1 /* 2 * Copyright (c) 2007-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 #include "hif.h" 18 19 #include <linux/export.h> 20 21 #include "core.h" 22 #include "target.h" 23 #include "hif-ops.h" 24 #include "debug.h" 25 #include "trace.h" 26 27 #define MAILBOX_FOR_BLOCK_SIZE 1 28 29 #define ATH6KL_TIME_QUANTUM 10 /* in ms */ 30 31 static int ath6kl_hif_cp_scat_dma_buf(struct hif_scatter_req *req, 32 bool from_dma) 33 { 34 u8 *buf; 35 int i; 36 37 buf = req->virt_dma_buf; 38 39 for (i = 0; i < req->scat_entries; i++) { 40 if (from_dma) 41 memcpy(req->scat_list[i].buf, buf, 42 req->scat_list[i].len); 43 else 44 memcpy(buf, req->scat_list[i].buf, 45 req->scat_list[i].len); 46 47 buf += req->scat_list[i].len; 48 } 49 50 return 0; 51 } 52 53 int ath6kl_hif_rw_comp_handler(void *context, int status) 54 { 55 struct htc_packet *packet = context; 56 57 ath6kl_dbg(ATH6KL_DBG_HIF, "hif rw completion pkt 0x%p status %d\n", 58 packet, status); 59 60 packet->status = status; 61 packet->completion(packet->context, packet); 62 63 return 0; 64 } 65 EXPORT_SYMBOL(ath6kl_hif_rw_comp_handler); 66 67 #define REGISTER_DUMP_COUNT 60 68 #define REGISTER_DUMP_LEN_MAX 60 69 70 static void ath6kl_hif_dump_fw_crash(struct ath6kl *ar) 71 { 72 __le32 regdump_val[REGISTER_DUMP_LEN_MAX]; 73 u32 i, address, regdump_addr = 0; 74 int ret; 75 76 /* the reg dump pointer is copied to the host interest area */ 77 address = ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_failure_state)); 78 address = TARG_VTOP(ar->target_type, address); 79 80 /* read RAM location through diagnostic window */ 81 ret = ath6kl_diag_read32(ar, address, ®dump_addr); 82 83 if (ret || !regdump_addr) { 84 ath6kl_warn("failed to get ptr to register dump area: %d\n", 85 ret); 86 return; 87 } 88 89 ath6kl_dbg(ATH6KL_DBG_IRQ, "register dump data address 0x%x\n", 90 regdump_addr); 91 regdump_addr = TARG_VTOP(ar->target_type, regdump_addr); 92 93 /* fetch register dump data */ 94 ret = ath6kl_diag_read(ar, regdump_addr, (u8 *)®dump_val[0], 95 REGISTER_DUMP_COUNT * (sizeof(u32))); 96 if (ret) { 97 ath6kl_warn("failed to get register dump: %d\n", ret); 98 return; 99 } 100 101 ath6kl_info("crash dump:\n"); 102 ath6kl_info("hw 0x%x fw %s\n", ar->wiphy->hw_version, 103 ar->wiphy->fw_version); 104 105 BUILD_BUG_ON(REGISTER_DUMP_COUNT % 4); 106 107 for (i = 0; i < REGISTER_DUMP_COUNT; i += 4) { 108 ath6kl_info("%d: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n", 109 i, 110 le32_to_cpu(regdump_val[i]), 111 le32_to_cpu(regdump_val[i + 1]), 112 le32_to_cpu(regdump_val[i + 2]), 113 le32_to_cpu(regdump_val[i + 3])); 114 } 115 } 116 117 static int ath6kl_hif_proc_dbg_intr(struct ath6kl_device *dev) 118 { 119 u32 dummy; 120 int ret; 121 122 ath6kl_warn("firmware crashed\n"); 123 124 /* 125 * read counter to clear the interrupt, the debug error interrupt is 126 * counter 0. 