.bcast_byte);
989 	stats->rx_frgment_pkt += le32_to_cpu(tgt_stats->stats.rx.frgment_pkt);
990 	stats->rx_err += le32_to_cpu(tgt_stats->stats.rx.err);
991 	stats->rx_crc_err += le32_to_cpu(tgt_stats->stats.rx.crc_err);
992 	stats->rx_key_cache_miss +=
993 		le32_to_cpu(tgt_stats->stats.rx.key_cache_miss);
994 	stats->rx_decrypt_err += le32_to_cpu(tgt_stats->stats.rx.decrypt_err);
995 	stats->rx_dupl_frame += le32_to_cpu(tgt_stats->stats.rx.dupl_frame);
996 	stats->rx_ucast_rate =
997 	    ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.rx.ucast_rate));
998 
999 	ccmp_stats = &tgt_stats->stats.tkip_ccmp_stats;
1000 
1001 	stats->tkip_local_mic_fail +=
1002 		le32_to_cpu(ccmp_stats->tkip_local_mic_fail);
1003 	stats->tkip_cnter_measures_invoked +=
1004 		le32_to_cpu(ccmp_stats->tkip_cnter_measures_invoked);
1005 	stats->tkip_fmt_err += le32_to_cpu(ccmp_stats->tkip_fmt_err);
1006 
1007 	stats->ccmp_fmt_err += le32_to_cpu(ccmp_stats->ccmp_fmt_err);
1008 	stats->ccmp_replays += le32_to_cpu(ccmp_stats->ccmp_replays);
1009 
1010 	stats->pwr_save_fail_cnt +=
1011 		le32_to_cpu(tgt_stats->pm_stats.pwr_save_failure_cnt);
1012 	stats->noise_floor_calib =
1013 		a_sle32_to_cpu(tgt_stats->noise_floor_calib);
1014 
1015 	stats->cs_bmiss_cnt +=
1016 		le32_to_cpu(tgt_stats->cserv_stats.cs_bmiss_cnt);
1017 	stats->cs_low_rssi_cnt +=
1018 		le32_to_cpu(tgt_stats->cserv_stats.cs_low_rssi_cnt);
1019 	stats->cs_connect_cnt +=
1020 		le16_to_cpu(tgt_stats->cserv_stats.cs_connect_cnt);
1021 	stats->cs_discon_cnt +=
1022 		le16_to_cpu(tgt_stats->cserv_stats.cs_discon_cnt);
1023 
1024 	stats->cs_ave_beacon_rssi =
1025 		a_sle16_to_cpu(tgt_stats->cserv_stats.cs_ave_beacon_rssi);
1026 
1027 	stats->cs_last_roam_msec =
1028 		tgt_stats->cserv_stats.cs_last_roam_msec;
1029 	stats->cs_snr = tgt_stats->cserv_stats.cs_snr;
1030 	stats->cs_rssi = a_sle16_to_cpu(tgt_stats->cserv_stats.cs_rssi);
1031 
1032 	stats->lq_val = le32_to_cpu(tgt_stats->lq_val);
1033 
1034 	stats->wow_pkt_dropped +=
1035 		le32_to_cpu(tgt_stats->wow_stats.wow_pkt_dropped);
1036 	stats->wow_host_pkt_wakeups +=
1037 		tgt_stats->wow_stats.wow_host_pkt_wakeups;
1038 	stats->wow_host_evt_wakeups +=
1039 		tgt_stats->wow_stats.wow_host_evt_wakeups;
1040 	stats->wow_evt_discarded +=
1041 		le16_to_cpu(tgt_stats->wow_stats.wow_evt_discarded);
1042 
1043 	if (test_bit(STATS_UPDATE_PEND, &ar->flag)) {
1044 		clear_bit(STATS_UPDATE_PEND, &ar->flag);
1045 		wake_up(&ar->event_wq);
1046 	}
1047 }
1048 
1049 static void ath6kl_add_le32(__le32 *var, __le32 val)
1050 {
1051 	*var = cpu_to_le32(le32_to_cpu(*var) + le32_to_cpu(val));
1052 }
1053 
1054 void ath6kl_tgt_stats_event(struct ath6kl *ar, u8 *ptr, u32 len)
1055 {
1056 	struct wmi_ap_mode_stat *p = (struct wmi_ap_mode_stat *) ptr;
1057 	struct wmi_ap_mode_stat *ap = &ar->ap_stats;
