xref: /openbmc/linux/drivers/net/wireless/ath/ath6kl/hif.c (revision d70385a2)
1 /*
2  * Copyright (c) 2007-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 #include "hif.h"
17 
18 #include "core.h"
19 #include "target.h"
20 #include "hif-ops.h"
21 #include "debug.h"
22 
23 #define MAILBOX_FOR_BLOCK_SIZE          1
24 
25 #define ATH6KL_TIME_QUANTUM	10  /* in ms */
26 
27 static int ath6kl_hif_cp_scat_dma_buf(struct hif_scatter_req *req,
28 				      bool from_dma)
29 {
30 	u8 *buf;
31 	int i;
32 
33 	buf = req->virt_dma_buf;
34 
35 	for (i = 0; i < req->scat_entries; i++) {
36 
37 		if (from_dma)
38 			memcpy(req->scat_list[i].buf, buf,
39 			       req->scat_list[i].len);
40 		else
41 			memcpy(buf, req->scat_list[i].buf,
42 			       req->scat_list[i].len);
43 
44 		buf += req->scat_list[i].len;
45 	}
46 
47 	return 0;
48 }
49 
50 int ath6kl_hif_rw_comp_handler(void *context, int status)
51 {
52 	struct htc_packet *packet = context;
53 
54 	ath6kl_dbg(ATH6KL_DBG_HIF, "hif rw completion pkt 0x%p status %d\n",
55 		   packet, status);
56 
57 	packet->status = status;
58 	packet->completion(packet->context, packet);
59 
60 	return 0;
61 }
62 #define REG_DUMP_COUNT_AR6003   60
63 #define REGISTER_DUMP_LEN_MAX   60
64 
65 static void ath6kl_hif_dump_fw_crash(struct ath6kl *ar)
66 {
67 	__le32 regdump_val[REGISTER_DUMP_LEN_MAX];
68 	u32 i, address, regdump_addr = 0;
69 	int ret;
70 
71 	if (ar->target_type != TARGET_TYPE_AR6003)
72 		return;
73 
74 	/* the reg dump pointer is copied to the host interest area */
75 	address = ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_failure_state));
76 	address = TARG_VTOP(ar->target_type, address);
77 
78 	/* read RAM location through diagnostic window */
79 	ret = ath6kl_diag_read32(ar, address, &regdump_addr);
80 
81 	if (ret || !regdump_addr) {
82 		ath6kl_warn("failed to get ptr to register dump area: %d\n",
83 			    ret);
84 		return;
85 	}
86 
87 	ath6kl_dbg(ATH6KL_DBG_IRQ, "register dump data address 0x%x\n",
88 		regdump_addr);
89 	regdump_addr = TARG_VTOP(ar->target_type, regdump_addr);
90 
91 	/* fetch register dump data */
92 	ret = ath6kl_diag_read(ar, regdump_addr, (u8 *)&regdump_val[0],
93 				  REG_DUMP_COUNT_AR6003 * (sizeof(u32)));
94 	if (ret) {
95 		ath6kl_warn("failed to get register dump: %d\n", ret);
96 		return;
97 	}
98 
99 	ath6kl_info("crash dump:\n");
100 	ath6kl_info("hw 0x%x fw %s\n", ar->wiphy->hw_version,
101 		    ar->wiphy->fw_version);
102 
103 	BUILD_BUG_ON(REG_DUMP_COUNT_AR6003 % 4);
104 
105 	for (i = 0; i < REG_DUMP_COUNT_AR6003 / 4; i++) {
106 		ath6kl_info("%d: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n",
107 			    4 * i,
108 			    le32_to_cpu(regdump_val[i]),
109 			    le32_to_cpu(regdump_val[i + 1]),
110 			    le32_to_cpu(regdump_val[i + 2]),
111 			    le32_to_cpu(regdump_val[i + 3]));
112 	}
113 
114 }
115 
116 static int ath6kl_hif_proc_dbg_intr(struct ath6kl_device *dev)
117 {
118 	u32 dummy;
119 	int ret;
120 
121 	ath6kl_warn("firmware crashed\n");
122 
123 	/*
124 	 * read counter to clear the interrupt, the debug error interrupt is
125 	 * counter 0.