127 */ 128 ret = hif_read_write_sync(dev->ar, COUNT_DEC_ADDRESS, 129 (u8 *)&dummy, 4, HIF_RD_SYNC_BYTE_INC); 130 if (ret) 131 ath6kl_warn("Failed to clear debug interrupt: %d\n", ret); 132 133 ath6kl_hif_dump_fw_crash(dev->ar); 134 ath6kl_read_fwlogs(dev->ar); 135 ath6kl_recovery_err_notify(dev->ar, ATH6KL_FW_ASSERT); 136 137 return ret; 138 } 139 140 /* mailbox recv message polling */ 141 int ath6kl_hif_poll_mboxmsg_rx(struct ath6kl_device *dev, u32 *lk_ahd, 142 int timeout) 143 { 144 struct ath6kl_irq_proc_registers *rg; 145 int status = 0, i; 146 u8 htc_mbox = 1 << HTC_MAILBOX; 147 148 for (i = timeout / ATH6KL_TIME_QUANTUM; i > 0; i--) { 149 /* this is the standard HIF way, load the reg table */ 150 status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS, 151 (u8 *) &dev->irq_proc_reg, 152 sizeof(dev->irq_proc_reg), 153 HIF_RD_SYNC_BYTE_INC); 154 155 if (status) { 156 ath6kl_err("failed to read reg table\n"); 157 return status; 158 } 159 160 /* check for MBOX data and valid lookahead */ 161 if (dev->irq_proc_reg.host_int_status & htc_mbox) { 162 if (dev->irq_proc_reg.rx_lkahd_valid & 163 htc_mbox) { 164 /* 165 * Mailbox has a message and the look ahead 166 * is valid. 167 */ 168 rg = &dev->irq_proc_reg; 169 *lk_ahd = 170 le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]); 171 break; 172 } 173 } 174 175 /* delay a little */ 176 mdelay(ATH6KL_TIME_QUANTUM); 177 ath6kl_dbg(ATH6KL_DBG_HIF, "hif retry mbox poll try %d\n", i); 178 } 179 180 if (i == 0) { 181 ath6kl_err("timeout waiting for recv message\n"); 182 status = -ETIME; 183 /* check if the target asserted */ 184 if (dev->irq_proc_reg.counter_int_status & 185 ATH6KL_TARGET_DEBUG_INTR_MASK) 186 /* 187 * Target failure handler will be called in case of 188 * an assert. 189 */ 190 ath6kl_hif_proc_dbg_intr(dev); 191 } 192 193 return status; 194 } 195 196 /* 197 * Disable packet reception (used in case the host runs out of buffers) 198 * using the interrupt enable registers through the host I/F 199 */ 200 int ath6kl_hif_rx_control(struct ath6kl_device *dev, bool enable_rx) 201 { 202 struct ath6kl_irq_enable_reg regs; 203 int status = 0; 204 205 ath6kl_dbg(ATH6KL_DBG_HIF, "hif rx %s\n", 206 enable_rx ? "enable" : "disable"); 207 208 /* take the lock to protect interrupt enable shadows */ 209 spin_lock_bh(&dev->lock); 210 211 if (enable_rx) 212 dev->irq_en_reg.int_status_en |= 213 SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01); 214 else 215 dev->irq_en_reg.int_status_en &= 216 ~SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01); 217 218 memcpy(®s, &dev->irq_en_reg, sizeof(regs)); 219 220 spin_unlock_bh(&dev->lock); 221 222 status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS, 223 ®s.int_status_en, 224 sizeof(struct ath6kl_irq_enable_reg), 225 HIF_WR_SYNC_BYTE_INC); 226 227 return status; 228 } 229 230 int ath6kl_hif_submit_scat_req(struct ath6kl_device *dev, 231 struct hif_scatter_req *scat_req, bool read) 232 { 233 int status = 0; 234 235 if (read) { 236 scat_req->req = HIF_RD_SYNC_BLOCK_FIX; 237 scat_req->addr = dev->ar->mbox_info.htc_addr; 238 } else { 239 scat_req->req = HIF_WR_ASYNC_BLOCK_INC; 240 241 scat_req->addr = 242 (scat_req->len > HIF_MBOX_WIDTH) ? 