1058 	struct wmi_per_sta_stat *st_ap, *st_p;
1059 	u8 ac;
1060 
1061 	if (ar->nw_type == AP_NETWORK) {
1062 		if (len < sizeof(*p))
1063 			return;
1064 
1065 		for (ac = 0; ac < AP_MAX_NUM_STA; ac++) {
1066 			st_ap = &ap->sta[ac];
1067 			st_p = &p->sta[ac];
1068 
1069 			ath6kl_add_le32(&st_ap->tx_bytes, st_p->tx_bytes);
1070 			ath6kl_add_le32(&st_ap->tx_pkts, st_p->tx_pkts);
1071 			ath6kl_add_le32(&st_ap->tx_error, st_p->tx_error);
1072 			ath6kl_add_le32(&st_ap->tx_discard, st_p->tx_discard);
1073 			ath6kl_add_le32(&st_ap->rx_bytes, st_p->rx_bytes);
1074 			ath6kl_add_le32(&st_ap->rx_pkts, st_p->rx_pkts);
1075 			ath6kl_add_le32(&st_ap->rx_error, st_p->rx_error);
1076 			ath6kl_add_le32(&st_ap->rx_discard, st_p->rx_discard);
1077 		}
1078 
1079 	} else {
1080 		ath6kl_update_target_stats(ar, ptr, len);
1081 	}
1082 }
1083 
1084 void ath6kl_wakeup_event(void *dev)
1085 {
1086 	struct ath6kl *ar = (struct ath6kl *) dev;
1087 
1088 	wake_up(&ar->event_wq);
1089 }
1090 
1091 void ath6kl_txpwr_rx_evt(void *devt, u8 tx_pwr)
1092 {
1093 	struct ath6kl *ar = (struct ath6kl *) devt;
1094 
1095 	ar->tx_pwr = tx_pwr;
1096 	wake_up(&ar->event_wq);
1097 }
1098 
1099 void ath6kl_pspoll_event(struct ath6kl *ar, u8 aid)
1100 {
1101 	struct ath6kl_sta *conn;
1102 	struct sk_buff *skb;
1103 	bool psq_empty = false;
1104 
1105 	conn = ath6kl_find_sta_by_aid(ar, aid);
1106 
1107 	if (!conn)
1108 		return;
1109 	/*
1110 	 * Send out a packet queued on ps queue. When the ps queue
1111 	 * becomes empty update the PVB for this station.
1112 	 */
1113 	spin_lock_bh(&conn->psq_lock);
1114 	psq_empty  = skb_queue_empty(&conn->psq);
1115 	spin_unlock_bh(&conn->psq_lock);
1116 
1117 	if (psq_empty)
1118 		/* TODO: Send out a NULL data frame */
1119 		return;
1120 
1121 	spin_lock_bh(&conn->psq_lock);
1122 	skb = skb_dequeue(&conn->psq);
1123 	spin_unlock_bh(&conn->psq_lock);
1124 
1125 	conn->sta_flags |= STA_PS_POLLED;
1126 	ath6kl_data_tx(skb, ar->net_dev);
1127 	conn->sta_flags &= ~STA_PS_POLLED;
1128 
1129 	spin_lock_bh(&conn->psq_lock);
1130 	psq_empty  = skb_queue_empty(&conn->psq);
1131 	spin_unlock_bh(&conn->psq_lock);
1132 
1133 	if (psq_empty)
1134 		ath6kl_wmi_set_pvb_cmd(ar->wmi, conn->aid, 0);
1135 }
1136 
1137 void ath6kl_dtimexpiry_event(struct ath6kl *ar)
1138 {
1139 	bool mcastq_empty = false;
1140 	struct sk_buff *skb;
1141 
1142 	/*
1143 	 * If there are no associated STAs, ignore the DTIM expiry event.
1144 	 * There can be potential race conditions where the last associated
1145 	 * STA may disconnect & before the host could clear the 'Indicate
1146 	 * DTIM' request to the firmware, the firmware would have just
1147 	 * indicated a DTIM expiry event. The race is between 'clear DTIM
1148 	 * expiry cmd' going from the host to the firmware & the DTIM
1149 	 * expiry event happening from the firmware to the host.