126 	 */
127 	ret = hif_read_write_sync(dev->ar, COUNT_DEC_ADDRESS,
128 				     (u8 *)&dummy, 4, HIF_RD_SYNC_BYTE_INC);
129 	if (ret)
130 		ath6kl_warn("Failed to clear debug interrupt: %d\n", ret);
131 
132 	ath6kl_hif_dump_fw_crash(dev->ar);
133 
134 	return ret;
135 }
136 
137 /* mailbox recv message polling */
138 int ath6kl_hif_poll_mboxmsg_rx(struct ath6kl_device *dev, u32 *lk_ahd,
139 			      int timeout)
140 {
141 	struct ath6kl_irq_proc_registers *rg;
142 	int status = 0, i;
143 	u8 htc_mbox = 1 << HTC_MAILBOX;
144 
145 	for (i = timeout / ATH6KL_TIME_QUANTUM; i > 0; i--) {
146 		/* this is the standard HIF way, load the reg table */
147 		status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS,
148 					     (u8 *) &dev->irq_proc_reg,
149 					     sizeof(dev->irq_proc_reg),
150 					     HIF_RD_SYNC_BYTE_INC);
151 
152 		if (status) {
153 			ath6kl_err("failed to read reg table\n");
154 			return status;
155 		}
156 
157 		/* check for MBOX data and valid lookahead */
158 		if (dev->irq_proc_reg.host_int_status & htc_mbox) {
159 			if (dev->irq_proc_reg.rx_lkahd_valid &
160 			    htc_mbox) {
161 				/*
162 				 * Mailbox has a message and the look ahead
163 				 * is valid.
164 				 */
165 				rg = &dev->irq_proc_reg;
166 				*lk_ahd =
167 					le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]);
168 				break;
169 			}
170 		}
171 
172 		/* delay a little  */
173 		mdelay(ATH6KL_TIME_QUANTUM);
174 		ath6kl_dbg(ATH6KL_DBG_HIF, "hif retry mbox poll try %d\n", i);
175 	}
176 
177 	if (i == 0) {
178 		ath6kl_err("timeout waiting for recv message\n");
179 		status = -ETIME;
180 		/* check if the target asserted */
181 		if (dev->irq_proc_reg.counter_int_status &
182 		    ATH6KL_TARGET_DEBUG_INTR_MASK)
183 			/*
184 			 * Target failure handler will be called in case of
185 			 * an assert.
186 			 */
187 			ath6kl_hif_proc_dbg_intr(dev);
188 	}
189 
190 	return status;
191 }
192 
193 /*
194  * Disable packet reception (used in case the host runs out of buffers)
195  * using the interrupt enable registers through the host I/F
196  */
197 int ath6kl_hif_rx_control(struct ath6kl_device *dev, bool enable_rx)
198 {
199 	struct ath6kl_irq_enable_reg regs;
200 	int status = 0;
201 
202 	ath6kl_dbg(ATH6KL_DBG_HIF, "hif rx %s\n",
203 		   enable_rx ? "enable" : "disable");
204 
205 	/* take the lock to protect interrupt enable shadows */
206 	spin_lock_bh(&dev->lock);
207 
208 	if (enable_rx)
209 		dev->irq_en_reg.int_status_en |=
210 			SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
211 	else
212 		dev->irq_en_reg.int_status_en &=
213 		    ~SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
214 
215 	memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
216 
217 	spin_unlock_bh(&dev->lock);
218 
219 	status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
220 				     &regs.int_status_en,
221 				     sizeof(struct ath6kl_irq_enable_reg),
222 				     HIF_WR_SYNC_BYTE_INC);
223 
224 	return status;
225 }
226 
227 int ath6kl_hif_submit_scat_req(struct ath6kl_device *dev,
228 			      struct hif_scatter_req *scat_req, bool read)
229 {
230 	int status = 0;
231 
232 	if (read) {
233 		scat_req->req = HIF_RD_SYNC_BLOCK_FIX;
234 		scat_req->addr = dev->ar->mbox_info.htc_addr;
235 	} else {
236 		scat_req->req = HIF_WR_ASYNC_BLOCK_INC;
237 
238 		scat_req->addr =
239 			(scat_req->len > HIF_MBOX_WIDTH) ?