243 dev->ar->mbox_info.htc_ext_addr : 244 dev->ar->mbox_info.htc_addr; 245 } 246 247 ath6kl_dbg(ATH6KL_DBG_HIF, 248 "hif submit scatter request entries %d len %d mbox 0x%x %s %s\n", 249 scat_req->scat_entries, scat_req->len, 250 scat_req->addr, !read ? "async" : "sync", 251 (read) ? "rd" : "wr"); 252 253 if (!read && scat_req->virt_scat) { 254 status = ath6kl_hif_cp_scat_dma_buf(scat_req, false); 255 if (status) { 256 scat_req->status = status; 257 scat_req->complete(dev->ar->htc_target, scat_req); 258 return 0; 259 } 260 } 261 262 status = ath6kl_hif_scat_req_rw(dev->ar, scat_req); 263 264 if (read) { 265 /* in sync mode, we can touch the scatter request */ 266 scat_req->status = status; 267 if (!status && scat_req->virt_scat) 268 scat_req->status = 269 ath6kl_hif_cp_scat_dma_buf(scat_req, true); 270 } 271 272 return status; 273 } 274 275 static int ath6kl_hif_proc_counter_intr(struct ath6kl_device *dev) 276 { 277 u8 counter_int_status; 278 279 ath6kl_dbg(ATH6KL_DBG_IRQ, "counter interrupt\n"); 280 281 counter_int_status = dev->irq_proc_reg.counter_int_status & 282 dev->irq_en_reg.cntr_int_status_en; 283 284 ath6kl_dbg(ATH6KL_DBG_IRQ, 285 "valid interrupt source(s) in COUNTER_INT_STATUS: 0x%x\n", 286 counter_int_status); 287 288 /* 289 * NOTE: other modules like GMBOX may use the counter interrupt for 290 * credit flow control on other counters, we only need to check for 291 * the debug assertion counter interrupt. 292 */ 293 if (counter_int_status & ATH6KL_TARGET_DEBUG_INTR_MASK) 294 return ath6kl_hif_proc_dbg_intr(dev); 295 296 return 0; 297 } 298 299 static int ath6kl_hif_proc_err_intr(struct ath6kl_device *dev) 300 { 301 int status; 302 u8 error_int_status; 303 u8 reg_buf[4]; 304 305 ath6kl_dbg(ATH6KL_DBG_IRQ, "error interrupt\n"); 306 307 error_int_status = dev->irq_proc_reg.error_int_status & 0x0F; 308 if (!error_int_status) { 309 WARN_ON(1); 310 return -EIO; 311 } 312 313 ath6kl_dbg(ATH6KL_DBG_IRQ, 314 "valid interrupt source(s) in ERROR_INT_STATUS: 0x%x\n", 315 error_int_status); 316 317 if (MS(ERROR_INT_STATUS_WAKEUP, error_int_status)) 318 ath6kl_dbg(ATH6KL_DBG_IRQ, "error : wakeup\n"); 319 320 if (MS(ERROR_INT_STATUS_RX_UNDERFLOW, error_int_status)) 321 ath6kl_err("rx underflow\n"); 322 323 if (MS(ERROR_INT_STATUS_TX_OVERFLOW, error_int_status)) 324 ath6kl_err("tx overflow\n"); 325 326 /* Clear the interrupt */ 327 dev->irq_proc_reg.error_int_status &= ~error_int_status; 328 329 /* set W1C value to clear the interrupt, this hits the register first */ 330 reg_buf[0] = error_int_status; 331 reg_buf[1] = 0; 332 reg_buf[2] = 0; 333 reg_buf[3] = 0; 334 335 status = hif_read_write_sync(dev->ar, ERROR_INT_STATUS_ADDRESS, 336 reg_buf, 4, HIF_WR_SYNC_BYTE_FIX); 337 338 WARN_ON(status); 339 340 return status; 341 } 342 343 static int ath6kl_hif_proc_cpu_intr(struct ath6kl_device *dev) 344 { 345 int status; 346 u8 cpu_int_status; 347 u8 reg_buf[4]; 348 349 ath6kl_dbg(ATH6KL_DBG_IRQ, "cpu interrupt\n"); 350 351 cpu_int_status = dev->irq_proc_reg.cpu_int_status & 352 dev->irq_en_reg.cpu_int_status_en; 353 if (!cpu_int_status) { 354 WARN_ON(1); 355 return -EIO; 356 } 357 358 ath6kl_dbg(ATH6KL_DBG_IRQ, 359 "valid interrupt source(s) in CPU_INT_STATUS: 0x%x\n", 360 cpu_int_status); 361 362 /* Clear the interrupt */ 363 dev->irq_proc_reg.cpu_int_status &= ~cpu_int_status; 364 365 /* 366 * Set up the register transfer buffer to hit the register 4 times , 367 * this is done to make the access 4-byte aligned to mitigate issues 368 * with host bus interconnects that restrict bus transfer lengths to 369 * be a multiple of 4-bytes. 