1150 	 */
1151 	if (!ar->sta_list_index)
1152 		return;
1153 
1154 	spin_lock_bh(&ar->mcastpsq_lock);
1155 	mcastq_empty = skb_queue_empty(&ar->mcastpsq);
1156 	spin_unlock_bh(&ar->mcastpsq_lock);
1157 
1158 	if (mcastq_empty)
1159 		return;
1160 
1161 	/* set the STA flag to dtim_expired for the frame to go out */
1162 	set_bit(DTIM_EXPIRED, &ar->flag);
1163 
1164 	spin_lock_bh(&ar->mcastpsq_lock);
1165 	while ((skb = skb_dequeue(&ar->mcastpsq)) != NULL) {
1166 		spin_unlock_bh(&ar->mcastpsq_lock);
1167 
1168 		ath6kl_data_tx(skb, ar->net_dev);
1169 
1170 		spin_lock_bh(&ar->mcastpsq_lock);
1171 	}
1172 	spin_unlock_bh(&ar->mcastpsq_lock);
1173 
1174 	clear_bit(DTIM_EXPIRED, &ar->flag);
1175 
1176 	/* clear the LSB of the BitMapCtl field of the TIM IE */
1177 	ath6kl_wmi_set_pvb_cmd(ar->wmi, MCAST_AID, 0);
1178 }
1179 
1180 void ath6kl_disconnect_event(struct ath6kl *ar, u8 reason, u8 *bssid,
1181 			     u8 assoc_resp_len, u8 *assoc_info,
1182 			     u16 prot_reason_status)
1183 {
1184 	struct bss *wmi_ssid_node = NULL;
1185 	unsigned long flags;
1186 
1187 	if (ar->nw_type == AP_NETWORK) {
1188 		if (!ath6kl_remove_sta(ar, bssid, prot_reason_status))
1189 			return;
1190 
1191 		/* if no more associated STAs, empty the mcast PS q */
1192 		if (ar->sta_list_index == 0) {
1193 			spin_lock_bh(&ar->mcastpsq_lock);
1194 			skb_queue_purge(&ar->mcastpsq);
1195 			spin_unlock_bh(&ar->mcastpsq_lock);
1196 
1197 			/* clear the LSB of the TIM IE's BitMapCtl field */
1198 			if (test_bit(WMI_READY, &ar->flag))
1199 				ath6kl_wmi_set_pvb_cmd(ar->wmi, MCAST_AID, 0);
1200 		}
1201 
1202 		if (!is_broadcast_ether_addr(bssid)) {
1203 			/* send event to application */
1204 			cfg80211_del_sta(ar->net_dev, bssid, GFP_KERNEL);
1205 		}
1206 
1207 		clear_bit(CONNECTED, &ar->flag);
1208 		return;
1209 	}
1210 
1211 	ath6kl_cfg80211_disconnect_event(ar, reason, bssid,
1212 				       assoc_resp_len, assoc_info,
1213 				       prot_reason_status);
1214 
1215 	aggr_reset_state(ar->aggr_cntxt);
1216 
1217 	del_timer(&ar->disconnect_timer);
1218 
1219 	ath6kl_dbg(ATH6KL_DBG_WLAN_CONNECT,
1220 		   "disconnect reason is %d\n", reason);
1221 
1222 	/*
1223 	 * If the event is due to disconnect cmd from the host, only they
1224 	 * the target would stop trying to connect. Under any other
1225 	 * condition, target would keep trying to connect.
1226 	 */
1227 	if (reason == DISCONNECT_CMD) {
1228 		if (!ar->usr_bss_filter && test_bit(WMI_READY, &ar->flag))
1229 			ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
1230 	} else {
1231 		set_bit(CONNECT_PEND, &ar->flag);
1232 		if (((reason == ASSOC_FAILED) &&
1233 		    (prot_reason_status == 0x11)) ||
1234 		    ((reason == ASSOC_FAILED) && (prot_reason_status == 0x0)
1235 		     && (ar->reconnect_flag == 1))) {
1236 			set_bit(CONNECTED, &ar->flag);
1237 			return;
1238 		}
1239 	}
1240 
1241 	if ((reason == NO_NETWORK_AVAIL) && test_bit(WMI_READY, &ar->flag))  {
1242 		ath6kl_wmi_node_free(ar->wmi, bssid);
1243 
1244 		/*
1245 		 * In case any other same SSID nodes are present remove it,
1246 		 * since those nodes also not available now.