240 			dev->ar->mbox_info.htc_ext_addr :
241 			dev->ar->mbox_info.htc_addr;
242 	}
243 
244 	ath6kl_dbg(ATH6KL_DBG_HIF,
245 		   "hif submit scatter request entries %d len %d mbox 0x%x %s %s\n",
246 		   scat_req->scat_entries, scat_req->len,
247 		   scat_req->addr, !read ? "async" : "sync",
248 		   (read) ? "rd" : "wr");
249 
250 	if (!read && scat_req->virt_scat) {
251 		status = ath6kl_hif_cp_scat_dma_buf(scat_req, false);
252 		if (status) {
253 			scat_req->status = status;
254 			scat_req->complete(dev->ar->htc_target, scat_req);
255 			return 0;
256 		}
257 	}
258 
259 	status = ath6kl_hif_scat_req_rw(dev->ar, scat_req);
260 
261 	if (read) {
262 		/* in sync mode, we can touch the scatter request */
263 		scat_req->status = status;
264 		if (!status && scat_req->virt_scat)
265 			scat_req->status =
266 				ath6kl_hif_cp_scat_dma_buf(scat_req, true);
267 	}
268 
269 	return status;
270 }
271 
272 static int ath6kl_hif_proc_counter_intr(struct ath6kl_device *dev)
273 {
274 	u8 counter_int_status;
275 
276 	ath6kl_dbg(ATH6KL_DBG_IRQ, "counter interrupt\n");
277 
278 	counter_int_status = dev->irq_proc_reg.counter_int_status &
279 			     dev->irq_en_reg.cntr_int_status_en;
280 
281 	ath6kl_dbg(ATH6KL_DBG_IRQ,
282 		"valid interrupt source(s) in COUNTER_INT_STATUS: 0x%x\n",
283 		counter_int_status);
284 
285 	/*
286 	 * NOTE: other modules like GMBOX may use the counter interrupt for
287 	 * credit flow control on other counters, we only need to check for
288 	 * the debug assertion counter interrupt.
289 	 */
290 	if (counter_int_status & ATH6KL_TARGET_DEBUG_INTR_MASK)
291 		return ath6kl_hif_proc_dbg_intr(dev);
292 
293 	return 0;
294 }
295 
296 static int ath6kl_hif_proc_err_intr(struct ath6kl_device *dev)
297 {
298 	int status;
299 	u8 error_int_status;
300 	u8 reg_buf[4];
301 
302 	ath6kl_dbg(ATH6KL_DBG_IRQ, "error interrupt\n");
303 
304 	error_int_status = dev->irq_proc_reg.error_int_status & 0x0F;
305 	if (!error_int_status) {
306 		WARN_ON(1);
307 		return -EIO;
308 	}
309 
310 	ath6kl_dbg(ATH6KL_DBG_IRQ,
311 		   "valid interrupt source(s) in ERROR_INT_STATUS: 0x%x\n",
312 		   error_int_status);
313 
314 	if (MS(ERROR_INT_STATUS_WAKEUP, error_int_status))
315 		ath6kl_dbg(ATH6KL_DBG_IRQ, "error : wakeup\n");
316 
317 	if (MS(ERROR_INT_STATUS_RX_UNDERFLOW, error_int_status))
318 		ath6kl_err("rx underflow\n");
319 
320 	if (MS(ERROR_INT_STATUS_TX_OVERFLOW, error_int_status))
321 		ath6kl_err("tx overflow\n");
322 
323 	/* Clear the interrupt */
324 	dev->irq_proc_reg.error_int_status &= ~error_int_status;
325 
326 	/* set W1C value to clear the interrupt, this hits the register first */
327 	reg_buf[0] = error_int_status;
328 	reg_buf[1] = 0;
329 	reg_buf[2] = 0;
330 	reg_buf[3] = 0;
331 
332 	status = hif_read_write_sync(dev->ar, ERROR_INT_STATUS_ADDRESS,
333 				     reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);
334 
335 	if (status)
336 		WARN_ON(1);
337 
338 	return status;
339 }
340 
341 static int ath6kl_hif_proc_cpu_intr(struct ath6kl_device *dev)
342 {
343 	int status;
344 	u8 cpu_int_status;
345 	u8 reg_buf[4];
346 
347 	ath6kl_dbg(ATH6KL_DBG_IRQ, "cpu interrupt\n");
348 
349 	cpu_int_status = dev->irq_proc_reg.cpu_int_status &
350 			 dev->irq_en_reg.cpu_int_status_en;
351 	if (!cpu_int_status) {
352 		WARN_ON(1);
353 		return -EIO;
354 	}
355 
356 	ath6kl_dbg(ATH6KL_DBG_IRQ,
357 		"valid interrupt source(s) in CPU_INT_STATUS: 0x%x\n",
358 		cpu_int_status);
359 
360 	/* Clear the interrupt */
361 	dev->irq_proc_reg.cpu_int_status &= ~cpu_int_status;
362 
363 	/*
364 	 * Set up the register transfer buffer to hit the register 4 times ,
365 	 * this is done to make the access 4-byte aligned to mitigate issues
366 	 * with host bus interconnects that restrict bus transfer lengths to
367 	 * be a multiple of 4-bytes.