370 */ 371 372 /* set W1C value to clear the interrupt, this hits the register first */ 373 reg_buf[0] = cpu_int_status; 374 /* the remaining are set to zero which have no-effect */ 375 reg_buf[1] = 0; 376 reg_buf[2] = 0; 377 reg_buf[3] = 0; 378 379 status = hif_read_write_sync(dev->ar, CPU_INT_STATUS_ADDRESS, 380 reg_buf, 4, HIF_WR_SYNC_BYTE_FIX); 381 382 WARN_ON(status); 383 384 return status; 385 } 386 387 /* process pending interrupts synchronously */ 388 static int proc_pending_irqs(struct ath6kl_device *dev, bool *done) 389 { 390 struct ath6kl_irq_proc_registers *rg; 391 int status = 0; 392 u8 host_int_status = 0; 393 u32 lk_ahd = 0; 394 u8 htc_mbox = 1 << HTC_MAILBOX; 395 396 ath6kl_dbg(ATH6KL_DBG_IRQ, "proc_pending_irqs: (dev: 0x%p)\n", dev); 397 398 /* 399 * NOTE: HIF implementation guarantees that the context of this 400 * call allows us to perform SYNCHRONOUS I/O, that is we can block, 401 * sleep or call any API that can block or switch thread/task 402 * contexts. This is a fully schedulable context. 403 */ 404 405 /* 406 * Process pending intr only when int_status_en is clear, it may 407 * result in unnecessary bus transaction otherwise. Target may be 408 * unresponsive at the time. 409 */ 410 if (dev->irq_en_reg.int_status_en) { 411 /* 412 * Read the first 28 bytes of the HTC register table. This 413 * will yield us the value of different int status 414 * registers and the lookahead registers. 415 * 416 * length = sizeof(int_status) + sizeof(cpu_int_status) 417 * + sizeof(error_int_status) + 418 * sizeof(counter_int_status) + 419 * sizeof(mbox_frame) + sizeof(rx_lkahd_valid) 420 * + sizeof(hole) + sizeof(rx_lkahd) + 421 * sizeof(int_status_en) + 422 * sizeof(cpu_int_status_en) + 423 * sizeof(err_int_status_en) + 424 * sizeof(cntr_int_status_en); 425 */ 426 status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS, 427 (u8 *) &dev->irq_proc_reg, 428 sizeof(dev->irq_proc_reg), 429 HIF_RD_SYNC_BYTE_INC); 430 if (status) 431 goto out; 432 433 ath6kl_dump_registers(dev, &dev->irq_proc_reg, 434 &dev->irq_en_reg); 435 trace_ath6kl_sdio_irq(&dev->irq_en_reg, 436 sizeof(dev->irq_en_reg)); 437 438 /* Update only those registers that are enabled */ 439 host_int_status = dev->irq_proc_reg.host_int_status & 440 dev->irq_en_reg.int_status_en; 441 442 /* Look at mbox status */ 443 if (host_int_status & htc_mbox) { 444 /* 445 * Mask out pending mbox value, we use "lookAhead as 446 * the real flag for mbox processing. 447 */ 448 host_int_status &= ~htc_mbox; 449 if (dev->irq_proc_reg.rx_lkahd_valid & 450 htc_mbox) { 451 rg = &dev->irq_proc_reg; 452 lk_ahd = le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]); 453 if (!lk_ahd) 454 ath6kl_err("lookAhead is zero!\n"); 455 } 456 } 457 } 458 459 if (!host_int_status && !lk_ahd) { 460 *done = true; 461 goto out; 462 } 463 464 if (lk_ahd) { 465 int fetched = 0; 466 467 ath6kl_dbg(ATH6KL_DBG_IRQ, 468 "pending mailbox msg, lk_ahd: 0x%X\n", lk_ahd); 469 /* 470 * Mailbox Interrupt, the HTC layer may issue async 471 * requests to empty the mailbox. When emptying the recv 472 * mailbox we use the async handler above called from the 473 * completion routine of the callers read request. This can 474 * improve performance by reducing context switching when 475 * we rapidly pull packets. 