1247 		 */
1248 		do {
1249 			/*
1250 			 * Find the nodes based on SSID and remove it
1251 			 *
1252 			 * Note: This case will not work out for
1253 			 * Hidden-SSID
1254 			 */
1255 			wmi_ssid_node = ath6kl_wmi_find_ssid_node(ar->wmi,
1256 								  ar->ssid,
1257 								  ar->ssid_len,
1258 								  false,
1259 								  true);
1260 
1261 			if (wmi_ssid_node)
1262 				ath6kl_wmi_node_free(ar->wmi,
1263 						     wmi_ssid_node->ni_macaddr);
1264 
1265 		} while (wmi_ssid_node);
1266 	}
1267 
1268 	/* update connect & link status atomically */
1269 	spin_lock_irqsave(&ar->lock, flags);
1270 	clear_bit(CONNECTED, &ar->flag);
1271 	netif_carrier_off(ar->net_dev);
1272 	spin_unlock_irqrestore(&ar->lock, flags);
1273 
1274 	if ((reason != CSERV_DISCONNECT) || (ar->reconnect_flag != 1))
1275 		ar->reconnect_flag = 0;
1276 
1277 	if (reason != CSERV_DISCONNECT)
1278 		ar->user_key_ctrl = 0;
1279 
1280 	netif_stop_queue(ar->net_dev);
1281 	memset(ar->bssid, 0, sizeof(ar->bssid));
1282 	ar->bss_ch = 0;
1283 
1284 	ath6kl_tx_data_cleanup(ar);
1285 }
1286 
1287 static int ath6kl_open(struct net_device *dev)
1288 {
1289 	struct ath6kl *ar = ath6kl_priv(dev);
1290 	unsigned long flags;
1291 
1292 	spin_lock_irqsave(&ar->lock, flags);
1293 
1294 	set_bit(WLAN_ENABLED, &ar->flag);
1295 
1296 	if (test_bit(CONNECTED, &ar->flag)) {
1297 		netif_carrier_on(dev);
1298 		netif_wake_queue(dev);
1299 	} else
1300 		netif_carrier_off(dev);
1301 
1302 	spin_unlock_irqrestore(&ar->lock, flags);
1303 
1304 	return 0;
1305 }
1306 
1307 static int ath6kl_close(struct net_device *dev)
1308 {
1309 	struct ath6kl *ar = ath6kl_priv(dev);
1310 
1311 	netif_stop_queue(dev);
1312 
1313 	ath6kl_disconnect(ar);
1314 
1315 	if (test_bit(WMI_READY, &ar->flag)) {
1316 		if (ath6kl_wmi_scanparams_cmd(ar->wmi, 0xFFFF, 0, 0, 0, 0, 0, 0,
1317 					      0, 0, 0))
1318 			return -EIO;
1319 
1320 		clear_bit(WLAN_ENABLED, &ar->flag);
1321 	}
1322 
1323 	ath6kl_cfg80211_scan_complete_event(ar, -ECANCELED);
1324 
1325 	return 0;
1326 }
1327 
1328 static struct net_device_stats *ath6kl_get_stats(struct net_device *dev)
1329 {
1330 	struct ath6kl *ar = ath6kl_priv(dev);
1331 
1332 	return &ar->net_stats;
1333 }
1334 
1335 static struct net_device_ops ath6kl_netdev_ops = {
1336 	.ndo_open               = ath6kl_open,
1337 	.ndo_stop               = ath6kl_close,
1338 	.ndo_start_xmit         = ath6kl_data_tx,
1339 	.ndo_get_stats          = ath6kl_get_stats,
1340 };
1341 
1342 void init_netdev(struct net_device *dev)
1343 {
1344 	dev->netdev_ops = &ath6kl_netdev_ops;
1345 	dev->watchdog_timeo = ATH6KL_TX_TIMEOUT;
1346 
1347 	dev->needed_headroom = ETH_HLEN;
1348 	dev->needed_headroom += sizeof(struct ath6kl_llc_snap_hdr) +
1349 				sizeof(struct wmi_data_hdr) + HTC_HDR_LENGTH
1350 				+ WMI_MAX_TX_META_SZ + ATH6KL_HTC_ALIGN_BYTES;
1351 
1352 	return;
1353 }
1354