368 	 */
369 
370 	/* set W1C value to clear the interrupt, this hits the register first */
371 	reg_buf[0] = cpu_int_status;
372 	/* the remaining are set to zero which have no-effect  */
373 	reg_buf[1] = 0;
374 	reg_buf[2] = 0;
375 	reg_buf[3] = 0;
376 
377 	status = hif_read_write_sync(dev->ar, CPU_INT_STATUS_ADDRESS,
378 				     reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);
379 
380 	if (status)
381 		WARN_ON(1);
382 
383 	return status;
384 }
385 
386 /* process pending interrupts synchronously */
387 static int proc_pending_irqs(struct ath6kl_device *dev, bool *done)
388 {
389 	struct ath6kl_irq_proc_registers *rg;
390 	int status = 0;
391 	u8 host_int_status = 0;
392 	u32 lk_ahd = 0;
393 	u8 htc_mbox = 1 << HTC_MAILBOX;
394 
395 	ath6kl_dbg(ATH6KL_DBG_IRQ, "proc_pending_irqs: (dev: 0x%p)\n", dev);
396 
397 	/*
398 	 * NOTE: HIF implementation guarantees that the context of this
399 	 * call allows us to perform SYNCHRONOUS I/O, that is we can block,
400 	 * sleep or call any API that can block or switch thread/task
401 	 * contexts. This is a fully schedulable context.
402 	 */
403 
404 	/*
405 	 * Process pending intr only when int_status_en is clear, it may
406 	 * result in unnecessary bus transaction otherwise. Target may be
407 	 * unresponsive at the time.
408 	 */
409 	if (dev->irq_en_reg.int_status_en) {
410 		/*
411 		 * Read the first 28 bytes of the HTC register table. This
412 		 * will yield us the value of different int status
413 		 * registers and the lookahead registers.
414 		 *
415 		 *    length = sizeof(int_status) + sizeof(cpu_int_status)
416 		 *             + sizeof(error_int_status) +
417 		 *             sizeof(counter_int_status) +
418 		 *             sizeof(mbox_frame) + sizeof(rx_lkahd_valid)
419 		 *             + sizeof(hole) + sizeof(rx_lkahd) +
420 		 *             sizeof(int_status_en) +
421 		 *             sizeof(cpu_int_status_en) +
422 		 *             sizeof(err_int_status_en) +
423 		 *             sizeof(cntr_int_status_en);
424 		 */
425 		status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS,
426 					     (u8 *) &dev->irq_proc_reg,
427 					     sizeof(dev->irq_proc_reg),
428 					     HIF_RD_SYNC_BYTE_INC);
429 		if (status)
430 			goto out;
431 
432 		if (AR_DBG_LVL_CHECK(ATH6KL_DBG_IRQ))
433 			ath6kl_dump_registers(dev, &dev->irq_proc_reg,
434 					 &dev->irq_en_reg);
435 
436 		/* Update only those registers that are enabled */
437 		host_int_status = dev->irq_proc_reg.host_int_status &
438 				  dev->irq_en_reg.int_status_en;
439 
440 		/* Look at mbox status */
441 		if (host_int_status & htc_mbox) {
442 			/*
443 			 * Mask out pending mbox value, we use "lookAhead as
444 			 * the real flag for mbox processing.
445 			 */
446 			host_int_status &= ~htc_mbox;
447 			if (dev->irq_proc_reg.rx_lkahd_valid &
448 			    htc_mbox) {
449 				rg = &dev->irq_proc_reg;
450 				lk_ahd = le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]);
451 				if (!lk_ahd)
452 					ath6kl_err("lookAhead is zero!\n");
453 			}
454 		}
455 	}
456 
457 	if (!host_int_status && !lk_ahd) {
458 		*done = true;
459 		goto out;
460 	}
461 
462 	if (lk_ahd) {
463 		int fetched = 0;
464 
465 		ath6kl_dbg(ATH6KL_DBG_IRQ,
466 			   "pending mailbox msg, lk_ahd: 0x%X\n", lk_ahd);
467 		/*
468 		 * Mailbox Interrupt, the HTC layer may issue async
469 		 * requests to empty the mailbox. When emptying the recv
470 		 * mailbox we use the async handler above called from the
471 		 * completion routine of the callers read request. This can
472 		 * improve performance by reducing context switching when
473 		 * we rapidly pull packets.