476 */ 477 status = ath6kl_htc_rxmsg_pending_handler(dev->htc_cnxt, 478 lk_ahd, &fetched); 479 if (status) 480 goto out; 481 482 if (!fetched) 483 /* 484 * HTC could not pull any messages out due to lack 485 * of resources. 486 */ 487 dev->htc_cnxt->chk_irq_status_cnt = 0; 488 } 489 490 /* now handle the rest of them */ 491 ath6kl_dbg(ATH6KL_DBG_IRQ, 492 "valid interrupt source(s) for other interrupts: 0x%x\n", 493 host_int_status); 494 495 if (MS(HOST_INT_STATUS_CPU, host_int_status)) { 496 /* CPU Interrupt */ 497 status = ath6kl_hif_proc_cpu_intr(dev); 498 if (status) 499 goto out; 500 } 501 502 if (MS(HOST_INT_STATUS_ERROR, host_int_status)) { 503 /* Error Interrupt */ 504 status = ath6kl_hif_proc_err_intr(dev); 505 if (status) 506 goto out; 507 } 508 509 if (MS(HOST_INT_STATUS_COUNTER, host_int_status)) 510 /* Counter Interrupt */ 511 status = ath6kl_hif_proc_counter_intr(dev); 512 513 out: 514 /* 515 * An optimization to bypass reading the IRQ status registers 516 * unecessarily which can re-wake the target, if upper layers 517 * determine that we are in a low-throughput mode, we can rely on 518 * taking another interrupt rather than re-checking the status 519 * registers which can re-wake the target. 520 * 521 * NOTE : for host interfaces that makes use of detecting pending 522 * mbox messages at hif can not use this optimization due to 523 * possible side effects, SPI requires the host to drain all 524 * messages from the mailbox before exiting the ISR routine. 525 */ 526 527 ath6kl_dbg(ATH6KL_DBG_IRQ, 528 "bypassing irq status re-check, forcing done\n"); 529 530 if (!dev->htc_cnxt->chk_irq_status_cnt) 531 *done = true; 532 533 ath6kl_dbg(ATH6KL_DBG_IRQ, 534 "proc_pending_irqs: (done:%d, status=%d\n", *done, status); 535 536 return status; 537 } 538 539 /* interrupt handler, kicks off all interrupt processing */ 540 int ath6kl_hif_intr_bh_handler(struct ath6kl *ar) 541 { 542 struct ath6kl_device *dev = ar->htc_target->dev; 543 unsigned long timeout; 544 int status = 0; 545 bool done = false; 546 547 /* 548 * Reset counter used to flag a re-scan of IRQ status registers on 549 * the target. 550 */ 551 dev->htc_cnxt->chk_irq_status_cnt = 0; 552 553 /* 554 * IRQ processing is synchronous, interrupt status registers can be 555 * re-read. 556 */ 557 timeout = jiffies + msecs_to_jiffies(ATH6KL_HIF_COMMUNICATION_TIMEOUT); 558 while (time_before(jiffies, timeout) && !done) { 559 status = proc_pending_irqs(dev, &done); 560 if (status) 561 break; 562 } 563 564 return status; 565 } 566 EXPORT_SYMBOL(ath6kl_hif_intr_bh_handler); 567 568 static int ath6kl_hif_enable_intrs(struct ath6kl_device *dev) 569 { 570 struct ath6kl_irq_enable_reg regs; 571 int status; 572 573 spin_lock_bh(&dev->lock); 574 575 /* Enable all but ATH6KL CPU interrupts */ 576 dev->irq_en_reg.int_status_en = 577 SM(INT_STATUS_ENABLE_ERROR, 0x01) | 578 SM(INT_STATUS_ENABLE_CPU, 0x01) | 579 SM(INT_STATUS_ENABLE_COUNTER, 0x01); 580 581 /* 582 * NOTE: There are some cases where HIF can do detection of 583 * pending mbox messages which is disabled now. 584 */ 585 dev->irq_en_reg.int_status_en |= SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01); 586 587 /* Set up the CPU Interrupt status Register */ 588 dev->irq_en_reg.cpu_int_status_en = 0; 589 590 /* Set up the Error Interrupt status Register */ 591 dev->irq_en_reg.err_int_status_en = 592 SM(ERROR_STATUS_ENABLE_RX_UNDERFLOW, 0x01) | 593 SM(ERROR_STATUS_ENABLE_TX_OVERFLOW, 0x1); 594 595 /* 596 * Enable Counter interrupt status register to get fatal errors for 597 * debugging. 