474 		 */
475 		status = ath6kl_htc_rxmsg_pending_handler(dev->htc_cnxt,
476 							  lk_ahd, &fetched);
477 		if (status)
478 			goto out;
479 
480 		if (!fetched)
481 			/*
482 			 * HTC could not pull any messages out due to lack
483 			 * of resources.
484 			 */
485 			dev->htc_cnxt->chk_irq_status_cnt = 0;
486 	}
487 
488 	/* now handle the rest of them */
489 	ath6kl_dbg(ATH6KL_DBG_IRQ,
490 		   "valid interrupt source(s) for other interrupts: 0x%x\n",
491 		   host_int_status);
492 
493 	if (MS(HOST_INT_STATUS_CPU, host_int_status)) {
494 		/* CPU Interrupt */
495 		status = ath6kl_hif_proc_cpu_intr(dev);
496 		if (status)
497 			goto out;
498 	}
499 
500 	if (MS(HOST_INT_STATUS_ERROR, host_int_status)) {
501 		/* Error Interrupt */
502 		status = ath6kl_hif_proc_err_intr(dev);
503 		if (status)
504 			goto out;
505 	}
506 
507 	if (MS(HOST_INT_STATUS_COUNTER, host_int_status))
508 		/* Counter Interrupt */
509 		status = ath6kl_hif_proc_counter_intr(dev);
510 
511 out:
512 	/*
513 	 * An optimization to bypass reading the IRQ status registers
514 	 * unecessarily which can re-wake the target, if upper layers
515 	 * determine that we are in a low-throughput mode, we can rely on
516 	 * taking another interrupt rather than re-checking the status
517 	 * registers which can re-wake the target.
518 	 *
519 	 * NOTE : for host interfaces that makes use of detecting pending
520 	 * mbox messages at hif can not use this optimization due to
521 	 * possible side effects, SPI requires the host to drain all
522 	 * messages from the mailbox before exiting the ISR routine.
523 	 */
524 
525 	ath6kl_dbg(ATH6KL_DBG_IRQ,
526 		   "bypassing irq status re-check, forcing done\n");
527 
528 	if (!dev->htc_cnxt->chk_irq_status_cnt)
529 		*done = true;
530 
531 	ath6kl_dbg(ATH6KL_DBG_IRQ,
532 		   "proc_pending_irqs: (done:%d, status=%d\n", *done, status);
533 
534 	return status;
535 }
536 
537 /* interrupt handler, kicks off all interrupt processing */
538 int ath6kl_hif_intr_bh_handler(struct ath6kl *ar)
539 {
540 	struct ath6kl_device *dev = ar->htc_target->dev;
541 	unsigned long timeout;
542 	int status = 0;
543 	bool done = false;
544 
545 	/*
546 	 * Reset counter used to flag a re-scan of IRQ status registers on
547 	 * the target.
548 	 */
549 	dev->htc_cnxt->chk_irq_status_cnt = 0;
550 
551 	/*
552 	 * IRQ processing is synchronous, interrupt status registers can be
553 	 * re-read.
554 	 */
555 	timeout = jiffies + msecs_to_jiffies(ATH6KL_HIF_COMMUNICATION_TIMEOUT);
556 	while (time_before(jiffies, timeout) && !done) {
557 		status = proc_pending_irqs(dev, &done);
558 		if (status)
559 			break;
560 	}
561 
562 	return status;
563 }
564 
565 static int ath6kl_hif_enable_intrs(struct ath6kl_device *dev)
566 {
567 	struct ath6kl_irq_enable_reg regs;
568 	int status;
569 
570 	spin_lock_bh(&dev->lock);
571 
572 	/* Enable all but ATH6KL CPU interrupts */
573 	dev->irq_en_reg.int_status_en =
574 			SM(INT_STATUS_ENABLE_ERROR, 0x01) |
575 			SM(INT_STATUS_ENABLE_CPU, 0x01) |
576 			SM(INT_STATUS_ENABLE_COUNTER, 0x01);
577 
578 	/*
579 	 * NOTE: There are some cases where HIF can do detection of
580 	 * pending mbox messages which is disabled now.
581 	 */
582 	dev->irq_en_reg.int_status_en |= SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
583 
584 	/* Set up the CPU Interrupt status Register */
585 	dev->irq_en_reg.cpu_int_status_en = 0;
586 
587 	/* Set up the Error Interrupt status Register */
588 	dev->irq_en_reg.err_int_status_en =
589 		SM(ERROR_STATUS_ENABLE_RX_UNDERFLOW, 0x01) |
590 		SM(ERROR_STATUS_ENABLE_TX_OVERFLOW, 0x1);
591 
592 	/*
593 	 * Enable Counter interrupt status register to get fatal errors for
594 	 * debugging.