598 */ 599 dev->irq_en_reg.cntr_int_status_en = SM(COUNTER_INT_STATUS_ENABLE_BIT, 600 ATH6KL_TARGET_DEBUG_INTR_MASK); 601 memcpy(®s, &dev->irq_en_reg, sizeof(regs)); 602 603 spin_unlock_bh(&dev->lock); 604 605 status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS, 606 ®s.int_status_en, sizeof(regs), 607 HIF_WR_SYNC_BYTE_INC); 608 609 if (status) 610 ath6kl_err("failed to update interrupt ctl reg err: %d\n", 611 status); 612 613 return status; 614 } 615 616 int ath6kl_hif_disable_intrs(struct ath6kl_device *dev) 617 { 618 struct ath6kl_irq_enable_reg regs; 619 620 spin_lock_bh(&dev->lock); 621 /* Disable all interrupts */ 622 dev->irq_en_reg.int_status_en = 0; 623 dev->irq_en_reg.cpu_int_status_en = 0; 624 dev->irq_en_reg.err_int_status_en = 0; 625 dev->irq_en_reg.cntr_int_status_en = 0; 626 memcpy(®s, &dev->irq_en_reg, sizeof(regs)); 627 spin_unlock_bh(&dev->lock); 628 629 return hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS, 630 ®s.int_status_en, sizeof(regs), 631 HIF_WR_SYNC_BYTE_INC); 632 } 633 634 /* enable device interrupts */ 635 int ath6kl_hif_unmask_intrs(struct ath6kl_device *dev) 636 { 637 int status = 0; 638 639 /* 640 * Make sure interrupt are disabled before unmasking at the HIF 641 * layer. The rationale here is that between device insertion 642 * (where we clear the interrupts the first time) and when HTC 643 * is finally ready to handle interrupts, other software can perform 644 * target "soft" resets. The ATH6KL interrupt enables reset back to an 645 * "enabled" state when this happens. 646 */ 647 ath6kl_hif_disable_intrs(dev); 648 649 /* unmask the host controller interrupts */ 650 ath6kl_hif_irq_enable(dev->ar); 651 status = ath6kl_hif_enable_intrs(dev); 652 653 return status; 654 } 655 656 /* disable all device interrupts */ 657 int ath6kl_hif_mask_intrs(struct ath6kl_device *dev) 658 { 659 /* 660 * Mask the interrupt at the HIF layer to avoid any stray interrupt 661 * taken while we zero out our shadow registers in 662 * ath6kl_hif_disable_intrs(). 663 */ 664 ath6kl_hif_irq_disable(dev->ar); 665 666 return ath6kl_hif_disable_intrs(dev); 667 } 668 669 int ath6kl_hif_setup(struct ath6kl_device *dev) 670 { 671 int status = 0; 672 673 spin_lock_init(&dev->lock); 674 675 /* 676 * NOTE: we actually get the block size of a mailbox other than 0, 677 * for SDIO the block size on mailbox 0 is artificially set to 1. 678 * So we use the block size that is set for the other 3 mailboxes. 679 */ 680 dev->htc_cnxt->block_sz = dev->ar->mbox_info.block_size; 681 682 /* must be a power of 2 */ 683 if ((dev->htc_cnxt->block_sz & (dev->htc_cnxt->block_sz - 1)) != 0) { 684 WARN_ON(1); 685 status = -EINVAL; 686 goto fail_setup; 687 } 688 689 /* assemble mask, used for padding to a block */ 690 dev->htc_cnxt->block_mask = dev->htc_cnxt->block_sz - 1; 691 692 ath6kl_dbg(ATH6KL_DBG_HIF, "hif block size %d mbox addr 0x%x\n", 693 dev->htc_cnxt->block_sz, dev->ar->mbox_info.htc_addr); 694 695 status = ath6kl_hif_disable_intrs(dev); 696 697 fail_setup: 698 return status; 699 } 700