595 	 */
596 	dev->irq_en_reg.cntr_int_status_en = SM(COUNTER_INT_STATUS_ENABLE_BIT,
597 						ATH6KL_TARGET_DEBUG_INTR_MASK);
598 	memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
599 
600 	spin_unlock_bh(&dev->lock);
601 
602 	status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
603 				     &regs.int_status_en, sizeof(regs),
604 				     HIF_WR_SYNC_BYTE_INC);
605 
606 	if (status)
607 		ath6kl_err("failed to update interrupt ctl reg err: %d\n",
608 			   status);
609 
610 	return status;
611 }
612 
613 int ath6kl_hif_disable_intrs(struct ath6kl_device *dev)
614 {
615 	struct ath6kl_irq_enable_reg regs;
616 
617 	spin_lock_bh(&dev->lock);
618 	/* Disable all interrupts */
619 	dev->irq_en_reg.int_status_en = 0;
620 	dev->irq_en_reg.cpu_int_status_en = 0;
621 	dev->irq_en_reg.err_int_status_en = 0;
622 	dev->irq_en_reg.cntr_int_status_en = 0;
623 	memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
624 	spin_unlock_bh(&dev->lock);
625 
626 	return hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
627 				   &regs.int_status_en, sizeof(regs),
628 				   HIF_WR_SYNC_BYTE_INC);
629 }
630 
631 /* enable device interrupts */
632 int ath6kl_hif_unmask_intrs(struct ath6kl_device *dev)
633 {
634 	int status = 0;
635 
636 	/*
637 	 * Make sure interrupt are disabled before unmasking at the HIF
638 	 * layer. The rationale here is that between device insertion
639 	 * (where we clear the interrupts the first time) and when HTC
640 	 * is finally ready to handle interrupts, other software can perform
641 	 * target "soft" resets. The ATH6KL interrupt enables reset back to an
642 	 * "enabled" state when this happens.
643 	 */
644 	ath6kl_hif_disable_intrs(dev);
645 
646 	/* unmask the host controller interrupts */
647 	ath6kl_hif_irq_enable(dev->ar);
648 	status = ath6kl_hif_enable_intrs(dev);
649 
650 	return status;
651 }
652 
653 /* disable all device interrupts */
654 int ath6kl_hif_mask_intrs(struct ath6kl_device *dev)
655 {
656 	/*
657 	 * Mask the interrupt at the HIF layer to avoid any stray interrupt
658 	 * taken while we zero out our shadow registers in
659 	 * ath6kl_hif_disable_intrs().
660 	 */
661 	ath6kl_hif_irq_disable(dev->ar);
662 
663 	return ath6kl_hif_disable_intrs(dev);
664 }
665 
666 int ath6kl_hif_setup(struct ath6kl_device *dev)
667 {
668 	int status = 0;
669 
670 	spin_lock_init(&dev->lock);
671 
672 	/*
673 	 * NOTE: we actually get the block size of a mailbox other than 0,
674 	 * for SDIO the block size on mailbox 0 is artificially set to 1.
675 	 * So we use the block size that is set for the other 3 mailboxes.
676 	 */
677 	dev->htc_cnxt->block_sz = dev->ar->mbox_info.block_size;
678 
679 	/* must be a power of 2 */
680 	if ((dev->htc_cnxt->block_sz & (dev->htc_cnxt->block_sz - 1)) != 0) {
681 		WARN_ON(1);
682 		status = -EINVAL;
683 		goto fail_setup;
684 	}
685 
686 	/* assemble mask, used for padding to a block */
687 	dev->htc_cnxt->block_mask = dev->htc_cnxt->block_sz - 1;
688 
689 	ath6kl_dbg(ATH6KL_DBG_HIF, "hif block size %d mbox addr 0x%x\n",
690 		   dev->htc_cnxt->block_sz, dev->ar->mbox_info.htc_addr);
691 
692 	/* usb doesn't support enabling interrupts */
693 	/* FIXME: remove check once USB support is implemented */
694 	if (dev->ar->hif_type == ATH6KL_HIF_TYPE_USB)
695 		return 0;
696 
697 	status = ath6kl_hif_disable_intrs(dev);
698 
699 fail_setup:
700 	return status;
701 
702 }
703